
FreeEMS Serial Protocol – Core
Version 0.5 - 11th November 2008. (Draft proposal)

GNU General Public License V3 or later.

Foreword

The purpose of the protocol is to provide reliable two-way serial communication with FreeEMS
and associated devices over multiple physical protocols. This will commonly be used for live
tuning, configuration changes, firmware updates and data acquisition of various types.

This document covers the basic data transfer protocol, which all implementations should adhere
to. It describes the methods through which various functions are achieved, right down to the
hardware, at all but the application level.

Each implementation will provide documentation on the device-specific functionality offered and
the payload data formats used. Not all devices will support all functions, either because they
have limited functionality (a display device for example), or because the software versions may
differ. Where logging/debug facilities are available, the payload type of unrecognised packets
should be noted before discarding them.

Main Attributes

● Compact binary data format to maximize speed and bandwidth.
● Data is packetized with an escaping scheme.
● Each packet, consists of a header, payload and checksum.
● Compulsory integrated low-cost checksum.
● Optional acknowledgment of received packets.
● Big endian multi byte number format (is this correct?)

Contents

1) Packet Description
a) Packet Data Format
b) Packet Header Layout
c) Packet Header Specification
d) Payload
e) Checksum

2) Header Details
a) Payload Type
b) Addressing Behaviour
c) Acknowledgments
d) Payload ID
e) Length Of Payload

3) General Information
a) Packet Size
b) Reliable Transmission
c) Flow Control
d) Protocol Layers
e) Response Times

4) UART Specific Information (RS232 and USB)
a) Packet Data Format
b) Byte Bit Format
c) Escaping Scheme
d) UART Specific Error Detection

5) CAN Specific Information
6) Appendix A – Protocol Level Payload Types

Packet Description

Packet Data Format

Packet Header – 3 - 8 Bytes Packet Payload – 0 - Max Bytes CKS

A packet consists of an eight byte header, a payload of variable length from zero to
implementation maximum payload size and a one byte checksum. This format will be
encapsulated in various lower level constructs depending on the medium of transmission.

Packet Header Layout

Flags Payload ID Ack No. Dest Source Payload Length

Packet Header Specification

Byte Sequence Length Data

1 1 Header Flags
Bit 0 - Payload type (protocol/firmware)
Bit 1 - Acknowledgment valid and/or required
Bit 2 - Acknowledgment type (-ve/+ve)
Bit 3 – Has Addresses
Bit 4 – Has Length
Bit 5 - Firmware implementation specific
Bit 6 - Firmware implementation specific
Bit 7 - Firmware implementation specific

2 and 3 2 Payload ID

4 1 (opt) Acknowledgment/Sequence Number

5 or 4 1 (opt) Destination Address

6 or 5 1 (opt) Source Address

7,8 or 6,7 or
4,5

2
(opt)*

Length Of Payload (excluding header/checksum)

* Required for some packet types

Payload

The payload is specific to the data type being sent. See Payload ID. Data may be Binary or ASCII.
ASCII data should be null terminated to allow multiple blocks inside one packet.

Checksum

The checksum is a simple 8 bit type as the EMS deals with bytes during uart transmission. It is
compulsory to include the checksum in each packet. It is located at the end of the payload to
ease load on the EMS during send and receive operations and keep the code simple and
compact. The checksum covers all bytes in the message before any escaping and packetising
occurs, including the header.

Header Details

Payload Type

When the payload type bit of the header flags is set (1) the payload type is “protocol” and
defined payload IDs should be implemented in all applications. (See Appendix A.)

When the payload type bit of the header flags is clear (0) the payload type is of the type
“firmware”. The firmware payload IDs are covered in the FreeEMS Vanilla Specific protocol
specification, and are optional.

Addressing Behaviour

• Source Address - The address in the packet header as where the packet has come from.
• Destination Address - The address in the packet header as where the message is to go.
• Broadcast Address - Destination address of zero means that the packet is for all nodes.
• Local Address - The address configured in the device receiving the packet.

The source address value should always be accurate. Packets with zero for the source address
should be dropped. Packets with the source address matching our local address should be
responded to with a broadcast error packet indicating that a duplicate address is in use. The
source address of such an error packet shows which address is duplicated. Such error packets
should have a minimum period such that dual addresses do not cause the medium to be flooded
with error messages.

Packets with a destination address of zero (broadcast address) should be processed by all nodes.
Packets with a destination address that matches our local address should be processed normally.
Packets with a destination address that does not match our local address should be ignored
without error.

Of course, responses to requests should have the the local address as the source address, and
the original packets source address as the destination address if addressing is required.

Acknowledgments

When a device wishes to receive confirmation that what it asked for was actioned appropriately
and indeed whether the outcome was successful or not it should set the header bit for
acknowledgement valid/required, and populate the acknowledgement field with the next value in
the sequence being used. After processing the request the receiving device will respond with the
correct payload type/id, the matching acknowledgement number, and the flag set to either
success of failure. In the case of failure the body, if present, will be interpretted as an error code.
In the case of success the body will either be empty or contain the requested data.

When a packet is sent without the request for an ack reply, and an error occurs, the EMS can still
send a response back. If the original packet was addressed, then so will the reply be. If the
original packet had no address then the response type will be async error, not the corresponding
reply type for the request sent.

Payload ID

The payload ID is a unique identifier number that indicates the functionality to be delivered by a
request packet. Depending on the state of the header bit, the payload ID will be interpretted
differently. All payload request IDs are to be even and all response packets are to be the ID of the
request plus one. See Apendix A for protocol payload ID definitions.

Length Of Payload

Length from the end of the header to the end of the payload NOT including the checksum.

General Information

Flow Control

Upon receiving a packet that requires a response the EMS will be responsible for disabling receipt
of further requests by disabling the receive register full interrupt. By this mechanism it can ignore
subsequent requests until the current packet is dealt with and the receive buffer free again. The
external device should expect messages to be ignored for some short period after a packet is
transmitted and delay sending further packets until after that period is over.

RS232 hardware flow control is not used as it is rarely implemented correctly or even at all in
common physical implementations

Reliable Transmission

In all cases the external software will be responsible for ensuring unacknowledged messages sent
to the EMS are resent. The EMS will work on a “best effort” basis to handle all requests promptly,
however that can not be guaranteed. Although the facility for the EMS to request an
acknowledgment for a packet is there, it is unlikely to be used for a number of reasons.

Several generic methods of recognising bad data exist :

• Checksum does not match that supplied.
• Packet length in the header (if present) does not match the actual length received.
• Packet is larger than the maximum allowed size.
• The payload length does not match that of the payload ID (where fixed and defined)

In addition, the specifics of how each different physical layer operates will provide further means
of recognising bad packet data as will the different payload types.

Packet Size

Packet size is only limited by the size of the payload size field and the specific implementations
hardware software setup. Currently we only require ~2k packet size, however up to 64k is
supported by the 16 bit size field. This will ensure it stays useful for a longer time and will
therefore allow tool re-use too. If larger data blocks need to be sent in some future Free EMS
implementation then the data can be packetised down inside this format without much difficulty.
Each implementation should provide the facility to request the maximum permissible packet size.

Protocol Layers

• Physical layers : UART over RS232 or USB, CAN, SPI, I2C etc
• Data layer (UART) : escaping/start/stop/bit format/etc
• Data layer (CAN) : yet to be determined
• Packet layer : generic across all mediums
• Application layer : device/firmware specific

Response Times

To be defined once implemented and tested. Thanks EdG!

UART Specifc Information

Packet Data Format

STX Data Packet (Header Payload and Checksum) – 4 – Max Bytes ETX

This is a diagram of a single packet of data, in a serial stream. STX and ETX are single bytes that
mark the start and end of the packet (the escaping scheme). Should the data flow be
interrupted, the data flow can be picked back up again, by looking for the STX byte. This escaped
and delimited packet scheme affords a number of opportunities to catch corrupt data as seen in
the Reliable transmission section.

Bitwise Byte Format

Start 8 data bits Parity Stop

Low level 9 bit data format consisting of 11 bits total. One start bit (low), 8 data bits, one
hardware generated odd parity bit, one stop bit (high). See MC9S12XDP512V2.pdf section 11.4.3
page 495

Escaping Scheme

Description Byte Value Escaped Pair

Start byte (STX) 0xAA 0xBB 0x55

Escape byte (ESC) 0xBB 0xBB 0x44

End byte (ETX) 0xCC 0xBB 0x33

All packets start with STX, and end with ETX. Should any of STX, ETX or ESC occur within the
packet contents (including the header and checksum), it must be “escaped”, with a preceding
ESC byte and the byte itself XOR'ed with the value 0xFF. This will yield the following easy to
recognise pairs in the stream :

If the character 0xBB is found in the raw stream without 0x55, 0x44 or 0x33 following it, the
stream and therefore packet is corrupt and invalid and should be discarded.

UART Specific Error Detection

This section is supplimentary to the things mentioned in the reliable delivery section above. The
following things should be checked for when interacting over a UART connection of any sort :

• Start byte found before stop byte while inside a packet.
• Escape byte not followed by an escaped special byte.
• Parity bit errors at the byte level.
• Framing errors
• Overrun errors
• Noise errors

Note, not all of these signals will be available on all devices, but whatever is available should be
used to ensure a highly robust serial solution is implemented. After all, the EMS code can only
confirm that the received data is in good condition, it can not be responsible for the integrity of
the data it sends out as it could easily be corrupted in transit.

Note : The checksum doesn't cover the start, stop or escape bytes, only the original packet data.

CAN Specific Information

Yet to be determined.

Appendix A

Payload ID functions and descriptions :

ID Name Type Size Description And Format

0 Interface Version Request 0 The unique number that identifies the firmware specific
interface definition. If this is the same, there should be
absolutely no difference in communications. Useful to
allow tuning tools to support interface version ranges
based on common functionality and different firmwares
with the same interface type.

1 Interface Version Response 16 -
256

3 unsigned chars, directly followed by an arbitrary string
13 to 253 bytes long. The 3 part version number is only
valid for comparison to those with exactly matching
string ID sections.

2 Firmware
Version

Request 0 The unique string that identifies the firmware version
running on the device. Useful for associating behaviours,
issues and bugs with specific code versions.

3 Firmware
Version

Response 16 -
256

An arbitrary string 16 to 256 bytes long uniquely
describing the firmware version running on the device.

4 Max Packet Size Request 0 Ask the controller to tell us how large in bytes the
maximum packet it can handle is. The size is measured
from the end of start byte to beginning of stop byte
including the header, payload and checksum regions.

5 Max Packet Size Response 2 16 bit unsigned integer packet size.

6 Echo Packet Request Any Wrap and return the entire packet as the payload.

7 Echoed Packet Response Any The wrapped packet returned.

8 Soft Reset * Command 0 Instructs the device to software reset itself.

10 Hard Reset * Command 0 Instructs the device to hardware reset itself. (complete)

13 Error/Exception Assertion 2 16 bit unsigned integer error number.

15 Debug String Assertion Any Free form null terminated string for debug purposes.

* Note, soft and hard reset behaviour is implementation dependent and may behave the same as each other.

ID : Payload ID number which uniquely identifies the purpose and format of the data contained in
the payload.

Type Key :

• Request – A message sent from a tuning device or similar to an embedded device or
similar. Typically PC > EMS

• Response – The reply to a request from an embedded device or similar to a tuning device
or similar. Typically EMS > PC

• Command - A message sent from a tuning device or similar to an embedded device or
similar. Typically PC > EMS

• Assertion - A message sent from an embedded device or similar to a tuning device or
similar. Typically EMS > PC

Size : Payload size is in bytes from end of header to beginning of checksum.

Description And Format : The purpose of this particular payload type and how the data is laid out.

Note :

This table is currently incomplete and definitely liable to be extended in subsequent versions.

