Bug 1673965 [wpt PR 26319] - Update interfaces/resize-observer.idl, a=testonly
[gecko.git] / mfbt / Span.h
blobdc14de2137284eeae35c4c048b071238381ecfd9
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2015 Microsoft Corporation. All rights reserved.
4 //
5 // This code is licensed under the MIT License (MIT).
6 //
7 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
8 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
9 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
10 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
11 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
12 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
13 // THE SOFTWARE.
15 ///////////////////////////////////////////////////////////////////////////////
17 // Adapted from
18 // https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/include/gsl/span
19 // and
20 // https://github.com/Microsoft/GSL/blob/3819df6e378ffccf0e29465afe99c3b324c2aa70/include/gsl/gsl_util
22 #ifndef mozilla_Span_h
23 #define mozilla_Span_h
25 #include <algorithm>
26 #include <array>
27 #include <iterator>
28 #include <limits>
29 #include <string>
30 #include <type_traits>
31 #include <utility>
33 #include "mozilla/Array.h"
34 #include "mozilla/Assertions.h"
35 #include "mozilla/Casting.h"
36 #include "mozilla/IntegerTypeTraits.h"
37 #include "mozilla/UniquePtr.h"
39 namespace mozilla {
41 // Stuff from gsl_util
43 // narrow_cast(): a searchable way to do narrowing casts of values
44 template <class T, class U>
45 inline constexpr T narrow_cast(U&& u) {
46 return static_cast<T>(std::forward<U>(u));
49 // end gsl_util
51 // [views.constants], constants
52 // This was -1 in gsl::span, but using size_t for sizes instead of ptrdiff_t
53 // and reserving a magic value that realistically doesn't occur in
54 // compile-time-constant Span sizes makes things a lot less messy in terms of
55 // comparison between signed and unsigned.
56 constexpr const size_t dynamic_extent = std::numeric_limits<size_t>::max();
58 template <class ElementType, size_t Extent = dynamic_extent>
59 class Span;
61 // implementation details
62 namespace span_details {
64 template <class T>
65 struct is_span_oracle : std::false_type {};
67 template <class ElementType, size_t Extent>
68 struct is_span_oracle<mozilla::Span<ElementType, Extent>> : std::true_type {};
70 template <class T>
71 struct is_span : public is_span_oracle<std::remove_cv_t<T>> {};
73 template <class T>
74 struct is_std_array_oracle : std::false_type {};
76 template <class ElementType, size_t Extent>
77 struct is_std_array_oracle<std::array<ElementType, Extent>> : std::true_type {};
79 template <class T>
80 struct is_std_array : public is_std_array_oracle<std::remove_cv_t<T>> {};
82 template <size_t From, size_t To>
83 struct is_allowed_extent_conversion
84 : public std::integral_constant<bool, From == To ||
85 From == mozilla::dynamic_extent ||
86 To == mozilla::dynamic_extent> {};
88 template <class From, class To>
89 struct is_allowed_element_type_conversion
90 : public std::integral_constant<
91 bool, std::is_convertible_v<From (*)[], To (*)[]>> {};
93 struct SpanKnownBounds {};
95 template <class SpanT, bool IsConst>
96 class span_iterator {
97 using element_type_ = typename SpanT::element_type;
99 template <class ElementType, size_t Extent>
100 friend class ::mozilla::Span;
102 public:
103 using iterator_category = std::random_access_iterator_tag;
104 using value_type = std::remove_const_t<element_type_>;
105 using difference_type = typename SpanT::index_type;
107 using reference =
108 std::conditional_t<IsConst, const element_type_, element_type_>&;
109 using pointer = std::add_pointer_t<reference>;
111 constexpr span_iterator() : span_iterator(nullptr, 0, SpanKnownBounds{}) {}
113 constexpr span_iterator(const SpanT* span, typename SpanT::index_type index)
114 : span_(span), index_(index) {
115 MOZ_RELEASE_ASSERT(span == nullptr ||
116 (index_ >= 0 && index <= span_->Length()));
119 private:
120 // For whatever reason, the compiler doesn't like optimizing away the above
121 // MOZ_RELEASE_ASSERT when `span_iterator` is constructed for
122 // obviously-correct cases like `span.begin()` or `span.end()`. We provide
123 // this private constructor for such cases.
124 constexpr span_iterator(const SpanT* span, typename SpanT::index_type index,
125 SpanKnownBounds)
126 : span_(span), index_(index) {}
128 public:
129 // `other` is already correct by construction; we do not need to go through
130 // the release assert above. Put differently, this constructor is effectively
131 // a copy constructor and therefore needs no assertions.
132 friend class span_iterator<SpanT, true>;
133 constexpr MOZ_IMPLICIT span_iterator(const span_iterator<SpanT, false>& other)
134 : span_(other.span_), index_(other.index_) {}
136 constexpr span_iterator<SpanT, IsConst>& operator=(
137 const span_iterator<SpanT, IsConst>&) = default;
139 constexpr reference operator*() const {
140 MOZ_RELEASE_ASSERT(span_);
141 return (*span_)[index_];
144 constexpr pointer operator->() const {
145 MOZ_RELEASE_ASSERT(span_);
146 return &((*span_)[index_]);
149 constexpr span_iterator& operator++() {
150 ++index_;
151 return *this;
154 constexpr span_iterator operator++(int) {
155 auto ret = *this;
156 ++(*this);
157 return ret;
160 constexpr span_iterator& operator--() {
161 --index_;
162 return *this;
165 constexpr span_iterator operator--(int) {
166 auto ret = *this;
167 --(*this);
168 return ret;
171 constexpr span_iterator operator+(difference_type n) const {
172 auto ret = *this;
173 return ret += n;
176 constexpr span_iterator& operator+=(difference_type n) {
177 MOZ_RELEASE_ASSERT(span_ && (index_ + n) >= 0 &&
178 (index_ + n) <= span_->Length());
179 index_ += n;
180 return *this;
183 constexpr span_iterator operator-(difference_type n) const {
184 auto ret = *this;
185 return ret -= n;
188 constexpr span_iterator& operator-=(difference_type n) { return *this += -n; }
190 constexpr difference_type operator-(const span_iterator& rhs) const {
191 MOZ_RELEASE_ASSERT(span_ == rhs.span_);
192 return index_ - rhs.index_;
195 constexpr reference operator[](difference_type n) const {
196 return *(*this + n);
199 constexpr friend bool operator==(const span_iterator& lhs,
200 const span_iterator& rhs) {
201 // Iterators from different spans are uncomparable. A diagnostic assertion
202 // should be enough to check this, though. To ensure that no iterators from
203 // different spans are ever considered equal, still compare them in release
204 // builds.
205 MOZ_DIAGNOSTIC_ASSERT(lhs.span_ == rhs.span_);
206 return lhs.index_ == rhs.index_ && lhs.span_ == rhs.span_;
209 constexpr friend bool operator!=(const span_iterator& lhs,
210 const span_iterator& rhs) {
211 return !(lhs == rhs);
214 constexpr friend bool operator<(const span_iterator& lhs,
215 const span_iterator& rhs) {
216 MOZ_DIAGNOSTIC_ASSERT(lhs.span_ == rhs.span_);
217 return lhs.index_ < rhs.index_;
220 constexpr friend bool operator<=(const span_iterator& lhs,
221 const span_iterator& rhs) {
222 return !(rhs < lhs);
225 constexpr friend bool operator>(const span_iterator& lhs,
226 const span_iterator& rhs) {
227 return rhs < lhs;
230 constexpr friend bool operator>=(const span_iterator& lhs,
231 const span_iterator& rhs) {
232 return !(rhs > lhs);
235 void swap(span_iterator& rhs) {
236 std::swap(index_, rhs.index_);
237 std::swap(span_, rhs.span_);
240 protected:
241 const SpanT* span_;
242 size_t index_;
245 template <class Span, bool IsConst>
246 inline constexpr span_iterator<Span, IsConst> operator+(
247 typename span_iterator<Span, IsConst>::difference_type n,
248 const span_iterator<Span, IsConst>& rhs) {
249 return rhs + n;
252 template <size_t Ext>
253 class extent_type {
254 public:
255 using index_type = size_t;
257 static_assert(Ext >= 0, "A fixed-size Span must be >= 0 in size.");
259 constexpr extent_type() = default;
261 template <index_type Other>
262 constexpr MOZ_IMPLICIT extent_type(extent_type<Other> ext) {
263 static_assert(
264 Other == Ext || Other == dynamic_extent,
265 "Mismatch between fixed-size extent and size of initializing data.");
266 MOZ_RELEASE_ASSERT(ext.size() == Ext);
269 constexpr MOZ_IMPLICIT extent_type(index_type length) {
270 MOZ_RELEASE_ASSERT(length == Ext);
273 constexpr index_type size() const { return Ext; }
276 template <>
277 class extent_type<dynamic_extent> {
278 public:
279 using index_type = size_t;
281 template <index_type Other>
282 explicit constexpr extent_type(extent_type<Other> ext) : size_(ext.size()) {}
284 explicit constexpr extent_type(index_type length) : size_(length) {}
286 constexpr index_type size() const { return size_; }
288 private:
289 index_type size_;
291 } // namespace span_details
294 * Span - slices for C++
296 * Span implements Rust's slice concept for C++. It's called "Span" instead of
297 * "Slice" to follow the naming used in C++ Core Guidelines.
299 * A Span wraps a pointer and a length that identify a non-owning view to a
300 * contiguous block of memory of objects of the same type. Various types,
301 * including (pre-decay) C arrays, XPCOM strings, nsTArray, mozilla::Array,
302 * mozilla::Range and contiguous standard-library containers, auto-convert
303 * into Spans when attempting to pass them as arguments to methods that take
304 * Spans. (Span itself autoconverts into mozilla::Range.)
306 * Like Rust's slices, Span provides safety against out-of-bounds access by
307 * performing run-time bound checks. However, unlike Rust's slices, Span
308 * cannot provide safety against use-after-free.
310 * (Note: Span is like Rust's slice only conceptually. Due to the lack of
311 * ABI guarantees, you should still decompose spans/slices to raw pointer
312 * and length parts when crossing the FFI. The Elements() and data() methods
313 * are guaranteed to return a non-null pointer even for zero-length spans,
314 * so the pointer can be used as a raw part of a Rust slice without further
315 * checks.)
317 * In addition to having constructors (with the support of deduction guides)
318 * that take various well-known types, a Span for an arbitrary type can be
319 * constructed from a pointer and a length or a pointer and another pointer
320 * pointing just past the last element.
322 * A Span<const char> or Span<const char16_t> can be obtained for const char*
323 * or const char16_t pointing to a zero-terminated string using the
324 * MakeStringSpan() function (which treats a nullptr argument equivalently
325 * to the empty string). Corresponding implicit constructor does not exist
326 * in order to avoid accidental construction in cases where const char* or
327 * const char16_t* do not point to a zero-terminated string.
329 * Span has methods that follow the Mozilla naming style and methods that
330 * don't. The methods that follow the Mozilla naming style are meant to be
331 * used directly from Mozilla code. The methods that don't are meant for
332 * integration with C++11 range-based loops and with meta-programming that
333 * expects the same methods that are found on the standard-library
334 * containers. For example, to decompose a Span into its parts in Mozilla
335 * code, use Elements() and Length() (as with nsTArray) instead of data()
336 * and size() (as with std::vector).
338 * The pointer and length wrapped by a Span cannot be changed after a Span has
339 * been created. When new values are required, simply create a new Span. Span
340 * has a method called Subspan() that works analogously to the Substring()
341 * method of XPCOM strings taking a start index and an optional length. As a
342 * Mozilla extension (relative to Microsoft's gsl::span that mozilla::Span is
343 * based on), Span has methods From(start), To(end) and FromTo(start, end)
344 * that correspond to Rust's &slice[start..], &slice[..end] and
345 * &slice[start..end], respectively. (That is, the end index is the index of
346 * the first element not to be included in the new subspan.)
348 * When indicating a Span that's only read from, const goes inside the type
349 * parameter. Don't put const in front of Span. That is:
350 * size_t ReadsFromOneSpanAndWritesToAnother(Span<const uint8_t> aReadFrom,
351 * Span<uint8_t> aWrittenTo);
353 * Any Span<const T> can be viewed as Span<const uint8_t> using the function
354 * AsBytes(). Any Span<T> can be viewed as Span<uint8_t> using the function
355 * AsWritableBytes().
357 * Note that iterators from different Span instances are uncomparable, even if
358 * they refer to the same memory. This also applies to any spans derived via
359 * Subspan etc.
361 template <class ElementType, size_t Extent /* = dynamic_extent */>
362 class Span {
363 public:
364 // constants and types
365 using element_type = ElementType;
366 using index_type = size_t;
367 using pointer = element_type*;
368 using reference = element_type&;
370 using iterator =
371 span_details::span_iterator<Span<ElementType, Extent>, false>;
372 using const_iterator =
373 span_details::span_iterator<Span<ElementType, Extent>, true>;
374 using reverse_iterator = std::reverse_iterator<iterator>;
375 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
377 constexpr static const index_type extent = Extent;
379 // [Span.cons], Span constructors, copy, assignment, and destructor
380 // "Dependent" is needed to make "std::enable_if_t<(Dependent ||
381 // Extent == 0 || Extent == dynamic_extent)>" SFINAE,
382 // since
383 // "std::enable_if_t<(Extent == 0 || Extent == dynamic_extent)>" is
384 // ill-formed when Extent is neither of the extreme values.
386 * Constructor with no args.
388 template <bool Dependent = false,
389 class = std::enable_if_t<(Dependent || Extent == 0 ||
390 Extent == dynamic_extent)>>
391 constexpr Span() : storage_(nullptr, span_details::extent_type<0>()) {}
394 * Constructor for nullptr.
396 constexpr MOZ_IMPLICIT Span(std::nullptr_t) : Span() {}
399 * Constructor for pointer and length.
401 constexpr Span(pointer aPtr, index_type aLength) : storage_(aPtr, aLength) {}
404 * Constructor for start pointer and pointer past end.
406 constexpr Span(pointer aStartPtr, pointer aEndPtr)
407 : storage_(aStartPtr, std::distance(aStartPtr, aEndPtr)) {}
410 * Constructor for pair of Span iterators.
412 template <typename OtherElementType, size_t OtherExtent, bool IsConst>
413 constexpr Span(
414 span_details::span_iterator<Span<OtherElementType, OtherExtent>, IsConst>
415 aBegin,
416 span_details::span_iterator<Span<OtherElementType, OtherExtent>, IsConst>
417 aEnd)
418 : storage_(aBegin == aEnd ? nullptr : &*aBegin, aEnd - aBegin) {}
421 * Constructor for C array.
423 template <size_t N>
424 constexpr MOZ_IMPLICIT Span(element_type (&aArr)[N])
425 : storage_(&aArr[0], span_details::extent_type<N>()) {}
427 // Implicit constructors for char* and char16_t* pointers are deleted in order
428 // to avoid accidental construction in cases where a pointer does not point to
429 // a zero-terminated string. A Span<const char> or Span<const char16_t> can be
430 // obtained for const char* or const char16_t pointing to a zero-terminated
431 // string using the MakeStringSpan() function.
432 // (This must be a template because otherwise it will prevent the previous
433 // array constructor to match because an array decays to a pointer. This only
434 // exists to point to the above explanation, since there's no other
435 // constructor that would match.)
436 template <
437 typename T,
438 typename = std::enable_if_t<
439 std::is_pointer_v<T> &&
440 (std::is_same_v<std::remove_const_t<std::decay_t<T>>, char> ||
441 std::is_same_v<std::remove_const_t<std::decay_t<T>>, char16_t>)>>
442 Span(T& aStr) = delete;
445 * Constructor for std::array.
447 template <size_t N,
448 class ArrayElementType = std::remove_const_t<element_type>>
449 constexpr MOZ_IMPLICIT Span(std::array<ArrayElementType, N>& aArr)
450 : storage_(&aArr[0], span_details::extent_type<N>()) {}
453 * Constructor for const std::array.
455 template <size_t N>
456 constexpr MOZ_IMPLICIT Span(
457 const std::array<std::remove_const_t<element_type>, N>& aArr)
458 : storage_(&aArr[0], span_details::extent_type<N>()) {}
461 * Constructor for mozilla::Array.
463 template <size_t N,
464 class ArrayElementType = std::remove_const_t<element_type>>
465 constexpr MOZ_IMPLICIT Span(mozilla::Array<ArrayElementType, N>& aArr)
466 : storage_(&aArr[0], span_details::extent_type<N>()) {}
469 * Constructor for const mozilla::Array.
471 template <size_t N>
472 constexpr MOZ_IMPLICIT Span(
473 const mozilla::Array<std::remove_const_t<element_type>, N>& aArr)
474 : storage_(&aArr[0], span_details::extent_type<N>()) {}
477 * Constructor for mozilla::UniquePtr holding an array and length.
479 template <class ArrayElementType = std::add_pointer<element_type>>
480 constexpr Span(const mozilla::UniquePtr<ArrayElementType>& aPtr,
481 index_type aLength)
482 : storage_(aPtr.get(), aLength) {}
484 // NB: the SFINAE here uses .data() as a incomplete/imperfect proxy for the
485 // requirement on Container to be a contiguous sequence container.
487 * Constructor for standard-library containers.
489 template <
490 class Container,
491 class Dummy = std::enable_if_t<
492 !std::is_const_v<Container> &&
493 !span_details::is_span<Container>::value &&
494 !span_details::is_std_array<Container>::value &&
495 std::is_convertible_v<typename Container::pointer, pointer> &&
496 std::is_convertible_v<typename Container::pointer,
497 decltype(std::declval<Container>().data())>,
498 Container>>
499 constexpr MOZ_IMPLICIT Span(Container& cont, Dummy* = nullptr)
500 : Span(cont.data(), ReleaseAssertedCast<index_type>(cont.size())) {}
503 * Constructor for standard-library containers (const version).
505 template <
506 class Container,
507 class = std::enable_if_t<
508 std::is_const_v<element_type> &&
509 !span_details::is_span<Container>::value &&
510 std::is_convertible_v<typename Container::pointer, pointer> &&
511 std::is_convertible_v<typename Container::pointer,
512 decltype(std::declval<Container>().data())>>>
513 constexpr MOZ_IMPLICIT Span(const Container& cont)
514 : Span(cont.data(), ReleaseAssertedCast<index_type>(cont.size())) {}
516 // NB: the SFINAE here uses .Elements() as a incomplete/imperfect proxy for
517 // the requirement on Container to be a contiguous sequence container.
519 * Constructor for contiguous Mozilla containers.
521 template <
522 class Container,
523 class = std::enable_if_t<
524 !std::is_const_v<Container> &&
525 !span_details::is_span<Container>::value &&
526 !span_details::is_std_array<Container>::value &&
527 std::is_convertible_v<typename Container::elem_type*, pointer> &&
528 std::is_convertible_v<
529 typename Container::elem_type*,
530 decltype(std::declval<Container>().Elements())>>>
531 constexpr MOZ_IMPLICIT Span(Container& cont, void* = nullptr)
532 : Span(cont.Elements(), ReleaseAssertedCast<index_type>(cont.Length())) {}
535 * Constructor for contiguous Mozilla containers (const version).
537 template <
538 class Container,
539 class = std::enable_if_t<
540 std::is_const_v<element_type> &&
541 !span_details::is_span<Container>::value &&
542 std::is_convertible_v<typename Container::elem_type*, pointer> &&
543 std::is_convertible_v<
544 typename Container::elem_type*,
545 decltype(std::declval<Container>().Elements())>>>
546 constexpr MOZ_IMPLICIT Span(const Container& cont, void* = nullptr)
547 : Span(cont.Elements(), ReleaseAssertedCast<index_type>(cont.Length())) {}
550 * Constructor from other Span.
552 constexpr Span(const Span& other) = default;
555 * Constructor from other Span.
557 constexpr Span(Span&& other) = default;
560 * Constructor from other Span with conversion of element type.
562 template <
563 class OtherElementType, size_t OtherExtent,
564 class = std::enable_if_t<span_details::is_allowed_extent_conversion<
565 OtherExtent, Extent>::value &&
566 span_details::is_allowed_element_type_conversion<
567 OtherElementType, element_type>::value>>
568 constexpr MOZ_IMPLICIT Span(const Span<OtherElementType, OtherExtent>& other)
569 : storage_(other.data(),
570 span_details::extent_type<OtherExtent>(other.size())) {}
573 * Constructor from other Span with conversion of element type.
575 template <
576 class OtherElementType, size_t OtherExtent,
577 class = std::enable_if_t<span_details::is_allowed_extent_conversion<
578 OtherExtent, Extent>::value &&
579 span_details::is_allowed_element_type_conversion<
580 OtherElementType, element_type>::value>>
581 constexpr MOZ_IMPLICIT Span(Span<OtherElementType, OtherExtent>&& other)
582 : storage_(other.data(),
583 span_details::extent_type<OtherExtent>(other.size())) {}
585 ~Span() = default;
586 constexpr Span& operator=(const Span& other) = default;
588 constexpr Span& operator=(Span&& other) = default;
590 // [Span.sub], Span subviews
592 * Subspan with first N elements with compile-time N.
594 template <size_t Count>
595 constexpr Span<element_type, Count> First() const {
596 MOZ_RELEASE_ASSERT(Count <= size());
597 return {data(), Count};
601 * Subspan with last N elements with compile-time N.
603 template <size_t Count>
604 constexpr Span<element_type, Count> Last() const {
605 const size_t len = size();
606 MOZ_RELEASE_ASSERT(Count <= len);
607 return {data() + (len - Count), Count};
611 * Subspan with compile-time start index and length.
613 template <size_t Offset, size_t Count = dynamic_extent>
614 constexpr Span<element_type, Count> Subspan() const {
615 const size_t len = size();
616 MOZ_RELEASE_ASSERT(Offset <= len &&
617 (Count == dynamic_extent || (Offset + Count <= len)));
618 return {data() + Offset, Count == dynamic_extent ? len - Offset : Count};
622 * Subspan with first N elements with run-time N.
624 constexpr Span<element_type, dynamic_extent> First(index_type aCount) const {
625 MOZ_RELEASE_ASSERT(aCount <= size());
626 return {data(), aCount};
630 * Subspan with last N elements with run-time N.
632 constexpr Span<element_type, dynamic_extent> Last(index_type aCount) const {
633 const size_t len = size();
634 MOZ_RELEASE_ASSERT(aCount <= len);
635 return {data() + (len - aCount), aCount};
639 * Subspan with run-time start index and length.
641 constexpr Span<element_type, dynamic_extent> Subspan(
642 index_type aStart, index_type aLength = dynamic_extent) const {
643 const size_t len = size();
644 MOZ_RELEASE_ASSERT(aStart <= len && (aLength == dynamic_extent ||
645 (aStart + aLength <= len)));
646 return {data() + aStart,
647 aLength == dynamic_extent ? len - aStart : aLength};
651 * Subspan with run-time start index. (Rust's &foo[start..])
653 constexpr Span<element_type, dynamic_extent> From(index_type aStart) const {
654 return Subspan(aStart);
658 * Subspan with run-time exclusive end index. (Rust's &foo[..end])
660 constexpr Span<element_type, dynamic_extent> To(index_type aEnd) const {
661 return Subspan(0, aEnd);
665 * Subspan with run-time start index and exclusive end index.
666 * (Rust's &foo[start..end])
668 constexpr Span<element_type, dynamic_extent> FromTo(index_type aStart,
669 index_type aEnd) const {
670 MOZ_RELEASE_ASSERT(aStart <= aEnd);
671 return Subspan(aStart, aEnd - aStart);
674 // [Span.obs], Span observers
676 * Number of elements in the span.
678 constexpr index_type Length() const { return size(); }
681 * Number of elements in the span (standard-libray duck typing version).
683 constexpr index_type size() const { return storage_.size(); }
686 * Size of the span in bytes.
688 constexpr index_type LengthBytes() const { return size_bytes(); }
691 * Size of the span in bytes (standard-library naming style version).
693 constexpr index_type size_bytes() const {
694 return size() * narrow_cast<index_type>(sizeof(element_type));
698 * Checks if the the length of the span is zero.
700 constexpr bool IsEmpty() const { return empty(); }
703 * Checks if the the length of the span is zero (standard-libray duck
704 * typing version).
706 constexpr bool empty() const { return size() == 0; }
708 // [Span.elem], Span element access
709 constexpr reference operator[](index_type idx) const {
710 MOZ_RELEASE_ASSERT(idx < storage_.size());
711 return data()[idx];
715 * Access element of span by index (standard-library duck typing version).
717 constexpr reference at(index_type idx) const { return this->operator[](idx); }
719 constexpr reference operator()(index_type idx) const {
720 return this->operator[](idx);
724 * Pointer to the first element of the span. The return value is never
725 * nullptr, not ever for zero-length spans, so it can be passed as-is
726 * to std::slice::from_raw_parts() in Rust.
728 constexpr pointer Elements() const { return data(); }
731 * Pointer to the first element of the span (standard-libray duck typing
732 * version). The return value is never nullptr, not ever for zero-length
733 * spans, so it can be passed as-is to std::slice::from_raw_parts() in Rust.
735 constexpr pointer data() const { return storage_.data(); }
737 // [Span.iter], Span iterator support
738 iterator begin() const { return {this, 0, span_details::SpanKnownBounds{}}; }
739 iterator end() const {
740 return {this, Length(), span_details::SpanKnownBounds{}};
743 const_iterator cbegin() const {
744 return {this, 0, span_details::SpanKnownBounds{}};
746 const_iterator cend() const {
747 return {this, Length(), span_details::SpanKnownBounds{}};
750 reverse_iterator rbegin() const { return reverse_iterator{end()}; }
751 reverse_iterator rend() const { return reverse_iterator{begin()}; }
753 const_reverse_iterator crbegin() const {
754 return const_reverse_iterator{cend()};
756 const_reverse_iterator crend() const {
757 return const_reverse_iterator{cbegin()};
760 template <size_t SplitPoint>
761 constexpr std::pair<Span<ElementType, SplitPoint>,
762 Span<ElementType, Extent - SplitPoint>>
763 SplitAt() const {
764 static_assert(Extent != dynamic_extent);
765 static_assert(SplitPoint <= Extent);
766 return {First<SplitPoint>(), Last<Extent - SplitPoint>()};
769 constexpr std::pair<Span<ElementType, dynamic_extent>,
770 Span<ElementType, dynamic_extent>>
771 SplitAt(const index_type aSplitPoint) const {
772 MOZ_RELEASE_ASSERT(aSplitPoint <= Length());
773 return {First(aSplitPoint), Last(Length() - aSplitPoint)};
776 constexpr Span<std::add_const_t<ElementType>, Extent> AsConst() const {
777 return {Elements(), Length()};
780 private:
781 // this implementation detail class lets us take advantage of the
782 // empty base class optimization to pay for only storage of a single
783 // pointer in the case of fixed-size Spans
784 template <class ExtentType>
785 class storage_type : public ExtentType {
786 public:
787 template <class OtherExtentType>
788 constexpr storage_type(pointer elements, OtherExtentType ext)
789 : ExtentType(ext)
790 // Replace nullptr with aligned bogus pointer for Rust slice
791 // compatibility. See
792 // https://doc.rust-lang.org/std/slice/fn.from_raw_parts.html
794 data_(elements ? elements
795 : reinterpret_cast<pointer>(alignof(element_type))) {
796 const size_t extentSize = ExtentType::size();
797 MOZ_RELEASE_ASSERT((!elements && extentSize == 0) ||
798 (elements && extentSize != dynamic_extent));
801 constexpr pointer data() const { return data_; }
803 private:
804 pointer data_;
807 storage_type<span_details::extent_type<Extent>> storage_;
810 template <typename T, size_t OtherExtent, bool IsConst>
811 Span(span_details::span_iterator<Span<T, OtherExtent>, IsConst> aBegin,
812 span_details::span_iterator<Span<T, OtherExtent>, IsConst> aEnd)
813 -> Span<std::conditional_t<IsConst, std::add_const_t<T>, T>>;
815 template <typename T, size_t Extent>
816 Span(T (&)[Extent]) -> Span<T, Extent>;
818 template <class Container>
819 Span(Container&) -> Span<typename Container::value_type>;
821 template <class Container>
822 Span(const Container&) -> Span<const typename Container::value_type>;
824 template <typename T, size_t Extent>
825 Span(mozilla::Array<T, Extent>&) -> Span<T, Extent>;
827 template <typename T, size_t Extent>
828 Span(const mozilla::Array<T, Extent>&) -> Span<const T, Extent>;
830 // [Span.comparison], Span comparison operators
831 template <class ElementType, size_t FirstExtent, size_t SecondExtent>
832 inline constexpr bool operator==(const Span<ElementType, FirstExtent>& l,
833 const Span<ElementType, SecondExtent>& r) {
834 return (l.size() == r.size()) &&
835 std::equal(l.data(), l.data() + l.size(), r.data());
838 template <class ElementType, size_t Extent>
839 inline constexpr bool operator!=(const Span<ElementType, Extent>& l,
840 const Span<ElementType, Extent>& r) {
841 return !(l == r);
844 template <class ElementType, size_t Extent>
845 inline constexpr bool operator<(const Span<ElementType, Extent>& l,
846 const Span<ElementType, Extent>& r) {
847 return std::lexicographical_compare(l.data(), l.data() + l.size(), r.data(),
848 r.data() + r.size());
851 template <class ElementType, size_t Extent>
852 inline constexpr bool operator<=(const Span<ElementType, Extent>& l,
853 const Span<ElementType, Extent>& r) {
854 return !(l > r);
857 template <class ElementType, size_t Extent>
858 inline constexpr bool operator>(const Span<ElementType, Extent>& l,
859 const Span<ElementType, Extent>& r) {
860 return r < l;
863 template <class ElementType, size_t Extent>
864 inline constexpr bool operator>=(const Span<ElementType, Extent>& l,
865 const Span<ElementType, Extent>& r) {
866 return !(l < r);
869 namespace span_details {
870 // if we only supported compilers with good constexpr support then
871 // this pair of classes could collapse down to a constexpr function
873 // we should use a narrow_cast<> to go to size_t, but older compilers may not
874 // see it as constexpr and so will fail compilation of the template
875 template <class ElementType, size_t Extent>
876 struct calculate_byte_size
877 : std::integral_constant<size_t,
878 static_cast<size_t>(sizeof(ElementType) *
879 static_cast<size_t>(Extent))> {
882 template <class ElementType>
883 struct calculate_byte_size<ElementType, dynamic_extent>
884 : std::integral_constant<size_t, dynamic_extent> {};
885 } // namespace span_details
887 // [Span.objectrep], views of object representation
889 * View span as Span<const uint8_t>.
891 template <class ElementType, size_t Extent>
892 Span<const uint8_t,
893 span_details::calculate_byte_size<ElementType, Extent>::value>
894 AsBytes(Span<ElementType, Extent> s) {
895 return {reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()};
899 * View span as Span<uint8_t>.
901 template <class ElementType, size_t Extent,
902 class = std::enable_if_t<!std::is_const_v<ElementType>>>
903 Span<uint8_t, span_details::calculate_byte_size<ElementType, Extent>::value>
904 AsWritableBytes(Span<ElementType, Extent> s) {
905 return {reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()};
909 * View a span of uint8_t as a span of char.
911 inline Span<const char> AsChars(Span<const uint8_t> s) {
912 return {reinterpret_cast<const char*>(s.data()), s.size()};
916 * View a writable span of uint8_t as a span of char.
918 inline Span<char> AsWritableChars(Span<uint8_t> s) {
919 return {reinterpret_cast<char*>(s.data()), s.size()};
923 * Create span from a zero-terminated C string. nullptr is
924 * treated as the empty string.
926 constexpr Span<const char> MakeStringSpan(const char* aZeroTerminated) {
927 if (!aZeroTerminated) {
928 return Span<const char>();
930 return Span<const char>(aZeroTerminated,
931 std::char_traits<char>::length(aZeroTerminated));
935 * Create span from a zero-terminated UTF-16 C string. nullptr is
936 * treated as the empty string.
938 constexpr Span<const char16_t> MakeStringSpan(const char16_t* aZeroTerminated) {
939 if (!aZeroTerminated) {
940 return Span<const char16_t>();
942 return Span<const char16_t>(
943 aZeroTerminated, std::char_traits<char16_t>::length(aZeroTerminated));
946 } // namespace mozilla
948 #endif // mozilla_Span_h