Updated to fedora-glibc-20050106T1443
[glibc.git] / sysdeps / ia64 / fpu / e_exp10f.S
blobf069b3afab93e87900e00451cd50e8f4c20d4154
1 .file "exp10f.s"
4 // Copyright (c) 2000 - 2003, Intel Corporation
5 // All rights reserved.
6 //
7 // Contributed 2000 by the Intel Numerics Group, Intel Corporation
8 //
9 // Redistribution and use in source and binary forms, with or without
10 // modification, are permitted provided that the following conditions are
11 // met:
13 // * Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
20 // * The name of Intel Corporation may not be used to endorse or promote
21 // products derived from this software without specific prior written
22 // permission.
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
28 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
32 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
33 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 // Intel Corporation is the author of this code, and requests that all
37 // problem reports or change requests be submitted to it directly at
38 // http: //www.intel.com/software/products/opensource/libraries/num.htm.
40 // History
41 //==============================================================
42 // 08/25/00 Initial version
43 // 05/20/02 Cleaned up namespace and sf0 syntax
44 // 09/06/02 Improved performance and accuracy; no inexact flags on exact cases
45 // 01/29/03 Added missing } to bundle templates
47 // API
48 //==============================================================
49 // float exp10f(float)
51 // Overview of operation
52 //==============================================================
53 // Background
55 // Implementation
57 // Let x= (K + fh + fl + r)/log2(10), where
58 // K is an integer, fh= 0.b1 b2 b3 b4 b5,
59 // fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
60 // and |r|<2^{-11}
61 // Th is a table that stores 2^fh (32 entries) rounded to
62 // double extended precision (only mantissa is stored)
63 // Tl is a table that stores 2^fl (32 entries) rounded to
64 // double extended precision (only mantissa is stored)
66 // 10^x is approximated as
67 // 2^K * Th [ f ] * Tl [ f ] * (1+c1*r+c2*r^2)
69 // Note there are only 10 non-zero values that produce an exact result:
70 //  1.0, 2.0, ... 10.0.
71 // We test for these cases and use s1 to avoid setting the inexact flag.
73 // Special values
74 //==============================================================
75 // exp10(0)= 1
76 // exp10(+inf)= inf
77 // exp10(-inf)= 0
80 // Registers used
81 //==============================================================
82 // r2-r3, r14-r40
83 // f6-f15, f32-f51
84 // p6-p9, p12
88 GR_TBL_START        = r2
89 GR_LOG_TBL          = r3
91 GR_OF_LIMIT         = r14
92 GR_UF_LIMIT         = r15
93 GR_EXP_CORR         = r16
94 GR_F_low            = r17
95 GR_F_high           = r18
96 GR_K                = r19
97 GR_Flow_ADDR        = r20
99 GR_BIAS             = r21
100 GR_Fh               = r22
101 GR_Fh_ADDR          = r23
102 GR_EXPMAX           = r24
104 GR_ROUNDVAL         = r26
105 GR_MASK             = r27
106 GR_KF0              = r28
107 GR_MASK_low         = r29
108 GR_COEFF_START      = r30
109 GR_exact_limit      = r31
111 GR_SAVE_B0          = r33
112 GR_SAVE_PFS         = r34
113 GR_SAVE_GP          = r35
114 GR_SAVE_SP          = r36
116 GR_Parameter_X      = r37
117 GR_Parameter_Y      = r38
118 GR_Parameter_RESULT = r39
119 GR_Parameter_TAG    = r40
122 FR_X                = f10
123 FR_Y                = f1
124 FR_RESULT           = f8
127 FR_COEFF1           = f6
128 FR_COEFF2           = f7
129 FR_R                = f9
130 FR_LOG2_10          = f10
132 FR_2P53             = f11
133 FR_KF0              = f12
134 FR_COEFF3           = f13
135 FR_COEFF4           = f14
136 FR_UF_LIMIT         = f15
138 FR_OF_LIMIT         = f32
139 FR_DX_L210          = f33
140 FR_ROUNDVAL         = f34
141 FR_KF               = f35
143 FR_2_TO_K           = f36
144 FR_T_low            = f37
145 FR_T_high           = f38
147 FR_P12              = f41
148 FR_T_low_K          = f42
149 FR_T                = f44
150 FR_P                = f45
152 FR_E                = f49
153 FR_exact_limit      = f50
155 FR_int_x            = f51
158 // Data tables
159 //==============================================================
161 RODATA
163 .align 16
165 LOCAL_OBJECT_START(poly_coeffs)
167 data8 0xd49a784bcd1b8afe, 0x00003fcb // log2(10)*2^(10-63)
168 data8 0xb17217f7d1cf79ab, 0x00004033 // C_1 * 2^53
169 data8 0xf5fdeffc162c7541, 0x00004066 // C_2 * 2^106
170 LOCAL_OBJECT_END(poly_coeffs)
173 LOCAL_OBJECT_START(T_table)
175 // 2^{0.00000 b6 b7 b8 b9 b10}
176 data8 0x8000000000000000, 0x8016302f17467628
177 data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
178 data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
179 data8 0x80855ad965e88b83, 0x809ba2264dada76a
180 data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
181 data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
182 data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
183 data8 0x813801881d886f7b, 0x814e67cceb90502c
184 data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
185 data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
186 data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
187 data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
188 data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
189 data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
190 data8 0x8272fb97b2a5894c, 0x828998760d01faf3
191 data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
194 // 2^{0.b1 b2 b3 b4 b5}
195 data8 0x8000000000000000, 0x82cd8698ac2ba1d7
196 data8 0x85aac367cc487b14, 0x88980e8092da8527
197 data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
198 data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
199 data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
200 data8 0x9ef5326091a111ad, 0xa27043030c496818
201 data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
202 data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
203 data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
204 data8 0xbd08a39f580c36be, 0xc12c4cca66709456
205 data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
206 data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
207 data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
208 data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
209 data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
210 data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
211 LOCAL_OBJECT_END(T_table)
215 .section .text
216 GLOBAL_IEEE754_ENTRY(exp10f)
219 {.mfi
220        alloc r32= ar.pfs, 1, 4, 4, 0
221        // will continue only for non-zero normal/denormal numbers
222        fclass.nm.unc p12, p7= f8, 0x1b
223        nop.i 0
225 {.mlx
226        // GR_TBL_START= pointer to log2(10), C_1...C_4 followed by T_table
227        addl GR_TBL_START= @ltoff(poly_coeffs), gp
228        movl GR_ROUNDVAL= 0x3fc00000             // 1.5 (SP)
232 {.mfi
233        ld8 GR_COEFF_START= [ GR_TBL_START ]     // Load pointer to coeff table
234        fcmp.lt.s1 p6, p8= f8, f0                // X<0 ?
235        nop.i 0
239 {.mlx
240        nop.m 0
241        movl GR_UF_LIMIT= 0xc2349e35             // (-2^7-22) / log2(10)
243 {.mlx
244        setf.s FR_ROUNDVAL= GR_ROUNDVAL
245        movl GR_OF_LIMIT= 0x421a209a             // Overflow threshold
249 {.mib
250        ldfe FR_LOG2_10= [ GR_COEFF_START ], 16  // load log2(10)*2^(10-63)
251        nop.i 0
252  (p12) br.cond.spnt SPECIAL_exp10               // Branch if nan, inf, zero
256 {.mfi
257        setf.s FR_OF_LIMIT= GR_OF_LIMIT           // Set overflow limit
258        fma.s0 f8= f8, f1, f0                     // normalize x
259        nop.i 0
263 {.mfi
264        nop.m 0
265  (p8)  fcvt.fx.s1 FR_int_x = f8                   // Convert x to integer
266        nop.i 0
268 {.mfi
269        setf.s FR_UF_LIMIT= GR_UF_LIMIT            // Set underflow limit
270        fma.s1 FR_KF0= f8, FR_LOG2_10, FR_ROUNDVAL // y= (x*log2(10)*2^10 +
271                                                   //    1.5*2^63) * 2^(-63)
272        mov GR_EXP_CORR= 0xffff-126
276 {.mfi
277        ldfe FR_COEFF1= [ GR_COEFF_START ], 16    // load C_1
278        fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL     // (K+f)*2^(10-63)
279        mov GR_MASK= 1023
283 {.mfi
284        ldfe FR_COEFF2= [ GR_COEFF_START ], 16    // load C_2
285        nop.f 0
286        mov GR_MASK_low= 31
290 {.mlx
291        getf.sig GR_KF0= FR_KF0                   // (K+f)*2^10= round_to_int(y)
292  (p8)  movl GR_exact_limit= 0x41200000           // Largest x for exact result,
293                                                  //  +10.0
297 {.mfi
298        add GR_LOG_TBL= 256, GR_COEFF_START       // Pointer to high T_table
299        fcmp.gt.s1 p12, p7= f8, FR_OF_LIMIT       // x>overflow threshold ?
300        nop.i 0
304 {.mfi
305  (p8)  setf.s FR_exact_limit = GR_exact_limit    // Largest x for exact result
306  (p8)  fcvt.xf FR_int_x = FR_int_x               // Integral part of x
307        shr GR_K= GR_KF0, 10                      // K
309 {.mfi
310        and GR_F_high= GR_MASK, GR_KF0            // f_high*32
311        fms.s1 FR_R= f8, FR_LOG2_10, FR_KF        // r*2^(-53)= [ x*log2(10)-
312                                                  //           (K+f) ] *2^{10-63}
313        and GR_F_low= GR_KF0, GR_MASK_low         // f_low
317 {.mmi
318        shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
319        add GR_BIAS= GR_K, GR_EXP_CORR            // K= bias-2*63
320        shr GR_Fh= GR_F_high, 5                   // f_high
324 {.mfi
325        setf.exp FR_2_TO_K= GR_BIAS               // 2^{K-126}
326  (p7)  fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT       // x<underflow threshold ?
327        shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL   // address of 2^{f_high}
329 {.mfi
330        ldf8 FR_T_low= [ GR_Flow_ADDR ]           // load T_low= 2^{f_low}
331        nop.f 0
332        nop.i 0
336 {.mfb
337        ldf8 FR_T_high= [ GR_Fh_ADDR ]            // load T_high= 2^{f_high}
338        nop.f 0
339  (p12) br.cond.spnt OUT_RANGE_exp10
343 {.mfi
344        nop.m 0
345        fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
346        cmp.eq p7,p9= r0,r0                       // Assume inexact result
350 {.mfi
351        nop.m 0
352  (p8)  fcmp.eq.s1 p9,p7= FR_int_x, f8            // Test x positive integer
353        nop.i 0
355 {.mfi
356        nop.m 0
357        fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
358        nop.i 0
362 {.mfi
363        nop.m 0
364        fma.s1 FR_P= FR_P12, FR_R, f0              // P= P12*r
365        nop.i 0
369 // If x a positive integer, will it produce an exact result?
370 //   p7 result will be inexact
371 //   p9 result will be exact
372 {.mfi
373        nop.m 0
374  (p9)  fcmp.le.s1 p9,p7= f8, FR_exact_limit       // Test x gives exact result
375        nop.i 0
377 {.mfi
378        nop.m 0
379        fma.s1 FR_T= FR_T_low_K, FR_T_high, f0     // T= T*T_high
380        nop.i 0
384 .pred.rel "mutex",p7,p9
385 {.mfi
386        nop.m 0
387  (p7)  fma.s.s0 f8= FR_P, FR_T, FR_T              // result= T+T*P, inexact set
388        nop.i 0
390 {.mfb
391        nop.m 0
392  (p9)  fma.s.s1 f8= FR_P, FR_T, FR_T              // result= T+T*P, exact use s1
393        br.ret.sptk b0                             // return
398 SPECIAL_exp10:
399 {.mfi
400        nop.m 0
401        fclass.m p6, p0= f8, 0x22                  // x= -Infinity ?
402        nop.i 0
406 {.mfi
407        nop.m 0
408        fclass.m p7, p0= f8, 0x21                  // x= +Infinity ?
409        nop.i 0
413 {.mfi
414        nop.m 0
415        fclass.m p8, p0= f8, 0x7                   // x= +/-Zero ?
416        nop.i 0
418 {.mfb
419        nop.m 0
420  (p6)  mov f8= f0                                 // exp10(-Infinity)= 0
421  (p6)  br.ret.spnt b0
425 {.mfb
426        nop.m 0
427        nop.f 0
428  (p7)  br.ret.spnt b0                             // exp10(+Infinity)= +Infinity
432 {.mfb
433        nop.m 0
434  (p8)  mov f8= f1                                 // exp10(+/-0)= 1
435  (p8)  br.ret.spnt b0
439 {.mfb
440        nop.m 0
441        fma.s.s0 f8= f8, f1, f0                    // Remaining cases: NaNs
442        br.ret.sptk b0
447 OUT_RANGE_exp10:
449 // overflow: p8= 1
451 {.mii
452  (p8)  mov GR_EXPMAX= 0x1fffe
453        nop.i 0
454        nop.i 0
459 {.mmb
460  (p8)  mov GR_Parameter_TAG= 167
461  (p8)  setf.exp FR_R= GR_EXPMAX
462        nop.b 999
466 {.mfi
467        nop.m 999
468  (p8)  fma.s.s0 f8= FR_R, FR_R, f0                // Create overflow
469        nop.i 999
471 // underflow: p6= 1
472 {.mii
473        nop.m 0
474  (p6)  mov GR_EXPMAX= 1
475        nop.i 0
479 {.mmb
480        nop.m 0
481  (p6)  setf.exp FR_R= GR_EXPMAX
482        nop.b 999
486 {.mfb
487        nop.m 999
488  (p6)  fma.s.s0 f8= FR_R, FR_R, f0                // Create underflow
489  (p6)  br.ret.sptk b0                  // will not call libm_error for underflow
493 GLOBAL_IEEE754_END(exp10f)
494 weak_alias (exp10f, pow10f)
496 LOCAL_LIBM_ENTRY(__libm_error_region)
498 .prologue
499 {.mfi
500        add GR_Parameter_Y= -32, sp                // Parameter 2 value
501        nop.f 0
502 .save ar.pfs, GR_SAVE_PFS
503        mov GR_SAVE_PFS= ar.pfs                    // Save ar.pfs
506 {.mfi
507 .fframe 64
508        add sp= -64, sp                            // Create new stack
509        nop.f 0
510        mov GR_SAVE_GP= gp                         // Save gp
514 {.mmi
515        stfs [ GR_Parameter_Y ]= FR_Y, 16          // STORE Parameter 2 on stack
516        add GR_Parameter_X= 16, sp                 // Parameter 1 address
517 .save b0, GR_SAVE_B0
518        mov GR_SAVE_B0= b0                         // Save b0
522 .body
523 {.mib
524        stfs [ GR_Parameter_X ]= FR_X              // STORE Parameter 1 on stack
525        add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
526        nop.b 0
528 {.mib
529        stfs [ GR_Parameter_Y ]= FR_RESULT         // STORE Parameter 3 on stack
530        add GR_Parameter_Y= -16, GR_Parameter_Y
531        br.call.sptk b0= __libm_error_support#    // Call error handling function
535 {.mmi
536        add GR_Parameter_RESULT= 48, sp
537        nop.m 0
538        nop.i 0
542 {.mmi
543        ldfs f8= [ GR_Parameter_RESULT ]          // Get return result off stack
544 .restore sp
545        add sp= 64, sp                            // Restore stack pointer
546        mov b0= GR_SAVE_B0                        // Restore return address
550 {.mib
551        mov gp= GR_SAVE_GP                        // Restore gp
552        mov ar.pfs= GR_SAVE_PFS                   // Restore ar.pfs
553        br.ret.sptk b0                            // Return
558 LOCAL_LIBM_END(__libm_error_region)
560 .type __libm_error_support#, @function
561 .global __libm_error_support#