No bug - tagging 2af34b4c9adf8c8defd3251b569af9c38cc0a429 with FIREFOX_BETA_124_BASE...
[gecko.git] / gfx / thebes / gfxFontUtils.h
blobce11c6943d334236da3b82737c475b95657630c6
1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 #ifndef GFX_FONT_UTILS_H
7 #define GFX_FONT_UTILS_H
9 #include <string.h>
10 #include <algorithm>
11 #include <new>
12 #include <utility>
13 #include "gfxPlatform.h"
14 #include "harfbuzz/hb.h"
15 #include "mozilla/Assertions.h"
16 #include "mozilla/Attributes.h"
17 #include "mozilla/Casting.h"
18 #include "mozilla/EndianUtils.h"
19 #include "mozilla/ServoStyleConstsInlines.h"
20 #include "mozilla/MemoryReporting.h"
21 #include "mozilla/UniquePtr.h"
22 #include "nsStringFwd.h"
23 #include "nsTArray.h"
24 #include "nscore.h"
25 #include "zlib.h"
27 class PickleIterator;
28 class gfxFontEntry;
29 struct gfxFontVariationAxis;
30 struct gfxFontVariationInstance;
32 namespace mozilla {
33 class Encoding;
34 class ServoStyleSet;
35 } // namespace mozilla
37 /* Bug 341128 - w32api defines min/max which causes problems with <bitset> */
38 #ifdef __MINGW32__
39 # undef min
40 # undef max
41 #endif
43 #undef ERROR /* defined by Windows.h, conflicts with some generated bindings \
44 code when this gets indirectly included via shared font list \
47 typedef struct hb_blob_t hb_blob_t;
49 class SharedBitSet;
51 namespace IPC {
52 template <typename T>
53 struct ParamTraits;
56 class gfxSparseBitSet {
57 private:
58 friend class SharedBitSet;
60 enum { BLOCK_SIZE = 32 }; // ==> 256 codepoints per block
61 enum { BLOCK_SIZE_BITS = BLOCK_SIZE * 8 };
62 enum { NO_BLOCK = 0xffff }; // index value indicating missing (empty) block
64 struct Block {
65 explicit Block(unsigned char memsetValue = 0) {
66 memset(mBits, memsetValue, BLOCK_SIZE);
68 uint8_t mBits[BLOCK_SIZE];
71 friend struct IPC::ParamTraits<gfxSparseBitSet>;
72 friend struct IPC::ParamTraits<Block>;
74 public:
75 gfxSparseBitSet() = default;
77 bool Equals(const gfxSparseBitSet* aOther) const {
78 if (mBlockIndex.Length() != aOther->mBlockIndex.Length()) {
79 return false;
81 size_t n = mBlockIndex.Length();
82 for (size_t i = 0; i < n; ++i) {
83 uint32_t b1 = mBlockIndex[i];
84 uint32_t b2 = aOther->mBlockIndex[i];
85 if ((b1 == NO_BLOCK) != (b2 == NO_BLOCK)) {
86 return false;
88 if (b1 == NO_BLOCK) {
89 continue;
91 if (memcmp(&mBlocks[b1].mBits, &aOther->mBlocks[b2].mBits, BLOCK_SIZE) !=
92 0) {
93 return false;
96 return true;
99 bool test(uint32_t aIndex) const {
100 uint32_t i = aIndex / BLOCK_SIZE_BITS;
101 if (i >= mBlockIndex.Length() || mBlockIndex[i] == NO_BLOCK) {
102 return false;
104 const Block& block = mBlocks[mBlockIndex[i]];
105 return ((block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)]) &
106 (1 << (aIndex & 0x7))) != 0;
109 // dump out contents of bitmap
110 void Dump(const char* aPrefix, eGfxLog aWhichLog) const;
112 bool TestRange(uint32_t aStart, uint32_t aEnd) {
113 // start point is beyond the end of the block array? return false
114 // immediately
115 uint32_t startBlock = aStart / BLOCK_SIZE_BITS;
116 uint32_t blockLen = mBlockIndex.Length();
117 if (startBlock >= blockLen) {
118 return false;
121 // check for blocks in range, if none, return false
122 bool hasBlocksInRange = false;
123 uint32_t endBlock = aEnd / BLOCK_SIZE_BITS;
124 for (uint32_t bi = startBlock; bi <= endBlock; bi++) {
125 if (bi < blockLen && mBlockIndex[bi] != NO_BLOCK) {
126 hasBlocksInRange = true;
127 break;
130 if (!hasBlocksInRange) {
131 return false;
134 // first block, check bits
135 if (mBlockIndex[startBlock] != NO_BLOCK) {
136 const Block& block = mBlocks[mBlockIndex[startBlock]];
137 uint32_t start = aStart;
138 uint32_t end = std::min(aEnd, ((startBlock + 1) * BLOCK_SIZE_BITS) - 1);
139 for (uint32_t i = start; i <= end; i++) {
140 if ((block.mBits[(i >> 3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7))) {
141 return true;
145 if (endBlock == startBlock) {
146 return false;
149 // [2..n-1] blocks check bytes
150 for (uint32_t i = startBlock + 1; i < endBlock; i++) {
151 if (i >= blockLen || mBlockIndex[i] == NO_BLOCK) {
152 continue;
154 const Block& block = mBlocks[mBlockIndex[i]];
155 for (uint32_t index = 0; index < BLOCK_SIZE; index++) {
156 if (block.mBits[index]) {
157 return true;
162 // last block, check bits
163 if (endBlock < blockLen && mBlockIndex[endBlock] != NO_BLOCK) {
164 const Block& block = mBlocks[mBlockIndex[endBlock]];
165 uint32_t start = endBlock * BLOCK_SIZE_BITS;
166 uint32_t end = aEnd;
167 for (uint32_t i = start; i <= end; i++) {
168 if ((block.mBits[(i >> 3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7))) {
169 return true;
174 return false;
177 void set(uint32_t aIndex) {
178 uint32_t i = aIndex / BLOCK_SIZE_BITS;
179 while (i >= mBlockIndex.Length()) {
180 mBlockIndex.AppendElement(NO_BLOCK);
182 if (mBlockIndex[i] == NO_BLOCK) {
183 mBlocks.AppendElement();
184 MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!");
185 mBlockIndex[i] = static_cast<uint16_t>(mBlocks.Length() - 1);
187 Block& block = mBlocks[mBlockIndex[i]];
188 block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)] |= 1 << (aIndex & 0x7);
191 void set(uint32_t aIndex, bool aValue) {
192 if (aValue) {
193 set(aIndex);
194 } else {
195 clear(aIndex);
199 void SetRange(uint32_t aStart, uint32_t aEnd) {
200 const uint32_t startIndex = aStart / BLOCK_SIZE_BITS;
201 const uint32_t endIndex = aEnd / BLOCK_SIZE_BITS;
203 while (endIndex >= mBlockIndex.Length()) {
204 mBlockIndex.AppendElement(NO_BLOCK);
207 for (uint32_t i = startIndex; i <= endIndex; ++i) {
208 const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS;
209 const uint32_t blockLastBit = blockFirstBit + BLOCK_SIZE_BITS - 1;
211 if (mBlockIndex[i] == NO_BLOCK) {
212 bool fullBlock = (aStart <= blockFirstBit && aEnd >= blockLastBit);
213 mBlocks.AppendElement(Block(fullBlock ? 0xFF : 0));
214 MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!");
215 mBlockIndex[i] = static_cast<uint16_t>(mBlocks.Length() - 1);
216 if (fullBlock) {
217 continue;
221 Block& block = mBlocks[mBlockIndex[i]];
222 const uint32_t start =
223 aStart > blockFirstBit ? aStart - blockFirstBit : 0;
224 const uint32_t end =
225 std::min<uint32_t>(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1);
227 for (uint32_t bit = start; bit <= end; ++bit) {
228 block.mBits[bit >> 3] |= 1 << (bit & 0x7);
233 void clear(uint32_t aIndex) {
234 uint32_t i = aIndex / BLOCK_SIZE_BITS;
235 if (i >= mBlockIndex.Length()) {
236 return;
238 if (mBlockIndex[i] == NO_BLOCK) {
239 mBlocks.AppendElement();
240 MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!");
241 mBlockIndex[i] = static_cast<uint16_t>(mBlocks.Length() - 1);
243 Block& block = mBlocks[mBlockIndex[i]];
244 block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)] &= ~(1 << (aIndex & 0x7));
247 void ClearRange(uint32_t aStart, uint32_t aEnd) {
248 const uint32_t startIndex = aStart / BLOCK_SIZE_BITS;
249 const uint32_t endIndex = aEnd / BLOCK_SIZE_BITS;
251 for (uint32_t i = startIndex; i <= endIndex; ++i) {
252 if (i >= mBlockIndex.Length()) {
253 return;
255 if (mBlockIndex[i] == NO_BLOCK) {
256 continue;
259 const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS;
260 Block& block = mBlocks[mBlockIndex[i]];
262 const uint32_t start =
263 aStart > blockFirstBit ? aStart - blockFirstBit : 0;
264 const uint32_t end =
265 std::min<uint32_t>(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1);
267 for (uint32_t bit = start; bit <= end; ++bit) {
268 block.mBits[bit >> 3] &= ~(1 << (bit & 0x7));
273 size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
274 return mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf) +
275 mBlockIndex.ShallowSizeOfExcludingThis(aMallocSizeOf);
278 size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
279 return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
282 // clear out all blocks in the array
283 void reset() {
284 mBlocks.Clear();
285 mBlockIndex.Clear();
288 // set this bitset to the union of its current contents and another
289 void Union(const gfxSparseBitSet& aBitset) {
290 // ensure mBlocks is large enough
291 uint32_t blockCount = aBitset.mBlockIndex.Length();
292 while (blockCount > mBlockIndex.Length()) {
293 mBlockIndex.AppendElement(NO_BLOCK);
295 // for each block that may be present in aBitset...
296 for (uint32_t i = 0; i < blockCount; ++i) {
297 // if it is missing (implicitly empty), just skip
298 if (aBitset.mBlockIndex[i] == NO_BLOCK) {
299 continue;
301 // if the block is missing in this set, just copy the other
302 if (mBlockIndex[i] == NO_BLOCK) {
303 mBlocks.AppendElement(aBitset.mBlocks[aBitset.mBlockIndex[i]]);
304 MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!");
305 mBlockIndex[i] = static_cast<uint16_t>(mBlocks.Length() - 1);
306 continue;
308 // else set existing block to the union of both
309 uint32_t* dst =
310 reinterpret_cast<uint32_t*>(&mBlocks[mBlockIndex[i]].mBits);
311 const uint32_t* src = reinterpret_cast<const uint32_t*>(
312 &aBitset.mBlocks[aBitset.mBlockIndex[i]].mBits);
313 for (uint32_t j = 0; j < BLOCK_SIZE / 4; ++j) {
314 dst[j] |= src[j];
319 inline void Union(const SharedBitSet& aBitset);
321 void Compact() {
322 // TODO: Discard any empty blocks, and adjust index accordingly.
323 // (May not be worth doing, though, because we so rarely clear bits
324 // that were previously set.)
325 mBlocks.Compact();
326 mBlockIndex.Compact();
329 uint32_t GetChecksum() const {
330 uint32_t check =
331 adler32(0, reinterpret_cast<const uint8_t*>(mBlockIndex.Elements()),
332 mBlockIndex.Length() * sizeof(uint16_t));
333 check = adler32(check, reinterpret_cast<const uint8_t*>(mBlocks.Elements()),
334 mBlocks.Length() * sizeof(Block));
335 return check;
338 private:
339 CopyableTArray<uint16_t> mBlockIndex;
340 CopyableTArray<Block> mBlocks;
344 * SharedBitSet is a version of gfxSparseBitSet that is intended to be used
345 * in a shared-memory block, and can be used regardless of the address at which
346 * the block has been mapped. The SharedBitSet cannot be modified once it has
347 * been created.
349 * Max size of a SharedBitSet = 4352 * 32 ; blocks
350 * + 4352 * 2 ; index
351 * + 4 ; counts
352 * = 147972 bytes
354 * Therefore, SharedFontList must be able to allocate a contiguous block of at
355 * least this size.
357 class SharedBitSet {
358 private:
359 // We use the same Block type as gfxSparseBitSet.
360 typedef gfxSparseBitSet::Block Block;
362 enum { BLOCK_SIZE = gfxSparseBitSet::BLOCK_SIZE };
363 enum { BLOCK_SIZE_BITS = gfxSparseBitSet::BLOCK_SIZE_BITS };
364 enum { NO_BLOCK = gfxSparseBitSet::NO_BLOCK };
366 public:
367 static const size_t kMaxSize = 147972; // see above
369 // Returns the size needed for a SharedBitSet version of the given
370 // gfxSparseBitSet.
371 static size_t RequiredSize(const gfxSparseBitSet& aBitset) {
372 size_t total = sizeof(SharedBitSet);
373 size_t len = aBitset.mBlockIndex.Length();
374 total += len * sizeof(uint16_t); // add size for index array
375 // add size for blocks, excluding any missing ones
376 for (uint16_t i = 0; i < len; i++) {
377 if (aBitset.mBlockIndex[i] != NO_BLOCK) {
378 total += sizeof(Block);
381 MOZ_ASSERT(total <= kMaxSize);
382 return total;
385 // Create a SharedBitSet in the provided buffer, initializing it with the
386 // contents of aBitset.
387 static SharedBitSet* Create(void* aBuffer, size_t aBufSize,
388 const gfxSparseBitSet& aBitset) {
389 MOZ_ASSERT(aBufSize >= RequiredSize(aBitset));
390 return new (aBuffer) SharedBitSet(aBitset);
393 bool test(uint32_t aIndex) const {
394 const auto i = static_cast<uint16_t>(aIndex / BLOCK_SIZE_BITS);
395 if (i >= mBlockIndexCount) {
396 return false;
398 const uint16_t* const blockIndex =
399 reinterpret_cast<const uint16_t*>(this + 1);
400 if (blockIndex[i] == NO_BLOCK) {
401 return false;
403 const Block* const blocks =
404 reinterpret_cast<const Block*>(blockIndex + mBlockIndexCount);
405 const Block& block = blocks[blockIndex[i]];
406 return ((block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)]) &
407 (1 << (aIndex & 0x7))) != 0;
410 bool Equals(const gfxSparseBitSet* aOther) const {
411 if (mBlockIndexCount != aOther->mBlockIndex.Length()) {
412 return false;
414 const uint16_t* const blockIndex =
415 reinterpret_cast<const uint16_t*>(this + 1);
416 const Block* const blocks =
417 reinterpret_cast<const Block*>(blockIndex + mBlockIndexCount);
418 for (uint16_t i = 0; i < mBlockIndexCount; ++i) {
419 uint16_t index = blockIndex[i];
420 uint16_t otherIndex = aOther->mBlockIndex[i];
421 if ((index == NO_BLOCK) != (otherIndex == NO_BLOCK)) {
422 return false;
424 if (index == NO_BLOCK) {
425 continue;
427 const Block& b1 = blocks[index];
428 const Block& b2 = aOther->mBlocks[otherIndex];
429 if (memcmp(&b1.mBits, &b2.mBits, BLOCK_SIZE) != 0) {
430 return false;
433 return true;
436 private:
437 friend class gfxSparseBitSet;
438 SharedBitSet() = delete;
440 explicit SharedBitSet(const gfxSparseBitSet& aBitset)
441 : mBlockIndexCount(
442 mozilla::AssertedCast<uint16_t>(aBitset.mBlockIndex.Length())),
443 mBlockCount(0) {
444 uint16_t* blockIndex = reinterpret_cast<uint16_t*>(this + 1);
445 Block* blocks = reinterpret_cast<Block*>(blockIndex + mBlockIndexCount);
446 for (uint16_t i = 0; i < mBlockIndexCount; i++) {
447 if (aBitset.mBlockIndex[i] != NO_BLOCK) {
448 const Block& srcBlock = aBitset.mBlocks[aBitset.mBlockIndex[i]];
449 std::memcpy(&blocks[mBlockCount], &srcBlock, sizeof(Block));
450 blockIndex[i] = mBlockCount;
451 mBlockCount++;
452 } else {
453 blockIndex[i] = NO_BLOCK;
458 // We never manage SharedBitSet as a "normal" object, it's a view onto a
459 // buffer of shared memory. So we should never be trying to call this.
460 ~SharedBitSet() = delete;
462 uint16_t mBlockIndexCount;
463 uint16_t mBlockCount;
465 // After the two "header" fields above, we have a block index array
466 // of uint16_t[mBlockIndexCount], followed by mBlockCount Block records.
469 // Union the contents of a SharedBitSet with the target gfxSparseBitSet
470 inline void gfxSparseBitSet::Union(const SharedBitSet& aBitset) {
471 // ensure mBlockIndex is large enough
472 while (mBlockIndex.Length() < aBitset.mBlockIndexCount) {
473 mBlockIndex.AppendElement(NO_BLOCK);
475 auto blockIndex = reinterpret_cast<const uint16_t*>(&aBitset + 1);
476 auto blocks =
477 reinterpret_cast<const Block*>(blockIndex + aBitset.mBlockIndexCount);
478 for (uint32_t i = 0; i < aBitset.mBlockIndexCount; ++i) {
479 // if it is missing (implicitly empty) in source, just skip
480 if (blockIndex[i] == NO_BLOCK) {
481 continue;
483 // if the block is missing, just copy from source bitset
484 if (mBlockIndex[i] == NO_BLOCK) {
485 mBlocks.AppendElement(blocks[blockIndex[i]]);
486 MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow");
487 mBlockIndex[i] = uint16_t(mBlocks.Length() - 1);
488 continue;
490 // Else set existing target block to the union of both.
491 // Note that blocks in SharedBitSet may not be 4-byte aligned, so we don't
492 // try to optimize by casting to uint32_t* here and processing 4 bytes at
493 // once, as this could result in misaligned access.
494 uint8_t* dst = reinterpret_cast<uint8_t*>(&mBlocks[mBlockIndex[i]].mBits);
495 const uint8_t* src =
496 reinterpret_cast<const uint8_t*>(&blocks[blockIndex[i]].mBits);
497 for (uint32_t j = 0; j < BLOCK_SIZE; ++j) {
498 dst[j] |= src[j];
503 #define TRUETYPE_TAG(a, b, c, d) ((a) << 24 | (b) << 16 | (c) << 8 | (d))
505 namespace mozilla {
507 // Byte-swapping types and name table structure definitions moved from
508 // gfxFontUtils.cpp to .h file so that gfxFont.cpp can also refer to them
509 #pragma pack(1)
511 struct AutoSwap_PRUint16 {
512 #ifdef __SUNPRO_CC
513 AutoSwap_PRUint16& operator=(const uint16_t aValue) {
514 this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
515 return *this;
517 #else
518 MOZ_IMPLICIT AutoSwap_PRUint16(uint16_t aValue) {
519 value = mozilla::NativeEndian::swapToBigEndian(aValue);
521 #endif
522 operator uint16_t() const {
523 return mozilla::NativeEndian::swapFromBigEndian(value);
526 operator uint32_t() const {
527 return mozilla::NativeEndian::swapFromBigEndian(value);
530 operator uint64_t() const {
531 return mozilla::NativeEndian::swapFromBigEndian(value);
534 private:
535 uint16_t value;
538 struct AutoSwap_PRInt16 {
539 #ifdef __SUNPRO_CC
540 AutoSwap_PRInt16& operator=(const int16_t aValue) {
541 this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
542 return *this;
544 #else
545 MOZ_IMPLICIT AutoSwap_PRInt16(int16_t aValue) {
546 value = mozilla::NativeEndian::swapToBigEndian(aValue);
548 #endif
549 operator int16_t() const {
550 return mozilla::NativeEndian::swapFromBigEndian(value);
553 operator uint32_t() const {
554 return mozilla::NativeEndian::swapFromBigEndian(value);
557 private:
558 int16_t value;
561 struct AutoSwap_PRUint32 {
562 #ifdef __SUNPRO_CC
563 AutoSwap_PRUint32& operator=(const uint32_t aValue) {
564 this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
565 return *this;
567 #else
568 MOZ_IMPLICIT AutoSwap_PRUint32(uint32_t aValue) {
569 value = mozilla::NativeEndian::swapToBigEndian(aValue);
571 #endif
572 operator uint32_t() const {
573 return mozilla::NativeEndian::swapFromBigEndian(value);
576 private:
577 uint32_t value;
580 struct AutoSwap_PRInt32 {
581 #ifdef __SUNPRO_CC
582 AutoSwap_PRInt32& operator=(const int32_t aValue) {
583 this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
584 return *this;
586 #else
587 MOZ_IMPLICIT AutoSwap_PRInt32(int32_t aValue) {
588 value = mozilla::NativeEndian::swapToBigEndian(aValue);
590 #endif
591 operator int32_t() const {
592 return mozilla::NativeEndian::swapFromBigEndian(value);
595 private:
596 int32_t value;
599 struct AutoSwap_PRUint64 {
600 #ifdef __SUNPRO_CC
601 AutoSwap_PRUint64& operator=(const uint64_t aValue) {
602 this->value = mozilla::NativeEndian::swapToBigEndian(aValue);
603 return *this;
605 #else
606 MOZ_IMPLICIT AutoSwap_PRUint64(uint64_t aValue) {
607 value = mozilla::NativeEndian::swapToBigEndian(aValue);
609 #endif
610 operator uint64_t() const {
611 return mozilla::NativeEndian::swapFromBigEndian(value);
614 private:
615 uint64_t value;
618 struct AutoSwap_PRUint24 {
619 operator uint32_t() const {
620 return value[0] << 16 | value[1] << 8 | value[2];
623 private:
624 AutoSwap_PRUint24() = default;
625 uint8_t value[3];
628 struct SFNTHeader {
629 AutoSwap_PRUint32 sfntVersion; // Fixed, 0x00010000 for version 1.0.
630 AutoSwap_PRUint16 numTables; // Number of tables.
631 AutoSwap_PRUint16 searchRange; // (Maximum power of 2 <= numTables) x 16.
632 AutoSwap_PRUint16 entrySelector; // Log2(maximum power of 2 <= numTables).
633 AutoSwap_PRUint16 rangeShift; // NumTables x 16-searchRange.
636 struct TTCHeader {
637 AutoSwap_PRUint32 ttcTag; // 4 -byte identifier 'ttcf'.
638 AutoSwap_PRUint16 majorVersion;
639 AutoSwap_PRUint16 minorVersion;
640 AutoSwap_PRUint32 numFonts;
641 // followed by:
642 // AutoSwap_PRUint32 offsetTable[numFonts]
645 struct TableDirEntry {
646 AutoSwap_PRUint32 tag; // 4 -byte identifier.
647 AutoSwap_PRUint32 checkSum; // CheckSum for this table.
648 AutoSwap_PRUint32 offset; // Offset from beginning of TrueType font file.
649 AutoSwap_PRUint32 length; // Length of this table.
652 struct HeadTable {
653 enum {
654 HEAD_VERSION = 0x00010000,
655 HEAD_MAGIC_NUMBER = 0x5F0F3CF5,
656 HEAD_CHECKSUM_CALC_CONST = 0xB1B0AFBA
659 AutoSwap_PRUint32 tableVersionNumber; // Fixed, 0x00010000 for version 1.0.
660 AutoSwap_PRUint32 fontRevision; // Set by font manufacturer.
661 AutoSwap_PRUint32
662 checkSumAdjustment; // To compute: set it to 0, sum the entire font as
663 // ULONG, then store 0xB1B0AFBA - sum.
664 AutoSwap_PRUint32 magicNumber; // Set to 0x5F0F3CF5.
665 AutoSwap_PRUint16 flags;
666 AutoSwap_PRUint16
667 unitsPerEm; // Valid range is from 16 to 16384. This value should be a
668 // power of 2 for fonts that have TrueType outlines.
669 AutoSwap_PRUint64 created; // Number of seconds since 12:00 midnight, January
670 // 1, 1904. 64-bit integer
671 AutoSwap_PRUint64 modified; // Number of seconds since 12:00 midnight,
672 // January 1, 1904. 64-bit integer
673 AutoSwap_PRInt16 xMin; // For all glyph bounding boxes.
674 AutoSwap_PRInt16 yMin; // For all glyph bounding boxes.
675 AutoSwap_PRInt16 xMax; // For all glyph bounding boxes.
676 AutoSwap_PRInt16 yMax; // For all glyph bounding boxes.
677 AutoSwap_PRUint16 macStyle; // Bit 0: Bold (if set to 1);
678 AutoSwap_PRUint16 lowestRecPPEM; // Smallest readable size in pixels.
679 AutoSwap_PRInt16 fontDirectionHint;
680 AutoSwap_PRInt16 indexToLocFormat;
681 AutoSwap_PRInt16 glyphDataFormat;
684 struct OS2Table {
685 AutoSwap_PRUint16 version; // 0004 = OpenType 1.5
686 AutoSwap_PRInt16 xAvgCharWidth;
687 AutoSwap_PRUint16 usWeightClass;
688 AutoSwap_PRUint16 usWidthClass;
689 AutoSwap_PRUint16 fsType;
690 AutoSwap_PRInt16 ySubscriptXSize;
691 AutoSwap_PRInt16 ySubscriptYSize;
692 AutoSwap_PRInt16 ySubscriptXOffset;
693 AutoSwap_PRInt16 ySubscriptYOffset;
694 AutoSwap_PRInt16 ySuperscriptXSize;
695 AutoSwap_PRInt16 ySuperscriptYSize;
696 AutoSwap_PRInt16 ySuperscriptXOffset;
697 AutoSwap_PRInt16 ySuperscriptYOffset;
698 AutoSwap_PRInt16 yStrikeoutSize;
699 AutoSwap_PRInt16 yStrikeoutPosition;
700 AutoSwap_PRInt16 sFamilyClass;
701 uint8_t panose[10];
702 AutoSwap_PRUint32 unicodeRange1;
703 AutoSwap_PRUint32 unicodeRange2;
704 AutoSwap_PRUint32 unicodeRange3;
705 AutoSwap_PRUint32 unicodeRange4;
706 uint8_t achVendID[4];
707 AutoSwap_PRUint16 fsSelection;
708 AutoSwap_PRUint16 usFirstCharIndex;
709 AutoSwap_PRUint16 usLastCharIndex;
710 AutoSwap_PRInt16 sTypoAscender;
711 AutoSwap_PRInt16 sTypoDescender;
712 AutoSwap_PRInt16 sTypoLineGap;
713 AutoSwap_PRUint16 usWinAscent;
714 AutoSwap_PRUint16 usWinDescent;
715 AutoSwap_PRUint32 codePageRange1;
716 AutoSwap_PRUint32 codePageRange2;
717 AutoSwap_PRInt16 sxHeight;
718 AutoSwap_PRInt16 sCapHeight;
719 AutoSwap_PRUint16 usDefaultChar;
720 AutoSwap_PRUint16 usBreakChar;
721 AutoSwap_PRUint16 usMaxContext;
724 struct PostTable {
725 AutoSwap_PRUint32 version;
726 AutoSwap_PRInt32 italicAngle;
727 AutoSwap_PRInt16 underlinePosition;
728 AutoSwap_PRUint16 underlineThickness;
729 AutoSwap_PRUint32 isFixedPitch;
730 AutoSwap_PRUint32 minMemType42;
731 AutoSwap_PRUint32 maxMemType42;
732 AutoSwap_PRUint32 minMemType1;
733 AutoSwap_PRUint32 maxMemType1;
736 // This structure is used for both 'hhea' and 'vhea' tables.
737 // The field names here are those of the horizontal version; the
738 // vertical table just exchanges vertical and horizontal coordinates.
739 struct MetricsHeader {
740 AutoSwap_PRUint32 version;
741 AutoSwap_PRInt16 ascender;
742 AutoSwap_PRInt16 descender;
743 AutoSwap_PRInt16 lineGap;
744 AutoSwap_PRUint16 advanceWidthMax;
745 AutoSwap_PRInt16 minLeftSideBearing;
746 AutoSwap_PRInt16 minRightSideBearing;
747 AutoSwap_PRInt16 xMaxExtent;
748 AutoSwap_PRInt16 caretSlopeRise;
749 AutoSwap_PRInt16 caretSlopeRun;
750 AutoSwap_PRInt16 caretOffset;
751 AutoSwap_PRInt16 reserved1;
752 AutoSwap_PRInt16 reserved2;
753 AutoSwap_PRInt16 reserved3;
754 AutoSwap_PRInt16 reserved4;
755 AutoSwap_PRInt16 metricDataFormat;
756 AutoSwap_PRUint16 numOfLongMetrics;
759 struct MaxpTableHeader {
760 AutoSwap_PRUint32 version; // CFF: 0x00005000; TrueType: 0x00010000
761 AutoSwap_PRUint16 numGlyphs;
762 // truetype version has additional fields that we don't currently use
765 // old 'kern' table, supported on Windows
766 // see http://www.microsoft.com/typography/otspec/kern.htm
767 struct KernTableVersion0 {
768 AutoSwap_PRUint16 version; // 0x0000
769 AutoSwap_PRUint16 nTables;
772 struct KernTableSubtableHeaderVersion0 {
773 AutoSwap_PRUint16 version;
774 AutoSwap_PRUint16 length;
775 AutoSwap_PRUint16 coverage;
778 // newer Mac-only 'kern' table, ignored by Windows
779 // see http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6kern.html
780 struct KernTableVersion1 {
781 AutoSwap_PRUint32 version; // 0x00010000
782 AutoSwap_PRUint32 nTables;
785 struct KernTableSubtableHeaderVersion1 {
786 AutoSwap_PRUint32 length;
787 AutoSwap_PRUint16 coverage;
788 AutoSwap_PRUint16 tupleIndex;
791 #pragma pack()
793 // Return just the highest bit of the given value, i.e., the highest
794 // power of 2 that is <= value, or zero if the input value is zero.
795 inline uint32_t FindHighestBit(uint32_t value) {
796 // propagate highest bit into all lower bits of the value
797 value |= (value >> 1);
798 value |= (value >> 2);
799 value |= (value >> 4);
800 value |= (value >> 8);
801 value |= (value >> 16);
802 // isolate the leftmost bit
803 return (value & ~(value >> 1));
806 } // namespace mozilla
808 // used for overlaying name changes without touching original font data
809 struct FontDataOverlay {
810 // overlaySrc != 0 ==> use overlay
811 uint32_t overlaySrc; // src offset from start of font data
812 uint32_t overlaySrcLen; // src length
813 uint32_t overlayDest; // dest offset from start of font data
816 enum gfxUserFontType {
817 GFX_USERFONT_UNKNOWN = 0,
818 GFX_USERFONT_OPENTYPE = 1,
819 GFX_USERFONT_SVG = 2,
820 GFX_USERFONT_WOFF = 3,
821 GFX_USERFONT_WOFF2 = 4
824 extern const uint8_t sCJKCompatSVSTable[];
826 class gfxFontUtils {
827 public:
828 // these are public because gfxFont.cpp also looks into the name table
829 enum {
830 NAME_ID_FAMILY = 1,
831 NAME_ID_STYLE = 2,
832 NAME_ID_UNIQUE = 3,
833 NAME_ID_FULL = 4,
834 NAME_ID_VERSION = 5,
835 NAME_ID_POSTSCRIPT = 6,
836 NAME_ID_PREFERRED_FAMILY = 16,
837 NAME_ID_PREFERRED_STYLE = 17,
839 PLATFORM_ALL = -1,
840 PLATFORM_ID_UNICODE = 0, // Mac OS uses this typically
841 PLATFORM_ID_MAC = 1,
842 PLATFORM_ID_ISO = 2,
843 PLATFORM_ID_MICROSOFT = 3,
845 ENCODING_ID_MAC_ROMAN = 0, // traditional Mac OS script manager encodings
846 ENCODING_ID_MAC_JAPANESE =
847 1, // (there are others defined, but some were never
848 ENCODING_ID_MAC_TRAD_CHINESE =
849 2, // implemented by Apple, and I have never seen them
850 ENCODING_ID_MAC_KOREAN = 3, // used in font names)
851 ENCODING_ID_MAC_ARABIC = 4,
852 ENCODING_ID_MAC_HEBREW = 5,
853 ENCODING_ID_MAC_GREEK = 6,
854 ENCODING_ID_MAC_CYRILLIC = 7,
855 ENCODING_ID_MAC_DEVANAGARI = 9,
856 ENCODING_ID_MAC_GURMUKHI = 10,
857 ENCODING_ID_MAC_GUJARATI = 11,
858 ENCODING_ID_MAC_SIMP_CHINESE = 25,
860 ENCODING_ID_MICROSOFT_SYMBOL = 0, // Microsoft platform encoding IDs
861 ENCODING_ID_MICROSOFT_UNICODEBMP = 1,
862 ENCODING_ID_MICROSOFT_SHIFTJIS = 2,
863 ENCODING_ID_MICROSOFT_PRC = 3,
864 ENCODING_ID_MICROSOFT_BIG5 = 4,
865 ENCODING_ID_MICROSOFT_WANSUNG = 5,
866 ENCODING_ID_MICROSOFT_JOHAB = 6,
867 ENCODING_ID_MICROSOFT_UNICODEFULL = 10,
869 LANG_ALL = -1,
870 LANG_ID_MAC_ENGLISH = 0, // many others are defined, but most don't affect
871 LANG_ID_MAC_HEBREW =
872 10, // the charset; should check all the central/eastern
873 LANG_ID_MAC_JAPANESE = 11, // european codes, though
874 LANG_ID_MAC_ARABIC = 12,
875 LANG_ID_MAC_ICELANDIC = 15,
876 LANG_ID_MAC_TURKISH = 17,
877 LANG_ID_MAC_TRAD_CHINESE = 19,
878 LANG_ID_MAC_URDU = 20,
879 LANG_ID_MAC_KOREAN = 23,
880 LANG_ID_MAC_POLISH = 25,
881 LANG_ID_MAC_FARSI = 31,
882 LANG_ID_MAC_SIMP_CHINESE = 33,
883 LANG_ID_MAC_ROMANIAN = 37,
884 LANG_ID_MAC_CZECH = 38,
885 LANG_ID_MAC_SLOVAK = 39,
887 LANG_ID_MICROSOFT_EN_US =
888 0x0409, // with Microsoft platformID, EN US lang code
890 CMAP_MAX_CODEPOINT = 0x10ffff // maximum possible Unicode codepoint
891 // contained in a cmap
894 // name table has a header, followed by name records, followed by string data
895 struct NameHeader {
896 mozilla::AutoSwap_PRUint16 format; // Format selector (=0).
897 mozilla::AutoSwap_PRUint16 count; // Number of name records.
898 mozilla::AutoSwap_PRUint16 stringOffset; // Offset to start of string
899 // storage (from start of table)
902 struct NameRecord {
903 mozilla::AutoSwap_PRUint16 platformID; // Platform ID
904 mozilla::AutoSwap_PRUint16 encodingID; // Platform-specific encoding ID
905 mozilla::AutoSwap_PRUint16 languageID; // Language ID
906 mozilla::AutoSwap_PRUint16 nameID; // Name ID.
907 mozilla::AutoSwap_PRUint16 length; // String length (in bytes).
908 mozilla::AutoSwap_PRUint16 offset; // String offset from start of storage
909 // (in bytes).
912 // Helper to ensure we free a font table when we return.
913 class AutoHBBlob {
914 public:
915 explicit AutoHBBlob(hb_blob_t* aBlob) : mBlob(aBlob) {}
917 ~AutoHBBlob() { hb_blob_destroy(mBlob); }
919 operator hb_blob_t*() { return mBlob; }
921 private:
922 hb_blob_t* const mBlob;
925 // for reading big-endian font data on either big or little-endian platforms
927 static inline uint16_t ReadShortAt(const uint8_t* aBuf, uint32_t aIndex) {
928 return static_cast<uint16_t>(aBuf[aIndex] << 8) | aBuf[aIndex + 1];
931 static inline uint16_t ReadShortAt16(const uint16_t* aBuf, uint32_t aIndex) {
932 const uint8_t* buf = reinterpret_cast<const uint8_t*>(aBuf);
933 uint32_t index = aIndex << 1;
934 return static_cast<uint16_t>(buf[index] << 8) | buf[index + 1];
937 static inline uint32_t ReadUint24At(const uint8_t* aBuf, uint32_t aIndex) {
938 return ((aBuf[aIndex] << 16) | (aBuf[aIndex + 1] << 8) |
939 (aBuf[aIndex + 2]));
942 static inline uint32_t ReadLongAt(const uint8_t* aBuf, uint32_t aIndex) {
943 return ((aBuf[aIndex] << 24) | (aBuf[aIndex + 1] << 16) |
944 (aBuf[aIndex + 2] << 8) | (aBuf[aIndex + 3]));
947 static nsresult ReadCMAPTableFormat10(const uint8_t* aBuf, uint32_t aLength,
948 gfxSparseBitSet& aCharacterMap);
950 static nsresult ReadCMAPTableFormat12or13(const uint8_t* aBuf,
951 uint32_t aLength,
952 gfxSparseBitSet& aCharacterMap);
954 static nsresult ReadCMAPTableFormat4(const uint8_t* aBuf, uint32_t aLength,
955 gfxSparseBitSet& aCharacterMap,
956 bool aIsSymbolFont);
958 static nsresult ReadCMAPTableFormat14(const uint8_t* aBuf, uint32_t aLength,
959 const uint8_t*& aTable);
961 static uint32_t FindPreferredSubtable(const uint8_t* aBuf,
962 uint32_t aBufLength,
963 uint32_t* aTableOffset,
964 uint32_t* aUVSTableOffset,
965 bool* aIsSymbolFont);
967 static nsresult ReadCMAP(const uint8_t* aBuf, uint32_t aBufLength,
968 gfxSparseBitSet& aCharacterMap,
969 uint32_t& aUVSOffset);
971 static uint32_t MapCharToGlyphFormat4(const uint8_t* aBuf, uint32_t aLength,
972 char16_t aCh);
974 static uint32_t MapCharToGlyphFormat10(const uint8_t* aBuf, uint32_t aCh);
976 static uint32_t MapCharToGlyphFormat12or13(const uint8_t* aBuf, uint32_t aCh);
978 static uint16_t MapUVSToGlyphFormat14(const uint8_t* aBuf, uint32_t aCh,
979 uint32_t aVS);
981 // sCJKCompatSVSTable is a 'cmap' format 14 subtable that maps
982 // <char + var-selector> pairs to the corresponding Unicode
983 // compatibility ideograph codepoints.
984 static MOZ_ALWAYS_INLINE uint32_t GetUVSFallback(uint32_t aCh, uint32_t aVS) {
985 aCh = MapUVSToGlyphFormat14(sCJKCompatSVSTable, aCh, aVS);
986 return aCh >= 0xFB00 ? aCh + (0x2F800 - 0xFB00) : aCh;
989 static uint32_t MapCharToGlyph(const uint8_t* aCmapBuf, uint32_t aBufLength,
990 uint32_t aUnicode, uint32_t aVarSelector = 0);
992 // For legacy MS Symbol fonts, we try mapping 8-bit character codes to the
993 // Private Use range at U+F0xx used by the cmaps in these fonts.
994 static MOZ_ALWAYS_INLINE uint32_t MapLegacySymbolFontCharToPUA(uint32_t aCh) {
995 return aCh >= 0x20 && aCh <= 0xff ? 0xf000 + aCh : 0;
998 #ifdef XP_WIN
999 // determine whether a font (which has already been sanitized, so is known
1000 // to be a valid sfnt) is CFF format rather than TrueType
1001 static bool IsCffFont(const uint8_t* aFontData);
1002 #endif
1004 // determine the format of font data
1005 static gfxUserFontType DetermineFontDataType(const uint8_t* aFontData,
1006 uint32_t aFontDataLength);
1008 // Read the fullname from the sfnt data (used to save the original name
1009 // prior to renaming the font for installation).
1010 // This is called with sfnt data that has already been validated,
1011 // so it should always succeed in finding the name table.
1012 static nsresult GetFullNameFromSFNT(const uint8_t* aFontData,
1013 uint32_t aLength, nsACString& aFullName);
1015 // helper to get fullname from name table, constructing from family+style
1016 // if no explicit fullname is present
1017 static nsresult GetFullNameFromTable(hb_blob_t* aNameTable,
1018 nsACString& aFullName);
1020 // helper to get family name from name table
1021 static nsresult GetFamilyNameFromTable(hb_blob_t* aNameTable,
1022 nsACString& aFamilyName);
1024 // Find the table directory entry for a given table tag, in a (validated)
1025 // buffer of 'sfnt' data. Returns null if the tag is not present.
1026 static mozilla::TableDirEntry* FindTableDirEntry(const void* aFontData,
1027 uint32_t aTableTag);
1029 // Return a blob that wraps a table found within a buffer of font data.
1030 // The blob does NOT own its data; caller guarantees that the buffer
1031 // will remain valid at least as long as the blob.
1032 // Returns null if the specified table is not found.
1033 // This method assumes aFontData is valid 'sfnt' data; before using this,
1034 // caller is responsible to do any sanitization/validation necessary.
1035 static hb_blob_t* GetTableFromFontData(const void* aFontData,
1036 uint32_t aTableTag);
1038 // create a new name table and build a new font with that name table
1039 // appended on the end, returns true on success
1040 static nsresult RenameFont(const nsAString& aName, const uint8_t* aFontData,
1041 uint32_t aFontDataLength,
1042 FallibleTArray<uint8_t>* aNewFont);
1044 // read all names matching aNameID, returning in aNames array
1045 static nsresult ReadNames(const char* aNameData, uint32_t aDataLen,
1046 uint32_t aNameID, int32_t aPlatformID,
1047 nsTArray<nsCString>& aNames);
1049 // reads English or first name matching aNameID, returning in aName
1050 // platform based on OS
1051 static nsresult ReadCanonicalName(hb_blob_t* aNameTable, uint32_t aNameID,
1052 nsCString& aName);
1054 static nsresult ReadCanonicalName(const char* aNameData, uint32_t aDataLen,
1055 uint32_t aNameID, nsCString& aName);
1057 // convert a name from the raw name table data into an nsString,
1058 // provided we know how; return true if successful, or false
1059 // if we can't handle the encoding
1060 static bool DecodeFontName(const char* aBuf, int32_t aLength,
1061 uint32_t aPlatformCode, uint32_t aScriptCode,
1062 uint32_t aLangCode, nsACString& dest);
1064 static inline bool IsJoinCauser(uint32_t ch) { return (ch == 0x200D); }
1066 // We treat Combining Grapheme Joiner (U+034F) together with the join
1067 // controls (ZWJ, ZWNJ) here, because (like them) it is an invisible
1068 // char that will be handled by the shaper even if not explicitly
1069 // supported by the font. (See bug 1408366.)
1070 static inline bool IsJoinControl(uint32_t ch) {
1071 return (ch == 0x200C || ch == 0x200D || ch == 0x034f);
1074 enum {
1075 kUnicodeVS1 = 0xFE00,
1076 kUnicodeVS16 = 0xFE0F,
1077 kUnicodeVS17 = 0xE0100,
1078 kUnicodeVS256 = 0xE01EF
1081 static inline bool IsVarSelector(uint32_t ch) {
1082 return (ch >= kUnicodeVS1 && ch <= kUnicodeVS16) ||
1083 (ch >= kUnicodeVS17 && ch <= kUnicodeVS256);
1086 enum {
1087 kUnicodeRegionalIndicatorA = 0x1F1E6,
1088 kUnicodeRegionalIndicatorZ = 0x1F1FF
1091 static inline bool IsRegionalIndicator(uint32_t aCh) {
1092 return aCh >= kUnicodeRegionalIndicatorA &&
1093 aCh <= kUnicodeRegionalIndicatorZ;
1096 static inline bool IsEmojiFlagAndTag(uint32_t aCh, uint32_t aNext) {
1097 constexpr uint32_t kBlackFlag = 0x1F3F4;
1098 constexpr uint32_t kTagLetterA = 0xE0061;
1099 constexpr uint32_t kTagLetterZ = 0xE007A;
1101 return aCh == kBlackFlag && aNext >= kTagLetterA && aNext <= kTagLetterZ;
1104 static inline bool IsInvalid(uint32_t ch) { return (ch == 0xFFFD); }
1106 // Font code may want to know if there is the potential for bidi behavior
1107 // to be triggered by any of the characters in a text run; this can be
1108 // used to test that possibility.
1109 enum {
1110 kUnicodeBidiScriptsStart = 0x0590,
1111 kUnicodeBidiScriptsEnd = 0x08FF,
1112 kUnicodeBidiPresentationStart = 0xFB1D,
1113 kUnicodeBidiPresentationEnd = 0xFEFC,
1114 kUnicodeFirstHighSurrogateBlock = 0xD800,
1115 kUnicodeRLM = 0x200F,
1116 kUnicodeRLE = 0x202B,
1117 kUnicodeRLO = 0x202E
1120 static inline bool PotentialRTLChar(char16_t aCh) {
1121 if (aCh >= kUnicodeBidiScriptsStart && aCh <= kUnicodeBidiScriptsEnd)
1122 // bidi scripts Hebrew, Arabic, Syriac, Thaana, N'Ko are all encoded
1123 // together
1124 return true;
1126 if (aCh == kUnicodeRLM || aCh == kUnicodeRLE || aCh == kUnicodeRLO)
1127 // directional controls that trigger bidi layout
1128 return true;
1130 if (aCh >= kUnicodeBidiPresentationStart &&
1131 aCh <= kUnicodeBidiPresentationEnd)
1132 // presentation forms of Arabic and Hebrew letters
1133 return true;
1135 if ((aCh & 0xFF00) == kUnicodeFirstHighSurrogateBlock)
1136 // surrogate that could be part of a bidi supplementary char
1137 // (Cypriot, Aramaic, Phoenecian, etc)
1138 return true;
1140 // otherwise we know this char cannot trigger bidi reordering
1141 return false;
1144 // parse a simple list of font family names into
1145 // an array of strings
1146 static void ParseFontList(const nsACString& aFamilyList,
1147 nsTArray<nsCString>& aFontList);
1149 // for a given pref name, initialize a list of font names
1150 static void GetPrefsFontList(const char* aPrefName,
1151 nsTArray<nsCString>& aFontList,
1152 bool aLocalized = false);
1154 // generate a unique font name
1155 static nsresult MakeUniqueUserFontName(nsAString& aName);
1157 // Helper used to implement gfxFontEntry::GetVariation{Axes,Instances} for
1158 // platforms where the native font APIs don't provide the info we want
1159 // in a convenient form, or when native APIs are too expensive.
1160 // (Not used on platforms -- currently, freetype -- where the font APIs
1161 // expose variation instance details directly.)
1162 static void GetVariationData(gfxFontEntry* aFontEntry,
1163 nsTArray<gfxFontVariationAxis>* aAxes,
1164 nsTArray<gfxFontVariationInstance>* aInstances);
1166 // Helper method for reading localized family names from the name table
1167 // of a single face.
1168 static void ReadOtherFamilyNamesForFace(
1169 const nsACString& aFamilyName, const char* aNameData,
1170 uint32_t aDataLength, nsTArray<nsCString>& aOtherFamilyNames,
1171 bool useFullName);
1173 // Main, DOM worker or servo thread safe method to check if we are performing
1174 // Servo traversal.
1175 static bool IsInServoTraversal();
1177 // Main, DOM worker or servo thread safe method to get the current
1178 // ServoTypeSet. Always returns nullptr for DOM worker threads.
1179 static mozilla::ServoStyleSet* CurrentServoStyleSet();
1181 static void AssertSafeThreadOrServoFontMetricsLocked()
1182 #ifdef DEBUG
1184 #else
1187 #endif
1189 protected:
1190 friend struct MacCharsetMappingComparator;
1192 static nsresult ReadNames(const char* aNameData, uint32_t aDataLen,
1193 uint32_t aNameID, int32_t aLangID,
1194 int32_t aPlatformID, nsTArray<nsCString>& aNames);
1196 // convert opentype name-table platform/encoding/language values to an
1197 // Encoding object we can use to convert the name data to unicode
1198 static const mozilla::Encoding* GetCharsetForFontName(uint16_t aPlatform,
1199 uint16_t aScript,
1200 uint16_t aLanguage);
1202 struct MacFontNameCharsetMapping {
1203 uint16_t mScript;
1204 uint16_t mLanguage;
1205 const mozilla::Encoding* mEncoding;
1207 bool operator<(const MacFontNameCharsetMapping& rhs) const {
1208 return (mScript < rhs.mScript) ||
1209 ((mScript == rhs.mScript) && (mLanguage < rhs.mLanguage));
1212 static const MacFontNameCharsetMapping gMacFontNameCharsets[];
1213 static const mozilla::Encoding* gISOFontNameCharsets[];
1214 static const mozilla::Encoding* gMSFontNameCharsets[];
1217 // Factors used to weight the distances between the available and target font
1218 // properties during font-matching. These ensure that we respect the CSS-fonts
1219 // requirement that font-stretch >> font-style >> font-weight; and in addition,
1220 // a mismatch between the desired and actual glyph presentation (emoji vs text)
1221 // will take precedence over any of the style attributes.
1222 constexpr double kPresentationMismatch = 1.0e12;
1223 constexpr double kStretchFactor = 1.0e8;
1224 constexpr double kStyleFactor = 1.0e4;
1225 constexpr double kWeightFactor = 1.0e0;
1227 // style distance ==> [0,500]
1228 static inline double StyleDistance(const mozilla::SlantStyleRange& aRange,
1229 mozilla::FontSlantStyle aTargetStyle) {
1230 const mozilla::FontSlantStyle minStyle = aRange.Min();
1231 if (aTargetStyle == minStyle) {
1232 return 0.0; // styles match exactly ==> 0
1235 // bias added to angle difference when searching in the non-preferred
1236 // direction from a target angle
1237 const double kReverse = 100.0;
1239 // bias added when we've crossed from positive to negative angles or
1240 // vice versa
1241 const double kNegate = 200.0;
1243 if (aTargetStyle.IsNormal()) {
1244 if (minStyle.IsOblique()) {
1245 // to distinguish oblique 0deg from normal, we add 1.0 to the angle
1246 const double minAngle = minStyle.ObliqueAngle();
1247 if (minAngle >= 0.0) {
1248 return 1.0 + minAngle;
1250 const mozilla::FontSlantStyle maxStyle = aRange.Max();
1251 const double maxAngle = maxStyle.ObliqueAngle();
1252 if (maxAngle >= 0.0) {
1253 // [min,max] range includes 0.0, so just return our minimum
1254 return 1.0;
1256 // negative oblique is even worse than italic
1257 return kNegate - maxAngle;
1259 // must be italic, which is worse than any non-negative oblique;
1260 // treat as a match in the wrong search direction
1261 MOZ_ASSERT(minStyle.IsItalic());
1262 return kReverse;
1265 const double kDefaultAngle = mozilla::FontSlantStyle::DEFAULT_OBLIQUE_DEGREES;
1267 if (aTargetStyle.IsItalic()) {
1268 if (minStyle.IsOblique()) {
1269 const double minAngle = minStyle.ObliqueAngle();
1270 if (minAngle >= kDefaultAngle) {
1271 return 1.0 + (minAngle - kDefaultAngle);
1273 const mozilla::FontSlantStyle maxStyle = aRange.Max();
1274 const double maxAngle = maxStyle.ObliqueAngle();
1275 if (maxAngle >= kDefaultAngle) {
1276 return 1.0;
1278 if (maxAngle > 0.0) {
1279 // wrong direction but still > 0, add bias of 100
1280 return kReverse + (kDefaultAngle - maxAngle);
1282 // negative oblique angle, add bias of 300
1283 return kReverse + kNegate + (kDefaultAngle - maxAngle);
1285 // normal is worse than oblique > 0, but better than oblique <= 0
1286 MOZ_ASSERT(minStyle.IsNormal());
1287 return kNegate;
1290 // target is oblique <angle>: four different cases depending on
1291 // the value of the <angle>, which determines the preferred direction
1292 // of search
1293 const double targetAngle = aTargetStyle.ObliqueAngle();
1294 if (targetAngle >= kDefaultAngle) {
1295 if (minStyle.IsOblique()) {
1296 const double minAngle = minStyle.ObliqueAngle();
1297 if (minAngle >= targetAngle) {
1298 return minAngle - targetAngle;
1300 const mozilla::FontSlantStyle maxStyle = aRange.Max();
1301 const double maxAngle = maxStyle.ObliqueAngle();
1302 if (maxAngle >= targetAngle) {
1303 return 0.0;
1305 if (maxAngle > 0.0) {
1306 return kReverse + (targetAngle - maxAngle);
1308 return kReverse + kNegate + (targetAngle - maxAngle);
1310 if (minStyle.IsItalic()) {
1311 return kReverse + kNegate;
1313 return kReverse + kNegate + 1.0;
1316 if (targetAngle <= -kDefaultAngle) {
1317 if (minStyle.IsOblique()) {
1318 const mozilla::FontSlantStyle maxStyle = aRange.Max();
1319 const double maxAngle = maxStyle.ObliqueAngle();
1320 if (maxAngle <= targetAngle) {
1321 return targetAngle - maxAngle;
1323 const double minAngle = minStyle.ObliqueAngle();
1324 if (minAngle <= targetAngle) {
1325 return 0.0;
1327 if (minAngle < 0.0) {
1328 return kReverse + (minAngle - targetAngle);
1330 return kReverse + kNegate + (minAngle - targetAngle);
1332 if (minStyle.IsItalic()) {
1333 return kReverse + kNegate;
1335 return kReverse + kNegate + 1.0;
1338 if (targetAngle >= 0.0) {
1339 if (minStyle.IsOblique()) {
1340 const double minAngle = minStyle.ObliqueAngle();
1341 if (minAngle > targetAngle) {
1342 return kReverse + (minAngle - targetAngle);
1344 const mozilla::FontSlantStyle maxStyle = aRange.Max();
1345 const double maxAngle = maxStyle.ObliqueAngle();
1346 if (maxAngle >= targetAngle) {
1347 return 0.0;
1349 if (maxAngle > 0.0) {
1350 return targetAngle - maxAngle;
1352 return kReverse + kNegate + (targetAngle - maxAngle);
1354 if (minStyle.IsItalic()) {
1355 return kReverse + kNegate - 2.0;
1357 return kReverse + kNegate - 1.0;
1360 // last case: (targetAngle < 0.0 && targetAngle > kDefaultAngle)
1361 if (minStyle.IsOblique()) {
1362 const mozilla::FontSlantStyle maxStyle = aRange.Max();
1363 const double maxAngle = maxStyle.ObliqueAngle();
1364 if (maxAngle < targetAngle) {
1365 return kReverse + (targetAngle - maxAngle);
1367 const double minAngle = minStyle.ObliqueAngle();
1368 if (minAngle <= targetAngle) {
1369 return 0.0;
1371 if (minAngle < 0.0) {
1372 return minAngle - targetAngle;
1374 return kReverse + kNegate + (minAngle - targetAngle);
1376 if (minStyle.IsItalic()) {
1377 return kReverse + kNegate - 2.0;
1379 return kReverse + kNegate - 1.0;
1382 // stretch distance ==> [0,2000]
1383 static inline double StretchDistance(const mozilla::StretchRange& aRange,
1384 mozilla::FontStretch aTargetStretch) {
1385 const double kReverseDistance = 1000.0;
1387 mozilla::FontStretch minStretch = aRange.Min();
1388 mozilla::FontStretch maxStretch = aRange.Max();
1390 // The stretch value is a (non-negative) percentage; currently we support
1391 // values in the range 0 .. 1000. (If the upper limit is ever increased,
1392 // the kReverseDistance value used here may need to be adjusted.)
1393 // If aTargetStretch is >100, we prefer larger values if available;
1394 // if <=100, we prefer smaller values if available.
1395 if (aTargetStretch < minStretch) {
1396 if (aTargetStretch > mozilla::FontStretch::NORMAL) {
1397 return minStretch.ToFloat() - aTargetStretch.ToFloat();
1399 return (minStretch.ToFloat() - aTargetStretch.ToFloat()) + kReverseDistance;
1401 if (aTargetStretch > maxStretch) {
1402 if (aTargetStretch <= mozilla::FontStretch::NORMAL) {
1403 return aTargetStretch.ToFloat() - maxStretch.ToFloat();
1405 return (aTargetStretch.ToFloat() - maxStretch.ToFloat()) + kReverseDistance;
1407 return 0.0;
1410 // Calculate weight distance with values in the range (0..1000). In general,
1411 // heavier weights match towards even heavier weights while lighter weights
1412 // match towards even lighter weights. Target weight values in the range
1413 // [400..500] are special, since they will first match up to 500, then down
1414 // towards 0, then up again towards 999.
1416 // Example: with target 600 and font weight 800, distance will be 200. With
1417 // target 300 and font weight 600, distance will be 900, since heavier
1418 // weights are farther away than lighter weights. If the target is 5 and the
1419 // font weight 995, the distance would be 1590 for the same reason.
1421 // weight distance ==> [0,1600]
1422 static inline double WeightDistance(const mozilla::WeightRange& aRange,
1423 mozilla::FontWeight aTargetWeight) {
1424 const double kNotWithinCentralRange = 100.0;
1425 const double kReverseDistance = 600.0;
1427 mozilla::FontWeight minWeight = aRange.Min();
1428 mozilla::FontWeight maxWeight = aRange.Max();
1430 if (aTargetWeight >= minWeight && aTargetWeight <= maxWeight) {
1431 // Target is within the face's range, so it's a perfect match
1432 return 0.0;
1435 if (aTargetWeight < mozilla::FontWeight::NORMAL) {
1436 // Requested a lighter-than-400 weight
1437 if (maxWeight < aTargetWeight) {
1438 return aTargetWeight.ToFloat() - maxWeight.ToFloat();
1440 // Add reverse-search penalty for bolder faces
1441 return (minWeight.ToFloat() - aTargetWeight.ToFloat()) + kReverseDistance;
1444 if (aTargetWeight > mozilla::FontWeight::FromInt(500)) {
1445 // Requested a bolder-than-500 weight
1446 if (minWeight > aTargetWeight) {
1447 return minWeight.ToFloat() - aTargetWeight.ToFloat();
1449 // Add reverse-search penalty for lighter faces
1450 return (aTargetWeight.ToFloat() - maxWeight.ToFloat()) + kReverseDistance;
1453 // Special case for requested weight in the [400..500] range
1454 if (minWeight > aTargetWeight) {
1455 if (minWeight <= mozilla::FontWeight::FromInt(500)) {
1456 // Bolder weight up to 500 is first choice
1457 return minWeight.ToFloat() - aTargetWeight.ToFloat();
1459 // Other bolder weights get a reverse-search penalty
1460 return (minWeight.ToFloat() - aTargetWeight.ToFloat()) + kReverseDistance;
1462 // Lighter weights are not as good as bolder ones within [400..500]
1463 return (aTargetWeight.ToFloat() - maxWeight.ToFloat()) +
1464 kNotWithinCentralRange;
1467 #endif /* GFX_FONT_UTILS_H */