Bug 1755973 - Try implied arr+[0] in GetUniformIndices. r=gfx-reviewers,bradwerth
[gecko.git] / mfbt / lz4 / xxhash.h
blob7635f79e49f02d97f460e903a1c23972a91570d6
1 /*
2 * xxHash - Extremely Fast Hash algorithm
3 * Header File
4 * Copyright (C) 2012-2020 Yann Collet
6 * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are
10 * met:
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following disclaimer
16 * in the documentation and/or other materials provided with the
17 * distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You can contact the author at:
32 * - xxHash homepage: https://www.xxhash.com
33 * - xxHash source repository: https://github.com/Cyan4973/xxHash
35 /*!
36 * @mainpage xxHash
38 * @file xxhash.h
39 * xxHash prototypes and implementation
41 /* TODO: update */
42 /* Notice extracted from xxHash homepage:
44 xxHash is an extremely fast hash algorithm, running at RAM speed limits.
45 It also successfully passes all tests from the SMHasher suite.
47 Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
49 Name Speed Q.Score Author
50 xxHash 5.4 GB/s 10
51 CrapWow 3.2 GB/s 2 Andrew
52 MurmurHash 3a 2.7 GB/s 10 Austin Appleby
53 SpookyHash 2.0 GB/s 10 Bob Jenkins
54 SBox 1.4 GB/s 9 Bret Mulvey
55 Lookup3 1.2 GB/s 9 Bob Jenkins
56 SuperFastHash 1.2 GB/s 1 Paul Hsieh
57 CityHash64 1.05 GB/s 10 Pike & Alakuijala
58 FNV 0.55 GB/s 5 Fowler, Noll, Vo
59 CRC32 0.43 GB/s 9
60 MD5-32 0.33 GB/s 10 Ronald L. Rivest
61 SHA1-32 0.28 GB/s 10
63 Q.Score is a measure of quality of the hash function.
64 It depends on successfully passing SMHasher test set.
65 10 is a perfect score.
67 Note: SMHasher's CRC32 implementation is not the fastest one.
68 Other speed-oriented implementations can be faster,
69 especially in combination with PCLMUL instruction:
70 https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
72 A 64-bit version, named XXH64, is available since r35.
73 It offers much better speed, but for 64-bit applications only.
74 Name Speed on 64 bits Speed on 32 bits
75 XXH64 13.8 GB/s 1.9 GB/s
76 XXH32 6.8 GB/s 6.0 GB/s
79 #if defined (__cplusplus)
80 extern "C" {
81 #endif
83 /* ****************************
84 * INLINE mode
85 ******************************/
86 /*!
87 * XXH_INLINE_ALL (and XXH_PRIVATE_API)
88 * Use these build macros to inline xxhash into the target unit.
89 * Inlining improves performance on small inputs, especially when the length is
90 * expressed as a compile-time constant:
92 * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
94 * It also keeps xxHash symbols private to the unit, so they are not exported.
96 * Usage:
97 * #define XXH_INLINE_ALL
98 * #include "xxhash.h"
100 * Do not compile and link xxhash.o as a separate object, as it is not useful.
102 #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
103 && !defined(XXH_INLINE_ALL_31684351384)
104 /* this section should be traversed only once */
105 # define XXH_INLINE_ALL_31684351384
106 /* give access to the advanced API, required to compile implementations */
107 # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
108 # define XXH_STATIC_LINKING_ONLY
109 /* make all functions private */
110 # undef XXH_PUBLIC_API
111 # if defined(__GNUC__)
112 # define XXH_PUBLIC_API static __inline __attribute__((unused))
113 # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
114 # define XXH_PUBLIC_API static inline
115 # elif defined(_MSC_VER)
116 # define XXH_PUBLIC_API static __inline
117 # else
118 /* note: this version may generate warnings for unused static functions */
119 # define XXH_PUBLIC_API static
120 # endif
123 * This part deals with the special case where a unit wants to inline xxHash,
124 * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
125 * such as part of some previously included *.h header file.
126 * Without further action, the new include would just be ignored,
127 * and functions would effectively _not_ be inlined (silent failure).
128 * The following macros solve this situation by prefixing all inlined names,
129 * avoiding naming collision with previous inclusions.
131 /* Before that, we unconditionally #undef all symbols,
132 * in case they were already defined with XXH_NAMESPACE.
133 * They will then be redefined for XXH_INLINE_ALL
135 # undef XXH_versionNumber
136 /* XXH32 */
137 # undef XXH32
138 # undef XXH32_createState
139 # undef XXH32_freeState
140 # undef XXH32_reset
141 # undef XXH32_update
142 # undef XXH32_digest
143 # undef XXH32_copyState
144 # undef XXH32_canonicalFromHash
145 # undef XXH32_hashFromCanonical
146 /* XXH64 */
147 # undef XXH64
148 # undef XXH64_createState
149 # undef XXH64_freeState
150 # undef XXH64_reset
151 # undef XXH64_update
152 # undef XXH64_digest
153 # undef XXH64_copyState
154 # undef XXH64_canonicalFromHash
155 # undef XXH64_hashFromCanonical
156 /* XXH3_64bits */
157 # undef XXH3_64bits
158 # undef XXH3_64bits_withSecret
159 # undef XXH3_64bits_withSeed
160 # undef XXH3_64bits_withSecretandSeed
161 # undef XXH3_createState
162 # undef XXH3_freeState
163 # undef XXH3_copyState
164 # undef XXH3_64bits_reset
165 # undef XXH3_64bits_reset_withSeed
166 # undef XXH3_64bits_reset_withSecret
167 # undef XXH3_64bits_update
168 # undef XXH3_64bits_digest
169 # undef XXH3_generateSecret
170 /* XXH3_128bits */
171 # undef XXH128
172 # undef XXH3_128bits
173 # undef XXH3_128bits_withSeed
174 # undef XXH3_128bits_withSecret
175 # undef XXH3_128bits_reset
176 # undef XXH3_128bits_reset_withSeed
177 # undef XXH3_128bits_reset_withSecret
178 # undef XXH3_128bits_reset_withSecretandSeed
179 # undef XXH3_128bits_update
180 # undef XXH3_128bits_digest
181 # undef XXH128_isEqual
182 # undef XXH128_cmp
183 # undef XXH128_canonicalFromHash
184 # undef XXH128_hashFromCanonical
185 /* Finally, free the namespace itself */
186 # undef XXH_NAMESPACE
188 /* employ the namespace for XXH_INLINE_ALL */
189 # define XXH_NAMESPACE XXH_INLINE_
191 * Some identifiers (enums, type names) are not symbols,
192 * but they must nonetheless be renamed to avoid redeclaration.
193 * Alternative solution: do not redeclare them.
194 * However, this requires some #ifdefs, and has a more dispersed impact.
195 * Meanwhile, renaming can be achieved in a single place.
197 # define XXH_IPREF(Id) XXH_NAMESPACE ## Id
198 # define XXH_OK XXH_IPREF(XXH_OK)
199 # define XXH_ERROR XXH_IPREF(XXH_ERROR)
200 # define XXH_errorcode XXH_IPREF(XXH_errorcode)
201 # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
202 # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
203 # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
204 # define XXH32_state_s XXH_IPREF(XXH32_state_s)
205 # define XXH32_state_t XXH_IPREF(XXH32_state_t)
206 # define XXH64_state_s XXH_IPREF(XXH64_state_s)
207 # define XXH64_state_t XXH_IPREF(XXH64_state_t)
208 # define XXH3_state_s XXH_IPREF(XXH3_state_s)
209 # define XXH3_state_t XXH_IPREF(XXH3_state_t)
210 # define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
211 /* Ensure the header is parsed again, even if it was previously included */
212 # undef XXHASH_H_5627135585666179
213 # undef XXHASH_H_STATIC_13879238742
214 #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
218 /* ****************************************************************
219 * Stable API
220 *****************************************************************/
221 #ifndef XXHASH_H_5627135585666179
222 #define XXHASH_H_5627135585666179 1
226 * @defgroup public Public API
227 * Contains details on the public xxHash functions.
228 * @{
230 /* specific declaration modes for Windows */
231 #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
232 # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
233 # ifdef XXH_EXPORT
234 # define XXH_PUBLIC_API __declspec(dllexport)
235 # elif XXH_IMPORT
236 # define XXH_PUBLIC_API __declspec(dllimport)
237 # endif
238 # else
239 # define XXH_PUBLIC_API /* do nothing */
240 # endif
241 #endif
243 #ifdef XXH_DOXYGEN
245 * @brief Emulate a namespace by transparently prefixing all symbols.
247 * If you want to include _and expose_ xxHash functions from within your own
248 * library, but also want to avoid symbol collisions with other libraries which
249 * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
250 * any public symbol from xxhash library with the value of XXH_NAMESPACE
251 * (therefore, avoid empty or numeric values).
253 * Note that no change is required within the calling program as long as it
254 * includes `xxhash.h`: Regular symbol names will be automatically translated
255 * by this header.
257 # define XXH_NAMESPACE /* YOUR NAME HERE */
258 # undef XXH_NAMESPACE
259 #endif
261 #ifdef XXH_NAMESPACE
262 # define XXH_CAT(A,B) A##B
263 # define XXH_NAME2(A,B) XXH_CAT(A,B)
264 # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
265 /* XXH32 */
266 # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
267 # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
268 # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
269 # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
270 # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
271 # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
272 # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
273 # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
274 # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
275 /* XXH64 */
276 # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
277 # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
278 # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
279 # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
280 # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
281 # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
282 # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
283 # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
284 # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
285 /* XXH3_64bits */
286 # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
287 # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
288 # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
289 # define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
290 # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
291 # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
292 # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
293 # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
294 # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
295 # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
296 # define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
297 # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
298 # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
299 # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
300 # define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
301 /* XXH3_128bits */
302 # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
303 # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
304 # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
305 # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
306 # define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
307 # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
308 # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
309 # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
310 # define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
311 # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
312 # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
313 # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
314 # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
315 # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
316 # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
317 #endif
320 /* *************************************
321 * Version
322 ***************************************/
323 #define XXH_VERSION_MAJOR 0
324 #define XXH_VERSION_MINOR 8
325 #define XXH_VERSION_RELEASE 1
326 #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
329 * @brief Obtains the xxHash version.
331 * This is mostly useful when xxHash is compiled as a shared library,
332 * since the returned value comes from the library, as opposed to header file.
334 * @return `XXH_VERSION_NUMBER` of the invoked library.
336 XXH_PUBLIC_API unsigned XXH_versionNumber (void);
339 /* ****************************
340 * Common basic types
341 ******************************/
342 #include <stddef.h> /* size_t */
343 typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
346 /*-**********************************************************************
347 * 32-bit hash
348 ************************************************************************/
349 #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
351 * @brief An unsigned 32-bit integer.
353 * Not necessarily defined to `uint32_t` but functionally equivalent.
355 typedef uint32_t XXH32_hash_t;
357 #elif !defined (__VMS) \
358 && (defined (__cplusplus) \
359 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
360 # include <stdint.h>
361 typedef uint32_t XXH32_hash_t;
363 #else
364 # include <limits.h>
365 # if UINT_MAX == 0xFFFFFFFFUL
366 typedef unsigned int XXH32_hash_t;
367 # else
368 # if ULONG_MAX == 0xFFFFFFFFUL
369 typedef unsigned long XXH32_hash_t;
370 # else
371 # error "unsupported platform: need a 32-bit type"
372 # endif
373 # endif
374 #endif
377 * @}
379 * @defgroup xxh32_family XXH32 family
380 * @ingroup public
381 * Contains functions used in the classic 32-bit xxHash algorithm.
383 * @note
384 * XXH32 is useful for older platforms, with no or poor 64-bit performance.
385 * Note that @ref xxh3_family provides competitive speed
386 * for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results.
388 * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
389 * @see @ref xxh32_impl for implementation details
390 * @{
394 * @brief Calculates the 32-bit hash of @p input using xxHash32.
396 * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
398 * @param input The block of data to be hashed, at least @p length bytes in size.
399 * @param length The length of @p input, in bytes.
400 * @param seed The 32-bit seed to alter the hash's output predictably.
402 * @pre
403 * The memory between @p input and @p input + @p length must be valid,
404 * readable, contiguous memory. However, if @p length is `0`, @p input may be
405 * `NULL`. In C++, this also must be *TriviallyCopyable*.
407 * @return The calculated 32-bit hash value.
409 * @see
410 * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
411 * Direct equivalents for the other variants of xxHash.
412 * @see
413 * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
415 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
418 * Streaming functions generate the xxHash value from an incremental input.
419 * This method is slower than single-call functions, due to state management.
420 * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
422 * An XXH state must first be allocated using `XXH*_createState()`.
424 * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
426 * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
428 * The function returns an error code, with 0 meaning OK, and any other value
429 * meaning there is an error.
431 * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
432 * This function returns the nn-bits hash as an int or long long.
434 * It's still possible to continue inserting input into the hash state after a
435 * digest, and generate new hash values later on by invoking `XXH*_digest()`.
437 * When done, release the state using `XXH*_freeState()`.
439 * Example code for incrementally hashing a file:
440 * @code{.c}
441 * #include <stdio.h>
442 * #include <xxhash.h>
443 * #define BUFFER_SIZE 256
445 * // Note: XXH64 and XXH3 use the same interface.
446 * XXH32_hash_t
447 * hashFile(FILE* stream)
449 * XXH32_state_t* state;
450 * unsigned char buf[BUFFER_SIZE];
451 * size_t amt;
452 * XXH32_hash_t hash;
454 * state = XXH32_createState(); // Create a state
455 * assert(state != NULL); // Error check here
456 * XXH32_reset(state, 0xbaad5eed); // Reset state with our seed
457 * while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
458 * XXH32_update(state, buf, amt); // Hash the file in chunks
460 * hash = XXH32_digest(state); // Finalize the hash
461 * XXH32_freeState(state); // Clean up
462 * return hash;
464 * @endcode
468 * @typedef struct XXH32_state_s XXH32_state_t
469 * @brief The opaque state struct for the XXH32 streaming API.
471 * @see XXH32_state_s for details.
473 typedef struct XXH32_state_s XXH32_state_t;
476 * @brief Allocates an @ref XXH32_state_t.
478 * Must be freed with XXH32_freeState().
479 * @return An allocated XXH32_state_t on success, `NULL` on failure.
481 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
483 * @brief Frees an @ref XXH32_state_t.
485 * Must be allocated with XXH32_createState().
486 * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
487 * @return XXH_OK.
489 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
491 * @brief Copies one @ref XXH32_state_t to another.
493 * @param dst_state The state to copy to.
494 * @param src_state The state to copy from.
495 * @pre
496 * @p dst_state and @p src_state must not be `NULL` and must not overlap.
498 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
501 * @brief Resets an @ref XXH32_state_t to begin a new hash.
503 * This function resets and seeds a state. Call it before @ref XXH32_update().
505 * @param statePtr The state struct to reset.
506 * @param seed The 32-bit seed to alter the hash result predictably.
508 * @pre
509 * @p statePtr must not be `NULL`.
511 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
513 XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
516 * @brief Consumes a block of @p input to an @ref XXH32_state_t.
518 * Call this to incrementally consume blocks of data.
520 * @param statePtr The state struct to update.
521 * @param input The block of data to be hashed, at least @p length bytes in size.
522 * @param length The length of @p input, in bytes.
524 * @pre
525 * @p statePtr must not be `NULL`.
526 * @pre
527 * The memory between @p input and @p input + @p length must be valid,
528 * readable, contiguous memory. However, if @p length is `0`, @p input may be
529 * `NULL`. In C++, this also must be *TriviallyCopyable*.
531 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
533 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
536 * @brief Returns the calculated hash value from an @ref XXH32_state_t.
538 * @note
539 * Calling XXH32_digest() will not affect @p statePtr, so you can update,
540 * digest, and update again.
542 * @param statePtr The state struct to calculate the hash from.
544 * @pre
545 * @p statePtr must not be `NULL`.
547 * @return The calculated xxHash32 value from that state.
549 XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
551 /******* Canonical representation *******/
554 * The default return values from XXH functions are unsigned 32 and 64 bit
555 * integers.
556 * This the simplest and fastest format for further post-processing.
558 * However, this leaves open the question of what is the order on the byte level,
559 * since little and big endian conventions will store the same number differently.
561 * The canonical representation settles this issue by mandating big-endian
562 * convention, the same convention as human-readable numbers (large digits first).
564 * When writing hash values to storage, sending them over a network, or printing
565 * them, it's highly recommended to use the canonical representation to ensure
566 * portability across a wider range of systems, present and future.
568 * The following functions allow transformation of hash values to and from
569 * canonical format.
573 * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
575 typedef struct {
576 unsigned char digest[4]; /*!< Hash bytes, big endian */
577 } XXH32_canonical_t;
580 * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
582 * @param dst The @ref XXH32_canonical_t pointer to be stored to.
583 * @param hash The @ref XXH32_hash_t to be converted.
585 * @pre
586 * @p dst must not be `NULL`.
588 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
591 * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
593 * @param src The @ref XXH32_canonical_t to convert.
595 * @pre
596 * @p src must not be `NULL`.
598 * @return The converted hash.
600 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
603 #ifdef __has_attribute
604 # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
605 #else
606 # define XXH_HAS_ATTRIBUTE(x) 0
607 #endif
609 /* C-language Attributes are added in C23. */
610 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
611 # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
612 #else
613 # define XXH_HAS_C_ATTRIBUTE(x) 0
614 #endif
616 #if defined(__cplusplus) && defined(__has_cpp_attribute)
617 # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
618 #else
619 # define XXH_HAS_CPP_ATTRIBUTE(x) 0
620 #endif
623 Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
624 introduced in CPP17 and C23.
625 CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
626 C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
628 #if XXH_HAS_C_ATTRIBUTE(x)
629 # define XXH_FALLTHROUGH [[fallthrough]]
630 #elif XXH_HAS_CPP_ATTRIBUTE(x)
631 # define XXH_FALLTHROUGH [[fallthrough]]
632 #elif XXH_HAS_ATTRIBUTE(__fallthrough__)
633 # define XXH_FALLTHROUGH __attribute__ ((fallthrough))
634 #else
635 # define XXH_FALLTHROUGH
636 #endif
639 * @}
640 * @ingroup public
641 * @{
644 #ifndef XXH_NO_LONG_LONG
645 /*-**********************************************************************
646 * 64-bit hash
647 ************************************************************************/
648 #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
650 * @brief An unsigned 64-bit integer.
652 * Not necessarily defined to `uint64_t` but functionally equivalent.
654 typedef uint64_t XXH64_hash_t;
655 #elif !defined (__VMS) \
656 && (defined (__cplusplus) \
657 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
658 # include <stdint.h>
659 typedef uint64_t XXH64_hash_t;
660 #else
661 # include <limits.h>
662 # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
663 /* LP64 ABI says uint64_t is unsigned long */
664 typedef unsigned long XXH64_hash_t;
665 # else
666 /* the following type must have a width of 64-bit */
667 typedef unsigned long long XXH64_hash_t;
668 # endif
669 #endif
672 * @}
674 * @defgroup xxh64_family XXH64 family
675 * @ingroup public
676 * @{
677 * Contains functions used in the classic 64-bit xxHash algorithm.
679 * @note
680 * XXH3 provides competitive speed for both 32-bit and 64-bit systems,
681 * and offers true 64/128 bit hash results.
682 * It provides better speed for systems with vector processing capabilities.
687 * @brief Calculates the 64-bit hash of @p input using xxHash64.
689 * This function usually runs faster on 64-bit systems, but slower on 32-bit
690 * systems (see benchmark).
692 * @param input The block of data to be hashed, at least @p length bytes in size.
693 * @param length The length of @p input, in bytes.
694 * @param seed The 64-bit seed to alter the hash's output predictably.
696 * @pre
697 * The memory between @p input and @p input + @p length must be valid,
698 * readable, contiguous memory. However, if @p length is `0`, @p input may be
699 * `NULL`. In C++, this also must be *TriviallyCopyable*.
701 * @return The calculated 64-bit hash.
703 * @see
704 * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
705 * Direct equivalents for the other variants of xxHash.
706 * @see
707 * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
709 XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
711 /******* Streaming *******/
713 * @brief The opaque state struct for the XXH64 streaming API.
715 * @see XXH64_state_s for details.
717 typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
718 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
719 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
720 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
722 XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
723 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
724 XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
726 /******* Canonical representation *******/
727 typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
728 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
729 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
732 * @}
733 * ************************************************************************
734 * @defgroup xxh3_family XXH3 family
735 * @ingroup public
736 * @{
738 * XXH3 is a more recent hash algorithm featuring:
739 * - Improved speed for both small and large inputs
740 * - True 64-bit and 128-bit outputs
741 * - SIMD acceleration
742 * - Improved 32-bit viability
744 * Speed analysis methodology is explained here:
746 * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
748 * Compared to XXH64, expect XXH3 to run approximately
749 * ~2x faster on large inputs and >3x faster on small ones,
750 * exact differences vary depending on platform.
752 * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
753 * but does not require it.
754 * Any 32-bit and 64-bit targets that can run XXH32 smoothly
755 * can run XXH3 at competitive speeds, even without vector support.
756 * Further details are explained in the implementation.
758 * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
759 * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
761 * XXH3 implementation is portable:
762 * it has a generic C90 formulation that can be compiled on any platform,
763 * all implementations generage exactly the same hash value on all platforms.
764 * Starting from v0.8.0, it's also labelled "stable", meaning that
765 * any future version will also generate the same hash value.
767 * XXH3 offers 2 variants, _64bits and _128bits.
769 * When only 64 bits are needed, prefer invoking the _64bits variant, as it
770 * reduces the amount of mixing, resulting in faster speed on small inputs.
771 * It's also generally simpler to manipulate a scalar return type than a struct.
773 * The API supports one-shot hashing, streaming mode, and custom secrets.
776 /*-**********************************************************************
777 * XXH3 64-bit variant
778 ************************************************************************/
780 /* XXH3_64bits():
781 * default 64-bit variant, using default secret and default seed of 0.
782 * It's the fastest variant. */
783 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
786 * XXH3_64bits_withSeed():
787 * This variant generates a custom secret on the fly
788 * based on default secret altered using the `seed` value.
789 * While this operation is decently fast, note that it's not completely free.
790 * Note: seed==0 produces the same results as XXH3_64bits().
792 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
795 * The bare minimum size for a custom secret.
797 * @see
798 * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
799 * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
801 #define XXH3_SECRET_SIZE_MIN 136
804 * XXH3_64bits_withSecret():
805 * It's possible to provide any blob of bytes as a "secret" to generate the hash.
806 * This makes it more difficult for an external actor to prepare an intentional collision.
807 * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
808 * However, the quality of the secret impacts the dispersion of the hash algorithm.
809 * Therefore, the secret _must_ look like a bunch of random bytes.
810 * Avoid "trivial" or structured data such as repeated sequences or a text document.
811 * Whenever in doubt about the "randomness" of the blob of bytes,
812 * consider employing "XXH3_generateSecret()" instead (see below).
813 * It will generate a proper high entropy secret derived from the blob of bytes.
814 * Another advantage of using XXH3_generateSecret() is that
815 * it guarantees that all bits within the initial blob of bytes
816 * will impact every bit of the output.
817 * This is not necessarily the case when using the blob of bytes directly
818 * because, when hashing _small_ inputs, only a portion of the secret is employed.
820 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
823 /******* Streaming *******/
825 * Streaming requires state maintenance.
826 * This operation costs memory and CPU.
827 * As a consequence, streaming is slower than one-shot hashing.
828 * For better performance, prefer one-shot functions whenever applicable.
832 * @brief The state struct for the XXH3 streaming API.
834 * @see XXH3_state_s for details.
836 typedef struct XXH3_state_s XXH3_state_t;
837 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
838 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
839 XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
842 * XXH3_64bits_reset():
843 * Initialize with default parameters.
844 * digest will be equivalent to `XXH3_64bits()`.
846 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
848 * XXH3_64bits_reset_withSeed():
849 * Generate a custom secret from `seed`, and store it into `statePtr`.
850 * digest will be equivalent to `XXH3_64bits_withSeed()`.
852 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
854 * XXH3_64bits_reset_withSecret():
855 * `secret` is referenced, it _must outlive_ the hash streaming session.
856 * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
857 * and the quality of produced hash values depends on secret's entropy
858 * (secret's content should look like a bunch of random bytes).
859 * When in doubt about the randomness of a candidate `secret`,
860 * consider employing `XXH3_generateSecret()` instead (see below).
862 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
864 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
865 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
867 /* note : canonical representation of XXH3 is the same as XXH64
868 * since they both produce XXH64_hash_t values */
871 /*-**********************************************************************
872 * XXH3 128-bit variant
873 ************************************************************************/
876 * @brief The return value from 128-bit hashes.
878 * Stored in little endian order, although the fields themselves are in native
879 * endianness.
881 typedef struct {
882 XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
883 XXH64_hash_t high64; /*!< `value >> 64` */
884 } XXH128_hash_t;
886 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
887 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
888 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
890 /******* Streaming *******/
892 * Streaming requires state maintenance.
893 * This operation costs memory and CPU.
894 * As a consequence, streaming is slower than one-shot hashing.
895 * For better performance, prefer one-shot functions whenever applicable.
897 * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
898 * Use already declared XXH3_createState() and XXH3_freeState().
900 * All reset and streaming functions have same meaning as their 64-bit counterpart.
903 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
904 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
905 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
907 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
908 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
910 /* Following helper functions make it possible to compare XXH128_hast_t values.
911 * Since XXH128_hash_t is a structure, this capability is not offered by the language.
912 * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
915 * XXH128_isEqual():
916 * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
918 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
921 * XXH128_cmp():
923 * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
925 * return: >0 if *h128_1 > *h128_2
926 * =0 if *h128_1 == *h128_2
927 * <0 if *h128_1 < *h128_2
929 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
932 /******* Canonical representation *******/
933 typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
934 XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
935 XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
938 #endif /* XXH_NO_LONG_LONG */
941 * @}
943 #endif /* XXHASH_H_5627135585666179 */
947 #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
948 #define XXHASH_H_STATIC_13879238742
949 /* ****************************************************************************
950 * This section contains declarations which are not guaranteed to remain stable.
951 * They may change in future versions, becoming incompatible with a different
952 * version of the library.
953 * These declarations should only be used with static linking.
954 * Never use them in association with dynamic linking!
955 ***************************************************************************** */
958 * These definitions are only present to allow static allocation
959 * of XXH states, on stack or in a struct, for example.
960 * Never **ever** access their members directly.
964 * @internal
965 * @brief Structure for XXH32 streaming API.
967 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
968 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
969 * an opaque type. This allows fields to safely be changed.
971 * Typedef'd to @ref XXH32_state_t.
972 * Do not access the members of this struct directly.
973 * @see XXH64_state_s, XXH3_state_s
975 struct XXH32_state_s {
976 XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
977 XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
978 XXH32_hash_t v[4]; /*!< Accumulator lanes */
979 XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
980 XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */
981 XXH32_hash_t reserved; /*!< Reserved field. Do not read or write to it, it may be removed. */
982 }; /* typedef'd to XXH32_state_t */
985 #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
988 * @internal
989 * @brief Structure for XXH64 streaming API.
991 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
992 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
993 * an opaque type. This allows fields to safely be changed.
995 * Typedef'd to @ref XXH64_state_t.
996 * Do not access the members of this struct directly.
997 * @see XXH32_state_s, XXH3_state_s
999 struct XXH64_state_s {
1000 XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
1001 XXH64_hash_t v[4]; /*!< Accumulator lanes */
1002 XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
1003 XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */
1004 XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
1005 XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it, it may be removed. */
1006 }; /* typedef'd to XXH64_state_t */
1008 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
1009 # include <stdalign.h>
1010 # define XXH_ALIGN(n) alignas(n)
1011 #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
1012 /* In C++ alignas() is a keyword */
1013 # define XXH_ALIGN(n) alignas(n)
1014 #elif defined(__GNUC__)
1015 # define XXH_ALIGN(n) __attribute__ ((aligned(n)))
1016 #elif defined(_MSC_VER)
1017 # define XXH_ALIGN(n) __declspec(align(n))
1018 #else
1019 # define XXH_ALIGN(n) /* disabled */
1020 #endif
1022 /* Old GCC versions only accept the attribute after the type in structures. */
1023 #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
1024 && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
1025 && defined(__GNUC__)
1026 # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
1027 #else
1028 # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
1029 #endif
1032 * @brief The size of the internal XXH3 buffer.
1034 * This is the optimal update size for incremental hashing.
1036 * @see XXH3_64b_update(), XXH3_128b_update().
1038 #define XXH3_INTERNALBUFFER_SIZE 256
1041 * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
1043 * This is the size used in @ref XXH3_kSecret and the seeded functions.
1045 * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
1047 #define XXH3_SECRET_DEFAULT_SIZE 192
1050 * @internal
1051 * @brief Structure for XXH3 streaming API.
1053 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1054 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
1055 * Otherwise it is an opaque type.
1056 * Never use this definition in combination with dynamic library.
1057 * This allows fields to safely be changed in the future.
1059 * @note ** This structure has a strict alignment requirement of 64 bytes!! **
1060 * Do not allocate this with `malloc()` or `new`,
1061 * it will not be sufficiently aligned.
1062 * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
1064 * Typedef'd to @ref XXH3_state_t.
1065 * Do never access the members of this struct directly.
1067 * @see XXH3_INITSTATE() for stack initialization.
1068 * @see XXH3_createState(), XXH3_freeState().
1069 * @see XXH32_state_s, XXH64_state_s
1071 struct XXH3_state_s {
1072 XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
1073 /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
1074 XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
1075 /*!< Used to store a custom secret generated from a seed. */
1076 XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
1077 /*!< The internal buffer. @see XXH32_state_s::mem32 */
1078 XXH32_hash_t bufferedSize;
1079 /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
1080 XXH32_hash_t useSeed;
1081 /*!< Reserved field. Needed for padding on 64-bit. */
1082 size_t nbStripesSoFar;
1083 /*!< Number or stripes processed. */
1084 XXH64_hash_t totalLen;
1085 /*!< Total length hashed. 64-bit even on 32-bit targets. */
1086 size_t nbStripesPerBlock;
1087 /*!< Number of stripes per block. */
1088 size_t secretLimit;
1089 /*!< Size of @ref customSecret or @ref extSecret */
1090 XXH64_hash_t seed;
1091 /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
1092 XXH64_hash_t reserved64;
1093 /*!< Reserved field. */
1094 const unsigned char* extSecret;
1095 /*!< Reference to an external secret for the _withSecret variants, NULL
1096 * for other variants. */
1097 /* note: there may be some padding at the end due to alignment on 64 bytes */
1098 }; /* typedef'd to XXH3_state_t */
1100 #undef XXH_ALIGN_MEMBER
1103 * @brief Initializes a stack-allocated `XXH3_state_s`.
1105 * When the @ref XXH3_state_t structure is merely emplaced on stack,
1106 * it should be initialized with XXH3_INITSTATE() or a memset()
1107 * in case its first reset uses XXH3_NNbits_reset_withSeed().
1108 * This init can be omitted if the first reset uses default or _withSecret mode.
1109 * This operation isn't necessary when the state is created with XXH3_createState().
1110 * Note that this doesn't prepare the state for a streaming operation,
1111 * it's still necessary to use XXH3_NNbits_reset*() afterwards.
1113 #define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
1116 /* XXH128() :
1117 * simple alias to pre-selected XXH3_128bits variant
1119 XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
1122 /* === Experimental API === */
1123 /* Symbols defined below must be considered tied to a specific library version. */
1126 * XXH3_generateSecret():
1128 * Derive a high-entropy secret from any user-defined content, named customSeed.
1129 * The generated secret can be used in combination with `*_withSecret()` functions.
1130 * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
1131 * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
1133 * The function accepts as input a custom seed of any length and any content,
1134 * and derives from it a high-entropy secret of length @secretSize
1135 * into an already allocated buffer @secretBuffer.
1136 * @secretSize must be >= XXH3_SECRET_SIZE_MIN
1138 * The generated secret can then be used with any `*_withSecret()` variant.
1139 * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
1140 * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
1141 * are part of this list. They all accept a `secret` parameter
1142 * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
1143 * _and_ feature very high entropy (consist of random-looking bytes).
1144 * These conditions can be a high bar to meet, so
1145 * XXH3_generateSecret() can be employed to ensure proper quality.
1147 * customSeed can be anything. It can have any size, even small ones,
1148 * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes.
1149 * The resulting `secret` will nonetheless provide all required qualities.
1151 * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
1153 XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize);
1157 * XXH3_generateSecret_fromSeed():
1159 * Generate the same secret as the _withSeed() variants.
1161 * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily).
1162 * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes.
1164 * The generated secret can be used in combination with
1165 *`*_withSecret()` and `_withSecretandSeed()` variants.
1166 * This generator is notably useful in combination with `_withSecretandSeed()`,
1167 * as a way to emulate a faster `_withSeed()` variant.
1169 XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed);
1172 * *_withSecretandSeed() :
1173 * These variants generate hash values using either
1174 * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
1175 * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX).
1177 * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
1178 * `_withSeed()` has to generate the secret on the fly for "large" keys.
1179 * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
1180 * `_withSecret()` has to generate the masks on the fly for "small" keys,
1181 * which requires more instructions than _withSeed() variants.
1182 * Therefore, _withSecretandSeed variant combines the best of both worlds.
1184 * When @secret has been generated by XXH3_generateSecret_fromSeed(),
1185 * this variant produces *exactly* the same results as `_withSeed()` variant,
1186 * hence offering only a pure speed benefit on "large" input,
1187 * by skipping the need to regenerate the secret for every large input.
1189 * Another usage scenario is to hash the secret to a 64-bit hash value,
1190 * for example with XXH3_64bits(), which then becomes the seed,
1191 * and then employ both the seed and the secret in _withSecretandSeed().
1192 * On top of speed, an added benefit is that each bit in the secret
1193 * has a 50% chance to swap each bit in the output,
1194 * via its impact to the seed.
1195 * This is not guaranteed when using the secret directly in "small data" scenarios,
1196 * because only portions of the secret are employed for small data.
1198 XXH_PUBLIC_API XXH64_hash_t
1199 XXH3_64bits_withSecretandSeed(const void* data, size_t len,
1200 const void* secret, size_t secretSize,
1201 XXH64_hash_t seed);
1203 XXH_PUBLIC_API XXH128_hash_t
1204 XXH3_128bits_withSecretandSeed(const void* data, size_t len,
1205 const void* secret, size_t secretSize,
1206 XXH64_hash_t seed64);
1208 XXH_PUBLIC_API XXH_errorcode
1209 XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
1210 const void* secret, size_t secretSize,
1211 XXH64_hash_t seed64);
1213 XXH_PUBLIC_API XXH_errorcode
1214 XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
1215 const void* secret, size_t secretSize,
1216 XXH64_hash_t seed64);
1219 #endif /* XXH_NO_LONG_LONG */
1220 #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
1221 # define XXH_IMPLEMENTATION
1222 #endif
1224 #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
1227 /* ======================================================================== */
1228 /* ======================================================================== */
1229 /* ======================================================================== */
1232 /*-**********************************************************************
1233 * xxHash implementation
1234 *-**********************************************************************
1235 * xxHash's implementation used to be hosted inside xxhash.c.
1237 * However, inlining requires implementation to be visible to the compiler,
1238 * hence be included alongside the header.
1239 * Previously, implementation was hosted inside xxhash.c,
1240 * which was then #included when inlining was activated.
1241 * This construction created issues with a few build and install systems,
1242 * as it required xxhash.c to be stored in /include directory.
1244 * xxHash implementation is now directly integrated within xxhash.h.
1245 * As a consequence, xxhash.c is no longer needed in /include.
1247 * xxhash.c is still available and is still useful.
1248 * In a "normal" setup, when xxhash is not inlined,
1249 * xxhash.h only exposes the prototypes and public symbols,
1250 * while xxhash.c can be built into an object file xxhash.o
1251 * which can then be linked into the final binary.
1252 ************************************************************************/
1254 #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
1255 || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
1256 # define XXH_IMPLEM_13a8737387
1258 /* *************************************
1259 * Tuning parameters
1260 ***************************************/
1263 * @defgroup tuning Tuning parameters
1264 * @{
1266 * Various macros to control xxHash's behavior.
1268 #ifdef XXH_DOXYGEN
1270 * @brief Define this to disable 64-bit code.
1272 * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
1274 # define XXH_NO_LONG_LONG
1275 # undef XXH_NO_LONG_LONG /* don't actually */
1277 * @brief Controls how unaligned memory is accessed.
1279 * By default, access to unaligned memory is controlled by `memcpy()`, which is
1280 * safe and portable.
1282 * Unfortunately, on some target/compiler combinations, the generated assembly
1283 * is sub-optimal.
1285 * The below switch allow selection of a different access method
1286 * in the search for improved performance.
1288 * @par Possible options:
1290 * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
1291 * @par
1292 * Use `memcpy()`. Safe and portable. Note that most modern compilers will
1293 * eliminate the function call and treat it as an unaligned access.
1295 * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
1296 * @par
1297 * Depends on compiler extensions and is therefore not portable.
1298 * This method is safe _if_ your compiler supports it,
1299 * and *generally* as fast or faster than `memcpy`.
1301 * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
1302 * @par
1303 * Casts directly and dereferences. This method doesn't depend on the
1304 * compiler, but it violates the C standard as it directly dereferences an
1305 * unaligned pointer. It can generate buggy code on targets which do not
1306 * support unaligned memory accesses, but in some circumstances, it's the
1307 * only known way to get the most performance.
1309 * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
1310 * @par
1311 * Also portable. This can generate the best code on old compilers which don't
1312 * inline small `memcpy()` calls, and it might also be faster on big-endian
1313 * systems which lack a native byteswap instruction. However, some compilers
1314 * will emit literal byteshifts even if the target supports unaligned access.
1317 * @warning
1318 * Methods 1 and 2 rely on implementation-defined behavior. Use these with
1319 * care, as what works on one compiler/platform/optimization level may cause
1320 * another to read garbage data or even crash.
1322 * See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
1324 * Prefer these methods in priority order (0 > 3 > 1 > 2)
1326 # define XXH_FORCE_MEMORY_ACCESS 0
1329 * @def XXH_FORCE_ALIGN_CHECK
1330 * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
1331 * and XXH64() only).
1333 * This is an important performance trick for architectures without decent
1334 * unaligned memory access performance.
1336 * It checks for input alignment, and when conditions are met, uses a "fast
1337 * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
1338 * faster_ read speed.
1340 * The check costs one initial branch per hash, which is generally negligible,
1341 * but not zero.
1343 * Moreover, it's not useful to generate an additional code path if memory
1344 * access uses the same instruction for both aligned and unaligned
1345 * addresses (e.g. x86 and aarch64).
1347 * In these cases, the alignment check can be removed by setting this macro to 0.
1348 * Then the code will always use unaligned memory access.
1349 * Align check is automatically disabled on x86, x64 & arm64,
1350 * which are platforms known to offer good unaligned memory accesses performance.
1352 * This option does not affect XXH3 (only XXH32 and XXH64).
1354 # define XXH_FORCE_ALIGN_CHECK 0
1357 * @def XXH_NO_INLINE_HINTS
1358 * @brief When non-zero, sets all functions to `static`.
1360 * By default, xxHash tries to force the compiler to inline almost all internal
1361 * functions.
1363 * This can usually improve performance due to reduced jumping and improved
1364 * constant folding, but significantly increases the size of the binary which
1365 * might not be favorable.
1367 * Additionally, sometimes the forced inlining can be detrimental to performance,
1368 * depending on the architecture.
1370 * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
1371 * compiler full control on whether to inline or not.
1373 * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
1374 * -fno-inline with GCC or Clang, this will automatically be defined.
1376 # define XXH_NO_INLINE_HINTS 0
1379 * @def XXH32_ENDJMP
1380 * @brief Whether to use a jump for `XXH32_finalize`.
1382 * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
1383 * This is generally preferable for performance,
1384 * but depending on exact architecture, a jmp may be preferable.
1386 * This setting is only possibly making a difference for very small inputs.
1388 # define XXH32_ENDJMP 0
1391 * @internal
1392 * @brief Redefines old internal names.
1394 * For compatibility with code that uses xxHash's internals before the names
1395 * were changed to improve namespacing. There is no other reason to use this.
1397 # define XXH_OLD_NAMES
1398 # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
1399 #endif /* XXH_DOXYGEN */
1401 * @}
1404 #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
1405 /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */
1406 # if !defined(__clang__) && \
1408 (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
1410 defined(__GNUC__) && ( \
1411 (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \
1413 defined(__mips__) && \
1414 (__mips <= 5 || __mips_isa_rev < 6) && \
1415 (!defined(__mips16) || defined(__mips_mips16e2)) \
1420 # define XXH_FORCE_MEMORY_ACCESS 1
1421 # endif
1422 #endif
1424 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
1425 # if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
1426 || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
1427 # define XXH_FORCE_ALIGN_CHECK 0
1428 # else
1429 # define XXH_FORCE_ALIGN_CHECK 1
1430 # endif
1431 #endif
1433 #ifndef XXH_NO_INLINE_HINTS
1434 # if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
1435 || defined(__NO_INLINE__) /* -O0, -fno-inline */
1436 # define XXH_NO_INLINE_HINTS 1
1437 # else
1438 # define XXH_NO_INLINE_HINTS 0
1439 # endif
1440 #endif
1442 #ifndef XXH32_ENDJMP
1443 /* generally preferable for performance */
1444 # define XXH32_ENDJMP 0
1445 #endif
1448 * @defgroup impl Implementation
1449 * @{
1453 /* *************************************
1454 * Includes & Memory related functions
1455 ***************************************/
1457 * Modify the local functions below should you wish to use
1458 * different memory routines for malloc() and free()
1460 #include <stdlib.h>
1463 * @internal
1464 * @brief Modify this function to use a different routine than malloc().
1466 static void* XXH_malloc(size_t s) { return malloc(s); }
1469 * @internal
1470 * @brief Modify this function to use a different routine than free().
1472 static void XXH_free(void* p) { free(p); }
1474 #include <string.h>
1477 * @internal
1478 * @brief Modify this function to use a different routine than memcpy().
1480 static void* XXH_memcpy(void* dest, const void* src, size_t size)
1482 return memcpy(dest,src,size);
1485 #include <limits.h> /* ULLONG_MAX */
1488 /* *************************************
1489 * Compiler Specific Options
1490 ***************************************/
1491 #ifdef _MSC_VER /* Visual Studio warning fix */
1492 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
1493 #endif
1495 #if XXH_NO_INLINE_HINTS /* disable inlining hints */
1496 # if defined(__GNUC__) || defined(__clang__)
1497 # define XXH_FORCE_INLINE static __attribute__((unused))
1498 # else
1499 # define XXH_FORCE_INLINE static
1500 # endif
1501 # define XXH_NO_INLINE static
1502 /* enable inlining hints */
1503 #elif defined(__GNUC__) || defined(__clang__)
1504 # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
1505 # define XXH_NO_INLINE static __attribute__((noinline))
1506 #elif defined(_MSC_VER) /* Visual Studio */
1507 # define XXH_FORCE_INLINE static __forceinline
1508 # define XXH_NO_INLINE static __declspec(noinline)
1509 #elif defined (__cplusplus) \
1510 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
1511 # define XXH_FORCE_INLINE static inline
1512 # define XXH_NO_INLINE static
1513 #else
1514 # define XXH_FORCE_INLINE static
1515 # define XXH_NO_INLINE static
1516 #endif
1520 /* *************************************
1521 * Debug
1522 ***************************************/
1524 * @ingroup tuning
1525 * @def XXH_DEBUGLEVEL
1526 * @brief Sets the debugging level.
1528 * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
1529 * compiler's command line options. The value must be a number.
1531 #ifndef XXH_DEBUGLEVEL
1532 # ifdef DEBUGLEVEL /* backwards compat */
1533 # define XXH_DEBUGLEVEL DEBUGLEVEL
1534 # else
1535 # define XXH_DEBUGLEVEL 0
1536 # endif
1537 #endif
1539 #if (XXH_DEBUGLEVEL>=1)
1540 # include <assert.h> /* note: can still be disabled with NDEBUG */
1541 # define XXH_ASSERT(c) assert(c)
1542 #else
1543 # define XXH_ASSERT(c) ((void)0)
1544 #endif
1546 /* note: use after variable declarations */
1547 #ifndef XXH_STATIC_ASSERT
1548 # if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */
1549 # include <assert.h>
1550 # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
1551 # elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */
1552 # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
1553 # else
1554 # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
1555 # endif
1556 # define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
1557 #endif
1560 * @internal
1561 * @def XXH_COMPILER_GUARD(var)
1562 * @brief Used to prevent unwanted optimizations for @p var.
1564 * It uses an empty GCC inline assembly statement with a register constraint
1565 * which forces @p var into a general purpose register (eg eax, ebx, ecx
1566 * on x86) and marks it as modified.
1568 * This is used in a few places to avoid unwanted autovectorization (e.g.
1569 * XXH32_round()). All vectorization we want is explicit via intrinsics,
1570 * and _usually_ isn't wanted elsewhere.
1572 * We also use it to prevent unwanted constant folding for AArch64 in
1573 * XXH3_initCustomSecret_scalar().
1575 #if defined(__GNUC__) || defined(__clang__)
1576 # define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var))
1577 #else
1578 # define XXH_COMPILER_GUARD(var) ((void)0)
1579 #endif
1581 /* *************************************
1582 * Basic Types
1583 ***************************************/
1584 #if !defined (__VMS) \
1585 && (defined (__cplusplus) \
1586 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
1587 # include <stdint.h>
1588 typedef uint8_t xxh_u8;
1589 #else
1590 typedef unsigned char xxh_u8;
1591 #endif
1592 typedef XXH32_hash_t xxh_u32;
1594 #ifdef XXH_OLD_NAMES
1595 # define BYTE xxh_u8
1596 # define U8 xxh_u8
1597 # define U32 xxh_u32
1598 #endif
1600 /* *** Memory access *** */
1603 * @internal
1604 * @fn xxh_u32 XXH_read32(const void* ptr)
1605 * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
1607 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1609 * @param ptr The pointer to read from.
1610 * @return The 32-bit native endian integer from the bytes at @p ptr.
1614 * @internal
1615 * @fn xxh_u32 XXH_readLE32(const void* ptr)
1616 * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
1618 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1620 * @param ptr The pointer to read from.
1621 * @return The 32-bit little endian integer from the bytes at @p ptr.
1625 * @internal
1626 * @fn xxh_u32 XXH_readBE32(const void* ptr)
1627 * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
1629 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1631 * @param ptr The pointer to read from.
1632 * @return The 32-bit big endian integer from the bytes at @p ptr.
1636 * @internal
1637 * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1638 * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
1640 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1641 * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
1642 * always @ref XXH_alignment::XXH_unaligned.
1644 * @param ptr The pointer to read from.
1645 * @param align Whether @p ptr is aligned.
1646 * @pre
1647 * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
1648 * aligned.
1649 * @return The 32-bit little endian integer from the bytes at @p ptr.
1652 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1654 * Manual byteshift. Best for old compilers which don't inline memcpy.
1655 * We actually directly use XXH_readLE32 and XXH_readBE32.
1657 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1660 * Force direct memory access. Only works on CPU which support unaligned memory
1661 * access in hardware.
1663 static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
1665 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1668 * __pack instructions are safer but compiler specific, hence potentially
1669 * problematic for some compilers.
1671 * Currently only defined for GCC and ICC.
1673 #ifdef XXH_OLD_NAMES
1674 typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
1675 #endif
1676 static xxh_u32 XXH_read32(const void* ptr)
1678 typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
1679 return ((const xxh_unalign*)ptr)->u32;
1682 #else
1685 * Portable and safe solution. Generally efficient.
1686 * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
1688 static xxh_u32 XXH_read32(const void* memPtr)
1690 xxh_u32 val;
1691 XXH_memcpy(&val, memPtr, sizeof(val));
1692 return val;
1695 #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1698 /* *** Endianness *** */
1701 * @ingroup tuning
1702 * @def XXH_CPU_LITTLE_ENDIAN
1703 * @brief Whether the target is little endian.
1705 * Defined to 1 if the target is little endian, or 0 if it is big endian.
1706 * It can be defined externally, for example on the compiler command line.
1708 * If it is not defined,
1709 * a runtime check (which is usually constant folded) is used instead.
1711 * @note
1712 * This is not necessarily defined to an integer constant.
1714 * @see XXH_isLittleEndian() for the runtime check.
1716 #ifndef XXH_CPU_LITTLE_ENDIAN
1718 * Try to detect endianness automatically, to avoid the nonstandard behavior
1719 * in `XXH_isLittleEndian()`
1721 # if defined(_WIN32) /* Windows is always little endian */ \
1722 || defined(__LITTLE_ENDIAN__) \
1723 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
1724 # define XXH_CPU_LITTLE_ENDIAN 1
1725 # elif defined(__BIG_ENDIAN__) \
1726 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
1727 # define XXH_CPU_LITTLE_ENDIAN 0
1728 # else
1730 * @internal
1731 * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
1733 * Most compilers will constant fold this.
1735 static int XXH_isLittleEndian(void)
1738 * Portable and well-defined behavior.
1739 * Don't use static: it is detrimental to performance.
1741 const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
1742 return one.c[0];
1744 # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
1745 # endif
1746 #endif
1751 /* ****************************************
1752 * Compiler-specific Functions and Macros
1753 ******************************************/
1754 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
1756 #ifdef __has_builtin
1757 # define XXH_HAS_BUILTIN(x) __has_builtin(x)
1758 #else
1759 # define XXH_HAS_BUILTIN(x) 0
1760 #endif
1763 * @internal
1764 * @def XXH_rotl32(x,r)
1765 * @brief 32-bit rotate left.
1767 * @param x The 32-bit integer to be rotated.
1768 * @param r The number of bits to rotate.
1769 * @pre
1770 * @p r > 0 && @p r < 32
1771 * @note
1772 * @p x and @p r may be evaluated multiple times.
1773 * @return The rotated result.
1775 #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
1776 && XXH_HAS_BUILTIN(__builtin_rotateleft64)
1777 # define XXH_rotl32 __builtin_rotateleft32
1778 # define XXH_rotl64 __builtin_rotateleft64
1779 /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
1780 #elif defined(_MSC_VER)
1781 # define XXH_rotl32(x,r) _rotl(x,r)
1782 # define XXH_rotl64(x,r) _rotl64(x,r)
1783 #else
1784 # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
1785 # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
1786 #endif
1789 * @internal
1790 * @fn xxh_u32 XXH_swap32(xxh_u32 x)
1791 * @brief A 32-bit byteswap.
1793 * @param x The 32-bit integer to byteswap.
1794 * @return @p x, byteswapped.
1796 #if defined(_MSC_VER) /* Visual Studio */
1797 # define XXH_swap32 _byteswap_ulong
1798 #elif XXH_GCC_VERSION >= 403
1799 # define XXH_swap32 __builtin_bswap32
1800 #else
1801 static xxh_u32 XXH_swap32 (xxh_u32 x)
1803 return ((x << 24) & 0xff000000 ) |
1804 ((x << 8) & 0x00ff0000 ) |
1805 ((x >> 8) & 0x0000ff00 ) |
1806 ((x >> 24) & 0x000000ff );
1808 #endif
1811 /* ***************************
1812 * Memory reads
1813 *****************************/
1816 * @internal
1817 * @brief Enum to indicate whether a pointer is aligned.
1819 typedef enum {
1820 XXH_aligned, /*!< Aligned */
1821 XXH_unaligned /*!< Possibly unaligned */
1822 } XXH_alignment;
1825 * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
1827 * This is ideal for older compilers which don't inline memcpy.
1829 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1831 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
1833 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1834 return bytePtr[0]
1835 | ((xxh_u32)bytePtr[1] << 8)
1836 | ((xxh_u32)bytePtr[2] << 16)
1837 | ((xxh_u32)bytePtr[3] << 24);
1840 XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
1842 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1843 return bytePtr[3]
1844 | ((xxh_u32)bytePtr[2] << 8)
1845 | ((xxh_u32)bytePtr[1] << 16)
1846 | ((xxh_u32)bytePtr[0] << 24);
1849 #else
1850 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
1852 return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
1855 static xxh_u32 XXH_readBE32(const void* ptr)
1857 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
1859 #endif
1861 XXH_FORCE_INLINE xxh_u32
1862 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1864 if (align==XXH_unaligned) {
1865 return XXH_readLE32(ptr);
1866 } else {
1867 return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
1872 /* *************************************
1873 * Misc
1874 ***************************************/
1875 /*! @ingroup public */
1876 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
1879 /* *******************************************************************
1880 * 32-bit hash functions
1881 *********************************************************************/
1883 * @}
1884 * @defgroup xxh32_impl XXH32 implementation
1885 * @ingroup impl
1886 * @{
1888 /* #define instead of static const, to be used as initializers */
1889 #define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */
1890 #define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */
1891 #define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */
1892 #define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */
1893 #define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */
1895 #ifdef XXH_OLD_NAMES
1896 # define PRIME32_1 XXH_PRIME32_1
1897 # define PRIME32_2 XXH_PRIME32_2
1898 # define PRIME32_3 XXH_PRIME32_3
1899 # define PRIME32_4 XXH_PRIME32_4
1900 # define PRIME32_5 XXH_PRIME32_5
1901 #endif
1904 * @internal
1905 * @brief Normal stripe processing routine.
1907 * This shuffles the bits so that any bit from @p input impacts several bits in
1908 * @p acc.
1910 * @param acc The accumulator lane.
1911 * @param input The stripe of input to mix.
1912 * @return The mixed accumulator lane.
1914 static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
1916 acc += input * XXH_PRIME32_2;
1917 acc = XXH_rotl32(acc, 13);
1918 acc *= XXH_PRIME32_1;
1919 #if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
1921 * UGLY HACK:
1922 * A compiler fence is the only thing that prevents GCC and Clang from
1923 * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
1924 * reason) without globally disabling SSE4.1.
1926 * The reason we want to avoid vectorization is because despite working on
1927 * 4 integers at a time, there are multiple factors slowing XXH32 down on
1928 * SSE4:
1929 * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
1930 * newer chips!) making it slightly slower to multiply four integers at
1931 * once compared to four integers independently. Even when pmulld was
1932 * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
1933 * just to multiply unless doing a long operation.
1935 * - Four instructions are required to rotate,
1936 * movqda tmp, v // not required with VEX encoding
1937 * pslld tmp, 13 // tmp <<= 13
1938 * psrld v, 19 // x >>= 19
1939 * por v, tmp // x |= tmp
1940 * compared to one for scalar:
1941 * roll v, 13 // reliably fast across the board
1942 * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
1944 * - Instruction level parallelism is actually more beneficial here because
1945 * the SIMD actually serializes this operation: While v1 is rotating, v2
1946 * can load data, while v3 can multiply. SSE forces them to operate
1947 * together.
1949 * This is also enabled on AArch64, as Clang autovectorizes it incorrectly
1950 * and it is pointless writing a NEON implementation that is basically the
1951 * same speed as scalar for XXH32.
1953 XXH_COMPILER_GUARD(acc);
1954 #endif
1955 return acc;
1959 * @internal
1960 * @brief Mixes all bits to finalize the hash.
1962 * The final mix ensures that all input bits have a chance to impact any bit in
1963 * the output digest, resulting in an unbiased distribution.
1965 * @param h32 The hash to avalanche.
1966 * @return The avalanched hash.
1968 static xxh_u32 XXH32_avalanche(xxh_u32 h32)
1970 h32 ^= h32 >> 15;
1971 h32 *= XXH_PRIME32_2;
1972 h32 ^= h32 >> 13;
1973 h32 *= XXH_PRIME32_3;
1974 h32 ^= h32 >> 16;
1975 return(h32);
1978 #define XXH_get32bits(p) XXH_readLE32_align(p, align)
1981 * @internal
1982 * @brief Processes the last 0-15 bytes of @p ptr.
1984 * There may be up to 15 bytes remaining to consume from the input.
1985 * This final stage will digest them to ensure that all input bytes are present
1986 * in the final mix.
1988 * @param h32 The hash to finalize.
1989 * @param ptr The pointer to the remaining input.
1990 * @param len The remaining length, modulo 16.
1991 * @param align Whether @p ptr is aligned.
1992 * @return The finalized hash.
1994 static xxh_u32
1995 XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
1997 #define XXH_PROCESS1 do { \
1998 h32 += (*ptr++) * XXH_PRIME32_5; \
1999 h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \
2000 } while (0)
2002 #define XXH_PROCESS4 do { \
2003 h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \
2004 ptr += 4; \
2005 h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \
2006 } while (0)
2008 if (ptr==NULL) XXH_ASSERT(len == 0);
2010 /* Compact rerolled version; generally faster */
2011 if (!XXH32_ENDJMP) {
2012 len &= 15;
2013 while (len >= 4) {
2014 XXH_PROCESS4;
2015 len -= 4;
2017 while (len > 0) {
2018 XXH_PROCESS1;
2019 --len;
2021 return XXH32_avalanche(h32);
2022 } else {
2023 switch(len&15) /* or switch(bEnd - p) */ {
2024 case 12: XXH_PROCESS4;
2025 XXH_FALLTHROUGH;
2026 case 8: XXH_PROCESS4;
2027 XXH_FALLTHROUGH;
2028 case 4: XXH_PROCESS4;
2029 return XXH32_avalanche(h32);
2031 case 13: XXH_PROCESS4;
2032 XXH_FALLTHROUGH;
2033 case 9: XXH_PROCESS4;
2034 XXH_FALLTHROUGH;
2035 case 5: XXH_PROCESS4;
2036 XXH_PROCESS1;
2037 return XXH32_avalanche(h32);
2039 case 14: XXH_PROCESS4;
2040 XXH_FALLTHROUGH;
2041 case 10: XXH_PROCESS4;
2042 XXH_FALLTHROUGH;
2043 case 6: XXH_PROCESS4;
2044 XXH_PROCESS1;
2045 XXH_PROCESS1;
2046 return XXH32_avalanche(h32);
2048 case 15: XXH_PROCESS4;
2049 XXH_FALLTHROUGH;
2050 case 11: XXH_PROCESS4;
2051 XXH_FALLTHROUGH;
2052 case 7: XXH_PROCESS4;
2053 XXH_FALLTHROUGH;
2054 case 3: XXH_PROCESS1;
2055 XXH_FALLTHROUGH;
2056 case 2: XXH_PROCESS1;
2057 XXH_FALLTHROUGH;
2058 case 1: XXH_PROCESS1;
2059 XXH_FALLTHROUGH;
2060 case 0: return XXH32_avalanche(h32);
2062 XXH_ASSERT(0);
2063 return h32; /* reaching this point is deemed impossible */
2067 #ifdef XXH_OLD_NAMES
2068 # define PROCESS1 XXH_PROCESS1
2069 # define PROCESS4 XXH_PROCESS4
2070 #else
2071 # undef XXH_PROCESS1
2072 # undef XXH_PROCESS4
2073 #endif
2076 * @internal
2077 * @brief The implementation for @ref XXH32().
2079 * @param input , len , seed Directly passed from @ref XXH32().
2080 * @param align Whether @p input is aligned.
2081 * @return The calculated hash.
2083 XXH_FORCE_INLINE xxh_u32
2084 XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
2086 xxh_u32 h32;
2088 if (input==NULL) XXH_ASSERT(len == 0);
2090 if (len>=16) {
2091 const xxh_u8* const bEnd = input + len;
2092 const xxh_u8* const limit = bEnd - 15;
2093 xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
2094 xxh_u32 v2 = seed + XXH_PRIME32_2;
2095 xxh_u32 v3 = seed + 0;
2096 xxh_u32 v4 = seed - XXH_PRIME32_1;
2098 do {
2099 v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
2100 v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
2101 v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
2102 v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
2103 } while (input < limit);
2105 h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
2106 + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
2107 } else {
2108 h32 = seed + XXH_PRIME32_5;
2111 h32 += (xxh_u32)len;
2113 return XXH32_finalize(h32, input, len&15, align);
2116 /*! @ingroup xxh32_family */
2117 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
2119 #if 0
2120 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2121 XXH32_state_t state;
2122 XXH32_reset(&state, seed);
2123 XXH32_update(&state, (const xxh_u8*)input, len);
2124 return XXH32_digest(&state);
2125 #else
2126 if (XXH_FORCE_ALIGN_CHECK) {
2127 if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
2128 return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2131 return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2132 #endif
2137 /******* Hash streaming *******/
2139 * @ingroup xxh32_family
2141 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
2143 return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
2145 /*! @ingroup xxh32_family */
2146 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
2148 XXH_free(statePtr);
2149 return XXH_OK;
2152 /*! @ingroup xxh32_family */
2153 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
2155 XXH_memcpy(dstState, srcState, sizeof(*dstState));
2158 /*! @ingroup xxh32_family */
2159 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
2161 XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
2162 memset(&state, 0, sizeof(state));
2163 state.v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
2164 state.v[1] = seed + XXH_PRIME32_2;
2165 state.v[2] = seed + 0;
2166 state.v[3] = seed - XXH_PRIME32_1;
2167 /* do not write into reserved, planned to be removed in a future version */
2168 XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
2169 return XXH_OK;
2173 /*! @ingroup xxh32_family */
2174 XXH_PUBLIC_API XXH_errorcode
2175 XXH32_update(XXH32_state_t* state, const void* input, size_t len)
2177 if (input==NULL) {
2178 XXH_ASSERT(len == 0);
2179 return XXH_OK;
2182 { const xxh_u8* p = (const xxh_u8*)input;
2183 const xxh_u8* const bEnd = p + len;
2185 state->total_len_32 += (XXH32_hash_t)len;
2186 state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
2188 if (state->memsize + len < 16) { /* fill in tmp buffer */
2189 XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
2190 state->memsize += (XXH32_hash_t)len;
2191 return XXH_OK;
2194 if (state->memsize) { /* some data left from previous update */
2195 XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
2196 { const xxh_u32* p32 = state->mem32;
2197 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
2198 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
2199 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
2200 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
2202 p += 16-state->memsize;
2203 state->memsize = 0;
2206 if (p <= bEnd-16) {
2207 const xxh_u8* const limit = bEnd - 16;
2209 do {
2210 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
2211 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
2212 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
2213 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
2214 } while (p<=limit);
2218 if (p < bEnd) {
2219 XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
2220 state->memsize = (unsigned)(bEnd-p);
2224 return XXH_OK;
2228 /*! @ingroup xxh32_family */
2229 XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
2231 xxh_u32 h32;
2233 if (state->large_len) {
2234 h32 = XXH_rotl32(state->v[0], 1)
2235 + XXH_rotl32(state->v[1], 7)
2236 + XXH_rotl32(state->v[2], 12)
2237 + XXH_rotl32(state->v[3], 18);
2238 } else {
2239 h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
2242 h32 += state->total_len_32;
2244 return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
2248 /******* Canonical representation *******/
2251 * @ingroup xxh32_family
2252 * The default return values from XXH functions are unsigned 32 and 64 bit
2253 * integers.
2255 * The canonical representation uses big endian convention, the same convention
2256 * as human-readable numbers (large digits first).
2258 * This way, hash values can be written into a file or buffer, remaining
2259 * comparable across different systems.
2261 * The following functions allow transformation of hash values to and from their
2262 * canonical format.
2264 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
2266 XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
2267 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
2268 XXH_memcpy(dst, &hash, sizeof(*dst));
2270 /*! @ingroup xxh32_family */
2271 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
2273 return XXH_readBE32(src);
2277 #ifndef XXH_NO_LONG_LONG
2279 /* *******************************************************************
2280 * 64-bit hash functions
2281 *********************************************************************/
2283 * @}
2284 * @ingroup impl
2285 * @{
2287 /******* Memory access *******/
2289 typedef XXH64_hash_t xxh_u64;
2291 #ifdef XXH_OLD_NAMES
2292 # define U64 xxh_u64
2293 #endif
2295 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2297 * Manual byteshift. Best for old compilers which don't inline memcpy.
2298 * We actually directly use XXH_readLE64 and XXH_readBE64.
2300 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
2302 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
2303 static xxh_u64 XXH_read64(const void* memPtr)
2305 return *(const xxh_u64*) memPtr;
2308 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
2311 * __pack instructions are safer, but compiler specific, hence potentially
2312 * problematic for some compilers.
2314 * Currently only defined for GCC and ICC.
2316 #ifdef XXH_OLD_NAMES
2317 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
2318 #endif
2319 static xxh_u64 XXH_read64(const void* ptr)
2321 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
2322 return ((const xxh_unalign64*)ptr)->u64;
2325 #else
2328 * Portable and safe solution. Generally efficient.
2329 * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
2331 static xxh_u64 XXH_read64(const void* memPtr)
2333 xxh_u64 val;
2334 XXH_memcpy(&val, memPtr, sizeof(val));
2335 return val;
2338 #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
2340 #if defined(_MSC_VER) /* Visual Studio */
2341 # define XXH_swap64 _byteswap_uint64
2342 #elif XXH_GCC_VERSION >= 403
2343 # define XXH_swap64 __builtin_bswap64
2344 #else
2345 static xxh_u64 XXH_swap64(xxh_u64 x)
2347 return ((x << 56) & 0xff00000000000000ULL) |
2348 ((x << 40) & 0x00ff000000000000ULL) |
2349 ((x << 24) & 0x0000ff0000000000ULL) |
2350 ((x << 8) & 0x000000ff00000000ULL) |
2351 ((x >> 8) & 0x00000000ff000000ULL) |
2352 ((x >> 24) & 0x0000000000ff0000ULL) |
2353 ((x >> 40) & 0x000000000000ff00ULL) |
2354 ((x >> 56) & 0x00000000000000ffULL);
2356 #endif
2359 /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
2360 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2362 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
2364 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2365 return bytePtr[0]
2366 | ((xxh_u64)bytePtr[1] << 8)
2367 | ((xxh_u64)bytePtr[2] << 16)
2368 | ((xxh_u64)bytePtr[3] << 24)
2369 | ((xxh_u64)bytePtr[4] << 32)
2370 | ((xxh_u64)bytePtr[5] << 40)
2371 | ((xxh_u64)bytePtr[6] << 48)
2372 | ((xxh_u64)bytePtr[7] << 56);
2375 XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
2377 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2378 return bytePtr[7]
2379 | ((xxh_u64)bytePtr[6] << 8)
2380 | ((xxh_u64)bytePtr[5] << 16)
2381 | ((xxh_u64)bytePtr[4] << 24)
2382 | ((xxh_u64)bytePtr[3] << 32)
2383 | ((xxh_u64)bytePtr[2] << 40)
2384 | ((xxh_u64)bytePtr[1] << 48)
2385 | ((xxh_u64)bytePtr[0] << 56);
2388 #else
2389 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
2391 return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
2394 static xxh_u64 XXH_readBE64(const void* ptr)
2396 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
2398 #endif
2400 XXH_FORCE_INLINE xxh_u64
2401 XXH_readLE64_align(const void* ptr, XXH_alignment align)
2403 if (align==XXH_unaligned)
2404 return XXH_readLE64(ptr);
2405 else
2406 return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
2410 /******* xxh64 *******/
2412 * @}
2413 * @defgroup xxh64_impl XXH64 implementation
2414 * @ingroup impl
2415 * @{
2417 /* #define rather that static const, to be used as initializers */
2418 #define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
2419 #define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
2420 #define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
2421 #define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
2422 #define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
2424 #ifdef XXH_OLD_NAMES
2425 # define PRIME64_1 XXH_PRIME64_1
2426 # define PRIME64_2 XXH_PRIME64_2
2427 # define PRIME64_3 XXH_PRIME64_3
2428 # define PRIME64_4 XXH_PRIME64_4
2429 # define PRIME64_5 XXH_PRIME64_5
2430 #endif
2432 static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
2434 acc += input * XXH_PRIME64_2;
2435 acc = XXH_rotl64(acc, 31);
2436 acc *= XXH_PRIME64_1;
2437 return acc;
2440 static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
2442 val = XXH64_round(0, val);
2443 acc ^= val;
2444 acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
2445 return acc;
2448 static xxh_u64 XXH64_avalanche(xxh_u64 h64)
2450 h64 ^= h64 >> 33;
2451 h64 *= XXH_PRIME64_2;
2452 h64 ^= h64 >> 29;
2453 h64 *= XXH_PRIME64_3;
2454 h64 ^= h64 >> 32;
2455 return h64;
2459 #define XXH_get64bits(p) XXH_readLE64_align(p, align)
2461 static xxh_u64
2462 XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
2464 if (ptr==NULL) XXH_ASSERT(len == 0);
2465 len &= 31;
2466 while (len >= 8) {
2467 xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
2468 ptr += 8;
2469 h64 ^= k1;
2470 h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
2471 len -= 8;
2473 if (len >= 4) {
2474 h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
2475 ptr += 4;
2476 h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
2477 len -= 4;
2479 while (len > 0) {
2480 h64 ^= (*ptr++) * XXH_PRIME64_5;
2481 h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;
2482 --len;
2484 return XXH64_avalanche(h64);
2487 #ifdef XXH_OLD_NAMES
2488 # define PROCESS1_64 XXH_PROCESS1_64
2489 # define PROCESS4_64 XXH_PROCESS4_64
2490 # define PROCESS8_64 XXH_PROCESS8_64
2491 #else
2492 # undef XXH_PROCESS1_64
2493 # undef XXH_PROCESS4_64
2494 # undef XXH_PROCESS8_64
2495 #endif
2497 XXH_FORCE_INLINE xxh_u64
2498 XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
2500 xxh_u64 h64;
2501 if (input==NULL) XXH_ASSERT(len == 0);
2503 if (len>=32) {
2504 const xxh_u8* const bEnd = input + len;
2505 const xxh_u8* const limit = bEnd - 31;
2506 xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2507 xxh_u64 v2 = seed + XXH_PRIME64_2;
2508 xxh_u64 v3 = seed + 0;
2509 xxh_u64 v4 = seed - XXH_PRIME64_1;
2511 do {
2512 v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
2513 v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
2514 v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
2515 v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
2516 } while (input<limit);
2518 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2519 h64 = XXH64_mergeRound(h64, v1);
2520 h64 = XXH64_mergeRound(h64, v2);
2521 h64 = XXH64_mergeRound(h64, v3);
2522 h64 = XXH64_mergeRound(h64, v4);
2524 } else {
2525 h64 = seed + XXH_PRIME64_5;
2528 h64 += (xxh_u64) len;
2530 return XXH64_finalize(h64, input, len, align);
2534 /*! @ingroup xxh64_family */
2535 XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
2537 #if 0
2538 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2539 XXH64_state_t state;
2540 XXH64_reset(&state, seed);
2541 XXH64_update(&state, (const xxh_u8*)input, len);
2542 return XXH64_digest(&state);
2543 #else
2544 if (XXH_FORCE_ALIGN_CHECK) {
2545 if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
2546 return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2549 return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2551 #endif
2554 /******* Hash Streaming *******/
2556 /*! @ingroup xxh64_family*/
2557 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
2559 return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
2561 /*! @ingroup xxh64_family */
2562 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
2564 XXH_free(statePtr);
2565 return XXH_OK;
2568 /*! @ingroup xxh64_family */
2569 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
2571 XXH_memcpy(dstState, srcState, sizeof(*dstState));
2574 /*! @ingroup xxh64_family */
2575 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
2577 XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
2578 memset(&state, 0, sizeof(state));
2579 state.v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2580 state.v[1] = seed + XXH_PRIME64_2;
2581 state.v[2] = seed + 0;
2582 state.v[3] = seed - XXH_PRIME64_1;
2583 /* do not write into reserved64, might be removed in a future version */
2584 XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
2585 return XXH_OK;
2588 /*! @ingroup xxh64_family */
2589 XXH_PUBLIC_API XXH_errorcode
2590 XXH64_update (XXH64_state_t* state, const void* input, size_t len)
2592 if (input==NULL) {
2593 XXH_ASSERT(len == 0);
2594 return XXH_OK;
2597 { const xxh_u8* p = (const xxh_u8*)input;
2598 const xxh_u8* const bEnd = p + len;
2600 state->total_len += len;
2602 if (state->memsize + len < 32) { /* fill in tmp buffer */
2603 XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
2604 state->memsize += (xxh_u32)len;
2605 return XXH_OK;
2608 if (state->memsize) { /* tmp buffer is full */
2609 XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
2610 state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
2611 state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
2612 state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
2613 state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
2614 p += 32 - state->memsize;
2615 state->memsize = 0;
2618 if (p+32 <= bEnd) {
2619 const xxh_u8* const limit = bEnd - 32;
2621 do {
2622 state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
2623 state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
2624 state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
2625 state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
2626 } while (p<=limit);
2630 if (p < bEnd) {
2631 XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
2632 state->memsize = (unsigned)(bEnd-p);
2636 return XXH_OK;
2640 /*! @ingroup xxh64_family */
2641 XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
2643 xxh_u64 h64;
2645 if (state->total_len >= 32) {
2646 h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
2647 h64 = XXH64_mergeRound(h64, state->v[0]);
2648 h64 = XXH64_mergeRound(h64, state->v[1]);
2649 h64 = XXH64_mergeRound(h64, state->v[2]);
2650 h64 = XXH64_mergeRound(h64, state->v[3]);
2651 } else {
2652 h64 = state->v[2] /*seed*/ + XXH_PRIME64_5;
2655 h64 += (xxh_u64) state->total_len;
2657 return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
2661 /******* Canonical representation *******/
2663 /*! @ingroup xxh64_family */
2664 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
2666 XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
2667 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
2668 XXH_memcpy(dst, &hash, sizeof(*dst));
2671 /*! @ingroup xxh64_family */
2672 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
2674 return XXH_readBE64(src);
2677 #ifndef XXH_NO_XXH3
2679 /* *********************************************************************
2680 * XXH3
2681 * New generation hash designed for speed on small keys and vectorization
2682 ************************************************************************ */
2684 * @}
2685 * @defgroup xxh3_impl XXH3 implementation
2686 * @ingroup impl
2687 * @{
2690 /* === Compiler specifics === */
2692 #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
2693 # define XXH_RESTRICT /* disable */
2694 #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
2695 # define XXH_RESTRICT restrict
2696 #else
2697 /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
2698 # define XXH_RESTRICT /* disable */
2699 #endif
2701 #if (defined(__GNUC__) && (__GNUC__ >= 3)) \
2702 || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
2703 || defined(__clang__)
2704 # define XXH_likely(x) __builtin_expect(x, 1)
2705 # define XXH_unlikely(x) __builtin_expect(x, 0)
2706 #else
2707 # define XXH_likely(x) (x)
2708 # define XXH_unlikely(x) (x)
2709 #endif
2711 #if defined(__GNUC__) || defined(__clang__)
2712 # if defined(__ARM_NEON__) || defined(__ARM_NEON) \
2713 || defined(__aarch64__) || defined(_M_ARM) \
2714 || defined(_M_ARM64) || defined(_M_ARM64EC)
2715 # define inline __inline__ /* circumvent a clang bug */
2716 # include <arm_neon.h>
2717 # undef inline
2718 # elif defined(__AVX2__)
2719 # include <immintrin.h>
2720 # elif defined(__SSE2__)
2721 # include <emmintrin.h>
2722 # endif
2723 #endif
2725 #if defined(_MSC_VER)
2726 # include <intrin.h>
2727 #endif
2730 * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
2731 * remaining a true 64-bit/128-bit hash function.
2733 * This is done by prioritizing a subset of 64-bit operations that can be
2734 * emulated without too many steps on the average 32-bit machine.
2736 * For example, these two lines seem similar, and run equally fast on 64-bit:
2738 * xxh_u64 x;
2739 * x ^= (x >> 47); // good
2740 * x ^= (x >> 13); // bad
2742 * However, to a 32-bit machine, there is a major difference.
2744 * x ^= (x >> 47) looks like this:
2746 * x.lo ^= (x.hi >> (47 - 32));
2748 * while x ^= (x >> 13) looks like this:
2750 * // note: funnel shifts are not usually cheap.
2751 * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
2752 * x.hi ^= (x.hi >> 13);
2754 * The first one is significantly faster than the second, simply because the
2755 * shift is larger than 32. This means:
2756 * - All the bits we need are in the upper 32 bits, so we can ignore the lower
2757 * 32 bits in the shift.
2758 * - The shift result will always fit in the lower 32 bits, and therefore,
2759 * we can ignore the upper 32 bits in the xor.
2761 * Thanks to this optimization, XXH3 only requires these features to be efficient:
2763 * - Usable unaligned access
2764 * - A 32-bit or 64-bit ALU
2765 * - If 32-bit, a decent ADC instruction
2766 * - A 32 or 64-bit multiply with a 64-bit result
2767 * - For the 128-bit variant, a decent byteswap helps short inputs.
2769 * The first two are already required by XXH32, and almost all 32-bit and 64-bit
2770 * platforms which can run XXH32 can run XXH3 efficiently.
2772 * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
2773 * notable exception.
2775 * First of all, Thumb-1 lacks support for the UMULL instruction which
2776 * performs the important long multiply. This means numerous __aeabi_lmul
2777 * calls.
2779 * Second of all, the 8 functional registers are just not enough.
2780 * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
2781 * Lo registers, and this shuffling results in thousands more MOVs than A32.
2783 * A32 and T32 don't have this limitation. They can access all 14 registers,
2784 * do a 32->64 multiply with UMULL, and the flexible operand allowing free
2785 * shifts is helpful, too.
2787 * Therefore, we do a quick sanity check.
2789 * If compiling Thumb-1 for a target which supports ARM instructions, we will
2790 * emit a warning, as it is not a "sane" platform to compile for.
2792 * Usually, if this happens, it is because of an accident and you probably need
2793 * to specify -march, as you likely meant to compile for a newer architecture.
2795 * Credit: large sections of the vectorial and asm source code paths
2796 * have been contributed by @easyaspi314
2798 #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
2799 # warning "XXH3 is highly inefficient without ARM or Thumb-2."
2800 #endif
2802 /* ==========================================
2803 * Vectorization detection
2804 * ========================================== */
2806 #ifdef XXH_DOXYGEN
2808 * @ingroup tuning
2809 * @brief Overrides the vectorization implementation chosen for XXH3.
2811 * Can be defined to 0 to disable SIMD or any of the values mentioned in
2812 * @ref XXH_VECTOR_TYPE.
2814 * If this is not defined, it uses predefined macros to determine the best
2815 * implementation.
2817 # define XXH_VECTOR XXH_SCALAR
2819 * @ingroup tuning
2820 * @brief Possible values for @ref XXH_VECTOR.
2822 * Note that these are actually implemented as macros.
2824 * If this is not defined, it is detected automatically.
2825 * @ref XXH_X86DISPATCH overrides this.
2827 enum XXH_VECTOR_TYPE /* fake enum */ {
2828 XXH_SCALAR = 0, /*!< Portable scalar version */
2829 XXH_SSE2 = 1, /*!<
2830 * SSE2 for Pentium 4, Opteron, all x86_64.
2832 * @note SSE2 is also guaranteed on Windows 10, macOS, and
2833 * Android x86.
2835 XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
2836 XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
2837 XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */
2838 XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
2841 * @ingroup tuning
2842 * @brief Selects the minimum alignment for XXH3's accumulators.
2844 * When using SIMD, this should match the alignment reqired for said vector
2845 * type, so, for example, 32 for AVX2.
2847 * Default: Auto detected.
2849 # define XXH_ACC_ALIGN 8
2850 #endif
2852 /* Actual definition */
2853 #ifndef XXH_DOXYGEN
2854 # define XXH_SCALAR 0
2855 # define XXH_SSE2 1
2856 # define XXH_AVX2 2
2857 # define XXH_AVX512 3
2858 # define XXH_NEON 4
2859 # define XXH_VSX 5
2860 #endif
2862 #ifndef XXH_VECTOR /* can be defined on command line */
2863 # if ( \
2864 defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
2865 || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
2866 ) && ( \
2867 defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
2868 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
2870 # define XXH_VECTOR XXH_NEON
2871 # elif defined(__AVX512F__)
2872 # define XXH_VECTOR XXH_AVX512
2873 # elif defined(__AVX2__)
2874 # define XXH_VECTOR XXH_AVX2
2875 # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
2876 # define XXH_VECTOR XXH_SSE2
2877 # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
2878 || (defined(__s390x__) && defined(__VEC__)) \
2879 && defined(__GNUC__) /* TODO: IBM XL */
2880 # define XXH_VECTOR XXH_VSX
2881 # else
2882 # define XXH_VECTOR XXH_SCALAR
2883 # endif
2884 #endif
2887 * Controls the alignment of the accumulator,
2888 * for compatibility with aligned vector loads, which are usually faster.
2890 #ifndef XXH_ACC_ALIGN
2891 # if defined(XXH_X86DISPATCH)
2892 # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
2893 # elif XXH_VECTOR == XXH_SCALAR /* scalar */
2894 # define XXH_ACC_ALIGN 8
2895 # elif XXH_VECTOR == XXH_SSE2 /* sse2 */
2896 # define XXH_ACC_ALIGN 16
2897 # elif XXH_VECTOR == XXH_AVX2 /* avx2 */
2898 # define XXH_ACC_ALIGN 32
2899 # elif XXH_VECTOR == XXH_NEON /* neon */
2900 # define XXH_ACC_ALIGN 16
2901 # elif XXH_VECTOR == XXH_VSX /* vsx */
2902 # define XXH_ACC_ALIGN 16
2903 # elif XXH_VECTOR == XXH_AVX512 /* avx512 */
2904 # define XXH_ACC_ALIGN 64
2905 # endif
2906 #endif
2908 #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
2909 || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
2910 # define XXH_SEC_ALIGN XXH_ACC_ALIGN
2911 #else
2912 # define XXH_SEC_ALIGN 8
2913 #endif
2916 * UGLY HACK:
2917 * GCC usually generates the best code with -O3 for xxHash.
2919 * However, when targeting AVX2, it is overzealous in its unrolling resulting
2920 * in code roughly 3/4 the speed of Clang.
2922 * There are other issues, such as GCC splitting _mm256_loadu_si256 into
2923 * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
2924 * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
2926 * That is why when compiling the AVX2 version, it is recommended to use either
2927 * -O2 -mavx2 -march=haswell
2928 * or
2929 * -O2 -mavx2 -mno-avx256-split-unaligned-load
2930 * for decent performance, or to use Clang instead.
2932 * Fortunately, we can control the first one with a pragma that forces GCC into
2933 * -O2, but the other one we can't control without "failed to inline always
2934 * inline function due to target mismatch" warnings.
2936 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
2937 && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2938 && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
2939 # pragma GCC push_options
2940 # pragma GCC optimize("-O2")
2941 #endif
2944 #if XXH_VECTOR == XXH_NEON
2946 * NEON's setup for vmlal_u32 is a little more complicated than it is on
2947 * SSE2, AVX2, and VSX.
2949 * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
2951 * To do the same operation, the 128-bit 'Q' register needs to be split into
2952 * two 64-bit 'D' registers, performing this operation::
2954 * [ a | b ]
2955 * | '---------. .--------' |
2956 * | x |
2957 * | .---------' '--------. |
2958 * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
2960 * Due to significant changes in aarch64, the fastest method for aarch64 is
2961 * completely different than the fastest method for ARMv7-A.
2963 * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
2964 * D11 will modify the high half of Q5. This is similar to how modifying AH
2965 * will only affect bits 8-15 of AX on x86.
2967 * VZIP takes two registers, and puts even lanes in one register and odd lanes
2968 * in the other.
2970 * On ARMv7-A, this strangely modifies both parameters in place instead of
2971 * taking the usual 3-operand form.
2973 * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
2974 * lower and upper halves of the Q register to end up with the high and low
2975 * halves where we want - all in one instruction.
2977 * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
2979 * Unfortunately we need inline assembly for this: Instructions modifying two
2980 * registers at once is not possible in GCC or Clang's IR, and they have to
2981 * create a copy.
2983 * aarch64 requires a different approach.
2985 * In order to make it easier to write a decent compiler for aarch64, many
2986 * quirks were removed, such as conditional execution.
2988 * NEON was also affected by this.
2990 * aarch64 cannot access the high bits of a Q-form register, and writes to a
2991 * D-form register zero the high bits, similar to how writes to W-form scalar
2992 * registers (or DWORD registers on x86_64) work.
2994 * The formerly free vget_high intrinsics now require a vext (with a few
2995 * exceptions)
2997 * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
2998 * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
2999 * operand.
3001 * The equivalent of the VZIP.32 on the lower and upper halves would be this
3002 * mess:
3004 * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
3005 * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
3006 * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
3008 * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
3010 * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
3011 * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
3013 * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
3017 * Function-like macro:
3018 * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
3020 * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
3021 * outHi = (uint32x2_t)(in >> 32);
3022 * in = UNDEFINED;
3025 # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
3026 && (defined(__GNUC__) || defined(__clang__)) \
3027 && (defined(__arm__) || defined(__thumb__) || defined(_M_ARM))
3028 # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
3029 do { \
3030 /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
3031 /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
3032 /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
3033 __asm__("vzip.32 %e0, %f0" : "+w" (in)); \
3034 (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
3035 (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
3036 } while (0)
3037 # else
3038 # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
3039 do { \
3040 (outLo) = vmovn_u64 (in); \
3041 (outHi) = vshrn_n_u64 ((in), 32); \
3042 } while (0)
3043 # endif
3044 #endif /* XXH_VECTOR == XXH_NEON */
3047 * VSX and Z Vector helpers.
3049 * This is very messy, and any pull requests to clean this up are welcome.
3051 * There are a lot of problems with supporting VSX and s390x, due to
3052 * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
3054 #if XXH_VECTOR == XXH_VSX
3055 # if defined(__s390x__)
3056 # include <s390intrin.h>
3057 # else
3058 /* gcc's altivec.h can have the unwanted consequence to unconditionally
3059 * #define bool, vector, and pixel keywords,
3060 * with bad consequences for programs already using these keywords for other purposes.
3061 * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
3062 * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
3063 * but it seems that, in some cases, it isn't.
3064 * Force the build macro to be defined, so that keywords are not altered.
3066 # if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
3067 # define __APPLE_ALTIVEC__
3068 # endif
3069 # include <altivec.h>
3070 # endif
3072 typedef __vector unsigned long long xxh_u64x2;
3073 typedef __vector unsigned char xxh_u8x16;
3074 typedef __vector unsigned xxh_u32x4;
3076 # ifndef XXH_VSX_BE
3077 # if defined(__BIG_ENDIAN__) \
3078 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
3079 # define XXH_VSX_BE 1
3080 # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
3081 # warning "-maltivec=be is not recommended. Please use native endianness."
3082 # define XXH_VSX_BE 1
3083 # else
3084 # define XXH_VSX_BE 0
3085 # endif
3086 # endif /* !defined(XXH_VSX_BE) */
3088 # if XXH_VSX_BE
3089 # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
3090 # define XXH_vec_revb vec_revb
3091 # else
3093 * A polyfill for POWER9's vec_revb().
3095 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
3097 xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
3098 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
3099 return vec_perm(val, val, vByteSwap);
3101 # endif
3102 # endif /* XXH_VSX_BE */
3105 * Performs an unaligned vector load and byte swaps it on big endian.
3107 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
3109 xxh_u64x2 ret;
3110 XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
3111 # if XXH_VSX_BE
3112 ret = XXH_vec_revb(ret);
3113 # endif
3114 return ret;
3118 * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
3120 * These intrinsics weren't added until GCC 8, despite existing for a while,
3121 * and they are endian dependent. Also, their meaning swap depending on version.
3122 * */
3123 # if defined(__s390x__)
3124 /* s390x is always big endian, no issue on this platform */
3125 # define XXH_vec_mulo vec_mulo
3126 # define XXH_vec_mule vec_mule
3127 # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
3128 /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
3129 # define XXH_vec_mulo __builtin_altivec_vmulouw
3130 # define XXH_vec_mule __builtin_altivec_vmuleuw
3131 # else
3132 /* gcc needs inline assembly */
3133 /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
3134 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
3136 xxh_u64x2 result;
3137 __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3138 return result;
3140 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
3142 xxh_u64x2 result;
3143 __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3144 return result;
3146 # endif /* XXH_vec_mulo, XXH_vec_mule */
3147 #endif /* XXH_VECTOR == XXH_VSX */
3150 /* prefetch
3151 * can be disabled, by declaring XXH_NO_PREFETCH build macro */
3152 #if defined(XXH_NO_PREFETCH)
3153 # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
3154 #else
3155 # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
3156 # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
3157 # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
3158 # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
3159 # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
3160 # else
3161 # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
3162 # endif
3163 #endif /* XXH_NO_PREFETCH */
3166 /* ==========================================
3167 * XXH3 default settings
3168 * ========================================== */
3170 #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
3172 #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
3173 # error "default keyset is not large enough"
3174 #endif
3176 /*! Pseudorandom secret taken directly from FARSH. */
3177 XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
3178 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
3179 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
3180 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
3181 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
3182 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
3183 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
3184 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
3185 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
3186 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
3187 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
3188 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
3189 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
3193 #ifdef XXH_OLD_NAMES
3194 # define kSecret XXH3_kSecret
3195 #endif
3197 #ifdef XXH_DOXYGEN
3199 * @brief Calculates a 32-bit to 64-bit long multiply.
3201 * Implemented as a macro.
3203 * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
3204 * need to (but it shouldn't need to anyways, it is about 7 instructions to do
3205 * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
3206 * use that instead of the normal method.
3208 * If you are compiling for platforms like Thumb-1 and don't have a better option,
3209 * you may also want to write your own long multiply routine here.
3211 * @param x, y Numbers to be multiplied
3212 * @return 64-bit product of the low 32 bits of @p x and @p y.
3214 XXH_FORCE_INLINE xxh_u64
3215 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
3217 return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
3219 #elif defined(_MSC_VER) && defined(_M_IX86)
3220 # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
3221 #else
3223 * Downcast + upcast is usually better than masking on older compilers like
3224 * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
3226 * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
3227 * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
3229 # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
3230 #endif
3233 * @brief Calculates a 64->128-bit long multiply.
3235 * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
3236 * version.
3238 * @param lhs , rhs The 64-bit integers to be multiplied
3239 * @return The 128-bit result represented in an @ref XXH128_hash_t.
3241 static XXH128_hash_t
3242 XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
3245 * GCC/Clang __uint128_t method.
3247 * On most 64-bit targets, GCC and Clang define a __uint128_t type.
3248 * This is usually the best way as it usually uses a native long 64-bit
3249 * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
3251 * Usually.
3253 * Despite being a 32-bit platform, Clang (and emscripten) define this type
3254 * despite not having the arithmetic for it. This results in a laggy
3255 * compiler builtin call which calculates a full 128-bit multiply.
3256 * In that case it is best to use the portable one.
3257 * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
3259 #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
3260 && defined(__SIZEOF_INT128__) \
3261 || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
3263 __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
3264 XXH128_hash_t r128;
3265 r128.low64 = (xxh_u64)(product);
3266 r128.high64 = (xxh_u64)(product >> 64);
3267 return r128;
3270 * MSVC for x64's _umul128 method.
3272 * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
3274 * This compiles to single operand MUL on x64.
3276 #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
3278 #ifndef _MSC_VER
3279 # pragma intrinsic(_umul128)
3280 #endif
3281 xxh_u64 product_high;
3282 xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
3283 XXH128_hash_t r128;
3284 r128.low64 = product_low;
3285 r128.high64 = product_high;
3286 return r128;
3289 * MSVC for ARM64's __umulh method.
3291 * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
3293 #elif defined(_M_ARM64) || defined(_M_ARM64EC)
3295 #ifndef _MSC_VER
3296 # pragma intrinsic(__umulh)
3297 #endif
3298 XXH128_hash_t r128;
3299 r128.low64 = lhs * rhs;
3300 r128.high64 = __umulh(lhs, rhs);
3301 return r128;
3303 #else
3305 * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
3307 * This is a fast and simple grade school multiply, which is shown below
3308 * with base 10 arithmetic instead of base 0x100000000.
3310 * 9 3 // D2 lhs = 93
3311 * x 7 5 // D2 rhs = 75
3312 * ----------
3313 * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
3314 * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
3315 * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
3316 * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
3317 * ---------
3318 * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
3319 * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
3320 * ---------
3321 * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
3323 * The reasons for adding the products like this are:
3324 * 1. It avoids manual carry tracking. Just like how
3325 * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
3326 * This avoids a lot of complexity.
3328 * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
3329 * instruction available in ARM's Digital Signal Processing extension
3330 * in 32-bit ARMv6 and later, which is shown below:
3332 * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
3334 * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
3335 * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
3336 * *RdHi = (xxh_u32)(product >> 32);
3339 * This instruction was designed for efficient long multiplication, and
3340 * allows this to be calculated in only 4 instructions at speeds
3341 * comparable to some 64-bit ALUs.
3343 * 3. It isn't terrible on other platforms. Usually this will be a couple
3344 * of 32-bit ADD/ADCs.
3347 /* First calculate all of the cross products. */
3348 xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
3349 xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
3350 xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
3351 xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
3353 /* Now add the products together. These will never overflow. */
3354 xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
3355 xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
3356 xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
3358 XXH128_hash_t r128;
3359 r128.low64 = lower;
3360 r128.high64 = upper;
3361 return r128;
3362 #endif
3366 * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
3368 * The reason for the separate function is to prevent passing too many structs
3369 * around by value. This will hopefully inline the multiply, but we don't force it.
3371 * @param lhs , rhs The 64-bit integers to multiply
3372 * @return The low 64 bits of the product XOR'd by the high 64 bits.
3373 * @see XXH_mult64to128()
3375 static xxh_u64
3376 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
3378 XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
3379 return product.low64 ^ product.high64;
3382 /*! Seems to produce slightly better code on GCC for some reason. */
3383 XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
3385 XXH_ASSERT(0 <= shift && shift < 64);
3386 return v64 ^ (v64 >> shift);
3390 * This is a fast avalanche stage,
3391 * suitable when input bits are already partially mixed
3393 static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
3395 h64 = XXH_xorshift64(h64, 37);
3396 h64 *= 0x165667919E3779F9ULL;
3397 h64 = XXH_xorshift64(h64, 32);
3398 return h64;
3402 * This is a stronger avalanche,
3403 * inspired by Pelle Evensen's rrmxmx
3404 * preferable when input has not been previously mixed
3406 static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
3408 /* this mix is inspired by Pelle Evensen's rrmxmx */
3409 h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
3410 h64 *= 0x9FB21C651E98DF25ULL;
3411 h64 ^= (h64 >> 35) + len ;
3412 h64 *= 0x9FB21C651E98DF25ULL;
3413 return XXH_xorshift64(h64, 28);
3417 /* ==========================================
3418 * Short keys
3419 * ==========================================
3420 * One of the shortcomings of XXH32 and XXH64 was that their performance was
3421 * sub-optimal on short lengths. It used an iterative algorithm which strongly
3422 * favored lengths that were a multiple of 4 or 8.
3424 * Instead of iterating over individual inputs, we use a set of single shot
3425 * functions which piece together a range of lengths and operate in constant time.
3427 * Additionally, the number of multiplies has been significantly reduced. This
3428 * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
3430 * Depending on the platform, this may or may not be faster than XXH32, but it
3431 * is almost guaranteed to be faster than XXH64.
3435 * At very short lengths, there isn't enough input to fully hide secrets, or use
3436 * the entire secret.
3438 * There is also only a limited amount of mixing we can do before significantly
3439 * impacting performance.
3441 * Therefore, we use different sections of the secret and always mix two secret
3442 * samples with an XOR. This should have no effect on performance on the
3443 * seedless or withSeed variants because everything _should_ be constant folded
3444 * by modern compilers.
3446 * The XOR mixing hides individual parts of the secret and increases entropy.
3448 * This adds an extra layer of strength for custom secrets.
3450 XXH_FORCE_INLINE XXH64_hash_t
3451 XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3453 XXH_ASSERT(input != NULL);
3454 XXH_ASSERT(1 <= len && len <= 3);
3455 XXH_ASSERT(secret != NULL);
3457 * len = 1: combined = { input[0], 0x01, input[0], input[0] }
3458 * len = 2: combined = { input[1], 0x02, input[0], input[1] }
3459 * len = 3: combined = { input[2], 0x03, input[0], input[1] }
3461 { xxh_u8 const c1 = input[0];
3462 xxh_u8 const c2 = input[len >> 1];
3463 xxh_u8 const c3 = input[len - 1];
3464 xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
3465 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
3466 xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
3467 xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
3468 return XXH64_avalanche(keyed);
3472 XXH_FORCE_INLINE XXH64_hash_t
3473 XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3475 XXH_ASSERT(input != NULL);
3476 XXH_ASSERT(secret != NULL);
3477 XXH_ASSERT(4 <= len && len <= 8);
3478 seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
3479 { xxh_u32 const input1 = XXH_readLE32(input);
3480 xxh_u32 const input2 = XXH_readLE32(input + len - 4);
3481 xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
3482 xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
3483 xxh_u64 const keyed = input64 ^ bitflip;
3484 return XXH3_rrmxmx(keyed, len);
3488 XXH_FORCE_INLINE XXH64_hash_t
3489 XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3491 XXH_ASSERT(input != NULL);
3492 XXH_ASSERT(secret != NULL);
3493 XXH_ASSERT(9 <= len && len <= 16);
3494 { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
3495 xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
3496 xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
3497 xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
3498 xxh_u64 const acc = len
3499 + XXH_swap64(input_lo) + input_hi
3500 + XXH3_mul128_fold64(input_lo, input_hi);
3501 return XXH3_avalanche(acc);
3505 XXH_FORCE_INLINE XXH64_hash_t
3506 XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3508 XXH_ASSERT(len <= 16);
3509 { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
3510 if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
3511 if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
3512 return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
3517 * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
3518 * multiplication by zero, affecting hashes of lengths 17 to 240.
3520 * However, they are very unlikely.
3522 * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
3523 * unseeded non-cryptographic hashes, it does not attempt to defend itself
3524 * against specially crafted inputs, only random inputs.
3526 * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
3527 * cancelling out the secret is taken an arbitrary number of times (addressed
3528 * in XXH3_accumulate_512), this collision is very unlikely with random inputs
3529 * and/or proper seeding:
3531 * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
3532 * function that is only called up to 16 times per hash with up to 240 bytes of
3533 * input.
3535 * This is not too bad for a non-cryptographic hash function, especially with
3536 * only 64 bit outputs.
3538 * The 128-bit variant (which trades some speed for strength) is NOT affected
3539 * by this, although it is always a good idea to use a proper seed if you care
3540 * about strength.
3542 XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
3543 const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
3545 #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
3546 && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
3547 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
3549 * UGLY HACK:
3550 * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
3551 * slower code.
3553 * By forcing seed64 into a register, we disrupt the cost model and
3554 * cause it to scalarize. See `XXH32_round()`
3556 * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
3557 * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
3558 * GCC 9.2, despite both emitting scalar code.
3560 * GCC generates much better scalar code than Clang for the rest of XXH3,
3561 * which is why finding a more optimal codepath is an interest.
3563 XXH_COMPILER_GUARD(seed64);
3564 #endif
3565 { xxh_u64 const input_lo = XXH_readLE64(input);
3566 xxh_u64 const input_hi = XXH_readLE64(input+8);
3567 return XXH3_mul128_fold64(
3568 input_lo ^ (XXH_readLE64(secret) + seed64),
3569 input_hi ^ (XXH_readLE64(secret+8) - seed64)
3574 /* For mid range keys, XXH3 uses a Mum-hash variant. */
3575 XXH_FORCE_INLINE XXH64_hash_t
3576 XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3577 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3578 XXH64_hash_t seed)
3580 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3581 XXH_ASSERT(16 < len && len <= 128);
3583 { xxh_u64 acc = len * XXH_PRIME64_1;
3584 if (len > 32) {
3585 if (len > 64) {
3586 if (len > 96) {
3587 acc += XXH3_mix16B(input+48, secret+96, seed);
3588 acc += XXH3_mix16B(input+len-64, secret+112, seed);
3590 acc += XXH3_mix16B(input+32, secret+64, seed);
3591 acc += XXH3_mix16B(input+len-48, secret+80, seed);
3593 acc += XXH3_mix16B(input+16, secret+32, seed);
3594 acc += XXH3_mix16B(input+len-32, secret+48, seed);
3596 acc += XXH3_mix16B(input+0, secret+0, seed);
3597 acc += XXH3_mix16B(input+len-16, secret+16, seed);
3599 return XXH3_avalanche(acc);
3603 #define XXH3_MIDSIZE_MAX 240
3605 XXH_NO_INLINE XXH64_hash_t
3606 XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3607 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3608 XXH64_hash_t seed)
3610 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3611 XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
3613 #define XXH3_MIDSIZE_STARTOFFSET 3
3614 #define XXH3_MIDSIZE_LASTOFFSET 17
3616 { xxh_u64 acc = len * XXH_PRIME64_1;
3617 int const nbRounds = (int)len / 16;
3618 int i;
3619 for (i=0; i<8; i++) {
3620 acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
3622 acc = XXH3_avalanche(acc);
3623 XXH_ASSERT(nbRounds >= 8);
3624 #if defined(__clang__) /* Clang */ \
3625 && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
3626 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
3628 * UGLY HACK:
3629 * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
3630 * In everywhere else, it uses scalar code.
3632 * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
3633 * would still be slower than UMAAL (see XXH_mult64to128).
3635 * Unfortunately, Clang doesn't handle the long multiplies properly and
3636 * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
3637 * scalarized into an ugly mess of VMOV.32 instructions.
3639 * This mess is difficult to avoid without turning autovectorization
3640 * off completely, but they are usually relatively minor and/or not
3641 * worth it to fix.
3643 * This loop is the easiest to fix, as unlike XXH32, this pragma
3644 * _actually works_ because it is a loop vectorization instead of an
3645 * SLP vectorization.
3647 #pragma clang loop vectorize(disable)
3648 #endif
3649 for (i=8 ; i < nbRounds; i++) {
3650 acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
3652 /* last bytes */
3653 acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
3654 return XXH3_avalanche(acc);
3659 /* ======= Long Keys ======= */
3661 #define XXH_STRIPE_LEN 64
3662 #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
3663 #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
3665 #ifdef XXH_OLD_NAMES
3666 # define STRIPE_LEN XXH_STRIPE_LEN
3667 # define ACC_NB XXH_ACC_NB
3668 #endif
3670 XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
3672 if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
3673 XXH_memcpy(dst, &v64, sizeof(v64));
3676 /* Several intrinsic functions below are supposed to accept __int64 as argument,
3677 * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
3678 * However, several environments do not define __int64 type,
3679 * requiring a workaround.
3681 #if !defined (__VMS) \
3682 && (defined (__cplusplus) \
3683 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
3684 typedef int64_t xxh_i64;
3685 #else
3686 /* the following type must have a width of 64-bit */
3687 typedef long long xxh_i64;
3688 #endif
3691 * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
3693 * It is a hardened version of UMAC, based off of FARSH's implementation.
3695 * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
3696 * implementations, and it is ridiculously fast.
3698 * We harden it by mixing the original input to the accumulators as well as the product.
3700 * This means that in the (relatively likely) case of a multiply by zero, the
3701 * original input is preserved.
3703 * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
3704 * cross-pollination, as otherwise the upper and lower halves would be
3705 * essentially independent.
3707 * This doesn't matter on 64-bit hashes since they all get merged together in
3708 * the end, so we skip the extra step.
3710 * Both XXH3_64bits and XXH3_128bits use this subroutine.
3713 #if (XXH_VECTOR == XXH_AVX512) \
3714 || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
3716 #ifndef XXH_TARGET_AVX512
3717 # define XXH_TARGET_AVX512 /* disable attribute target */
3718 #endif
3720 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3721 XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
3722 const void* XXH_RESTRICT input,
3723 const void* XXH_RESTRICT secret)
3725 __m512i* const xacc = (__m512i *) acc;
3726 XXH_ASSERT((((size_t)acc) & 63) == 0);
3727 XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3730 /* data_vec = input[0]; */
3731 __m512i const data_vec = _mm512_loadu_si512 (input);
3732 /* key_vec = secret[0]; */
3733 __m512i const key_vec = _mm512_loadu_si512 (secret);
3734 /* data_key = data_vec ^ key_vec; */
3735 __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3736 /* data_key_lo = data_key >> 32; */
3737 __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3738 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3739 __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
3740 /* xacc[0] += swap(data_vec); */
3741 __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
3742 __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
3743 /* xacc[0] += product; */
3744 *xacc = _mm512_add_epi64(product, sum);
3749 * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
3751 * Multiplication isn't perfect, as explained by Google in HighwayHash:
3753 * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
3754 * // varying degrees. In descending order of goodness, bytes
3755 * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
3756 * // As expected, the upper and lower bytes are much worse.
3758 * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
3760 * Since our algorithm uses a pseudorandom secret to add some variance into the
3761 * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
3763 * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
3764 * extraction.
3766 * Both XXH3_64bits and XXH3_128bits use this subroutine.
3769 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3770 XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3772 XXH_ASSERT((((size_t)acc) & 63) == 0);
3773 XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3774 { __m512i* const xacc = (__m512i*) acc;
3775 const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
3777 /* xacc[0] ^= (xacc[0] >> 47) */
3778 __m512i const acc_vec = *xacc;
3779 __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
3780 __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
3781 /* xacc[0] ^= secret; */
3782 __m512i const key_vec = _mm512_loadu_si512 (secret);
3783 __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3785 /* xacc[0] *= XXH_PRIME32_1; */
3786 __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3787 __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
3788 __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
3789 *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
3793 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
3794 XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3796 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
3797 XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
3798 XXH_ASSERT(((size_t)customSecret & 63) == 0);
3799 (void)(&XXH_writeLE64);
3800 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
3801 __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64));
3803 const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret);
3804 __m512i* const dest = ( __m512i*) customSecret;
3805 int i;
3806 XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
3807 XXH_ASSERT(((size_t)dest & 63) == 0);
3808 for (i=0; i < nbRounds; ++i) {
3809 /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
3810 * this will warn "discards 'const' qualifier". */
3811 union {
3812 const __m512i* cp;
3813 void* p;
3814 } remote_const_void;
3815 remote_const_void.cp = src + i;
3816 dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
3820 #endif
3822 #if (XXH_VECTOR == XXH_AVX2) \
3823 || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
3825 #ifndef XXH_TARGET_AVX2
3826 # define XXH_TARGET_AVX2 /* disable attribute target */
3827 #endif
3829 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3830 XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
3831 const void* XXH_RESTRICT input,
3832 const void* XXH_RESTRICT secret)
3834 XXH_ASSERT((((size_t)acc) & 31) == 0);
3835 { __m256i* const xacc = (__m256i *) acc;
3836 /* Unaligned. This is mainly for pointer arithmetic, and because
3837 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3838 const __m256i* const xinput = (const __m256i *) input;
3839 /* Unaligned. This is mainly for pointer arithmetic, and because
3840 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3841 const __m256i* const xsecret = (const __m256i *) secret;
3843 size_t i;
3844 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3845 /* data_vec = xinput[i]; */
3846 __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
3847 /* key_vec = xsecret[i]; */
3848 __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3849 /* data_key = data_vec ^ key_vec; */
3850 __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3851 /* data_key_lo = data_key >> 32; */
3852 __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3853 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3854 __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
3855 /* xacc[i] += swap(data_vec); */
3856 __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
3857 __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
3858 /* xacc[i] += product; */
3859 xacc[i] = _mm256_add_epi64(product, sum);
3863 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
3864 XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3866 XXH_ASSERT((((size_t)acc) & 31) == 0);
3867 { __m256i* const xacc = (__m256i*) acc;
3868 /* Unaligned. This is mainly for pointer arithmetic, and because
3869 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3870 const __m256i* const xsecret = (const __m256i *) secret;
3871 const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
3873 size_t i;
3874 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3875 /* xacc[i] ^= (xacc[i] >> 47) */
3876 __m256i const acc_vec = xacc[i];
3877 __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
3878 __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
3879 /* xacc[i] ^= xsecret; */
3880 __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3881 __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3883 /* xacc[i] *= XXH_PRIME32_1; */
3884 __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3885 __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
3886 __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
3887 xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
3892 XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3894 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
3895 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
3896 XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
3897 (void)(&XXH_writeLE64);
3898 XXH_PREFETCH(customSecret);
3899 { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
3901 const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret);
3902 __m256i* dest = ( __m256i*) customSecret;
3904 # if defined(__GNUC__) || defined(__clang__)
3906 * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3907 * - do not extract the secret from sse registers in the internal loop
3908 * - use less common registers, and avoid pushing these reg into stack
3910 XXH_COMPILER_GUARD(dest);
3911 # endif
3912 XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
3913 XXH_ASSERT(((size_t)dest & 31) == 0);
3915 /* GCC -O2 need unroll loop manually */
3916 dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
3917 dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
3918 dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
3919 dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
3920 dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
3921 dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
3925 #endif
3927 /* x86dispatch always generates SSE2 */
3928 #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
3930 #ifndef XXH_TARGET_SSE2
3931 # define XXH_TARGET_SSE2 /* disable attribute target */
3932 #endif
3934 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3935 XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
3936 const void* XXH_RESTRICT input,
3937 const void* XXH_RESTRICT secret)
3939 /* SSE2 is just a half-scale version of the AVX2 version. */
3940 XXH_ASSERT((((size_t)acc) & 15) == 0);
3941 { __m128i* const xacc = (__m128i *) acc;
3942 /* Unaligned. This is mainly for pointer arithmetic, and because
3943 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3944 const __m128i* const xinput = (const __m128i *) input;
3945 /* Unaligned. This is mainly for pointer arithmetic, and because
3946 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3947 const __m128i* const xsecret = (const __m128i *) secret;
3949 size_t i;
3950 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3951 /* data_vec = xinput[i]; */
3952 __m128i const data_vec = _mm_loadu_si128 (xinput+i);
3953 /* key_vec = xsecret[i]; */
3954 __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3955 /* data_key = data_vec ^ key_vec; */
3956 __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3957 /* data_key_lo = data_key >> 32; */
3958 __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3959 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3960 __m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
3961 /* xacc[i] += swap(data_vec); */
3962 __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
3963 __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
3964 /* xacc[i] += product; */
3965 xacc[i] = _mm_add_epi64(product, sum);
3969 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
3970 XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3972 XXH_ASSERT((((size_t)acc) & 15) == 0);
3973 { __m128i* const xacc = (__m128i*) acc;
3974 /* Unaligned. This is mainly for pointer arithmetic, and because
3975 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3976 const __m128i* const xsecret = (const __m128i *) secret;
3977 const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
3979 size_t i;
3980 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3981 /* xacc[i] ^= (xacc[i] >> 47) */
3982 __m128i const acc_vec = xacc[i];
3983 __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
3984 __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
3985 /* xacc[i] ^= xsecret[i]; */
3986 __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3987 __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3989 /* xacc[i] *= XXH_PRIME32_1; */
3990 __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3991 __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
3992 __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
3993 xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
3998 XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
4000 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
4001 (void)(&XXH_writeLE64);
4002 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
4004 # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
4005 /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
4006 XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
4007 __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
4008 # else
4009 __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
4010 # endif
4011 int i;
4013 const void* const src16 = XXH3_kSecret;
4014 __m128i* dst16 = (__m128i*) customSecret;
4015 # if defined(__GNUC__) || defined(__clang__)
4017 * On GCC & Clang, marking 'dest' as modified will cause the compiler:
4018 * - do not extract the secret from sse registers in the internal loop
4019 * - use less common registers, and avoid pushing these reg into stack
4021 XXH_COMPILER_GUARD(dst16);
4022 # endif
4023 XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
4024 XXH_ASSERT(((size_t)dst16 & 15) == 0);
4026 for (i=0; i < nbRounds; ++i) {
4027 dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
4031 #endif
4033 #if (XXH_VECTOR == XXH_NEON)
4035 XXH_FORCE_INLINE void
4036 XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
4037 const void* XXH_RESTRICT input,
4038 const void* XXH_RESTRICT secret)
4040 XXH_ASSERT((((size_t)acc) & 15) == 0);
4042 uint64x2_t* const xacc = (uint64x2_t *) acc;
4043 /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
4044 uint8_t const* const xinput = (const uint8_t *) input;
4045 uint8_t const* const xsecret = (const uint8_t *) secret;
4047 size_t i;
4048 for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
4049 /* data_vec = xinput[i]; */
4050 uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
4051 /* key_vec = xsecret[i]; */
4052 uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
4053 uint64x2_t data_key;
4054 uint32x2_t data_key_lo, data_key_hi;
4055 /* xacc[i] += swap(data_vec); */
4056 uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
4057 uint64x2_t const swapped = vextq_u64(data64, data64, 1);
4058 xacc[i] = vaddq_u64 (xacc[i], swapped);
4059 /* data_key = data_vec ^ key_vec; */
4060 data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
4061 /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
4062 * data_key_hi = (uint32x2_t) (data_key >> 32);
4063 * data_key = UNDEFINED; */
4064 XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4065 /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
4066 xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
4072 XXH_FORCE_INLINE void
4073 XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4075 XXH_ASSERT((((size_t)acc) & 15) == 0);
4077 { uint64x2_t* xacc = (uint64x2_t*) acc;
4078 uint8_t const* xsecret = (uint8_t const*) secret;
4079 uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
4081 size_t i;
4082 for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
4083 /* xacc[i] ^= (xacc[i] >> 47); */
4084 uint64x2_t acc_vec = xacc[i];
4085 uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
4086 uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
4088 /* xacc[i] ^= xsecret[i]; */
4089 uint8x16_t key_vec = vld1q_u8 (xsecret + (i * 16));
4090 uint64x2_t data_key = veorq_u64 (data_vec, vreinterpretq_u64_u8(key_vec));
4092 /* xacc[i] *= XXH_PRIME32_1 */
4093 uint32x2_t data_key_lo, data_key_hi;
4094 /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
4095 * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
4096 * xacc[i] = UNDEFINED; */
4097 XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4098 { /*
4099 * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
4101 * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
4102 * incorrectly "optimize" this:
4103 * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
4104 * shifted = vshll_n_u32(tmp, 32);
4105 * to this:
4106 * tmp = "vmulq_u64"(a, b); // no such thing!
4107 * shifted = vshlq_n_u64(tmp, 32);
4109 * However, unlike SSE, Clang lacks a 64-bit multiply routine
4110 * for NEON, and it scalarizes two 64-bit multiplies instead.
4112 * vmull_u32 has the same timing as vmul_u32, and it avoids
4113 * this bug completely.
4114 * See https://bugs.llvm.org/show_bug.cgi?id=39967
4116 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
4117 /* xacc[i] = prod_hi << 32; */
4118 xacc[i] = vshlq_n_u64(prod_hi, 32);
4119 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
4120 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
4125 #endif
4127 #if (XXH_VECTOR == XXH_VSX)
4129 XXH_FORCE_INLINE void
4130 XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
4131 const void* XXH_RESTRICT input,
4132 const void* XXH_RESTRICT secret)
4134 /* presumed aligned */
4135 unsigned int* const xacc = (unsigned int*) acc;
4136 xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
4137 xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
4138 xxh_u64x2 const v32 = { 32, 32 };
4139 size_t i;
4140 for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4141 /* data_vec = xinput[i]; */
4142 xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
4143 /* key_vec = xsecret[i]; */
4144 xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
4145 xxh_u64x2 const data_key = data_vec ^ key_vec;
4146 /* shuffled = (data_key << 32) | (data_key >> 32); */
4147 xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
4148 /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
4149 xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
4150 /* acc_vec = xacc[i]; */
4151 xxh_u64x2 acc_vec = (xxh_u64x2)vec_xl(0, xacc + 4 * i);
4152 acc_vec += product;
4154 /* swap high and low halves */
4155 #ifdef __s390x__
4156 acc_vec += vec_permi(data_vec, data_vec, 2);
4157 #else
4158 acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
4159 #endif
4160 /* xacc[i] = acc_vec; */
4161 vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i);
4165 XXH_FORCE_INLINE void
4166 XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4168 XXH_ASSERT((((size_t)acc) & 15) == 0);
4170 { xxh_u64x2* const xacc = (xxh_u64x2*) acc;
4171 const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
4172 /* constants */
4173 xxh_u64x2 const v32 = { 32, 32 };
4174 xxh_u64x2 const v47 = { 47, 47 };
4175 xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
4176 size_t i;
4177 for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4178 /* xacc[i] ^= (xacc[i] >> 47); */
4179 xxh_u64x2 const acc_vec = xacc[i];
4180 xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
4182 /* xacc[i] ^= xsecret[i]; */
4183 xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
4184 xxh_u64x2 const data_key = data_vec ^ key_vec;
4186 /* xacc[i] *= XXH_PRIME32_1 */
4187 /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
4188 xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
4189 /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
4190 xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
4191 xacc[i] = prod_odd + (prod_even << v32);
4195 #endif
4197 /* scalar variants - universal */
4199 XXH_FORCE_INLINE void
4200 XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
4201 const void* XXH_RESTRICT input,
4202 const void* XXH_RESTRICT secret)
4204 xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4205 const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
4206 const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
4207 size_t i;
4208 XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
4209 for (i=0; i < XXH_ACC_NB; i++) {
4210 xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
4211 xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
4212 xacc[i ^ 1] += data_val; /* swap adjacent lanes */
4213 xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
4217 XXH_FORCE_INLINE void
4218 XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4220 xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4221 const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
4222 size_t i;
4223 XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
4224 for (i=0; i < XXH_ACC_NB; i++) {
4225 xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
4226 xxh_u64 acc64 = xacc[i];
4227 acc64 = XXH_xorshift64(acc64, 47);
4228 acc64 ^= key64;
4229 acc64 *= XXH_PRIME32_1;
4230 xacc[i] = acc64;
4234 XXH_FORCE_INLINE void
4235 XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
4238 * We need a separate pointer for the hack below,
4239 * which requires a non-const pointer.
4240 * Any decent compiler will optimize this out otherwise.
4242 const xxh_u8* kSecretPtr = XXH3_kSecret;
4243 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
4245 #if defined(__clang__) && defined(__aarch64__)
4247 * UGLY HACK:
4248 * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
4249 * placed sequentially, in order, at the top of the unrolled loop.
4251 * While MOVK is great for generating constants (2 cycles for a 64-bit
4252 * constant compared to 4 cycles for LDR), long MOVK chains stall the
4253 * integer pipelines:
4254 * I L S
4255 * MOVK
4256 * MOVK
4257 * MOVK
4258 * MOVK
4259 * ADD
4260 * SUB STR
4261 * STR
4262 * By forcing loads from memory (as the asm line causes Clang to assume
4263 * that XXH3_kSecretPtr has been changed), the pipelines are used more
4264 * efficiently:
4265 * I L S
4266 * LDR
4267 * ADD LDR
4268 * SUB STR
4269 * STR
4270 * XXH3_64bits_withSeed, len == 256, Snapdragon 835
4271 * without hack: 2654.4 MB/s
4272 * with hack: 3202.9 MB/s
4274 XXH_COMPILER_GUARD(kSecretPtr);
4275 #endif
4277 * Note: in debug mode, this overrides the asm optimization
4278 * and Clang will emit MOVK chains again.
4280 XXH_ASSERT(kSecretPtr == XXH3_kSecret);
4282 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
4283 int i;
4284 for (i=0; i < nbRounds; i++) {
4286 * The asm hack causes Clang to assume that kSecretPtr aliases with
4287 * customSecret, and on aarch64, this prevented LDP from merging two
4288 * loads together for free. Putting the loads together before the stores
4289 * properly generates LDP.
4291 xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
4292 xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
4293 XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
4294 XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
4299 typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
4300 typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
4301 typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
4304 #if (XXH_VECTOR == XXH_AVX512)
4306 #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
4307 #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
4308 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
4310 #elif (XXH_VECTOR == XXH_AVX2)
4312 #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
4313 #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
4314 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
4316 #elif (XXH_VECTOR == XXH_SSE2)
4318 #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
4319 #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
4320 #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
4322 #elif (XXH_VECTOR == XXH_NEON)
4324 #define XXH3_accumulate_512 XXH3_accumulate_512_neon
4325 #define XXH3_scrambleAcc XXH3_scrambleAcc_neon
4326 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4328 #elif (XXH_VECTOR == XXH_VSX)
4330 #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
4331 #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
4332 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4334 #else /* scalar */
4336 #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
4337 #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
4338 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4340 #endif
4344 #ifndef XXH_PREFETCH_DIST
4345 # ifdef __clang__
4346 # define XXH_PREFETCH_DIST 320
4347 # else
4348 # if (XXH_VECTOR == XXH_AVX512)
4349 # define XXH_PREFETCH_DIST 512
4350 # else
4351 # define XXH_PREFETCH_DIST 384
4352 # endif
4353 # endif /* __clang__ */
4354 #endif /* XXH_PREFETCH_DIST */
4357 * XXH3_accumulate()
4358 * Loops over XXH3_accumulate_512().
4359 * Assumption: nbStripes will not overflow the secret size
4361 XXH_FORCE_INLINE void
4362 XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
4363 const xxh_u8* XXH_RESTRICT input,
4364 const xxh_u8* XXH_RESTRICT secret,
4365 size_t nbStripes,
4366 XXH3_f_accumulate_512 f_acc512)
4368 size_t n;
4369 for (n = 0; n < nbStripes; n++ ) {
4370 const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
4371 XXH_PREFETCH(in + XXH_PREFETCH_DIST);
4372 f_acc512(acc,
4374 secret + n*XXH_SECRET_CONSUME_RATE);
4378 XXH_FORCE_INLINE void
4379 XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
4380 const xxh_u8* XXH_RESTRICT input, size_t len,
4381 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4382 XXH3_f_accumulate_512 f_acc512,
4383 XXH3_f_scrambleAcc f_scramble)
4385 size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
4386 size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
4387 size_t const nb_blocks = (len - 1) / block_len;
4389 size_t n;
4391 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4393 for (n = 0; n < nb_blocks; n++) {
4394 XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
4395 f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
4398 /* last partial block */
4399 XXH_ASSERT(len > XXH_STRIPE_LEN);
4400 { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
4401 XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
4402 XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
4404 /* last stripe */
4405 { const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
4406 #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
4407 f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
4411 XXH_FORCE_INLINE xxh_u64
4412 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
4414 return XXH3_mul128_fold64(
4415 acc[0] ^ XXH_readLE64(secret),
4416 acc[1] ^ XXH_readLE64(secret+8) );
4419 static XXH64_hash_t
4420 XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
4422 xxh_u64 result64 = start;
4423 size_t i = 0;
4425 for (i = 0; i < 4; i++) {
4426 result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
4427 #if defined(__clang__) /* Clang */ \
4428 && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
4429 && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
4430 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
4432 * UGLY HACK:
4433 * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
4434 * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
4435 * XXH3_64bits, len == 256, Snapdragon 835:
4436 * without hack: 2063.7 MB/s
4437 * with hack: 2560.7 MB/s
4439 XXH_COMPILER_GUARD(result64);
4440 #endif
4443 return XXH3_avalanche(result64);
4446 #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
4447 XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
4449 XXH_FORCE_INLINE XXH64_hash_t
4450 XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
4451 const void* XXH_RESTRICT secret, size_t secretSize,
4452 XXH3_f_accumulate_512 f_acc512,
4453 XXH3_f_scrambleAcc f_scramble)
4455 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
4457 XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
4459 /* converge into final hash */
4460 XXH_STATIC_ASSERT(sizeof(acc) == 64);
4461 /* do not align on 8, so that the secret is different from the accumulator */
4462 #define XXH_SECRET_MERGEACCS_START 11
4463 XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4464 return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
4468 * It's important for performance to transmit secret's size (when it's static)
4469 * so that the compiler can properly optimize the vectorized loop.
4470 * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
4472 XXH_FORCE_INLINE XXH64_hash_t
4473 XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
4474 XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4476 (void)seed64;
4477 return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
4481 * It's preferable for performance that XXH3_hashLong is not inlined,
4482 * as it results in a smaller function for small data, easier to the instruction cache.
4483 * Note that inside this no_inline function, we do inline the internal loop,
4484 * and provide a statically defined secret size to allow optimization of vector loop.
4486 XXH_NO_INLINE XXH64_hash_t
4487 XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
4488 XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4490 (void)seed64; (void)secret; (void)secretLen;
4491 return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
4495 * XXH3_hashLong_64b_withSeed():
4496 * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
4497 * and then use this key for long mode hashing.
4499 * This operation is decently fast but nonetheless costs a little bit of time.
4500 * Try to avoid it whenever possible (typically when seed==0).
4502 * It's important for performance that XXH3_hashLong is not inlined. Not sure
4503 * why (uop cache maybe?), but the difference is large and easily measurable.
4505 XXH_FORCE_INLINE XXH64_hash_t
4506 XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
4507 XXH64_hash_t seed,
4508 XXH3_f_accumulate_512 f_acc512,
4509 XXH3_f_scrambleAcc f_scramble,
4510 XXH3_f_initCustomSecret f_initSec)
4512 if (seed == 0)
4513 return XXH3_hashLong_64b_internal(input, len,
4514 XXH3_kSecret, sizeof(XXH3_kSecret),
4515 f_acc512, f_scramble);
4516 { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
4517 f_initSec(secret, seed);
4518 return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
4519 f_acc512, f_scramble);
4524 * It's important for performance that XXH3_hashLong is not inlined.
4526 XXH_NO_INLINE XXH64_hash_t
4527 XXH3_hashLong_64b_withSeed(const void* input, size_t len,
4528 XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
4530 (void)secret; (void)secretLen;
4531 return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
4532 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
4536 typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
4537 XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
4539 XXH_FORCE_INLINE XXH64_hash_t
4540 XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
4541 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
4542 XXH3_hashLong64_f f_hashLong)
4544 XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
4546 * If an action is to be taken if `secretLen` condition is not respected,
4547 * it should be done here.
4548 * For now, it's a contract pre-condition.
4549 * Adding a check and a branch here would cost performance at every hash.
4550 * Also, note that function signature doesn't offer room to return an error.
4552 if (len <= 16)
4553 return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
4554 if (len <= 128)
4555 return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4556 if (len <= XXH3_MIDSIZE_MAX)
4557 return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4558 return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
4562 /* === Public entry point === */
4564 /*! @ingroup xxh3_family */
4565 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
4567 return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
4570 /*! @ingroup xxh3_family */
4571 XXH_PUBLIC_API XXH64_hash_t
4572 XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
4574 return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
4577 /*! @ingroup xxh3_family */
4578 XXH_PUBLIC_API XXH64_hash_t
4579 XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
4581 return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
4584 XXH_PUBLIC_API XXH64_hash_t
4585 XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
4587 if (len <= XXH3_MIDSIZE_MAX)
4588 return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
4589 return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize);
4593 /* === XXH3 streaming === */
4596 * Malloc's a pointer that is always aligned to align.
4598 * This must be freed with `XXH_alignedFree()`.
4600 * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
4601 * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
4602 * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
4604 * This underalignment previously caused a rather obvious crash which went
4605 * completely unnoticed due to XXH3_createState() not actually being tested.
4606 * Credit to RedSpah for noticing this bug.
4608 * The alignment is done manually: Functions like posix_memalign or _mm_malloc
4609 * are avoided: To maintain portability, we would have to write a fallback
4610 * like this anyways, and besides, testing for the existence of library
4611 * functions without relying on external build tools is impossible.
4613 * The method is simple: Overallocate, manually align, and store the offset
4614 * to the original behind the returned pointer.
4616 * Align must be a power of 2 and 8 <= align <= 128.
4618 static void* XXH_alignedMalloc(size_t s, size_t align)
4620 XXH_ASSERT(align <= 128 && align >= 8); /* range check */
4621 XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
4622 XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
4623 { /* Overallocate to make room for manual realignment and an offset byte */
4624 xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
4625 if (base != NULL) {
4627 * Get the offset needed to align this pointer.
4629 * Even if the returned pointer is aligned, there will always be
4630 * at least one byte to store the offset to the original pointer.
4632 size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
4633 /* Add the offset for the now-aligned pointer */
4634 xxh_u8* ptr = base + offset;
4636 XXH_ASSERT((size_t)ptr % align == 0);
4638 /* Store the offset immediately before the returned pointer. */
4639 ptr[-1] = (xxh_u8)offset;
4640 return ptr;
4642 return NULL;
4646 * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
4647 * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
4649 static void XXH_alignedFree(void* p)
4651 if (p != NULL) {
4652 xxh_u8* ptr = (xxh_u8*)p;
4653 /* Get the offset byte we added in XXH_malloc. */
4654 xxh_u8 offset = ptr[-1];
4655 /* Free the original malloc'd pointer */
4656 xxh_u8* base = ptr - offset;
4657 XXH_free(base);
4660 /*! @ingroup xxh3_family */
4661 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
4663 XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
4664 if (state==NULL) return NULL;
4665 XXH3_INITSTATE(state);
4666 return state;
4669 /*! @ingroup xxh3_family */
4670 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
4672 XXH_alignedFree(statePtr);
4673 return XXH_OK;
4676 /*! @ingroup xxh3_family */
4677 XXH_PUBLIC_API void
4678 XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
4680 XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
4683 static void
4684 XXH3_reset_internal(XXH3_state_t* statePtr,
4685 XXH64_hash_t seed,
4686 const void* secret, size_t secretSize)
4688 size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
4689 size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
4690 XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
4691 XXH_ASSERT(statePtr != NULL);
4692 /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
4693 memset((char*)statePtr + initStart, 0, initLength);
4694 statePtr->acc[0] = XXH_PRIME32_3;
4695 statePtr->acc[1] = XXH_PRIME64_1;
4696 statePtr->acc[2] = XXH_PRIME64_2;
4697 statePtr->acc[3] = XXH_PRIME64_3;
4698 statePtr->acc[4] = XXH_PRIME64_4;
4699 statePtr->acc[5] = XXH_PRIME32_2;
4700 statePtr->acc[6] = XXH_PRIME64_5;
4701 statePtr->acc[7] = XXH_PRIME32_1;
4702 statePtr->seed = seed;
4703 statePtr->useSeed = (seed != 0);
4704 statePtr->extSecret = (const unsigned char*)secret;
4705 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4706 statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
4707 statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
4710 /*! @ingroup xxh3_family */
4711 XXH_PUBLIC_API XXH_errorcode
4712 XXH3_64bits_reset(XXH3_state_t* statePtr)
4714 if (statePtr == NULL) return XXH_ERROR;
4715 XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4716 return XXH_OK;
4719 /*! @ingroup xxh3_family */
4720 XXH_PUBLIC_API XXH_errorcode
4721 XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4723 if (statePtr == NULL) return XXH_ERROR;
4724 XXH3_reset_internal(statePtr, 0, secret, secretSize);
4725 if (secret == NULL) return XXH_ERROR;
4726 if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4727 return XXH_OK;
4730 /*! @ingroup xxh3_family */
4731 XXH_PUBLIC_API XXH_errorcode
4732 XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4734 if (statePtr == NULL) return XXH_ERROR;
4735 if (seed==0) return XXH3_64bits_reset(statePtr);
4736 if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
4737 XXH3_initCustomSecret(statePtr->customSecret, seed);
4738 XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4739 return XXH_OK;
4742 /*! @ingroup xxh3_family */
4743 XXH_PUBLIC_API XXH_errorcode
4744 XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64)
4746 if (statePtr == NULL) return XXH_ERROR;
4747 if (secret == NULL) return XXH_ERROR;
4748 if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4749 XXH3_reset_internal(statePtr, seed64, secret, secretSize);
4750 statePtr->useSeed = 1; /* always, even if seed64==0 */
4751 return XXH_OK;
4754 /* Note : when XXH3_consumeStripes() is invoked,
4755 * there must be a guarantee that at least one more byte must be consumed from input
4756 * so that the function can blindly consume all stripes using the "normal" secret segment */
4757 XXH_FORCE_INLINE void
4758 XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
4759 size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
4760 const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
4761 const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
4762 XXH3_f_accumulate_512 f_acc512,
4763 XXH3_f_scrambleAcc f_scramble)
4765 XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
4766 XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
4767 if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
4768 /* need a scrambling operation */
4769 size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
4770 size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
4771 XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
4772 f_scramble(acc, secret + secretLimit);
4773 XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
4774 *nbStripesSoFarPtr = nbStripesAfterBlock;
4775 } else {
4776 XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
4777 *nbStripesSoFarPtr += nbStripes;
4781 #ifndef XXH3_STREAM_USE_STACK
4782 # ifndef __clang__ /* clang doesn't need additional stack space */
4783 # define XXH3_STREAM_USE_STACK 1
4784 # endif
4785 #endif
4787 * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
4789 XXH_FORCE_INLINE XXH_errorcode
4790 XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
4791 const xxh_u8* XXH_RESTRICT input, size_t len,
4792 XXH3_f_accumulate_512 f_acc512,
4793 XXH3_f_scrambleAcc f_scramble)
4795 if (input==NULL) {
4796 XXH_ASSERT(len == 0);
4797 return XXH_OK;
4800 XXH_ASSERT(state != NULL);
4801 { const xxh_u8* const bEnd = input + len;
4802 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4803 #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
4804 /* For some reason, gcc and MSVC seem to suffer greatly
4805 * when operating accumulators directly into state.
4806 * Operating into stack space seems to enable proper optimization.
4807 * clang, on the other hand, doesn't seem to need this trick */
4808 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc));
4809 #else
4810 xxh_u64* XXH_RESTRICT const acc = state->acc;
4811 #endif
4812 state->totalLen += len;
4813 XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
4815 /* small input : just fill in tmp buffer */
4816 if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {
4817 XXH_memcpy(state->buffer + state->bufferedSize, input, len);
4818 state->bufferedSize += (XXH32_hash_t)len;
4819 return XXH_OK;
4822 /* total input is now > XXH3_INTERNALBUFFER_SIZE */
4823 #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
4824 XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
4827 * Internal buffer is partially filled (always, except at beginning)
4828 * Complete it, then consume it.
4830 if (state->bufferedSize) {
4831 size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
4832 XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
4833 input += loadSize;
4834 XXH3_consumeStripes(acc,
4835 &state->nbStripesSoFar, state->nbStripesPerBlock,
4836 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
4837 secret, state->secretLimit,
4838 f_acc512, f_scramble);
4839 state->bufferedSize = 0;
4841 XXH_ASSERT(input < bEnd);
4843 /* large input to consume : ingest per full block */
4844 if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) {
4845 size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
4846 XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar);
4847 /* join to current block's end */
4848 { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar;
4849 XXH_ASSERT(nbStripes <= nbStripes);
4850 XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512);
4851 f_scramble(acc, secret + state->secretLimit);
4852 state->nbStripesSoFar = 0;
4853 input += nbStripesToEnd * XXH_STRIPE_LEN;
4854 nbStripes -= nbStripesToEnd;
4856 /* consume per entire blocks */
4857 while(nbStripes >= state->nbStripesPerBlock) {
4858 XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512);
4859 f_scramble(acc, secret + state->secretLimit);
4860 input += state->nbStripesPerBlock * XXH_STRIPE_LEN;
4861 nbStripes -= state->nbStripesPerBlock;
4863 /* consume last partial block */
4864 XXH3_accumulate(acc, input, secret, nbStripes, f_acc512);
4865 input += nbStripes * XXH_STRIPE_LEN;
4866 XXH_ASSERT(input < bEnd); /* at least some bytes left */
4867 state->nbStripesSoFar = nbStripes;
4868 /* buffer predecessor of last partial stripe */
4869 XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4870 XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN);
4871 } else {
4872 /* content to consume <= block size */
4873 /* Consume input by a multiple of internal buffer size */
4874 if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
4875 const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
4876 do {
4877 XXH3_consumeStripes(acc,
4878 &state->nbStripesSoFar, state->nbStripesPerBlock,
4879 input, XXH3_INTERNALBUFFER_STRIPES,
4880 secret, state->secretLimit,
4881 f_acc512, f_scramble);
4882 input += XXH3_INTERNALBUFFER_SIZE;
4883 } while (input<limit);
4884 /* buffer predecessor of last partial stripe */
4885 XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4889 /* Some remaining input (always) : buffer it */
4890 XXH_ASSERT(input < bEnd);
4891 XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
4892 XXH_ASSERT(state->bufferedSize == 0);
4893 XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
4894 state->bufferedSize = (XXH32_hash_t)(bEnd-input);
4895 #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
4896 /* save stack accumulators into state */
4897 memcpy(state->acc, acc, sizeof(acc));
4898 #endif
4901 return XXH_OK;
4904 /*! @ingroup xxh3_family */
4905 XXH_PUBLIC_API XXH_errorcode
4906 XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
4908 return XXH3_update(state, (const xxh_u8*)input, len,
4909 XXH3_accumulate_512, XXH3_scrambleAcc);
4913 XXH_FORCE_INLINE void
4914 XXH3_digest_long (XXH64_hash_t* acc,
4915 const XXH3_state_t* state,
4916 const unsigned char* secret)
4919 * Digest on a local copy. This way, the state remains unaltered, and it can
4920 * continue ingesting more input afterwards.
4922 XXH_memcpy(acc, state->acc, sizeof(state->acc));
4923 if (state->bufferedSize >= XXH_STRIPE_LEN) {
4924 size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
4925 size_t nbStripesSoFar = state->nbStripesSoFar;
4926 XXH3_consumeStripes(acc,
4927 &nbStripesSoFar, state->nbStripesPerBlock,
4928 state->buffer, nbStripes,
4929 secret, state->secretLimit,
4930 XXH3_accumulate_512, XXH3_scrambleAcc);
4931 /* last stripe */
4932 XXH3_accumulate_512(acc,
4933 state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
4934 secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4935 } else { /* bufferedSize < XXH_STRIPE_LEN */
4936 xxh_u8 lastStripe[XXH_STRIPE_LEN];
4937 size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
4938 XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
4939 XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
4940 XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
4941 XXH3_accumulate_512(acc,
4942 lastStripe,
4943 secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4947 /*! @ingroup xxh3_family */
4948 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
4950 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4951 if (state->totalLen > XXH3_MIDSIZE_MAX) {
4952 XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4953 XXH3_digest_long(acc, state, secret);
4954 return XXH3_mergeAccs(acc,
4955 secret + XXH_SECRET_MERGEACCS_START,
4956 (xxh_u64)state->totalLen * XXH_PRIME64_1);
4958 /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
4959 if (state->useSeed)
4960 return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4961 return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
4962 secret, state->secretLimit + XXH_STRIPE_LEN);
4967 /* ==========================================
4968 * XXH3 128 bits (a.k.a XXH128)
4969 * ==========================================
4970 * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
4971 * even without counting the significantly larger output size.
4973 * For example, extra steps are taken to avoid the seed-dependent collisions
4974 * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
4976 * This strength naturally comes at the cost of some speed, especially on short
4977 * lengths. Note that longer hashes are about as fast as the 64-bit version
4978 * due to it using only a slight modification of the 64-bit loop.
4980 * XXH128 is also more oriented towards 64-bit machines. It is still extremely
4981 * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
4984 XXH_FORCE_INLINE XXH128_hash_t
4985 XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4987 /* A doubled version of 1to3_64b with different constants. */
4988 XXH_ASSERT(input != NULL);
4989 XXH_ASSERT(1 <= len && len <= 3);
4990 XXH_ASSERT(secret != NULL);
4992 * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
4993 * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
4994 * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
4996 { xxh_u8 const c1 = input[0];
4997 xxh_u8 const c2 = input[len >> 1];
4998 xxh_u8 const c3 = input[len - 1];
4999 xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
5000 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
5001 xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
5002 xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
5003 xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
5004 xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
5005 xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
5006 XXH128_hash_t h128;
5007 h128.low64 = XXH64_avalanche(keyed_lo);
5008 h128.high64 = XXH64_avalanche(keyed_hi);
5009 return h128;
5013 XXH_FORCE_INLINE XXH128_hash_t
5014 XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5016 XXH_ASSERT(input != NULL);
5017 XXH_ASSERT(secret != NULL);
5018 XXH_ASSERT(4 <= len && len <= 8);
5019 seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
5020 { xxh_u32 const input_lo = XXH_readLE32(input);
5021 xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
5022 xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
5023 xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
5024 xxh_u64 const keyed = input_64 ^ bitflip;
5026 /* Shift len to the left to ensure it is even, this avoids even multiplies. */
5027 XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
5029 m128.high64 += (m128.low64 << 1);
5030 m128.low64 ^= (m128.high64 >> 3);
5032 m128.low64 = XXH_xorshift64(m128.low64, 35);
5033 m128.low64 *= 0x9FB21C651E98DF25ULL;
5034 m128.low64 = XXH_xorshift64(m128.low64, 28);
5035 m128.high64 = XXH3_avalanche(m128.high64);
5036 return m128;
5040 XXH_FORCE_INLINE XXH128_hash_t
5041 XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5043 XXH_ASSERT(input != NULL);
5044 XXH_ASSERT(secret != NULL);
5045 XXH_ASSERT(9 <= len && len <= 16);
5046 { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
5047 xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
5048 xxh_u64 const input_lo = XXH_readLE64(input);
5049 xxh_u64 input_hi = XXH_readLE64(input + len - 8);
5050 XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
5052 * Put len in the middle of m128 to ensure that the length gets mixed to
5053 * both the low and high bits in the 128x64 multiply below.
5055 m128.low64 += (xxh_u64)(len - 1) << 54;
5056 input_hi ^= bitfliph;
5058 * Add the high 32 bits of input_hi to the high 32 bits of m128, then
5059 * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
5060 * the high 64 bits of m128.
5062 * The best approach to this operation is different on 32-bit and 64-bit.
5064 if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
5066 * 32-bit optimized version, which is more readable.
5068 * On 32-bit, it removes an ADC and delays a dependency between the two
5069 * halves of m128.high64, but it generates an extra mask on 64-bit.
5071 m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
5072 } else {
5074 * 64-bit optimized (albeit more confusing) version.
5076 * Uses some properties of addition and multiplication to remove the mask:
5078 * Let:
5079 * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
5080 * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
5081 * c = XXH_PRIME32_2
5083 * a + (b * c)
5084 * Inverse Property: x + y - x == y
5085 * a + (b * (1 + c - 1))
5086 * Distributive Property: x * (y + z) == (x * y) + (x * z)
5087 * a + (b * 1) + (b * (c - 1))
5088 * Identity Property: x * 1 == x
5089 * a + b + (b * (c - 1))
5091 * Substitute a, b, and c:
5092 * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5094 * Since input_hi.hi + input_hi.lo == input_hi, we get this:
5095 * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5097 m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
5099 /* m128 ^= XXH_swap64(m128 >> 64); */
5100 m128.low64 ^= XXH_swap64(m128.high64);
5102 { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
5103 XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
5104 h128.high64 += m128.high64 * XXH_PRIME64_2;
5106 h128.low64 = XXH3_avalanche(h128.low64);
5107 h128.high64 = XXH3_avalanche(h128.high64);
5108 return h128;
5113 * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
5115 XXH_FORCE_INLINE XXH128_hash_t
5116 XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5118 XXH_ASSERT(len <= 16);
5119 { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
5120 if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
5121 if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
5122 { XXH128_hash_t h128;
5123 xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
5124 xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
5125 h128.low64 = XXH64_avalanche(seed ^ bitflipl);
5126 h128.high64 = XXH64_avalanche( seed ^ bitfliph);
5127 return h128;
5132 * A bit slower than XXH3_mix16B, but handles multiply by zero better.
5134 XXH_FORCE_INLINE XXH128_hash_t
5135 XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
5136 const xxh_u8* secret, XXH64_hash_t seed)
5138 acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
5139 acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
5140 acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
5141 acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
5142 return acc;
5146 XXH_FORCE_INLINE XXH128_hash_t
5147 XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5148 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5149 XXH64_hash_t seed)
5151 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5152 XXH_ASSERT(16 < len && len <= 128);
5154 { XXH128_hash_t acc;
5155 acc.low64 = len * XXH_PRIME64_1;
5156 acc.high64 = 0;
5157 if (len > 32) {
5158 if (len > 64) {
5159 if (len > 96) {
5160 acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
5162 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
5164 acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
5166 acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
5167 { XXH128_hash_t h128;
5168 h128.low64 = acc.low64 + acc.high64;
5169 h128.high64 = (acc.low64 * XXH_PRIME64_1)
5170 + (acc.high64 * XXH_PRIME64_4)
5171 + ((len - seed) * XXH_PRIME64_2);
5172 h128.low64 = XXH3_avalanche(h128.low64);
5173 h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5174 return h128;
5179 XXH_NO_INLINE XXH128_hash_t
5180 XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5181 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5182 XXH64_hash_t seed)
5184 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5185 XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
5187 { XXH128_hash_t acc;
5188 int const nbRounds = (int)len / 32;
5189 int i;
5190 acc.low64 = len * XXH_PRIME64_1;
5191 acc.high64 = 0;
5192 for (i=0; i<4; i++) {
5193 acc = XXH128_mix32B(acc,
5194 input + (32 * i),
5195 input + (32 * i) + 16,
5196 secret + (32 * i),
5197 seed);
5199 acc.low64 = XXH3_avalanche(acc.low64);
5200 acc.high64 = XXH3_avalanche(acc.high64);
5201 XXH_ASSERT(nbRounds >= 4);
5202 for (i=4 ; i < nbRounds; i++) {
5203 acc = XXH128_mix32B(acc,
5204 input + (32 * i),
5205 input + (32 * i) + 16,
5206 secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
5207 seed);
5209 /* last bytes */
5210 acc = XXH128_mix32B(acc,
5211 input + len - 16,
5212 input + len - 32,
5213 secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
5214 0ULL - seed);
5216 { XXH128_hash_t h128;
5217 h128.low64 = acc.low64 + acc.high64;
5218 h128.high64 = (acc.low64 * XXH_PRIME64_1)
5219 + (acc.high64 * XXH_PRIME64_4)
5220 + ((len - seed) * XXH_PRIME64_2);
5221 h128.low64 = XXH3_avalanche(h128.low64);
5222 h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5223 return h128;
5228 XXH_FORCE_INLINE XXH128_hash_t
5229 XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
5230 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5231 XXH3_f_accumulate_512 f_acc512,
5232 XXH3_f_scrambleAcc f_scramble)
5234 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
5236 XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
5238 /* converge into final hash */
5239 XXH_STATIC_ASSERT(sizeof(acc) == 64);
5240 XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5241 { XXH128_hash_t h128;
5242 h128.low64 = XXH3_mergeAccs(acc,
5243 secret + XXH_SECRET_MERGEACCS_START,
5244 (xxh_u64)len * XXH_PRIME64_1);
5245 h128.high64 = XXH3_mergeAccs(acc,
5246 secret + secretSize
5247 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5248 ~((xxh_u64)len * XXH_PRIME64_2));
5249 return h128;
5254 * It's important for performance that XXH3_hashLong is not inlined.
5256 XXH_NO_INLINE XXH128_hash_t
5257 XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
5258 XXH64_hash_t seed64,
5259 const void* XXH_RESTRICT secret, size_t secretLen)
5261 (void)seed64; (void)secret; (void)secretLen;
5262 return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
5263 XXH3_accumulate_512, XXH3_scrambleAcc);
5267 * It's important for performance to pass @secretLen (when it's static)
5268 * to the compiler, so that it can properly optimize the vectorized loop.
5270 XXH_FORCE_INLINE XXH128_hash_t
5271 XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
5272 XXH64_hash_t seed64,
5273 const void* XXH_RESTRICT secret, size_t secretLen)
5275 (void)seed64;
5276 return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
5277 XXH3_accumulate_512, XXH3_scrambleAcc);
5280 XXH_FORCE_INLINE XXH128_hash_t
5281 XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
5282 XXH64_hash_t seed64,
5283 XXH3_f_accumulate_512 f_acc512,
5284 XXH3_f_scrambleAcc f_scramble,
5285 XXH3_f_initCustomSecret f_initSec)
5287 if (seed64 == 0)
5288 return XXH3_hashLong_128b_internal(input, len,
5289 XXH3_kSecret, sizeof(XXH3_kSecret),
5290 f_acc512, f_scramble);
5291 { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5292 f_initSec(secret, seed64);
5293 return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
5294 f_acc512, f_scramble);
5299 * It's important for performance that XXH3_hashLong is not inlined.
5301 XXH_NO_INLINE XXH128_hash_t
5302 XXH3_hashLong_128b_withSeed(const void* input, size_t len,
5303 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
5305 (void)secret; (void)secretLen;
5306 return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
5307 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
5310 typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
5311 XXH64_hash_t, const void* XXH_RESTRICT, size_t);
5313 XXH_FORCE_INLINE XXH128_hash_t
5314 XXH3_128bits_internal(const void* input, size_t len,
5315 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
5316 XXH3_hashLong128_f f_hl128)
5318 XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
5320 * If an action is to be taken if `secret` conditions are not respected,
5321 * it should be done here.
5322 * For now, it's a contract pre-condition.
5323 * Adding a check and a branch here would cost performance at every hash.
5325 if (len <= 16)
5326 return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
5327 if (len <= 128)
5328 return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5329 if (len <= XXH3_MIDSIZE_MAX)
5330 return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5331 return f_hl128(input, len, seed64, secret, secretLen);
5335 /* === Public XXH128 API === */
5337 /*! @ingroup xxh3_family */
5338 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
5340 return XXH3_128bits_internal(input, len, 0,
5341 XXH3_kSecret, sizeof(XXH3_kSecret),
5342 XXH3_hashLong_128b_default);
5345 /*! @ingroup xxh3_family */
5346 XXH_PUBLIC_API XXH128_hash_t
5347 XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
5349 return XXH3_128bits_internal(input, len, 0,
5350 (const xxh_u8*)secret, secretSize,
5351 XXH3_hashLong_128b_withSecret);
5354 /*! @ingroup xxh3_family */
5355 XXH_PUBLIC_API XXH128_hash_t
5356 XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
5358 return XXH3_128bits_internal(input, len, seed,
5359 XXH3_kSecret, sizeof(XXH3_kSecret),
5360 XXH3_hashLong_128b_withSeed);
5363 /*! @ingroup xxh3_family */
5364 XXH_PUBLIC_API XXH128_hash_t
5365 XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
5367 if (len <= XXH3_MIDSIZE_MAX)
5368 return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
5369 return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
5372 /*! @ingroup xxh3_family */
5373 XXH_PUBLIC_API XXH128_hash_t
5374 XXH128(const void* input, size_t len, XXH64_hash_t seed)
5376 return XXH3_128bits_withSeed(input, len, seed);
5380 /* === XXH3 128-bit streaming === */
5383 * All initialization and update functions are identical to 64-bit streaming variant.
5384 * The only difference is the finalization routine.
5387 /*! @ingroup xxh3_family */
5388 XXH_PUBLIC_API XXH_errorcode
5389 XXH3_128bits_reset(XXH3_state_t* statePtr)
5391 return XXH3_64bits_reset(statePtr);
5394 /*! @ingroup xxh3_family */
5395 XXH_PUBLIC_API XXH_errorcode
5396 XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
5398 return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
5401 /*! @ingroup xxh3_family */
5402 XXH_PUBLIC_API XXH_errorcode
5403 XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
5405 return XXH3_64bits_reset_withSeed(statePtr, seed);
5408 /*! @ingroup xxh3_family */
5409 XXH_PUBLIC_API XXH_errorcode
5410 XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed)
5412 return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
5415 /*! @ingroup xxh3_family */
5416 XXH_PUBLIC_API XXH_errorcode
5417 XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
5419 return XXH3_update(state, (const xxh_u8*)input, len,
5420 XXH3_accumulate_512, XXH3_scrambleAcc);
5423 /*! @ingroup xxh3_family */
5424 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
5426 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
5427 if (state->totalLen > XXH3_MIDSIZE_MAX) {
5428 XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
5429 XXH3_digest_long(acc, state, secret);
5430 XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5431 { XXH128_hash_t h128;
5432 h128.low64 = XXH3_mergeAccs(acc,
5433 secret + XXH_SECRET_MERGEACCS_START,
5434 (xxh_u64)state->totalLen * XXH_PRIME64_1);
5435 h128.high64 = XXH3_mergeAccs(acc,
5436 secret + state->secretLimit + XXH_STRIPE_LEN
5437 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5438 ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
5439 return h128;
5442 /* len <= XXH3_MIDSIZE_MAX : short code */
5443 if (state->seed)
5444 return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
5445 return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
5446 secret, state->secretLimit + XXH_STRIPE_LEN);
5449 /* 128-bit utility functions */
5451 #include <string.h> /* memcmp, memcpy */
5453 /* return : 1 is equal, 0 if different */
5454 /*! @ingroup xxh3_family */
5455 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
5457 /* note : XXH128_hash_t is compact, it has no padding byte */
5458 return !(memcmp(&h1, &h2, sizeof(h1)));
5461 /* This prototype is compatible with stdlib's qsort().
5462 * return : >0 if *h128_1 > *h128_2
5463 * <0 if *h128_1 < *h128_2
5464 * =0 if *h128_1 == *h128_2 */
5465 /*! @ingroup xxh3_family */
5466 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
5468 XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
5469 XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
5470 int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
5471 /* note : bets that, in most cases, hash values are different */
5472 if (hcmp) return hcmp;
5473 return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
5477 /*====== Canonical representation ======*/
5478 /*! @ingroup xxh3_family */
5479 XXH_PUBLIC_API void
5480 XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
5482 XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
5483 if (XXH_CPU_LITTLE_ENDIAN) {
5484 hash.high64 = XXH_swap64(hash.high64);
5485 hash.low64 = XXH_swap64(hash.low64);
5487 XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
5488 XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
5491 /*! @ingroup xxh3_family */
5492 XXH_PUBLIC_API XXH128_hash_t
5493 XXH128_hashFromCanonical(const XXH128_canonical_t* src)
5495 XXH128_hash_t h;
5496 h.high64 = XXH_readBE64(src);
5497 h.low64 = XXH_readBE64(src->digest + 8);
5498 return h;
5503 /* ==========================================
5504 * Secret generators
5505 * ==========================================
5507 #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
5509 static void XXH3_combine16(void* dst, XXH128_hash_t h128)
5511 XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
5512 XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
5515 /*! @ingroup xxh3_family */
5516 XXH_PUBLIC_API XXH_errorcode
5517 XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize)
5519 XXH_ASSERT(secretBuffer != NULL);
5520 if (secretBuffer == NULL) return XXH_ERROR;
5521 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
5522 if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
5523 if (customSeedSize == 0) {
5524 customSeed = XXH3_kSecret;
5525 customSeedSize = XXH_SECRET_DEFAULT_SIZE;
5527 XXH_ASSERT(customSeed != NULL);
5528 if (customSeed == NULL) return XXH_ERROR;
5530 /* Fill secretBuffer with a copy of customSeed - repeat as needed */
5531 { size_t pos = 0;
5532 while (pos < secretSize) {
5533 size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
5534 memcpy((char*)secretBuffer + pos, customSeed, toCopy);
5535 pos += toCopy;
5538 { size_t const nbSeg16 = secretSize / 16;
5539 size_t n;
5540 XXH128_canonical_t scrambler;
5541 XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
5542 for (n=0; n<nbSeg16; n++) {
5543 XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
5544 XXH3_combine16((char*)secretBuffer + n*16, h128);
5546 /* last segment */
5547 XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
5549 return XXH_OK;
5552 /*! @ingroup xxh3_family */
5553 XXH_PUBLIC_API void
5554 XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
5556 XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5557 XXH3_initCustomSecret(secret, seed);
5558 XXH_ASSERT(secretBuffer != NULL);
5559 memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
5564 /* Pop our optimization override from above */
5565 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
5566 && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
5567 && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
5568 # pragma GCC pop_options
5569 #endif
5571 #endif /* XXH_NO_LONG_LONG */
5573 #endif /* XXH_NO_XXH3 */
5576 * @}
5578 #endif /* XXH_IMPLEMENTATION */
5581 #if defined (__cplusplus)
5583 #endif