Bug 1856126 [wpt PR 42137] - LoAF: ensure scripts are added after microtask checkpoin...
[gecko.git] / js / public / GCAPI.h
blob919ff47709ac74247f2ee79b41a1e361379a3373
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * vim: set ts=8 sts=2 et sw=2 tw=80:
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /*
8 * High-level interface to the JS garbage collector.
9 */
11 #ifndef js_GCAPI_h
12 #define js_GCAPI_h
14 #include "mozilla/TimeStamp.h"
15 #include "mozilla/Vector.h"
17 #include "js/GCAnnotations.h"
18 #include "js/shadow/Zone.h"
19 #include "js/SliceBudget.h"
20 #include "js/TypeDecls.h"
21 #include "js/UniquePtr.h"
22 #include "js/Utility.h"
24 class JS_PUBLIC_API JSTracer;
26 namespace js {
27 namespace gc {
28 class GCRuntime;
29 } // namespace gc
30 class JS_PUBLIC_API SliceBudget;
31 namespace gcstats {
32 struct Statistics;
33 } // namespace gcstats
34 } // namespace js
36 namespace JS {
38 // Options used when starting a GC.
39 enum class GCOptions : uint32_t {
40 // Normal GC invocation.
42 // Some objects that are unreachable from the program may still be alive after
43 // collection because of internal references
44 Normal = 0,
46 // A shrinking GC.
48 // Try to release as much memory as possible by clearing internal caches,
49 // aggressively discarding JIT code and decommitting unused chunks. This
50 // ensures all unreferenced objects are removed from the system.
52 // Finally, compact the GC heap.
53 Shrink = 1,
55 // A shutdown GC.
57 // This does more drastic cleanup as part of system shutdown, including:
58 // - clearing WeakRef kept object sets
59 // - not marking FinalizationRegistry roots
60 // - repeating collection if JS::NotifyGCRootsRemoved was called
61 // - skipping scheduling of various future work that won't be needed
63 // Note that this assumes that no JS will run after this point!
64 Shutdown = 2
67 } // namespace JS
69 typedef enum JSGCParamKey {
70 /**
71 * Maximum nominal heap before last ditch GC.
73 * Soft limit on the number of bytes we are allowed to allocate in the GC
74 * heap. Attempts to allocate gcthings over this limit will return null and
75 * subsequently invoke the standard OOM machinery, independent of available
76 * physical memory.
78 * Pref: javascript.options.mem.max
79 * Default: 0xffffffff
81 JSGC_MAX_BYTES = 0,
83 /**
84 * Maximum size of the generational GC nurseries.
86 * This will be rounded to the nearest gc::ChunkSize.
88 * Pref: javascript.options.mem.nursery.max_kb
89 * Default: JS::DefaultNurseryMaxBytes
91 JSGC_MAX_NURSERY_BYTES = 2,
93 /** Amount of bytes allocated by the GC. */
94 JSGC_BYTES = 3,
96 /** Number of times GC has been invoked. Includes both major and minor GC. */
97 JSGC_NUMBER = 4,
99 /**
100 * Whether incremental GC is enabled. If not, GC will always run to
101 * completion.
103 * prefs: javascript.options.mem.gc_incremental.
104 * Default: false
106 JSGC_INCREMENTAL_GC_ENABLED = 5,
109 * Whether per-zone GC is enabled. If not, all zones are collected every time.
111 * prefs: javascript.options.mem.gc_per_zone
112 * Default: false
114 JSGC_PER_ZONE_GC_ENABLED = 6,
116 /** Number of cached empty GC chunks. */
117 JSGC_UNUSED_CHUNKS = 7,
119 /** Total number of allocated GC chunks. */
120 JSGC_TOTAL_CHUNKS = 8,
123 * Max milliseconds to spend in an incremental GC slice.
125 * A value of zero means there is no maximum.
127 * Pref: javascript.options.mem.gc_incremental_slice_ms
128 * Default: DefaultTimeBudgetMS.
130 JSGC_SLICE_TIME_BUDGET_MS = 9,
133 * The "do we collect?" decision depends on various parameters and can be
134 * summarised as:
136 * ZoneSize > Max(ThresholdBase, LastSize) * GrowthFactor * ThresholdFactor
138 * Where
139 * ZoneSize: Current size of this zone.
140 * LastSize: Heap size immediately after the most recent collection.
141 * ThresholdBase: The JSGC_ALLOCATION_THRESHOLD parameter
142 * GrowthFactor: A number above 1, calculated based on some of the
143 * following parameters.
144 * See computeZoneHeapGrowthFactorForHeapSize() in GC.cpp
145 * ThresholdFactor: 1.0 to trigger an incremental collections or between
146 * JSGC_SMALL_HEAP_INCREMENTAL_LIMIT and
147 * JSGC_LARGE_HEAP_INCREMENTAL_LIMIT to trigger a
148 * non-incremental collection.
150 * The RHS of the equation above is calculated and sets
151 * zone->gcHeapThreshold.bytes(). When gcHeapSize.bytes() exeeds
152 * gcHeapThreshold.bytes() for a zone, the zone may be scheduled for a GC.
156 * GCs less than this far apart in milliseconds will be considered
157 * 'high-frequency GCs'.
159 * Pref: javascript.options.mem.gc_high_frequency_time_limit_ms
160 * Default: HighFrequencyThreshold
162 JSGC_HIGH_FREQUENCY_TIME_LIMIT = 11,
165 * Upper limit for classifying a heap as small (MB).
167 * Dynamic heap growth thresholds are based on whether the heap is small,
168 * medium or large. Heaps smaller than this size are classified as small;
169 * larger heaps are classified as medium or large.
171 * Pref: javascript.options.mem.gc_small_heap_size_max_mb
172 * Default: SmallHeapSizeMaxBytes
174 JSGC_SMALL_HEAP_SIZE_MAX = 12,
177 * Lower limit for classifying a heap as large (MB).
179 * Dynamic heap growth thresholds are based on whether the heap is small,
180 * medium or large. Heaps larger than this size are classified as large;
181 * smaller heaps are classified as small or medium.
183 * Pref: javascript.options.mem.gc_large_heap_size_min_mb
184 * Default: LargeHeapSizeMinBytes
186 JSGC_LARGE_HEAP_SIZE_MIN = 13,
189 * Heap growth factor for small heaps in the high-frequency GC state.
191 * Pref: javascript.options.mem.gc_high_frequency_small_heap_growth
192 * Default: HighFrequencySmallHeapGrowth
194 JSGC_HIGH_FREQUENCY_SMALL_HEAP_GROWTH = 14,
197 * Heap growth factor for large heaps in the high-frequency GC state.
199 * Pref: javascript.options.mem.gc_high_frequency_large_heap_growth
200 * Default: HighFrequencyLargeHeapGrowth
202 JSGC_HIGH_FREQUENCY_LARGE_HEAP_GROWTH = 15,
205 * Heap growth factor for low frequency GCs.
207 * This factor is applied regardless of the size of the heap when not in the
208 * high-frequency GC state.
210 * Pref: javascript.options.mem.gc_low_frequency_heap_growth
211 * Default: LowFrequencyHeapGrowth
213 JSGC_LOW_FREQUENCY_HEAP_GROWTH = 16,
216 * Whether balanced heap limits are enabled.
218 * If this is set to true then heap limits are calculated in a way designed to
219 * balance memory usage optimally between many heaps.
221 * Otherwise, heap limits are set based on a linear multiple of the retained
222 * size after the last collection.
224 * Pref: javascript.options.mem.gc_balanced_heap_limits
225 * Default: BalancedHeapLimitsEnabled
227 JSGC_BALANCED_HEAP_LIMITS_ENABLED = 17,
230 * Heap growth parameter for balanced heap limit calculation.
232 * This parameter trades off GC time for memory usage. Smaller values result
233 * in lower memory use and larger values result in less time spent collecting.
235 * Heap limits are set to the heap's retained size plus some extra space. The
236 * extra space is calculated based on several factors but is scaled
237 * proportionally to this parameter.
239 * Pref: javascript.options.mem.gc_heap_growth_factor
240 * Default: HeapGrowthFactor
242 JSGC_HEAP_GROWTH_FACTOR = 18,
245 * Lower limit for collecting a zone (MB).
247 * Zones smaller than this size will not normally be collected.
249 * Pref: javascript.options.mem.gc_allocation_threshold_mb
250 * Default GCZoneAllocThresholdBase
252 JSGC_ALLOCATION_THRESHOLD = 19,
255 * We try to keep at least this many unused chunks in the free chunk pool at
256 * all times, even after a shrinking GC.
258 * Pref: javascript.options.mem.gc_min_empty_chunk_count
259 * Default: MinEmptyChunkCount
261 JSGC_MIN_EMPTY_CHUNK_COUNT = 21,
264 * We never keep more than this many unused chunks in the free chunk pool.
266 * Pref: javascript.options.mem.gc_max_empty_chunk_count
267 * Default: MaxEmptyChunkCount
269 JSGC_MAX_EMPTY_CHUNK_COUNT = 22,
272 * Whether compacting GC is enabled.
274 * Pref: javascript.options.mem.gc_compacting
275 * Default: CompactingEnabled
277 JSGC_COMPACTING_ENABLED = 23,
280 * Whether parallel marking is enabled.
282 * Pref: javascript.options.mem.gc_parallel_marking
283 * Default: ParallelMarkingEnabled
285 JSGC_PARALLEL_MARKING_ENABLED = 24,
288 * Limit of how far over the incremental trigger threshold we allow the heap
289 * to grow before finishing a collection non-incrementally, for small heaps.
291 * We trigger an incremental GC when a trigger threshold is reached but the
292 * collection may not be fast enough to keep up with the mutator. At some
293 * point we finish the collection non-incrementally.
295 * Default: SmallHeapIncrementalLimit
296 * Pref: javascript.options.mem.gc_small_heap_incremental_limit
298 JSGC_SMALL_HEAP_INCREMENTAL_LIMIT = 25,
301 * Limit of how far over the incremental trigger threshold we allow the heap
302 * to grow before finishing a collection non-incrementally, for large heaps.
304 * Default: LargeHeapIncrementalLimit
305 * Pref: javascript.options.mem.gc_large_heap_incremental_limit
307 JSGC_LARGE_HEAP_INCREMENTAL_LIMIT = 26,
310 * Attempt to run a minor GC in the idle time if the free space falls
311 * below this number of bytes.
313 * Default: NurseryChunkUsableSize / 4
314 * Pref: None
316 JSGC_NURSERY_FREE_THRESHOLD_FOR_IDLE_COLLECTION = 27,
319 * If this percentage of the nursery is tenured and the nursery is at least
320 * 4MB, then proceed to examine which groups we should pretenure.
322 * Default: PretenureThreshold
323 * Pref: None
325 JSGC_PRETENURE_THRESHOLD = 28,
328 * Attempt to run a minor GC in the idle time if the free space falls
329 * below this percentage (from 0 to 99).
331 * Default: 25
332 * Pref: None
334 JSGC_NURSERY_FREE_THRESHOLD_FOR_IDLE_COLLECTION_PERCENT = 30,
337 * Minimum size of the generational GC nurseries.
339 * This value will be rounded to the nearest Nursery::SubChunkStep if below
340 * gc::ChunkSize, otherwise it'll be rounded to the nearest gc::ChunkSize.
342 * Default: Nursery::SubChunkLimit
343 * Pref: javascript.options.mem.nursery.min_kb
345 JSGC_MIN_NURSERY_BYTES = 31,
348 * The minimum time to allow between triggering last ditch GCs in seconds.
350 * Default: 60 seconds
351 * Pref: None
353 JSGC_MIN_LAST_DITCH_GC_PERIOD = 32,
356 * The delay (in heapsize kilobytes) between slices of an incremental GC.
358 * Default: ZoneAllocDelayBytes
360 JSGC_ZONE_ALLOC_DELAY_KB = 33,
363 * The current size of the nursery.
365 * This parameter is read-only.
367 JSGC_NURSERY_BYTES = 34,
370 * Retained size base value for calculating malloc heap threshold.
372 * Default: MallocThresholdBase
374 JSGC_MALLOC_THRESHOLD_BASE = 35,
377 * Whether incremental weakmap marking is enabled.
379 * Pref: javascript.options.mem.incremental_weakmap
380 * Default: IncrementalWeakMarkEnabled
382 JSGC_INCREMENTAL_WEAKMAP_ENABLED = 37,
385 * The chunk size in bytes for this system.
387 * This parameter is read-only.
389 JSGC_CHUNK_BYTES = 38,
392 * The number of background threads to use for parallel GC work for each CPU
393 * core, expressed as an integer percentage.
395 * Pref: javascript.options.mem.gc_helper_thread_ratio
397 JSGC_HELPER_THREAD_RATIO = 39,
400 * The maximum number of background threads to use for parallel GC work.
402 * Pref: javascript.options.mem.gc_max_helper_threads
404 JSGC_MAX_HELPER_THREADS = 40,
407 * The number of background threads to use for parallel GC work.
409 * This parameter is read-only and is set based on the
410 * JSGC_HELPER_THREAD_RATIO and JSGC_MAX_HELPER_THREADS parameters.
412 JSGC_HELPER_THREAD_COUNT = 41,
415 * If the percentage of the tenured strings exceeds this threshold, string
416 * will be allocated in tenured heap instead. (Default is allocated in
417 * nursery.)
419 JSGC_PRETENURE_STRING_THRESHOLD = 42,
422 * If the finalization rate of the tenured strings exceeds this threshold,
423 * string will be allocated in nursery.
425 JSGC_STOP_PRETENURE_STRING_THRESHOLD = 43,
428 * A number that is incremented on every major GC slice.
430 JSGC_MAJOR_GC_NUMBER = 44,
433 * A number that is incremented on every minor GC.
435 JSGC_MINOR_GC_NUMBER = 45,
438 * JS::MaybeRunNurseryCollection will collect the nursery if it hasn't been
439 * collected in this many milliseconds.
441 * Default: 5000
442 * Pref: None
444 JSGC_NURSERY_TIMEOUT_FOR_IDLE_COLLECTION_MS = 46,
447 * The system page size in KB.
449 * This parameter is read-only.
451 JSGC_SYSTEM_PAGE_SIZE_KB = 47,
454 * In an incremental GC, this determines the point at which to start
455 * increasing the slice budget and frequency of allocation triggered slices to
456 * try to avoid reaching the incremental limit and finishing the collection
457 * synchronously.
459 * The threshold is calculated by subtracting this value from the heap's
460 * incremental limit.
462 JSGC_URGENT_THRESHOLD_MB = 48,
465 * Set the number of threads to use for parallel marking, or zero to use the
466 * default.
468 * The actual number used is capped to the number of available helper threads.
470 * This is provided for testing purposes.
472 * Pref: None.
473 * Default: 0 (no effect).
475 JSGC_MARKING_THREAD_COUNT = 49,
478 * The heap size above which to use parallel marking.
480 * Default: ParallelMarkingThresholdMB
482 JSGC_PARALLEL_MARKING_THRESHOLD_MB = 50,
483 } JSGCParamKey;
486 * Generic trace operation that calls JS::TraceEdge on each traceable thing's
487 * location reachable from data.
489 typedef void (*JSTraceDataOp)(JSTracer* trc, void* data);
492 * Trace hook used to trace gray roots incrementally.
494 * This should return whether tracing is finished. It will be called repeatedly
495 * in subsequent GC slices until it returns true.
497 * While tracing this should check the budget and return false if it has been
498 * exceeded. When passed an unlimited budget it should always return true.
500 typedef bool (*JSGrayRootsTracer)(JSTracer* trc, js::SliceBudget& budget,
501 void* data);
503 typedef enum JSGCStatus { JSGC_BEGIN, JSGC_END } JSGCStatus;
505 typedef void (*JSObjectsTenuredCallback)(JSContext* cx, void* data);
507 typedef enum JSFinalizeStatus {
509 * Called when preparing to sweep a group of zones, before anything has been
510 * swept. The collector will not yield to the mutator before calling the
511 * callback with JSFINALIZE_GROUP_START status.
513 JSFINALIZE_GROUP_PREPARE,
516 * Called after preparing to sweep a group of zones. Weak references to
517 * unmarked things have been removed at this point, but no GC things have
518 * been swept. The collector may yield to the mutator after this point.
520 JSFINALIZE_GROUP_START,
523 * Called after sweeping a group of zones. All dead GC things have been
524 * swept at this point.
526 JSFINALIZE_GROUP_END,
529 * Called at the end of collection when everything has been swept.
531 JSFINALIZE_COLLECTION_END
532 } JSFinalizeStatus;
534 typedef void (*JSFinalizeCallback)(JS::GCContext* gcx, JSFinalizeStatus status,
535 void* data);
537 typedef void (*JSWeakPointerZonesCallback)(JSTracer* trc, void* data);
539 typedef void (*JSWeakPointerCompartmentCallback)(JSTracer* trc,
540 JS::Compartment* comp,
541 void* data);
544 * This is called to tell the embedding that a FinalizationRegistry object has
545 * cleanup work, and that the engine should be called back at an appropriate
546 * later time to perform this cleanup, by calling the function |doCleanup|.
548 * This callback must not do anything that could cause GC.
550 using JSHostCleanupFinalizationRegistryCallback =
551 void (*)(JSFunction* doCleanup, JSObject* incumbentGlobal, void* data);
554 * Each external string has a pointer to JSExternalStringCallbacks. Embedders
555 * can use this to implement custom finalization or memory reporting behavior.
557 struct JSExternalStringCallbacks {
559 * Finalizes external strings created by JS_NewExternalString. The finalizer
560 * can be called off the main thread.
562 virtual void finalize(char16_t* chars) const = 0;
565 * Callback used by memory reporting to ask the embedder how much memory an
566 * external string is keeping alive. The embedder is expected to return a
567 * value that corresponds to the size of the allocation that will be released
568 * by the finalizer callback above.
570 * Implementations of this callback MUST NOT do anything that can cause GC.
572 virtual size_t sizeOfBuffer(const char16_t* chars,
573 mozilla::MallocSizeOf mallocSizeOf) const = 0;
576 namespace JS {
578 #define GCREASONS(D) \
579 /* Reasons internal to the JS engine. */ \
580 D(API, 0) \
581 D(EAGER_ALLOC_TRIGGER, 1) \
582 D(DESTROY_RUNTIME, 2) \
583 D(ROOTS_REMOVED, 3) \
584 D(LAST_DITCH, 4) \
585 D(TOO_MUCH_MALLOC, 5) \
586 D(ALLOC_TRIGGER, 6) \
587 D(DEBUG_GC, 7) \
588 D(COMPARTMENT_REVIVED, 8) \
589 D(RESET, 9) \
590 D(OUT_OF_NURSERY, 10) \
591 D(EVICT_NURSERY, 11) \
592 D(SHARED_MEMORY_LIMIT, 13) \
593 D(EAGER_NURSERY_COLLECTION, 14) \
594 D(BG_TASK_FINISHED, 15) \
595 D(ABORT_GC, 16) \
596 D(FULL_WHOLE_CELL_BUFFER, 17) \
597 D(FULL_GENERIC_BUFFER, 18) \
598 D(FULL_VALUE_BUFFER, 19) \
599 D(FULL_CELL_PTR_OBJ_BUFFER, 20) \
600 D(FULL_SLOT_BUFFER, 21) \
601 D(FULL_SHAPE_BUFFER, 22) \
602 D(TOO_MUCH_WASM_MEMORY, 23) \
603 D(DISABLE_GENERATIONAL_GC, 24) \
604 D(FINISH_GC, 25) \
605 D(PREPARE_FOR_TRACING, 26) \
606 D(FULL_WASM_ANYREF_BUFFER, 27) \
607 D(FULL_CELL_PTR_STR_BUFFER, 28) \
608 D(TOO_MUCH_JIT_CODE, 29) \
609 D(FULL_CELL_PTR_BIGINT_BUFFER, 30) \
610 D(NURSERY_TRAILERS, 31) \
611 D(NURSERY_MALLOC_BUFFERS, 32) \
613 /* \
614 * Reasons from Firefox. \
616 * The JS engine attaches special meanings to some of these reasons. \
617 */ \
618 D(DOM_WINDOW_UTILS, FIRST_FIREFOX_REASON) \
619 D(COMPONENT_UTILS, 34) \
620 D(MEM_PRESSURE, 35) \
621 D(CC_FINISHED, 36) \
622 D(CC_FORCED, 37) \
623 D(LOAD_END, 38) \
624 D(UNUSED3, 39) \
625 D(PAGE_HIDE, 40) \
626 D(NSJSCONTEXT_DESTROY, 41) \
627 D(WORKER_SHUTDOWN, 42) \
628 D(SET_DOC_SHELL, 43) \
629 D(DOM_UTILS, 44) \
630 D(DOM_IPC, 45) \
631 D(DOM_WORKER, 46) \
632 D(INTER_SLICE_GC, 47) \
633 D(UNUSED1, 48) \
634 D(FULL_GC_TIMER, 49) \
635 D(SHUTDOWN_CC, 50) \
636 D(UNUSED2, 51) \
637 D(USER_INACTIVE, 52) \
638 D(XPCONNECT_SHUTDOWN, 53) \
639 D(DOCSHELL, 54) \
640 D(HTML_PARSER, 55) \
641 D(DOM_TESTUTILS, 56) \
643 /* Reasons reserved for embeddings. */ \
644 D(RESERVED1, FIRST_RESERVED_REASON) \
645 D(RESERVED2, 91) \
646 D(RESERVED3, 92) \
647 D(RESERVED4, 93) \
648 D(RESERVED5, 94) \
649 D(RESERVED6, 95) \
650 D(RESERVED7, 96) \
651 D(RESERVED8, 97) \
652 D(RESERVED9, 98)
654 enum class GCReason {
655 FIRST_FIREFOX_REASON = 33,
656 FIRST_RESERVED_REASON = 90,
658 #define MAKE_REASON(name, val) name = val,
659 GCREASONS(MAKE_REASON)
660 #undef MAKE_REASON
661 NO_REASON,
662 NUM_REASONS,
665 * For telemetry, we want to keep a fixed max bucket size over time so we
666 * don't have to switch histograms. 100 is conservative; but the cost of extra
667 * buckets seems to be low while the cost of switching histograms is high.
669 NUM_TELEMETRY_REASONS = 100
673 * Get a statically allocated C string explaining the given GC reason.
675 extern JS_PUBLIC_API const char* ExplainGCReason(JS::GCReason reason);
678 * Return true if the GC reason is internal to the JS engine.
680 extern JS_PUBLIC_API bool InternalGCReason(JS::GCReason reason);
683 * Zone GC:
685 * SpiderMonkey's GC is capable of performing a collection on an arbitrary
686 * subset of the zones in the system. This allows an embedding to minimize
687 * collection time by only collecting zones that have run code recently,
688 * ignoring the parts of the heap that are unlikely to have changed.
690 * When triggering a GC using one of the functions below, it is first necessary
691 * to select the zones to be collected. To do this, you can call
692 * PrepareZoneForGC on each zone, or you can call PrepareForFullGC to select
693 * all zones. Failing to select any zone is an error.
697 * Schedule the given zone to be collected as part of the next GC.
699 extern JS_PUBLIC_API void PrepareZoneForGC(JSContext* cx, Zone* zone);
702 * Schedule all zones to be collected in the next GC.
704 extern JS_PUBLIC_API void PrepareForFullGC(JSContext* cx);
707 * When performing an incremental GC, the zones that were selected for the
708 * previous incremental slice must be selected in subsequent slices as well.
709 * This function selects those slices automatically.
711 extern JS_PUBLIC_API void PrepareForIncrementalGC(JSContext* cx);
714 * Returns true if any zone in the system has been scheduled for GC with one of
715 * the functions above or by the JS engine.
717 extern JS_PUBLIC_API bool IsGCScheduled(JSContext* cx);
720 * Undoes the effect of the Prepare methods above. The given zone will not be
721 * collected in the next GC.
723 extern JS_PUBLIC_API void SkipZoneForGC(JSContext* cx, Zone* zone);
726 * Non-Incremental GC:
728 * The following functions perform a non-incremental GC.
732 * Performs a non-incremental collection of all selected zones.
734 extern JS_PUBLIC_API void NonIncrementalGC(JSContext* cx, JS::GCOptions options,
735 GCReason reason);
738 * Incremental GC:
740 * Incremental GC divides the full mark-and-sweep collection into multiple
741 * slices, allowing client JavaScript code to run between each slice. This
742 * allows interactive apps to avoid long collection pauses. Incremental GC does
743 * not make collection take less time, it merely spreads that time out so that
744 * the pauses are less noticable.
746 * For a collection to be carried out incrementally the following conditions
747 * must be met:
748 * - The collection must be run by calling JS::IncrementalGC() rather than
749 * JS_GC().
750 * - The GC parameter JSGC_INCREMENTAL_GC_ENABLED must be true.
752 * Note: Even if incremental GC is enabled and working correctly,
753 * non-incremental collections can still happen when low on memory.
757 * Begin an incremental collection and perform one slice worth of work. When
758 * this function returns, the collection may not be complete.
759 * IncrementalGCSlice() must be called repeatedly until
760 * !IsIncrementalGCInProgress(cx).
762 * Note: SpiderMonkey's GC is not realtime. Slices in practice may be longer or
763 * shorter than the requested interval.
765 extern JS_PUBLIC_API void StartIncrementalGC(JSContext* cx,
766 JS::GCOptions options,
767 GCReason reason,
768 const js::SliceBudget& budget);
771 * Perform a slice of an ongoing incremental collection. When this function
772 * returns, the collection may not be complete. It must be called repeatedly
773 * until !IsIncrementalGCInProgress(cx).
775 * Note: SpiderMonkey's GC is not realtime. Slices in practice may be longer or
776 * shorter than the requested interval.
778 extern JS_PUBLIC_API void IncrementalGCSlice(JSContext* cx, GCReason reason,
779 const js::SliceBudget& budget);
782 * Return whether an incremental GC has work to do on the foreground thread and
783 * would make progress if a slice was run now. If this returns false then the GC
784 * is waiting for background threads to finish their work and a slice started
785 * now would return immediately.
787 extern JS_PUBLIC_API bool IncrementalGCHasForegroundWork(JSContext* cx);
790 * If IsIncrementalGCInProgress(cx), this call finishes the ongoing collection
791 * by performing an arbitrarily long slice. If !IsIncrementalGCInProgress(cx),
792 * this is equivalent to NonIncrementalGC. When this function returns,
793 * IsIncrementalGCInProgress(cx) will always be false.
795 extern JS_PUBLIC_API void FinishIncrementalGC(JSContext* cx, GCReason reason);
798 * If IsIncrementalGCInProgress(cx), this call aborts the ongoing collection and
799 * performs whatever work needs to be done to return the collector to its idle
800 * state. This may take an arbitrarily long time. When this function returns,
801 * IsIncrementalGCInProgress(cx) will always be false.
803 extern JS_PUBLIC_API void AbortIncrementalGC(JSContext* cx);
805 namespace dbg {
807 // The `JS::dbg::GarbageCollectionEvent` class is essentially a view of the
808 // `js::gcstats::Statistics` data without the uber implementation-specific bits.
809 // It should generally be palatable for web developers.
810 class GarbageCollectionEvent {
811 // The major GC number of the GC cycle this data pertains to.
812 uint64_t majorGCNumber_;
814 // Reference to a non-owned, statically allocated C string. This is a very
815 // short reason explaining why a GC was triggered.
816 const char* reason;
818 // Reference to a nullable, non-owned, statically allocated C string. If the
819 // collection was forced to be non-incremental, this is a short reason of
820 // why the GC could not perform an incremental collection.
821 const char* nonincrementalReason;
823 // Represents a single slice of a possibly multi-slice incremental garbage
824 // collection.
825 struct Collection {
826 mozilla::TimeStamp startTimestamp;
827 mozilla::TimeStamp endTimestamp;
830 // The set of garbage collection slices that made up this GC cycle.
831 mozilla::Vector<Collection> collections;
833 GarbageCollectionEvent(const GarbageCollectionEvent& rhs) = delete;
834 GarbageCollectionEvent& operator=(const GarbageCollectionEvent& rhs) = delete;
836 public:
837 explicit GarbageCollectionEvent(uint64_t majorGCNum)
838 : majorGCNumber_(majorGCNum),
839 reason(nullptr),
840 nonincrementalReason(nullptr),
841 collections() {}
843 using Ptr = js::UniquePtr<GarbageCollectionEvent>;
844 static Ptr Create(JSRuntime* rt, ::js::gcstats::Statistics& stats,
845 uint64_t majorGCNumber);
847 JSObject* toJSObject(JSContext* cx) const;
849 uint64_t majorGCNumber() const { return majorGCNumber_; }
852 } // namespace dbg
854 enum GCProgress {
856 * During GC, the GC is bracketed by GC_CYCLE_BEGIN/END callbacks. Each
857 * slice between those (whether an incremental or the sole non-incremental
858 * slice) is bracketed by GC_SLICE_BEGIN/GC_SLICE_END.
861 GC_CYCLE_BEGIN,
862 GC_SLICE_BEGIN,
863 GC_SLICE_END,
864 GC_CYCLE_END
867 struct JS_PUBLIC_API GCDescription {
868 bool isZone_;
869 bool isComplete_;
870 JS::GCOptions options_;
871 GCReason reason_;
873 GCDescription(bool isZone, bool isComplete, JS::GCOptions options,
874 GCReason reason)
875 : isZone_(isZone),
876 isComplete_(isComplete),
877 options_(options),
878 reason_(reason) {}
880 char16_t* formatSliceMessage(JSContext* cx) const;
881 char16_t* formatSummaryMessage(JSContext* cx) const;
883 mozilla::TimeStamp startTime(JSContext* cx) const;
884 mozilla::TimeStamp endTime(JSContext* cx) const;
885 mozilla::TimeStamp lastSliceStart(JSContext* cx) const;
886 mozilla::TimeStamp lastSliceEnd(JSContext* cx) const;
888 JS::UniqueChars sliceToJSONProfiler(JSContext* cx) const;
889 JS::UniqueChars formatJSONProfiler(JSContext* cx) const;
891 JS::dbg::GarbageCollectionEvent::Ptr toGCEvent(JSContext* cx) const;
894 extern JS_PUBLIC_API UniqueChars MinorGcToJSON(JSContext* cx);
896 typedef void (*GCSliceCallback)(JSContext* cx, GCProgress progress,
897 const GCDescription& desc);
900 * The GC slice callback is called at the beginning and end of each slice. This
901 * callback may be used for GC notifications as well as to perform additional
902 * marking.
904 extern JS_PUBLIC_API GCSliceCallback
905 SetGCSliceCallback(JSContext* cx, GCSliceCallback callback);
908 * Describes the progress of an observed nursery collection.
910 enum class GCNurseryProgress {
912 * The nursery collection is starting.
914 GC_NURSERY_COLLECTION_START,
916 * The nursery collection is ending.
918 GC_NURSERY_COLLECTION_END
922 * A nursery collection callback receives the progress of the nursery collection
923 * and the reason for the collection.
925 using GCNurseryCollectionCallback = void (*)(JSContext* cx,
926 GCNurseryProgress progress,
927 GCReason reason, void* data);
930 * Add and remove nursery collection callbacks for the given runtime. These will
931 * be called at the start and end of every nursery collection.
933 extern JS_PUBLIC_API bool AddGCNurseryCollectionCallback(
934 JSContext* cx, GCNurseryCollectionCallback callback, void* data);
935 extern JS_PUBLIC_API void RemoveGCNurseryCollectionCallback(
936 JSContext* cx, GCNurseryCollectionCallback callback, void* data);
938 typedef void (*DoCycleCollectionCallback)(JSContext* cx);
941 * The purge gray callback is called after any COMPARTMENT_REVIVED GC in which
942 * the majority of compartments have been marked gray.
944 extern JS_PUBLIC_API DoCycleCollectionCallback
945 SetDoCycleCollectionCallback(JSContext* cx, DoCycleCollectionCallback callback);
947 using CreateSliceBudgetCallback = js::SliceBudget (*)(JS::GCReason reason,
948 int64_t millis);
951 * Called when generating a GC slice budget. It allows the embedding to control
952 * the duration of slices and potentially check an interrupt flag as well. For
953 * internally triggered GCs, the given millis parameter is the JS engine's
954 * internal scheduling decision, which the embedding can choose to ignore.
955 * (Otherwise, it will be the value that was passed to eg
956 * JS::IncrementalGCSlice()).
958 extern JS_PUBLIC_API void SetCreateGCSliceBudgetCallback(
959 JSContext* cx, CreateSliceBudgetCallback cb);
962 * Incremental GC defaults to enabled, but may be disabled for testing or in
963 * embeddings that have not yet implemented barriers on their native classes.
964 * There is not currently a way to re-enable incremental GC once it has been
965 * disabled on the runtime.
967 extern JS_PUBLIC_API void DisableIncrementalGC(JSContext* cx);
970 * Returns true if incremental GC is enabled. Simply having incremental GC
971 * enabled is not sufficient to ensure incremental collections are happening.
972 * See the comment "Incremental GC" above for reasons why incremental GC may be
973 * suppressed. Inspection of the "nonincremental reason" field of the
974 * GCDescription returned by GCSliceCallback may help narrow down the cause if
975 * collections are not happening incrementally when expected.
977 extern JS_PUBLIC_API bool IsIncrementalGCEnabled(JSContext* cx);
980 * Returns true while an incremental GC is ongoing, both when actively
981 * collecting and between slices.
983 extern JS_PUBLIC_API bool IsIncrementalGCInProgress(JSContext* cx);
986 * Returns true while an incremental GC is ongoing, both when actively
987 * collecting and between slices.
989 extern JS_PUBLIC_API bool IsIncrementalGCInProgress(JSRuntime* rt);
992 * Returns true if the most recent GC ran incrementally.
994 extern JS_PUBLIC_API bool WasIncrementalGC(JSRuntime* rt);
997 * Generational GC:
1001 * Ensure that generational GC is disabled within some scope.
1003 * This evicts the nursery and discards JIT code so it is not a lightweight
1004 * operation.
1006 class JS_PUBLIC_API AutoDisableGenerationalGC {
1007 JSContext* cx;
1009 public:
1010 explicit AutoDisableGenerationalGC(JSContext* cx);
1011 ~AutoDisableGenerationalGC();
1015 * Returns true if generational allocation and collection is currently enabled
1016 * on the given runtime.
1018 extern JS_PUBLIC_API bool IsGenerationalGCEnabled(JSRuntime* rt);
1021 * Enable or disable support for pretenuring allocations based on their
1022 * allocation site.
1024 extern JS_PUBLIC_API void SetSiteBasedPretenuringEnabled(bool enable);
1027 * Pass a subclass of this "abstract" class to callees to require that they
1028 * never GC. Subclasses can use assertions or the hazard analysis to ensure no
1029 * GC happens.
1031 class JS_PUBLIC_API AutoRequireNoGC {
1032 protected:
1033 AutoRequireNoGC() = default;
1034 ~AutoRequireNoGC() = default;
1038 * Diagnostic assert (see MOZ_DIAGNOSTIC_ASSERT) that GC cannot occur while this
1039 * class is live. This class does not disable the static rooting hazard
1040 * analysis.
1042 * This works by entering a GC unsafe region, which is checked on allocation and
1043 * on GC.
1045 class JS_PUBLIC_API AutoAssertNoGC : public AutoRequireNoGC {
1046 #ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
1047 protected:
1048 JSContext* cx_; // nullptr if inactive.
1050 public:
1051 // Nullptr here means get the context from TLS. It does not mean inactive
1052 // (though cx_ may end up nullptr, and thus inactive, if TLS has not yet been
1053 // initialized.)
1054 explicit AutoAssertNoGC(JSContext* cx = nullptr);
1055 AutoAssertNoGC(AutoAssertNoGC&& other) : cx_(other.cx_) {
1056 other.cx_ = nullptr;
1058 ~AutoAssertNoGC();
1060 void reset();
1061 #else
1062 public:
1063 explicit AutoAssertNoGC(JSContext* cx = nullptr) {}
1064 ~AutoAssertNoGC() {}
1066 void reset() {}
1067 #endif
1071 * Disable the static rooting hazard analysis in the live region and assert in
1072 * debug builds if any allocation that could potentially trigger a GC occurs
1073 * while this guard object is live. This is most useful to help the exact
1074 * rooting hazard analysis in complex regions, since it cannot understand
1075 * dataflow.
1077 * Note: GC behavior is unpredictable even when deterministic and is generally
1078 * non-deterministic in practice. The fact that this guard has not
1079 * asserted is not a guarantee that a GC cannot happen in the guarded
1080 * region. As a rule, anyone performing a GC unsafe action should
1081 * understand the GC properties of all code in that region and ensure
1082 * that the hazard analysis is correct for that code, rather than relying
1083 * on this class.
1085 #ifdef DEBUG
1086 class JS_PUBLIC_API AutoSuppressGCAnalysis : public AutoAssertNoGC {
1087 public:
1088 explicit AutoSuppressGCAnalysis(JSContext* cx = nullptr)
1089 : AutoAssertNoGC(cx) {}
1090 } JS_HAZ_GC_SUPPRESSED;
1091 #else
1092 class JS_PUBLIC_API AutoSuppressGCAnalysis : public AutoRequireNoGC {
1093 public:
1094 explicit AutoSuppressGCAnalysis(JSContext* cx = nullptr) {}
1095 } JS_HAZ_GC_SUPPRESSED;
1096 #endif
1099 * Assert that code is only ever called from a GC callback, disable the static
1100 * rooting hazard analysis and assert if any allocation that could potentially
1101 * trigger a GC occurs while this guard object is live.
1103 * This is useful to make the static analysis ignore code that runs in GC
1104 * callbacks.
1106 class JS_PUBLIC_API AutoAssertGCCallback : public AutoSuppressGCAnalysis {
1107 public:
1108 #ifdef DEBUG
1109 AutoAssertGCCallback();
1110 #else
1111 AutoAssertGCCallback() {}
1112 #endif
1116 * Place AutoCheckCannotGC in scopes that you believe can never GC. These
1117 * annotations will be verified both dynamically via AutoAssertNoGC, and
1118 * statically with the rooting hazard analysis (implemented by making the
1119 * analysis consider AutoCheckCannotGC to be a GC pointer, and therefore
1120 * complain if it is live across a GC call.) It is useful when dealing with
1121 * internal pointers to GC things where the GC thing itself may not be present
1122 * for the static analysis: e.g. acquiring inline chars from a JSString* on the
1123 * heap.
1125 * We only do the assertion checking in DEBUG builds.
1127 #ifdef DEBUG
1128 class JS_PUBLIC_API AutoCheckCannotGC : public AutoAssertNoGC {
1129 public:
1130 explicit AutoCheckCannotGC(JSContext* cx = nullptr) : AutoAssertNoGC(cx) {}
1131 # ifdef MOZ_DIAGNOSTIC_ASSERT_ENABLED
1132 AutoCheckCannotGC(const AutoCheckCannotGC& other)
1133 : AutoCheckCannotGC(other.cx_) {}
1134 # else
1135 AutoCheckCannotGC(const AutoCheckCannotGC& other) : AutoCheckCannotGC() {}
1136 # endif
1137 AutoCheckCannotGC(AutoCheckCannotGC&& other)
1138 : AutoAssertNoGC(std::forward<AutoAssertNoGC>(other)) {}
1139 #else
1140 class JS_PUBLIC_API AutoCheckCannotGC : public AutoRequireNoGC {
1141 public:
1142 explicit AutoCheckCannotGC(JSContext* cx = nullptr) {}
1143 AutoCheckCannotGC(const AutoCheckCannotGC& other) : AutoCheckCannotGC() {}
1144 AutoCheckCannotGC(AutoCheckCannotGC&& other) : AutoCheckCannotGC() {}
1145 void reset() {}
1146 #endif
1147 } JS_HAZ_GC_INVALIDATED JS_HAZ_GC_REF;
1149 extern JS_PUBLIC_API void SetLowMemoryState(JSContext* cx, bool newState);
1152 * Internal to Firefox.
1154 extern JS_PUBLIC_API void NotifyGCRootsRemoved(JSContext* cx);
1156 } /* namespace JS */
1158 typedef void (*JSGCCallback)(JSContext* cx, JSGCStatus status,
1159 JS::GCReason reason, void* data);
1162 * Register externally maintained GC roots.
1164 * traceOp: the trace operation. For each root the implementation should call
1165 * JS::TraceEdge whenever the root contains a traceable thing.
1166 * data: the data argument to pass to each invocation of traceOp.
1168 extern JS_PUBLIC_API bool JS_AddExtraGCRootsTracer(JSContext* cx,
1169 JSTraceDataOp traceOp,
1170 void* data);
1172 /** Undo a call to JS_AddExtraGCRootsTracer. */
1173 extern JS_PUBLIC_API void JS_RemoveExtraGCRootsTracer(JSContext* cx,
1174 JSTraceDataOp traceOp,
1175 void* data);
1177 extern JS_PUBLIC_API void JS_GC(JSContext* cx,
1178 JS::GCReason reason = JS::GCReason::API);
1180 extern JS_PUBLIC_API void JS_MaybeGC(JSContext* cx);
1182 extern JS_PUBLIC_API void JS_SetGCCallback(JSContext* cx, JSGCCallback cb,
1183 void* data);
1185 extern JS_PUBLIC_API void JS_SetObjectsTenuredCallback(
1186 JSContext* cx, JSObjectsTenuredCallback cb, void* data);
1188 extern JS_PUBLIC_API bool JS_AddFinalizeCallback(JSContext* cx,
1189 JSFinalizeCallback cb,
1190 void* data);
1192 extern JS_PUBLIC_API void JS_RemoveFinalizeCallback(JSContext* cx,
1193 JSFinalizeCallback cb);
1196 * Weak pointers and garbage collection
1198 * Weak pointers are by their nature not marked as part of garbage collection,
1199 * but they may need to be updated in two cases after a GC:
1201 * 1) Their referent was found not to be live and is about to be finalized
1202 * 2) Their referent has been moved by a compacting GC
1204 * To handle this, any part of the system that maintain weak pointers to
1205 * JavaScript GC things must register a callback with
1206 * JS_(Add,Remove)WeakPointer{ZoneGroup,Compartment}Callback(). This callback
1207 * must then call JS_UpdateWeakPointerAfterGC() on all weak pointers it knows
1208 * about.
1210 * Since sweeping is incremental, we have several callbacks to avoid repeatedly
1211 * having to visit all embedder structures. The WeakPointerZonesCallback is
1212 * called once for each strongly connected group of zones, whereas the
1213 * WeakPointerCompartmentCallback is called once for each compartment that is
1214 * visited while sweeping. Structures that cannot contain references in more
1215 * than one compartment should sweep the relevant per-compartment structures
1216 * using the latter callback to minimizer per-slice overhead.
1218 * The argument to JS_UpdateWeakPointerAfterGC() is an in-out param. If the
1219 * referent is about to be finalized the pointer will be set to null. If the
1220 * referent has been moved then the pointer will be updated to point to the new
1221 * location.
1223 * The return value of JS_UpdateWeakPointerAfterGC() indicates whether the
1224 * referent is still alive. If the referent is is about to be finalized, this
1225 * will return false.
1227 * Callers of this method are responsible for updating any state that is
1228 * dependent on the object's address. For example, if the object's address is
1229 * used as a key in a hashtable, then the object must be removed and
1230 * re-inserted with the correct hash.
1233 extern JS_PUBLIC_API bool JS_AddWeakPointerZonesCallback(
1234 JSContext* cx, JSWeakPointerZonesCallback cb, void* data);
1236 extern JS_PUBLIC_API void JS_RemoveWeakPointerZonesCallback(
1237 JSContext* cx, JSWeakPointerZonesCallback cb);
1239 extern JS_PUBLIC_API bool JS_AddWeakPointerCompartmentCallback(
1240 JSContext* cx, JSWeakPointerCompartmentCallback cb, void* data);
1242 extern JS_PUBLIC_API void JS_RemoveWeakPointerCompartmentCallback(
1243 JSContext* cx, JSWeakPointerCompartmentCallback cb);
1245 namespace JS {
1246 template <typename T>
1247 class Heap;
1250 extern JS_PUBLIC_API bool JS_UpdateWeakPointerAfterGC(
1251 JSTracer* trc, JS::Heap<JSObject*>* objp);
1253 extern JS_PUBLIC_API bool JS_UpdateWeakPointerAfterGCUnbarriered(
1254 JSTracer* trc, JSObject** objp);
1256 extern JS_PUBLIC_API void JS_SetGCParameter(JSContext* cx, JSGCParamKey key,
1257 uint32_t value);
1259 extern JS_PUBLIC_API void JS_ResetGCParameter(JSContext* cx, JSGCParamKey key);
1261 extern JS_PUBLIC_API uint32_t JS_GetGCParameter(JSContext* cx,
1262 JSGCParamKey key);
1264 extern JS_PUBLIC_API void JS_SetGCParametersBasedOnAvailableMemory(
1265 JSContext* cx, uint32_t availMemMB);
1268 * Create a new JSString whose chars member refers to external memory, i.e.,
1269 * memory requiring application-specific finalization.
1271 extern JS_PUBLIC_API JSString* JS_NewExternalString(
1272 JSContext* cx, const char16_t* chars, size_t length,
1273 const JSExternalStringCallbacks* callbacks);
1276 * Create a new JSString whose chars member may refer to external memory.
1277 * If a new external string is allocated, |*allocatedExternal| is set to true.
1278 * Otherwise the returned string is either not an external string or an
1279 * external string allocated by a previous call and |*allocatedExternal| is set
1280 * to false. If |*allocatedExternal| is false, |fin| won't be called.
1282 extern JS_PUBLIC_API JSString* JS_NewMaybeExternalString(
1283 JSContext* cx, const char16_t* chars, size_t length,
1284 const JSExternalStringCallbacks* callbacks, bool* allocatedExternal);
1287 * Return the 'callbacks' arg passed to JS_NewExternalString or
1288 * JS_NewMaybeExternalString.
1290 extern JS_PUBLIC_API const JSExternalStringCallbacks*
1291 JS_GetExternalStringCallbacks(JSString* str);
1293 namespace JS {
1295 extern JS_PUBLIC_API GCReason WantEagerMinorGC(JSRuntime* rt);
1297 extern JS_PUBLIC_API GCReason WantEagerMajorGC(JSRuntime* rt);
1299 extern JS_PUBLIC_API void MaybeRunNurseryCollection(JSRuntime* rt,
1300 JS::GCReason reason);
1302 extern JS_PUBLIC_API void SetHostCleanupFinalizationRegistryCallback(
1303 JSContext* cx, JSHostCleanupFinalizationRegistryCallback cb, void* data);
1306 * Clear kept alive objects in JS WeakRef.
1307 * https://tc39.es/proposal-weakrefs/#sec-clear-kept-objects
1309 extern JS_PUBLIC_API void ClearKeptObjects(JSContext* cx);
1311 inline JS_PUBLIC_API bool NeedGrayRootsForZone(Zone* zoneArg) {
1312 shadow::Zone* zone = shadow::Zone::from(zoneArg);
1313 return zone->isGCMarkingBlackAndGray() || zone->isGCCompacting();
1316 extern JS_PUBLIC_API bool AtomsZoneIsCollecting(JSRuntime* runtime);
1317 extern JS_PUBLIC_API bool IsAtomsZone(Zone* zone);
1319 } // namespace JS
1321 namespace js {
1322 namespace gc {
1325 * Create an object providing access to the garbage collector's internal notion
1326 * of the current state of memory (both GC heap memory and GCthing-controlled
1327 * malloc memory.
1329 extern JS_PUBLIC_API JSObject* NewMemoryInfoObject(JSContext* cx);
1332 * Run the finalizer of a nursery-allocated JSObject that is known to be dead.
1334 * This is a dangerous operation - only use this if you know what you're doing!
1336 * This is used by the browser to implement nursery-allocated wrapper cached
1337 * wrappers.
1339 extern JS_PUBLIC_API void FinalizeDeadNurseryObject(JSContext* cx,
1340 JSObject* obj);
1342 } /* namespace gc */
1343 } /* namespace js */
1345 #ifdef JS_GC_ZEAL
1347 # define JS_DEFAULT_ZEAL_FREQ 100
1349 extern JS_PUBLIC_API void JS_GetGCZealBits(JSContext* cx, uint32_t* zealBits,
1350 uint32_t* frequency,
1351 uint32_t* nextScheduled);
1353 extern JS_PUBLIC_API void JS_SetGCZeal(JSContext* cx, uint8_t zeal,
1354 uint32_t frequency);
1356 extern JS_PUBLIC_API void JS_UnsetGCZeal(JSContext* cx, uint8_t zeal);
1358 extern JS_PUBLIC_API void JS_ScheduleGC(JSContext* cx, uint32_t count);
1360 #endif
1362 #endif /* js_GCAPI_h */