Partly revert "glib: Add filename type annotations"
[glib.git] / glib / gchecksum.c
blob9107e78b5e178861bddc00317d1b5ae0ef878220
1 /* gchecksum.h - data hashing functions
3 * Copyright (C) 2007 Emmanuele Bassi <ebassi@gnome.org>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Library General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Library General Public License for more details.
15 * You should have received a copy of the GNU Library General Public
16 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
21 #include <string.h>
23 #include "gchecksum.h"
25 #include "gslice.h"
26 #include "gmem.h"
27 #include "gstrfuncs.h"
28 #include "gtestutils.h"
29 #include "gtypes.h"
30 #include "glibintl.h"
33 /**
34 * SECTION:checksum
35 * @title: Data Checksums
36 * @short_description: computes the checksum for data
38 * GLib provides a generic API for computing checksums (or "digests")
39 * for a sequence of arbitrary bytes, using various hashing algorithms
40 * like MD5, SHA-1 and SHA-256. Checksums are commonly used in various
41 * environments and specifications.
43 * GLib supports incremental checksums using the GChecksum data
44 * structure, by calling g_checksum_update() as long as there's data
45 * available and then using g_checksum_get_string() or
46 * g_checksum_get_digest() to compute the checksum and return it either
47 * as a string in hexadecimal form, or as a raw sequence of bytes. To
48 * compute the checksum for binary blobs and NUL-terminated strings in
49 * one go, use the convenience functions g_compute_checksum_for_data()
50 * and g_compute_checksum_for_string(), respectively.
52 * Support for checksums has been added in GLib 2.16
53 **/
55 #define IS_VALID_TYPE(type) ((type) >= G_CHECKSUM_MD5 && (type) <= G_CHECKSUM_SHA512)
57 /* The fact that these are lower case characters is part of the ABI */
58 static const gchar hex_digits[] = "0123456789abcdef";
60 #define MD5_DATASIZE 64
61 #define MD5_DIGEST_LEN 16
63 typedef struct
65 guint32 buf[4];
66 guint32 bits[2];
68 union {
69 guchar data[MD5_DATASIZE];
70 guint32 data32[MD5_DATASIZE / 4];
71 } u;
73 guchar digest[MD5_DIGEST_LEN];
74 } Md5sum;
76 #define SHA1_DATASIZE 64
77 #define SHA1_DIGEST_LEN 20
79 typedef struct
81 guint32 buf[5];
82 guint32 bits[2];
84 /* we pack 64 unsigned chars into 16 32-bit unsigned integers */
85 guint32 data[16];
87 guchar digest[SHA1_DIGEST_LEN];
88 } Sha1sum;
90 #define SHA256_DATASIZE 64
91 #define SHA256_DIGEST_LEN 32
93 typedef struct
95 guint32 buf[8];
96 guint32 bits[2];
98 guint8 data[SHA256_DATASIZE];
100 guchar digest[SHA256_DIGEST_LEN];
101 } Sha256sum;
103 #define SHA512_BLOCK_LEN 128 /* 1024 bits message block */
104 #define SHA512_DIGEST_LEN 64
106 typedef struct
108 guint64 H[8];
110 guint8 block[SHA512_BLOCK_LEN];
111 guint8 block_len;
113 guint64 data_len[2];
115 guchar digest[SHA512_DIGEST_LEN];
116 } Sha512sum;
118 struct _GChecksum
120 GChecksumType type;
122 gchar *digest_str;
124 union {
125 Md5sum md5;
126 Sha1sum sha1;
127 Sha256sum sha256;
128 Sha512sum sha512;
129 } sum;
132 /* we need different byte swapping functions because MD5 expects buffers
133 * to be little-endian, while SHA1 and SHA256 expect them in big-endian
134 * form.
137 #if G_BYTE_ORDER == G_LITTLE_ENDIAN
138 #define md5_byte_reverse(buffer,length)
139 #else
140 /* assume that the passed buffer is integer aligned */
141 static inline void
142 md5_byte_reverse (guchar *buffer,
143 gulong length)
145 guint32 bit;
149 bit = (guint32) ((unsigned) buffer[3] << 8 | buffer[2]) << 16 |
150 ((unsigned) buffer[1] << 8 | buffer[0]);
151 * (guint32 *) buffer = bit;
152 buffer += 4;
154 while (--length);
156 #endif /* G_BYTE_ORDER == G_LITTLE_ENDIAN */
158 #if G_BYTE_ORDER == G_BIG_ENDIAN
159 #define sha_byte_reverse(buffer,length)
160 #else
161 static inline void
162 sha_byte_reverse (guint32 *buffer,
163 gint length)
165 length /= sizeof (guint32);
166 while (length--)
168 *buffer = GUINT32_SWAP_LE_BE (*buffer);
169 ++buffer;
172 #endif /* G_BYTE_ORDER == G_BIG_ENDIAN */
174 static gchar *
175 digest_to_string (guint8 *digest,
176 gsize digest_len)
178 gint len = digest_len * 2;
179 gint i;
180 gchar *retval;
182 retval = g_new (gchar, len + 1);
184 for (i = 0; i < digest_len; i++)
186 guint8 byte = digest[i];
188 retval[2 * i] = hex_digits[byte >> 4];
189 retval[2 * i + 1] = hex_digits[byte & 0xf];
192 retval[len] = 0;
194 return retval;
198 * MD5 Checksum
201 /* This MD5 digest computation is based on the equivalent code
202 * written by Colin Plumb. It came with this notice:
204 * This code implements the MD5 message-digest algorithm.
205 * The algorithm is due to Ron Rivest. This code was
206 * written by Colin Plumb in 1993, no copyright is claimed.
207 * This code is in the public domain; do with it what you wish.
209 * Equivalent code is available from RSA Data Security, Inc.
210 * This code has been tested against that, and is equivalent,
211 * except that you don't need to include two pages of legalese
212 * with every copy.
215 static void
216 md5_sum_init (Md5sum *md5)
218 /* arbitrary constants */
219 md5->buf[0] = 0x67452301;
220 md5->buf[1] = 0xefcdab89;
221 md5->buf[2] = 0x98badcfe;
222 md5->buf[3] = 0x10325476;
224 md5->bits[0] = md5->bits[1] = 0;
228 * The core of the MD5 algorithm, this alters an existing MD5 hash to
229 * reflect the addition of 16 longwords of new data. md5_sum_update()
230 * blocks the data and converts bytes into longwords for this routine.
232 static void
233 md5_transform (guint32 buf[4],
234 guint32 const in[16])
236 guint32 a, b, c, d;
238 /* The four core functions - F1 is optimized somewhat */
239 #define F1(x, y, z) (z ^ (x & (y ^ z)))
240 #define F2(x, y, z) F1 (z, x, y)
241 #define F3(x, y, z) (x ^ y ^ z)
242 #define F4(x, y, z) (y ^ (x | ~z))
244 /* This is the central step in the MD5 algorithm. */
245 #define md5_step(f, w, x, y, z, data, s) \
246 ( w += f (x, y, z) + data, w = w << s | w >> (32 - s), w += x )
248 a = buf[0];
249 b = buf[1];
250 c = buf[2];
251 d = buf[3];
253 md5_step (F1, a, b, c, d, in[0] + 0xd76aa478, 7);
254 md5_step (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
255 md5_step (F1, c, d, a, b, in[2] + 0x242070db, 17);
256 md5_step (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
257 md5_step (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
258 md5_step (F1, d, a, b, c, in[5] + 0x4787c62a, 12);
259 md5_step (F1, c, d, a, b, in[6] + 0xa8304613, 17);
260 md5_step (F1, b, c, d, a, in[7] + 0xfd469501, 22);
261 md5_step (F1, a, b, c, d, in[8] + 0x698098d8, 7);
262 md5_step (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
263 md5_step (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
264 md5_step (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
265 md5_step (F1, a, b, c, d, in[12] + 0x6b901122, 7);
266 md5_step (F1, d, a, b, c, in[13] + 0xfd987193, 12);
267 md5_step (F1, c, d, a, b, in[14] + 0xa679438e, 17);
268 md5_step (F1, b, c, d, a, in[15] + 0x49b40821, 22);
270 md5_step (F2, a, b, c, d, in[1] + 0xf61e2562, 5);
271 md5_step (F2, d, a, b, c, in[6] + 0xc040b340, 9);
272 md5_step (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
273 md5_step (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
274 md5_step (F2, a, b, c, d, in[5] + 0xd62f105d, 5);
275 md5_step (F2, d, a, b, c, in[10] + 0x02441453, 9);
276 md5_step (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
277 md5_step (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
278 md5_step (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
279 md5_step (F2, d, a, b, c, in[14] + 0xc33707d6, 9);
280 md5_step (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
281 md5_step (F2, b, c, d, a, in[8] + 0x455a14ed, 20);
282 md5_step (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
283 md5_step (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
284 md5_step (F2, c, d, a, b, in[7] + 0x676f02d9, 14);
285 md5_step (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
287 md5_step (F3, a, b, c, d, in[5] + 0xfffa3942, 4);
288 md5_step (F3, d, a, b, c, in[8] + 0x8771f681, 11);
289 md5_step (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
290 md5_step (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
291 md5_step (F3, a, b, c, d, in[1] + 0xa4beea44, 4);
292 md5_step (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
293 md5_step (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
294 md5_step (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
295 md5_step (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
296 md5_step (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
297 md5_step (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
298 md5_step (F3, b, c, d, a, in[6] + 0x04881d05, 23);
299 md5_step (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
300 md5_step (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
301 md5_step (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
302 md5_step (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
304 md5_step (F4, a, b, c, d, in[0] + 0xf4292244, 6);
305 md5_step (F4, d, a, b, c, in[7] + 0x432aff97, 10);
306 md5_step (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
307 md5_step (F4, b, c, d, a, in[5] + 0xfc93a039, 21);
308 md5_step (F4, a, b, c, d, in[12] + 0x655b59c3, 6);
309 md5_step (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
310 md5_step (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
311 md5_step (F4, b, c, d, a, in[1] + 0x85845dd1, 21);
312 md5_step (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
313 md5_step (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
314 md5_step (F4, c, d, a, b, in[6] + 0xa3014314, 15);
315 md5_step (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
316 md5_step (F4, a, b, c, d, in[4] + 0xf7537e82, 6);
317 md5_step (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
318 md5_step (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
319 md5_step (F4, b, c, d, a, in[9] + 0xeb86d391, 21);
321 buf[0] += a;
322 buf[1] += b;
323 buf[2] += c;
324 buf[3] += d;
326 #undef F1
327 #undef F2
328 #undef F3
329 #undef F4
330 #undef md5_step
333 static void
334 md5_sum_update (Md5sum *md5,
335 const guchar *data,
336 gsize length)
338 guint32 bit;
340 bit = md5->bits[0];
341 md5->bits[0] = bit + ((guint32) length << 3);
343 /* carry from low to high */
344 if (md5->bits[0] < bit)
345 md5->bits[1] += 1;
347 md5->bits[1] += length >> 29;
349 /* bytes already in Md5sum->u.data */
350 bit = (bit >> 3) & 0x3f;
352 /* handle any leading odd-sized chunks */
353 if (bit)
355 guchar *p = md5->u.data + bit;
357 bit = MD5_DATASIZE - bit;
358 if (length < bit)
360 memcpy (p, data, length);
361 return;
364 memcpy (p, data, bit);
366 md5_byte_reverse (md5->u.data, 16);
367 md5_transform (md5->buf, md5->u.data32);
369 data += bit;
370 length -= bit;
373 /* process data in 64-byte chunks */
374 while (length >= MD5_DATASIZE)
376 memcpy (md5->u.data, data, MD5_DATASIZE);
378 md5_byte_reverse (md5->u.data, 16);
379 md5_transform (md5->buf, md5->u.data32);
381 data += MD5_DATASIZE;
382 length -= MD5_DATASIZE;
385 /* handle any remaining bytes of data */
386 memcpy (md5->u.data, data, length);
389 /* closes a checksum */
390 static void
391 md5_sum_close (Md5sum *md5)
393 guint count;
394 guchar *p;
396 /* Compute number of bytes mod 64 */
397 count = (md5->bits[0] >> 3) & 0x3F;
399 /* Set the first char of padding to 0x80.
400 * This is safe since there is always at least one byte free
402 p = md5->u.data + count;
403 *p++ = 0x80;
405 /* Bytes of padding needed to make 64 bytes */
406 count = MD5_DATASIZE - 1 - count;
408 /* Pad out to 56 mod 64 */
409 if (count < 8)
411 /* Two lots of padding: Pad the first block to 64 bytes */
412 memset (p, 0, count);
414 md5_byte_reverse (md5->u.data, 16);
415 md5_transform (md5->buf, md5->u.data32);
417 /* Now fill the next block with 56 bytes */
418 memset (md5->u.data, 0, MD5_DATASIZE - 8);
420 else
422 /* Pad block to 56 bytes */
423 memset (p, 0, count - 8);
426 md5_byte_reverse (md5->u.data, 14);
428 /* Append length in bits and transform */
429 md5->u.data32[14] = md5->bits[0];
430 md5->u.data32[15] = md5->bits[1];
432 md5_transform (md5->buf, md5->u.data32);
433 md5_byte_reverse ((guchar *) md5->buf, 4);
435 memcpy (md5->digest, md5->buf, 16);
437 /* Reset buffers in case they contain sensitive data */
438 memset (md5->buf, 0, sizeof (md5->buf));
439 memset (md5->u.data, 0, sizeof (md5->u.data));
442 static gchar *
443 md5_sum_to_string (Md5sum *md5)
445 return digest_to_string (md5->digest, MD5_DIGEST_LEN);
448 static void
449 md5_sum_digest (Md5sum *md5,
450 guint8 *digest)
452 gint i;
454 for (i = 0; i < MD5_DIGEST_LEN; i++)
455 digest[i] = md5->digest[i];
459 * SHA-1 Checksum
462 /* The following implementation comes from D-Bus dbus-sha.c. I've changed
463 * it to use GLib types and to work more like the MD5 implementation above.
464 * I left the comments to have an history of this code.
465 * -- Emmanuele Bassi, ebassi@gnome.org
468 /* The following comments have the history of where this code
469 * comes from. I actually copied it from GNet in GNOME CVS.
470 * - hp@redhat.com
474 * sha.h : Implementation of the Secure Hash Algorithm
476 * Part of the Python Cryptography Toolkit, version 1.0.0
478 * Copyright (C) 1995, A.M. Kuchling
480 * Distribute and use freely; there are no restrictions on further
481 * dissemination and usage except those imposed by the laws of your
482 * country of residence.
486 /* SHA: NIST's Secure Hash Algorithm */
488 /* Based on SHA code originally posted to sci.crypt by Peter Gutmann
489 in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
490 Modified to test for endianness on creation of SHA objects by AMK.
491 Also, the original specification of SHA was found to have a weakness
492 by NSA/NIST. This code implements the fixed version of SHA.
495 /* Here's the first paragraph of Peter Gutmann's posting:
497 The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
498 SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
499 what's changed in the new version. The fix is a simple change which involves
500 adding a single rotate in the initial expansion function. It is unknown
501 whether this is an optimal solution to the problem which was discovered in the
502 SHA or whether it's simply a bandaid which fixes the problem with a minimum of
503 effort (for example the reengineering of a great many Capstone chips).
506 static void
507 sha1_sum_init (Sha1sum *sha1)
509 /* initialize constants */
510 sha1->buf[0] = 0x67452301L;
511 sha1->buf[1] = 0xEFCDAB89L;
512 sha1->buf[2] = 0x98BADCFEL;
513 sha1->buf[3] = 0x10325476L;
514 sha1->buf[4] = 0xC3D2E1F0L;
516 /* initialize bits */
517 sha1->bits[0] = sha1->bits[1] = 0;
520 /* The SHA f()-functions. */
522 #define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */
523 #define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */
524 #define f3(x,y,z) (( x & y) | (z & (x | y))) /* Rounds 40-59 */
525 #define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */
527 /* The SHA Mysterious Constants */
528 #define K1 0x5A827999L /* Rounds 0-19 */
529 #define K2 0x6ED9EBA1L /* Rounds 20-39 */
530 #define K3 0x8F1BBCDCL /* Rounds 40-59 */
531 #define K4 0xCA62C1D6L /* Rounds 60-79 */
533 /* 32-bit rotate left - kludged with shifts */
534 #define ROTL(n,X) (((X) << n ) | ((X) >> (32 - n)))
536 /* The initial expanding function. The hash function is defined over an
537 80-word expanded input array W, where the first 16 are copies of the input
538 data, and the remaining 64 are defined by
540 W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
542 This implementation generates these values on the fly in a circular
543 buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
544 optimization.
546 The updated SHA changes the expanding function by adding a rotate of 1
547 bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
548 for this information */
550 #define expand(W,i) (W[ i & 15 ] = ROTL (1, (W[ i & 15] ^ \
551 W[(i - 14) & 15] ^ \
552 W[(i - 8) & 15] ^ \
553 W[(i - 3) & 15])))
556 /* The prototype SHA sub-round. The fundamental sub-round is:
558 a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
559 b' = a;
560 c' = ROTL( 30, b );
561 d' = c;
562 e' = d;
564 but this is implemented by unrolling the loop 5 times and renaming the
565 variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
566 This code is then replicated 20 times for each of the 4 functions, using
567 the next 20 values from the W[] array each time */
569 #define subRound(a, b, c, d, e, f, k, data) \
570 (e += ROTL (5, a) + f(b, c, d) + k + data, b = ROTL (30, b))
572 static void
573 sha1_transform (guint32 buf[5],
574 guint32 in[16])
576 guint32 A, B, C, D, E;
578 A = buf[0];
579 B = buf[1];
580 C = buf[2];
581 D = buf[3];
582 E = buf[4];
584 /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
585 subRound (A, B, C, D, E, f1, K1, in[0]);
586 subRound (E, A, B, C, D, f1, K1, in[1]);
587 subRound (D, E, A, B, C, f1, K1, in[2]);
588 subRound (C, D, E, A, B, f1, K1, in[3]);
589 subRound (B, C, D, E, A, f1, K1, in[4]);
590 subRound (A, B, C, D, E, f1, K1, in[5]);
591 subRound (E, A, B, C, D, f1, K1, in[6]);
592 subRound (D, E, A, B, C, f1, K1, in[7]);
593 subRound (C, D, E, A, B, f1, K1, in[8]);
594 subRound (B, C, D, E, A, f1, K1, in[9]);
595 subRound (A, B, C, D, E, f1, K1, in[10]);
596 subRound (E, A, B, C, D, f1, K1, in[11]);
597 subRound (D, E, A, B, C, f1, K1, in[12]);
598 subRound (C, D, E, A, B, f1, K1, in[13]);
599 subRound (B, C, D, E, A, f1, K1, in[14]);
600 subRound (A, B, C, D, E, f1, K1, in[15]);
601 subRound (E, A, B, C, D, f1, K1, expand (in, 16));
602 subRound (D, E, A, B, C, f1, K1, expand (in, 17));
603 subRound (C, D, E, A, B, f1, K1, expand (in, 18));
604 subRound (B, C, D, E, A, f1, K1, expand (in, 19));
606 subRound (A, B, C, D, E, f2, K2, expand (in, 20));
607 subRound (E, A, B, C, D, f2, K2, expand (in, 21));
608 subRound (D, E, A, B, C, f2, K2, expand (in, 22));
609 subRound (C, D, E, A, B, f2, K2, expand (in, 23));
610 subRound (B, C, D, E, A, f2, K2, expand (in, 24));
611 subRound (A, B, C, D, E, f2, K2, expand (in, 25));
612 subRound (E, A, B, C, D, f2, K2, expand (in, 26));
613 subRound (D, E, A, B, C, f2, K2, expand (in, 27));
614 subRound (C, D, E, A, B, f2, K2, expand (in, 28));
615 subRound (B, C, D, E, A, f2, K2, expand (in, 29));
616 subRound (A, B, C, D, E, f2, K2, expand (in, 30));
617 subRound (E, A, B, C, D, f2, K2, expand (in, 31));
618 subRound (D, E, A, B, C, f2, K2, expand (in, 32));
619 subRound (C, D, E, A, B, f2, K2, expand (in, 33));
620 subRound (B, C, D, E, A, f2, K2, expand (in, 34));
621 subRound (A, B, C, D, E, f2, K2, expand (in, 35));
622 subRound (E, A, B, C, D, f2, K2, expand (in, 36));
623 subRound (D, E, A, B, C, f2, K2, expand (in, 37));
624 subRound (C, D, E, A, B, f2, K2, expand (in, 38));
625 subRound (B, C, D, E, A, f2, K2, expand (in, 39));
627 subRound (A, B, C, D, E, f3, K3, expand (in, 40));
628 subRound (E, A, B, C, D, f3, K3, expand (in, 41));
629 subRound (D, E, A, B, C, f3, K3, expand (in, 42));
630 subRound (C, D, E, A, B, f3, K3, expand (in, 43));
631 subRound (B, C, D, E, A, f3, K3, expand (in, 44));
632 subRound (A, B, C, D, E, f3, K3, expand (in, 45));
633 subRound (E, A, B, C, D, f3, K3, expand (in, 46));
634 subRound (D, E, A, B, C, f3, K3, expand (in, 47));
635 subRound (C, D, E, A, B, f3, K3, expand (in, 48));
636 subRound (B, C, D, E, A, f3, K3, expand (in, 49));
637 subRound (A, B, C, D, E, f3, K3, expand (in, 50));
638 subRound (E, A, B, C, D, f3, K3, expand (in, 51));
639 subRound (D, E, A, B, C, f3, K3, expand (in, 52));
640 subRound (C, D, E, A, B, f3, K3, expand (in, 53));
641 subRound (B, C, D, E, A, f3, K3, expand (in, 54));
642 subRound (A, B, C, D, E, f3, K3, expand (in, 55));
643 subRound (E, A, B, C, D, f3, K3, expand (in, 56));
644 subRound (D, E, A, B, C, f3, K3, expand (in, 57));
645 subRound (C, D, E, A, B, f3, K3, expand (in, 58));
646 subRound (B, C, D, E, A, f3, K3, expand (in, 59));
648 subRound (A, B, C, D, E, f4, K4, expand (in, 60));
649 subRound (E, A, B, C, D, f4, K4, expand (in, 61));
650 subRound (D, E, A, B, C, f4, K4, expand (in, 62));
651 subRound (C, D, E, A, B, f4, K4, expand (in, 63));
652 subRound (B, C, D, E, A, f4, K4, expand (in, 64));
653 subRound (A, B, C, D, E, f4, K4, expand (in, 65));
654 subRound (E, A, B, C, D, f4, K4, expand (in, 66));
655 subRound (D, E, A, B, C, f4, K4, expand (in, 67));
656 subRound (C, D, E, A, B, f4, K4, expand (in, 68));
657 subRound (B, C, D, E, A, f4, K4, expand (in, 69));
658 subRound (A, B, C, D, E, f4, K4, expand (in, 70));
659 subRound (E, A, B, C, D, f4, K4, expand (in, 71));
660 subRound (D, E, A, B, C, f4, K4, expand (in, 72));
661 subRound (C, D, E, A, B, f4, K4, expand (in, 73));
662 subRound (B, C, D, E, A, f4, K4, expand (in, 74));
663 subRound (A, B, C, D, E, f4, K4, expand (in, 75));
664 subRound (E, A, B, C, D, f4, K4, expand (in, 76));
665 subRound (D, E, A, B, C, f4, K4, expand (in, 77));
666 subRound (C, D, E, A, B, f4, K4, expand (in, 78));
667 subRound (B, C, D, E, A, f4, K4, expand (in, 79));
669 /* Build message digest */
670 buf[0] += A;
671 buf[1] += B;
672 buf[2] += C;
673 buf[3] += D;
674 buf[4] += E;
677 #undef K1
678 #undef K2
679 #undef K3
680 #undef K4
681 #undef f1
682 #undef f2
683 #undef f3
684 #undef f4
685 #undef ROTL
686 #undef expand
687 #undef subRound
689 static void
690 sha1_sum_update (Sha1sum *sha1,
691 const guchar *buffer,
692 gsize count)
694 guint32 tmp;
695 guint dataCount;
697 /* Update bitcount */
698 tmp = sha1->bits[0];
699 if ((sha1->bits[0] = tmp + ((guint32) count << 3) ) < tmp)
700 sha1->bits[1] += 1; /* Carry from low to high */
701 sha1->bits[1] += count >> 29;
703 /* Get count of bytes already in data */
704 dataCount = (guint) (tmp >> 3) & 0x3F;
706 /* Handle any leading odd-sized chunks */
707 if (dataCount)
709 guchar *p = (guchar *) sha1->data + dataCount;
711 dataCount = SHA1_DATASIZE - dataCount;
712 if (count < dataCount)
714 memcpy (p, buffer, count);
715 return;
718 memcpy (p, buffer, dataCount);
720 sha_byte_reverse (sha1->data, SHA1_DATASIZE);
721 sha1_transform (sha1->buf, sha1->data);
723 buffer += dataCount;
724 count -= dataCount;
727 /* Process data in SHA1_DATASIZE chunks */
728 while (count >= SHA1_DATASIZE)
730 memcpy (sha1->data, buffer, SHA1_DATASIZE);
732 sha_byte_reverse (sha1->data, SHA1_DATASIZE);
733 sha1_transform (sha1->buf, sha1->data);
735 buffer += SHA1_DATASIZE;
736 count -= SHA1_DATASIZE;
739 /* Handle any remaining bytes of data. */
740 memcpy (sha1->data, buffer, count);
743 /* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
744 1 0* (64-bit count of bits processed, MSB-first) */
745 static void
746 sha1_sum_close (Sha1sum *sha1)
748 gint count;
749 guchar *data_p;
751 /* Compute number of bytes mod 64 */
752 count = (gint) ((sha1->bits[0] >> 3) & 0x3f);
754 /* Set the first char of padding to 0x80. This is safe since there is
755 always at least one byte free */
756 data_p = (guchar *) sha1->data + count;
757 *data_p++ = 0x80;
759 /* Bytes of padding needed to make 64 bytes */
760 count = SHA1_DATASIZE - 1 - count;
762 /* Pad out to 56 mod 64 */
763 if (count < 8)
765 /* Two lots of padding: Pad the first block to 64 bytes */
766 memset (data_p, 0, count);
768 sha_byte_reverse (sha1->data, SHA1_DATASIZE);
769 sha1_transform (sha1->buf, sha1->data);
771 /* Now fill the next block with 56 bytes */
772 memset (sha1->data, 0, SHA1_DATASIZE - 8);
774 else
776 /* Pad block to 56 bytes */
777 memset (data_p, 0, count - 8);
780 /* Append length in bits and transform */
781 sha1->data[14] = sha1->bits[1];
782 sha1->data[15] = sha1->bits[0];
784 sha_byte_reverse (sha1->data, SHA1_DATASIZE - 8);
785 sha1_transform (sha1->buf, sha1->data);
786 sha_byte_reverse (sha1->buf, SHA1_DIGEST_LEN);
788 memcpy (sha1->digest, sha1->buf, SHA1_DIGEST_LEN);
790 /* Reset buffers in case they contain sensitive data */
791 memset (sha1->buf, 0, sizeof (sha1->buf));
792 memset (sha1->data, 0, sizeof (sha1->data));
795 static gchar *
796 sha1_sum_to_string (Sha1sum *sha1)
798 return digest_to_string (sha1->digest, SHA1_DIGEST_LEN);
801 static void
802 sha1_sum_digest (Sha1sum *sha1,
803 guint8 *digest)
805 gint i;
807 for (i = 0; i < SHA1_DIGEST_LEN; i++)
808 digest[i] = sha1->digest[i];
812 * SHA-256 Checksum
815 /* adapted from the SHA256 implementation in gsk/src/hash/gskhash.c.
817 * Copyright (C) 2006 Dave Benson
818 * Released under the terms of the GNU Lesser General Public License
821 static void
822 sha256_sum_init (Sha256sum *sha256)
824 sha256->buf[0] = 0x6a09e667;
825 sha256->buf[1] = 0xbb67ae85;
826 sha256->buf[2] = 0x3c6ef372;
827 sha256->buf[3] = 0xa54ff53a;
828 sha256->buf[4] = 0x510e527f;
829 sha256->buf[5] = 0x9b05688c;
830 sha256->buf[6] = 0x1f83d9ab;
831 sha256->buf[7] = 0x5be0cd19;
833 sha256->bits[0] = sha256->bits[1] = 0;
836 #define GET_UINT32(n,b,i) G_STMT_START{ \
837 (n) = ((guint32) (b)[(i) ] << 24) \
838 | ((guint32) (b)[(i) + 1] << 16) \
839 | ((guint32) (b)[(i) + 2] << 8) \
840 | ((guint32) (b)[(i) + 3] ); } G_STMT_END
842 #define PUT_UINT32(n,b,i) G_STMT_START{ \
843 (b)[(i) ] = (guint8) ((n) >> 24); \
844 (b)[(i) + 1] = (guint8) ((n) >> 16); \
845 (b)[(i) + 2] = (guint8) ((n) >> 8); \
846 (b)[(i) + 3] = (guint8) ((n) ); } G_STMT_END
848 static void
849 sha256_transform (guint32 buf[8],
850 guint8 const data[64])
852 guint32 temp1, temp2, W[64];
853 guint32 A, B, C, D, E, F, G, H;
855 GET_UINT32 (W[0], data, 0);
856 GET_UINT32 (W[1], data, 4);
857 GET_UINT32 (W[2], data, 8);
858 GET_UINT32 (W[3], data, 12);
859 GET_UINT32 (W[4], data, 16);
860 GET_UINT32 (W[5], data, 20);
861 GET_UINT32 (W[6], data, 24);
862 GET_UINT32 (W[7], data, 28);
863 GET_UINT32 (W[8], data, 32);
864 GET_UINT32 (W[9], data, 36);
865 GET_UINT32 (W[10], data, 40);
866 GET_UINT32 (W[11], data, 44);
867 GET_UINT32 (W[12], data, 48);
868 GET_UINT32 (W[13], data, 52);
869 GET_UINT32 (W[14], data, 56);
870 GET_UINT32 (W[15], data, 60);
872 #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
873 #define ROTR(x,n) (SHR (x,n) | (x << (32 - n)))
875 #define S0(x) (ROTR (x, 7) ^ ROTR (x,18) ^ SHR (x, 3))
876 #define S1(x) (ROTR (x,17) ^ ROTR (x,19) ^ SHR (x,10))
877 #define S2(x) (ROTR (x, 2) ^ ROTR (x,13) ^ ROTR (x,22))
878 #define S3(x) (ROTR (x, 6) ^ ROTR (x,11) ^ ROTR (x,25))
880 #define F0(x,y,z) ((x & y) | (z & (x | y)))
881 #define F1(x,y,z) (z ^ (x & (y ^ z)))
883 #define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + \
884 S0(W[t - 15]) + W[t - 16])
886 #define P(a,b,c,d,e,f,g,h,x,K) G_STMT_START { \
887 temp1 = h + S3(e) + F1(e,f,g) + K + x; \
888 temp2 = S2(a) + F0(a,b,c); \
889 d += temp1; h = temp1 + temp2; } G_STMT_END
891 A = buf[0];
892 B = buf[1];
893 C = buf[2];
894 D = buf[3];
895 E = buf[4];
896 F = buf[5];
897 G = buf[6];
898 H = buf[7];
900 P (A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98);
901 P (H, A, B, C, D, E, F, G, W[ 1], 0x71374491);
902 P (G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF);
903 P (F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5);
904 P (E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B);
905 P (D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1);
906 P (C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4);
907 P (B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5);
908 P (A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98);
909 P (H, A, B, C, D, E, F, G, W[ 9], 0x12835B01);
910 P (G, H, A, B, C, D, E, F, W[10], 0x243185BE);
911 P (F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
912 P (E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
913 P (D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
914 P (C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
915 P (B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
916 P (A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
917 P (H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
918 P (G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
919 P (F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
920 P (E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
921 P (D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
922 P (C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
923 P (B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
924 P (A, B, C, D, E, F, G, H, R(24), 0x983E5152);
925 P (H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
926 P (G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
927 P (F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
928 P (E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
929 P (D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
930 P (C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
931 P (B, C, D, E, F, G, H, A, R(31), 0x14292967);
932 P (A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
933 P (H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
934 P (G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
935 P (F, G, H, A, B, C, D, E, R(35), 0x53380D13);
936 P (E, F, G, H, A, B, C, D, R(36), 0x650A7354);
937 P (D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
938 P (C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
939 P (B, C, D, E, F, G, H, A, R(39), 0x92722C85);
940 P (A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
941 P (H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
942 P (G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
943 P (F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
944 P (E, F, G, H, A, B, C, D, R(44), 0xD192E819);
945 P (D, E, F, G, H, A, B, C, R(45), 0xD6990624);
946 P (C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
947 P (B, C, D, E, F, G, H, A, R(47), 0x106AA070);
948 P (A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
949 P (H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
950 P (G, H, A, B, C, D, E, F, R(50), 0x2748774C);
951 P (F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
952 P (E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
953 P (D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
954 P (C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
955 P (B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
956 P (A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
957 P (H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
958 P (G, H, A, B, C, D, E, F, R(58), 0x84C87814);
959 P (F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
960 P (E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
961 P (D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
962 P (C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
963 P (B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
965 #undef SHR
966 #undef ROTR
967 #undef S0
968 #undef S1
969 #undef S2
970 #undef S3
971 #undef F0
972 #undef F1
973 #undef R
974 #undef P
976 buf[0] += A;
977 buf[1] += B;
978 buf[2] += C;
979 buf[3] += D;
980 buf[4] += E;
981 buf[5] += F;
982 buf[6] += G;
983 buf[7] += H;
986 static void
987 sha256_sum_update (Sha256sum *sha256,
988 const guchar *buffer,
989 gsize length)
991 guint32 left, fill;
992 const guint8 *input = buffer;
994 if (length == 0)
995 return;
997 left = sha256->bits[0] & 0x3F;
998 fill = 64 - left;
1000 sha256->bits[0] += length;
1001 sha256->bits[0] &= 0xFFFFFFFF;
1003 if (sha256->bits[0] < length)
1004 sha256->bits[1]++;
1006 if (left > 0 && length >= fill)
1008 memcpy ((sha256->data + left), input, fill);
1010 sha256_transform (sha256->buf, sha256->data);
1011 length -= fill;
1012 input += fill;
1014 left = 0;
1017 while (length >= SHA256_DATASIZE)
1019 sha256_transform (sha256->buf, input);
1021 length -= 64;
1022 input += 64;
1025 if (length)
1026 memcpy (sha256->data + left, input, length);
1029 static guint8 sha256_padding[64] =
1031 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1032 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1033 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1034 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1037 static void
1038 sha256_sum_close (Sha256sum *sha256)
1040 guint32 last, padn;
1041 guint32 high, low;
1042 guint8 msglen[8];
1044 high = (sha256->bits[0] >> 29)
1045 | (sha256->bits[1] << 3);
1046 low = (sha256->bits[0] << 3);
1048 PUT_UINT32 (high, msglen, 0);
1049 PUT_UINT32 (low, msglen, 4);
1051 last = sha256->bits[0] & 0x3F;
1052 padn = (last < 56) ? (56 - last) : (120 - last);
1054 sha256_sum_update (sha256, sha256_padding, padn);
1055 sha256_sum_update (sha256, msglen, 8);
1057 PUT_UINT32 (sha256->buf[0], sha256->digest, 0);
1058 PUT_UINT32 (sha256->buf[1], sha256->digest, 4);
1059 PUT_UINT32 (sha256->buf[2], sha256->digest, 8);
1060 PUT_UINT32 (sha256->buf[3], sha256->digest, 12);
1061 PUT_UINT32 (sha256->buf[4], sha256->digest, 16);
1062 PUT_UINT32 (sha256->buf[5], sha256->digest, 20);
1063 PUT_UINT32 (sha256->buf[6], sha256->digest, 24);
1064 PUT_UINT32 (sha256->buf[7], sha256->digest, 28);
1067 #undef PUT_UINT32
1068 #undef GET_UINT32
1070 static gchar *
1071 sha256_sum_to_string (Sha256sum *sha256)
1073 return digest_to_string (sha256->digest, SHA256_DIGEST_LEN);
1076 static void
1077 sha256_sum_digest (Sha256sum *sha256,
1078 guint8 *digest)
1080 gint i;
1082 for (i = 0; i < SHA256_DIGEST_LEN; i++)
1083 digest[i] = sha256->digest[i];
1087 * SHA-512 Checksum
1089 * Implemented following FIPS-180-2 standard at
1090 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.
1091 * References in the form [§x.y.z] map to sections in that document.
1093 * Author: Eduardo Lima Mitev <elima@igalia.com>
1096 /* SHA-384 and SHA-512 functions [§4.1.3] */
1097 #define Ch(x,y,z) ((x & y) ^ (~x & z))
1098 #define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
1099 #define SHR(n,x) (x >> n)
1100 #define ROTR(n,x) (SHR (n, x) | (x << (64 - n)))
1101 #define SIGMA0(x) (ROTR (28, x) ^ ROTR (34, x) ^ ROTR (39, x))
1102 #define SIGMA1(x) (ROTR (14, x) ^ ROTR (18, x) ^ ROTR (41, x))
1103 #define sigma0(x) (ROTR ( 1, x) ^ ROTR ( 8, x) ^ SHR ( 7, x))
1104 #define sigma1(x) (ROTR (19, x) ^ ROTR (61, x) ^ SHR ( 6, x))
1106 #define PUT_UINT64(n,b,i) G_STMT_START{ \
1107 (b)[(i) ] = (guint8) (n >> 56); \
1108 (b)[(i) + 1] = (guint8) (n >> 48); \
1109 (b)[(i) + 2] = (guint8) (n >> 40); \
1110 (b)[(i) + 3] = (guint8) (n >> 32); \
1111 (b)[(i) + 4] = (guint8) (n >> 24); \
1112 (b)[(i) + 5] = (guint8) (n >> 16); \
1113 (b)[(i) + 6] = (guint8) (n >> 8); \
1114 (b)[(i) + 7] = (guint8) (n ); } G_STMT_END
1116 static void
1117 sha512_sum_init (Sha512sum *sha512)
1119 /* Initial Hash Value [§5.3.4] */
1120 sha512->H[0] = 0x6a09e667f3bcc908;
1121 sha512->H[1] = 0xbb67ae8584caa73b;
1122 sha512->H[2] = 0x3c6ef372fe94f82b;
1123 sha512->H[3] = 0xa54ff53a5f1d36f1;
1124 sha512->H[4] = 0x510e527fade682d1;
1125 sha512->H[5] = 0x9b05688c2b3e6c1f;
1126 sha512->H[6] = 0x1f83d9abfb41bd6b;
1127 sha512->H[7] = 0x5be0cd19137e2179;
1129 sha512->block_len = 0;
1131 sha512->data_len[0] = 0;
1132 sha512->data_len[1] = 0;
1135 /* SHA-384 and SHA-512 constants [§4.2.3] */
1136 static const guint64 SHA512_K[80] = {
1137 0x428a2f98d728ae22, 0x7137449123ef65cd,
1138 0xb5c0fbcfec4d3b2f, 0xe9b5dba58189dbbc,
1139 0x3956c25bf348b538, 0x59f111f1b605d019,
1140 0x923f82a4af194f9b, 0xab1c5ed5da6d8118,
1141 0xd807aa98a3030242, 0x12835b0145706fbe,
1142 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
1143 0x72be5d74f27b896f, 0x80deb1fe3b1696b1,
1144 0x9bdc06a725c71235, 0xc19bf174cf692694,
1145 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
1146 0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65,
1147 0x2de92c6f592b0275, 0x4a7484aa6ea6e483,
1148 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
1149 0x983e5152ee66dfab, 0xa831c66d2db43210,
1150 0xb00327c898fb213f, 0xbf597fc7beef0ee4,
1151 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
1152 0x06ca6351e003826f, 0x142929670a0e6e70,
1153 0x27b70a8546d22ffc, 0x2e1b21385c26c926,
1154 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
1155 0x650a73548baf63de, 0x766a0abb3c77b2a8,
1156 0x81c2c92e47edaee6, 0x92722c851482353b,
1157 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
1158 0xc24b8b70d0f89791, 0xc76c51a30654be30,
1159 0xd192e819d6ef5218, 0xd69906245565a910,
1160 0xf40e35855771202a, 0x106aa07032bbd1b8,
1161 0x19a4c116b8d2d0c8, 0x1e376c085141ab53,
1162 0x2748774cdf8eeb99, 0x34b0bcb5e19b48a8,
1163 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
1164 0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3,
1165 0x748f82ee5defb2fc, 0x78a5636f43172f60,
1166 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
1167 0x90befffa23631e28, 0xa4506cebde82bde9,
1168 0xbef9a3f7b2c67915, 0xc67178f2e372532b,
1169 0xca273eceea26619c, 0xd186b8c721c0c207,
1170 0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178,
1171 0x06f067aa72176fba, 0x0a637dc5a2c898a6,
1172 0x113f9804bef90dae, 0x1b710b35131c471b,
1173 0x28db77f523047d84, 0x32caab7b40c72493,
1174 0x3c9ebe0a15c9bebc, 0x431d67c49c100d4c,
1175 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
1176 0x5fcb6fab3ad6faec, 0x6c44198c4a475817
1179 static void
1180 sha512_transform (guint64 H[8],
1181 guint8 const data[SHA512_BLOCK_LEN])
1183 gint i;
1184 gint t;
1185 guint64 a, b, c, d, e, f, g, h;
1186 guint64 M[16];
1187 guint64 W[80];
1189 /* SHA-512 hash computation [§6.3.2] */
1191 /* prepare the message schedule */
1192 for (i = 0; i < 16; i++)
1194 gint p = i * 8;
1196 M[i] =
1197 ((guint64) data[p + 0] << 56) |
1198 ((guint64) data[p + 1] << 48) |
1199 ((guint64) data[p + 2] << 40) |
1200 ((guint64) data[p + 3] << 32) |
1201 ((guint64) data[p + 4] << 24) |
1202 ((guint64) data[p + 5] << 16) |
1203 ((guint64) data[p + 6] << 8) |
1204 ((guint64) data[p + 7] );
1207 for (t = 0; t < 80; t++)
1208 if (t < 16)
1209 W[t] = M[t];
1210 else
1211 W[t] = sigma1 (W[t - 2]) + W[t - 7] + sigma0 (W[t - 15]) + W[t - 16];
1213 /* initialize the eight working variables */
1214 a = H[0];
1215 b = H[1];
1216 c = H[2];
1217 d = H[3];
1218 e = H[4];
1219 f = H[5];
1220 g = H[6];
1221 h = H[7];
1223 for (t = 0; t < 80; t++)
1225 guint64 T1, T2;
1227 T1 = h + SIGMA1 (e) + Ch (e, f, g) + SHA512_K[t] + W[t];
1228 T2 = SIGMA0 (a) + Maj (a, b, c);
1229 h = g;
1230 g = f;
1231 f = e;
1232 e = d + T1;
1233 d = c;
1234 c = b;
1235 b = a;
1236 a = T1 + T2;
1239 /* Compute the intermediate hash value H */
1240 H[0] += a;
1241 H[1] += b;
1242 H[2] += c;
1243 H[3] += d;
1244 H[4] += e;
1245 H[5] += f;
1246 H[6] += g;
1247 H[7] += h;
1250 static void
1251 sha512_sum_update (Sha512sum *sha512,
1252 const guchar *buffer,
1253 gsize length)
1255 gsize block_left, offset = 0;
1257 if (length == 0)
1258 return;
1260 sha512->data_len[0] += length * 8;
1261 if (sha512->data_len[0] < length)
1262 sha512->data_len[1]++;
1264 /* try to fill current block */
1265 block_left = SHA512_BLOCK_LEN - sha512->block_len;
1266 if (block_left > 0)
1268 gsize fill_len;
1270 fill_len = MIN (block_left, length);
1271 memcpy (sha512->block + sha512->block_len, buffer, fill_len);
1272 sha512->block_len += fill_len;
1273 length -= fill_len;
1274 offset += fill_len;
1276 if (sha512->block_len == SHA512_BLOCK_LEN)
1278 sha512_transform (sha512->H, sha512->block);
1279 sha512->block_len = 0;
1283 /* process complete blocks */
1284 while (length >= SHA512_BLOCK_LEN)
1286 memcpy (sha512->block, buffer + offset, SHA512_BLOCK_LEN);
1288 sha512_transform (sha512->H, sha512->block);
1290 length -= SHA512_BLOCK_LEN;
1291 offset += SHA512_BLOCK_LEN;
1294 /* keep remaining data for next block */
1295 if (length > 0)
1297 memcpy (sha512->block, buffer + offset, length);
1298 sha512->block_len = length;
1302 static void
1303 sha512_sum_close (Sha512sum *sha512)
1305 guint l;
1306 gint zeros;
1307 guint8 pad[SHA512_BLOCK_LEN * 2] = { 0, };
1308 guint pad_len = 0;
1309 gint i;
1311 /* apply padding [§5.1.2] */
1312 l = sha512->block_len * 8;
1313 zeros = 896 - (l + 1);
1315 if (zeros < 0)
1316 zeros += 128 * 8;
1318 pad[0] = 0x80; /* 1000 0000 */
1319 zeros -= 7;
1320 pad_len++;
1322 memset (pad + pad_len, 0x00, zeros / 8);
1323 pad_len += zeros / 8;
1324 zeros = zeros % 8;
1326 /* put message bit length at the end of padding */
1327 PUT_UINT64 (sha512->data_len[1], pad, pad_len);
1328 pad_len += 8;
1330 PUT_UINT64 (sha512->data_len[0], pad, pad_len);
1331 pad_len += 8;
1333 /* update checksum with the padded block */
1334 sha512_sum_update (sha512, pad, pad_len);
1336 /* copy resulting 64-bit words into digest */
1337 for (i = 0; i < 8; i++)
1338 PUT_UINT64 (sha512->H[i], sha512->digest, i * 8);
1341 static gchar *
1342 sha512_sum_to_string (Sha512sum *sha512)
1344 return digest_to_string (sha512->digest, SHA512_DIGEST_LEN);
1347 static void
1348 sha512_sum_digest (Sha512sum *sha512,
1349 guint8 *digest)
1351 memcpy (digest, sha512->digest, SHA512_DIGEST_LEN);
1354 #undef Ch
1355 #undef Maj
1356 #undef SHR
1357 #undef ROTR
1358 #undef SIGMA0
1359 #undef SIGMA1
1360 #undef sigma0
1361 #undef sigma1
1363 #undef PUT_UINT64
1366 * Public API
1370 * g_checksum_type_get_length:
1371 * @checksum_type: a #GChecksumType
1373 * Gets the length in bytes of digests of type @checksum_type
1375 * Returns: the checksum length, or -1 if @checksum_type is
1376 * not supported.
1378 * Since: 2.16
1380 gssize
1381 g_checksum_type_get_length (GChecksumType checksum_type)
1383 gssize len = -1;
1385 switch (checksum_type)
1387 case G_CHECKSUM_MD5:
1388 len = MD5_DIGEST_LEN;
1389 break;
1390 case G_CHECKSUM_SHA1:
1391 len = SHA1_DIGEST_LEN;
1392 break;
1393 case G_CHECKSUM_SHA256:
1394 len = SHA256_DIGEST_LEN;
1395 break;
1396 case G_CHECKSUM_SHA512:
1397 len = SHA512_DIGEST_LEN;
1398 break;
1399 default:
1400 len = -1;
1401 break;
1404 return len;
1408 * g_checksum_new:
1409 * @checksum_type: the desired type of checksum
1411 * Creates a new #GChecksum, using the checksum algorithm @checksum_type.
1412 * If the @checksum_type is not known, %NULL is returned.
1413 * A #GChecksum can be used to compute the checksum, or digest, of an
1414 * arbitrary binary blob, using different hashing algorithms.
1416 * A #GChecksum works by feeding a binary blob through g_checksum_update()
1417 * until there is data to be checked; the digest can then be extracted
1418 * using g_checksum_get_string(), which will return the checksum as a
1419 * hexadecimal string; or g_checksum_get_digest(), which will return a
1420 * vector of raw bytes. Once either g_checksum_get_string() or
1421 * g_checksum_get_digest() have been called on a #GChecksum, the checksum
1422 * will be closed and it won't be possible to call g_checksum_update()
1423 * on it anymore.
1425 * Returns: (transfer full): the newly created #GChecksum, or %NULL.
1426 * Use g_checksum_free() to free the memory allocated by it.
1428 * Since: 2.16
1430 GChecksum *
1431 g_checksum_new (GChecksumType checksum_type)
1433 GChecksum *checksum;
1435 if (! IS_VALID_TYPE (checksum_type))
1436 return NULL;
1438 checksum = g_slice_new0 (GChecksum);
1439 checksum->type = checksum_type;
1441 g_checksum_reset (checksum);
1443 return checksum;
1447 * g_checksum_reset:
1448 * @checksum: the #GChecksum to reset
1450 * Resets the state of the @checksum back to its initial state.
1452 * Since: 2.18
1454 void
1455 g_checksum_reset (GChecksum *checksum)
1457 g_return_if_fail (checksum != NULL);
1459 g_free (checksum->digest_str);
1460 checksum->digest_str = NULL;
1462 switch (checksum->type)
1464 case G_CHECKSUM_MD5:
1465 md5_sum_init (&(checksum->sum.md5));
1466 break;
1467 case G_CHECKSUM_SHA1:
1468 sha1_sum_init (&(checksum->sum.sha1));
1469 break;
1470 case G_CHECKSUM_SHA256:
1471 sha256_sum_init (&(checksum->sum.sha256));
1472 break;
1473 case G_CHECKSUM_SHA512:
1474 sha512_sum_init (&(checksum->sum.sha512));
1475 break;
1476 default:
1477 g_assert_not_reached ();
1478 break;
1483 * g_checksum_copy:
1484 * @checksum: the #GChecksum to copy
1486 * Copies a #GChecksum. If @checksum has been closed, by calling
1487 * g_checksum_get_string() or g_checksum_get_digest(), the copied
1488 * checksum will be closed as well.
1490 * Returns: the copy of the passed #GChecksum. Use g_checksum_free()
1491 * when finished using it.
1493 * Since: 2.16
1495 GChecksum *
1496 g_checksum_copy (const GChecksum *checksum)
1498 GChecksum *copy;
1500 g_return_val_if_fail (checksum != NULL, NULL);
1502 copy = g_slice_new (GChecksum);
1503 *copy = *checksum;
1505 copy->digest_str = g_strdup (checksum->digest_str);
1507 return copy;
1511 * g_checksum_free:
1512 * @checksum: a #GChecksum
1514 * Frees the memory allocated for @checksum.
1516 * Since: 2.16
1518 void
1519 g_checksum_free (GChecksum *checksum)
1521 if (G_LIKELY (checksum))
1523 g_free (checksum->digest_str);
1525 g_slice_free (GChecksum, checksum);
1530 * g_checksum_update:
1531 * @checksum: a #GChecksum
1532 * @data: (array length=length) (element-type guint8): buffer used to compute the checksum
1533 * @length: size of the buffer, or -1 if it is a null-terminated string.
1535 * Feeds @data into an existing #GChecksum. The checksum must still be
1536 * open, that is g_checksum_get_string() or g_checksum_get_digest() must
1537 * not have been called on @checksum.
1539 * Since: 2.16
1541 void
1542 g_checksum_update (GChecksum *checksum,
1543 const guchar *data,
1544 gssize length)
1546 g_return_if_fail (checksum != NULL);
1547 g_return_if_fail (length == 0 || data != NULL);
1549 if (length < 0)
1550 length = strlen ((const gchar *) data);
1552 if (checksum->digest_str)
1554 g_warning ("The checksum '%s' has been closed and cannot be updated "
1555 "anymore.",
1556 checksum->digest_str);
1557 return;
1560 switch (checksum->type)
1562 case G_CHECKSUM_MD5:
1563 md5_sum_update (&(checksum->sum.md5), data, length);
1564 break;
1565 case G_CHECKSUM_SHA1:
1566 sha1_sum_update (&(checksum->sum.sha1), data, length);
1567 break;
1568 case G_CHECKSUM_SHA256:
1569 sha256_sum_update (&(checksum->sum.sha256), data, length);
1570 break;
1571 case G_CHECKSUM_SHA512:
1572 sha512_sum_update (&(checksum->sum.sha512), data, length);
1573 break;
1574 default:
1575 g_assert_not_reached ();
1576 break;
1581 * g_checksum_get_string:
1582 * @checksum: a #GChecksum
1584 * Gets the digest as an hexadecimal string.
1586 * Once this function has been called the #GChecksum can no longer be
1587 * updated with g_checksum_update().
1589 * The hexadecimal characters will be lower case.
1591 * Returns: the hexadecimal representation of the checksum. The
1592 * returned string is owned by the checksum and should not be modified
1593 * or freed.
1595 * Since: 2.16
1597 const gchar *
1598 g_checksum_get_string (GChecksum *checksum)
1600 gchar *str = NULL;
1602 g_return_val_if_fail (checksum != NULL, NULL);
1604 if (checksum->digest_str)
1605 return checksum->digest_str;
1607 switch (checksum->type)
1609 case G_CHECKSUM_MD5:
1610 md5_sum_close (&(checksum->sum.md5));
1611 str = md5_sum_to_string (&(checksum->sum.md5));
1612 break;
1613 case G_CHECKSUM_SHA1:
1614 sha1_sum_close (&(checksum->sum.sha1));
1615 str = sha1_sum_to_string (&(checksum->sum.sha1));
1616 break;
1617 case G_CHECKSUM_SHA256:
1618 sha256_sum_close (&(checksum->sum.sha256));
1619 str = sha256_sum_to_string (&(checksum->sum.sha256));
1620 break;
1621 case G_CHECKSUM_SHA512:
1622 sha512_sum_close (&(checksum->sum.sha512));
1623 str = sha512_sum_to_string (&(checksum->sum.sha512));
1624 break;
1625 default:
1626 g_assert_not_reached ();
1627 break;
1630 checksum->digest_str = str;
1632 return checksum->digest_str;
1636 * g_checksum_get_digest: (skip)
1637 * @checksum: a #GChecksum
1638 * @buffer: output buffer
1639 * @digest_len: an inout parameter. The caller initializes it to the size of @buffer.
1640 * After the call it contains the length of the digest.
1642 * Gets the digest from @checksum as a raw binary vector and places it
1643 * into @buffer. The size of the digest depends on the type of checksum.
1645 * Once this function has been called, the #GChecksum is closed and can
1646 * no longer be updated with g_checksum_update().
1648 * Since: 2.16
1650 void
1651 g_checksum_get_digest (GChecksum *checksum,
1652 guint8 *buffer,
1653 gsize *digest_len)
1655 gboolean checksum_open = FALSE;
1656 gchar *str = NULL;
1657 gsize len;
1659 g_return_if_fail (checksum != NULL);
1661 len = g_checksum_type_get_length (checksum->type);
1662 g_return_if_fail (*digest_len >= len);
1664 checksum_open = !!(checksum->digest_str == NULL);
1666 switch (checksum->type)
1668 case G_CHECKSUM_MD5:
1669 if (checksum_open)
1671 md5_sum_close (&(checksum->sum.md5));
1672 str = md5_sum_to_string (&(checksum->sum.md5));
1674 md5_sum_digest (&(checksum->sum.md5), buffer);
1675 break;
1676 case G_CHECKSUM_SHA1:
1677 if (checksum_open)
1679 sha1_sum_close (&(checksum->sum.sha1));
1680 str = sha1_sum_to_string (&(checksum->sum.sha1));
1682 sha1_sum_digest (&(checksum->sum.sha1), buffer);
1683 break;
1684 case G_CHECKSUM_SHA256:
1685 if (checksum_open)
1687 sha256_sum_close (&(checksum->sum.sha256));
1688 str = sha256_sum_to_string (&(checksum->sum.sha256));
1690 sha256_sum_digest (&(checksum->sum.sha256), buffer);
1691 break;
1692 case G_CHECKSUM_SHA512:
1693 if (checksum_open)
1695 sha512_sum_close (&(checksum->sum.sha512));
1696 str = sha512_sum_to_string (&(checksum->sum.sha512));
1698 sha512_sum_digest (&(checksum->sum.sha512), buffer);
1699 break;
1700 default:
1701 g_assert_not_reached ();
1702 break;
1705 if (str)
1706 checksum->digest_str = str;
1708 *digest_len = len;
1712 * g_compute_checksum_for_data:
1713 * @checksum_type: a #GChecksumType
1714 * @data: (array length=length) (element-type guint8): binary blob to compute the digest of
1715 * @length: length of @data
1717 * Computes the checksum for a binary @data of @length. This is a
1718 * convenience wrapper for g_checksum_new(), g_checksum_get_string()
1719 * and g_checksum_free().
1721 * The hexadecimal string returned will be in lower case.
1723 * Returns: the digest of the binary data as a string in hexadecimal.
1724 * The returned string should be freed with g_free() when done using it.
1726 * Since: 2.16
1728 gchar *
1729 g_compute_checksum_for_data (GChecksumType checksum_type,
1730 const guchar *data,
1731 gsize length)
1733 GChecksum *checksum;
1734 gchar *retval;
1736 g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
1737 g_return_val_if_fail (length == 0 || data != NULL, NULL);
1739 checksum = g_checksum_new (checksum_type);
1740 if (!checksum)
1741 return NULL;
1743 g_checksum_update (checksum, data, length);
1744 retval = g_strdup (g_checksum_get_string (checksum));
1745 g_checksum_free (checksum);
1747 return retval;
1751 * g_compute_checksum_for_string:
1752 * @checksum_type: a #GChecksumType
1753 * @str: the string to compute the checksum of
1754 * @length: the length of the string, or -1 if the string is null-terminated.
1756 * Computes the checksum of a string.
1758 * The hexadecimal string returned will be in lower case.
1760 * Returns: the checksum as a hexadecimal string. The returned string
1761 * should be freed with g_free() when done using it.
1763 * Since: 2.16
1765 gchar *
1766 g_compute_checksum_for_string (GChecksumType checksum_type,
1767 const gchar *str,
1768 gssize length)
1770 g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
1771 g_return_val_if_fail (length == 0 || str != NULL, NULL);
1773 if (length < 0)
1774 length = strlen (str);
1776 return g_compute_checksum_for_data (checksum_type, (const guchar *) str, length);
1780 * g_compute_checksum_for_bytes:
1781 * @checksum_type: a #GChecksumType
1782 * @data: binary blob to compute the digest of
1784 * Computes the checksum for a binary @data. This is a
1785 * convenience wrapper for g_checksum_new(), g_checksum_get_string()
1786 * and g_checksum_free().
1788 * The hexadecimal string returned will be in lower case.
1790 * Returns: the digest of the binary data as a string in hexadecimal.
1791 * The returned string should be freed with g_free() when done using it.
1793 * Since: 2.34
1795 gchar *
1796 g_compute_checksum_for_bytes (GChecksumType checksum_type,
1797 GBytes *data)
1799 gconstpointer byte_data;
1800 gsize length;
1802 g_return_val_if_fail (IS_VALID_TYPE (checksum_type), NULL);
1803 g_return_val_if_fail (data != NULL, NULL);
1805 byte_data = g_bytes_get_data (data, &length);
1806 return g_compute_checksum_for_data (checksum_type, byte_data, length);