(comint-quote-filename): Correctly handle backslash
[emacs.git] / src / alloc.c
blob1835d2a59eb96a0d199e8e879b2b45e2f0afa12a
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 /* Note that this declares bzero on OSF/1. How dumb. */
32 #include <signal.h>
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
65 #ifdef DOUG_LEA_MALLOC
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
76 #define MMAP_MAX_AREAS 100000000
78 #else /* not DOUG_LEA_MALLOC */
80 /* The following come from gmalloc.c. */
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
86 #endif /* not DOUG_LEA_MALLOC */
88 /* Value of _bytes_used, when spare_memory was freed. */
90 static __malloc_size_t bytes_used_when_full;
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
111 /* Number of bytes of consing done since the last gc. */
113 int consing_since_gc;
115 /* Count the amount of consing of various sorts of space. */
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
126 /* Number of bytes of consing since GC before another GC should be done. */
128 EMACS_INT gc_cons_threshold;
130 /* Nonzero during GC. */
132 int gc_in_progress;
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
138 int abort_on_gc;
140 /* Nonzero means display messages at beginning and end of GC. */
142 int garbage_collection_messages;
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
154 /* Two limits controlling how much undo information to keep. */
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
159 /* Number of live and free conses etc. */
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
168 static char *spare_memory;
170 /* Amount of spare memory to keep in reserve. */
172 #define SPARE_MEMORY (1 << 14)
174 /* Number of extra blocks malloc should get when it needs more core. */
176 static int malloc_hysteresis;
178 /* Non-nil means defun should do purecopy on the function definition. */
180 Lisp_Object Vpurify_flag;
182 /* Non-nil means we are handling a memory-full error. */
184 Lisp_Object Vmemory_full;
186 #ifndef HAVE_SHM
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
194 #else /* HAVE_SHM */
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
199 #endif /* HAVE_SHM */
201 /* Pointer to the pure area, and its size. */
203 static char *purebeg;
204 static size_t pure_size;
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
209 static size_t pure_bytes_used_before_overflow;
211 /* Value is non-zero if P points into pure space. */
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
219 /* Index in pure at which next pure object will be allocated.. */
221 EMACS_INT pure_bytes_used;
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
226 char *pending_malloc_warning;
228 /* Pre-computed signal argument for use when memory is exhausted. */
230 Lisp_Object Vmemory_signal_data;
232 /* Maximum amount of C stack to save when a GC happens. */
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
238 /* Buffer in which we save a copy of the C stack at each GC. */
240 char *stack_copy;
241 int stack_copy_size;
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
246 int ignore_warnings;
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
250 /* Hook run after GC has finished. */
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
273 extern int message_enable_multibyte;
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
279 enum mem_type
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
307 Lisp_Object Vdead;
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
314 #endif /* GC_MALLOC_CHECK */
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
321 A red-black tree is a balanced binary tree with the following
322 properties:
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
340 struct mem_node
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
349 /* Start and end of allocated region. */
350 void *start, *end;
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
355 /* Memory type. */
356 enum mem_type type;
359 /* Base address of stack. Set in main. */
361 Lisp_Object *stack_base;
363 /* Root of the tree describing allocated Lisp memory. */
365 static struct mem_node *mem_root;
367 /* Lowest and highest known address in the heap. */
369 static void *min_heap_address, *max_heap_address;
371 /* Sentinel node of the tree. */
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
404 /* Recording what needs to be marked for gc. */
406 struct gcpro *gcprolist;
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
414 /* Index of next unused slot in staticvec. */
416 int staticidx = 0;
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
430 /************************************************************************
431 Malloc
432 ************************************************************************/
434 /* Function malloc calls this if it finds we are near exhausting storage. */
436 void
437 malloc_warning (str)
438 char *str;
440 pending_malloc_warning = str;
444 /* Display an already-pending malloc warning. */
446 void
447 display_malloc_warning ()
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
464 /* Called if malloc returns zero. */
466 void
467 memory_full ()
469 Vmemory_full = Qt;
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
478 free (spare_memory);
479 spare_memory = 0;
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
489 /* Called if we can't allocate relocatable space for a buffer. */
491 void
492 buffer_memory_full ()
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
505 Vmemory_full = Qt;
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
514 /* Like malloc but check for no memory and block interrupt input.. */
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
520 register POINTER_TYPE *val;
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
526 if (!val && size)
527 memory_full ();
528 return val;
532 /* Like realloc but check for no memory and block interrupt input.. */
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
539 register POINTER_TYPE *val;
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
550 if (!val && size) memory_full ();
551 return val;
555 /* Like free but block interrupt input. */
557 void
558 xfree (block)
559 POINTER_TYPE *block;
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
567 /* Like strdup, but uses xmalloc. */
569 char *
570 xstrdup (s)
571 const char *s;
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
584 static void *lisp_malloc_loser;
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
591 register void *val;
593 BLOCK_INPUT;
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
599 val = (void *) malloc (nbytes);
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
616 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
617 if (val && type != MEM_TYPE_NON_LISP)
618 mem_insert (val, (char *) val + nbytes, type);
619 #endif
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
624 return val;
627 /* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
630 static void
631 lisp_free (block)
632 POINTER_TYPE *block;
634 BLOCK_INPUT;
635 free (block);
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 mem_delete (mem_find (block));
638 #endif
639 UNBLOCK_INPUT;
642 /* Allocation of aligned blocks of memory to store Lisp data. */
643 /* The entry point is lisp_align_malloc which returns blocks of at most */
644 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647 /* BLOCK_ALIGN has to be a power of 2. */
648 #define BLOCK_ALIGN (1 << 10)
650 /* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659 #define BLOCK_PADDING 0
660 #define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
663 /* Internal data structures and constants. */
665 #define ABLOCKS_SIZE 16
667 /* An aligned block of memory. */
668 struct ablock
670 union
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
687 #if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
689 #endif
692 /* A bunch of consecutive aligned blocks. */
693 struct ablocks
695 struct ablock blocks[ABLOCKS_SIZE];
698 /* Size of the block requested from malloc or memalign. */
699 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
701 #define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
706 /* Virtual `busy' field. */
707 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
709 /* Pointer to the (not necessarily aligned) malloc block. */
710 #ifdef HAVE_POSIX_MEMALIGN
711 #define ABLOCKS_BASE(abase) (abase)
712 #else
713 #define ABLOCKS_BASE(abase) \
714 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
715 #endif
717 /* The list of free ablock. */
718 static struct ablock *free_ablock;
720 /* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723 static POINTER_TYPE *
724 lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
728 void *base, *val;
729 struct ablocks *abase;
731 eassert (nbytes <= BLOCK_BYTES);
733 BLOCK_INPUT;
735 #ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737 #endif
739 if (!free_ablock)
741 int i;
742 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
744 #ifdef DOUG_LEA_MALLOC
745 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
746 because mapped region contents are not preserved in
747 a dumped Emacs. */
748 mallopt (M_MMAP_MAX, 0);
749 #endif
751 #ifdef HAVE_POSIX_MEMALIGN
753 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
754 abase = err ? (base = NULL) : base;
756 #else
757 base = malloc (ABLOCKS_BYTES);
758 abase = ALIGN (base, BLOCK_ALIGN);
759 if (base == 0)
761 UNBLOCK_INPUT;
762 memory_full ();
764 #endif
766 aligned = (base == abase);
767 if (!aligned)
768 ((void**)abase)[-1] = base;
770 #ifdef DOUG_LEA_MALLOC
771 /* Back to a reasonable maximum of mmap'ed areas. */
772 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
773 #endif
775 /* If the memory just allocated cannot be addressed thru a Lisp
776 object's pointer, and it needs to be, that's equivalent to
777 running out of memory. */
778 if (type != MEM_TYPE_NON_LISP)
780 Lisp_Object tem;
781 char *end = (char *) base + ABLOCKS_BYTES - 1;
782 XSETCONS (tem, end);
783 if ((char *) XCONS (tem) != end)
785 lisp_malloc_loser = base;
786 free (base);
787 UNBLOCK_INPUT;
788 memory_full ();
792 /* Initialize the blocks and put them on the free list.
793 Is `base' was not properly aligned, we can't use the last block. */
794 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
796 abase->blocks[i].abase = abase;
797 abase->blocks[i].x.next_free = free_ablock;
798 free_ablock = &abase->blocks[i];
800 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
802 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
803 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
804 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
805 eassert (ABLOCKS_BASE (abase) == base);
806 eassert (aligned == (long) ABLOCKS_BUSY (abase));
809 abase = ABLOCK_ABASE (free_ablock);
810 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
811 val = free_ablock;
812 free_ablock = free_ablock->x.next_free;
814 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
815 if (val && type != MEM_TYPE_NON_LISP)
816 mem_insert (val, (char *) val + nbytes, type);
817 #endif
819 UNBLOCK_INPUT;
820 if (!val && nbytes)
821 memory_full ();
823 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
824 return val;
827 static void
828 lisp_align_free (block)
829 POINTER_TYPE *block;
831 struct ablock *ablock = block;
832 struct ablocks *abase = ABLOCK_ABASE (ablock);
834 BLOCK_INPUT;
835 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
836 mem_delete (mem_find (block));
837 #endif
838 /* Put on free list. */
839 ablock->x.next_free = free_ablock;
840 free_ablock = ablock;
841 /* Update busy count. */
842 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
844 if (2 > (long) ABLOCKS_BUSY (abase))
845 { /* All the blocks are free. */
846 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
847 struct ablock **tem = &free_ablock;
848 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
850 while (*tem)
852 if (*tem >= (struct ablock *) abase && *tem < atop)
854 i++;
855 *tem = (*tem)->x.next_free;
857 else
858 tem = &(*tem)->x.next_free;
860 eassert ((aligned & 1) == aligned);
861 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
862 free (ABLOCKS_BASE (abase));
864 UNBLOCK_INPUT;
867 /* Return a new buffer structure allocated from the heap with
868 a call to lisp_malloc. */
870 struct buffer *
871 allocate_buffer ()
873 struct buffer *b
874 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
875 MEM_TYPE_BUFFER);
876 return b;
880 /* Arranging to disable input signals while we're in malloc.
882 This only works with GNU malloc. To help out systems which can't
883 use GNU malloc, all the calls to malloc, realloc, and free
884 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
885 pairs; unfortunately, we have no idea what C library functions
886 might call malloc, so we can't really protect them unless you're
887 using GNU malloc. Fortunately, most of the major operating systems
888 can use GNU malloc. */
890 #ifndef SYSTEM_MALLOC
891 #ifndef DOUG_LEA_MALLOC
892 extern void * (*__malloc_hook) P_ ((size_t));
893 extern void * (*__realloc_hook) P_ ((void *, size_t));
894 extern void (*__free_hook) P_ ((void *));
895 /* Else declared in malloc.h, perhaps with an extra arg. */
896 #endif /* DOUG_LEA_MALLOC */
897 static void * (*old_malloc_hook) ();
898 static void * (*old_realloc_hook) ();
899 static void (*old_free_hook) ();
901 /* This function is used as the hook for free to call. */
903 static void
904 emacs_blocked_free (ptr)
905 void *ptr;
907 BLOCK_INPUT;
909 #ifdef GC_MALLOC_CHECK
910 if (ptr)
912 struct mem_node *m;
914 m = mem_find (ptr);
915 if (m == MEM_NIL || m->start != ptr)
917 fprintf (stderr,
918 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
919 abort ();
921 else
923 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
924 mem_delete (m);
927 #endif /* GC_MALLOC_CHECK */
929 __free_hook = old_free_hook;
930 free (ptr);
932 /* If we released our reserve (due to running out of memory),
933 and we have a fair amount free once again,
934 try to set aside another reserve in case we run out once more. */
935 if (spare_memory == 0
936 /* Verify there is enough space that even with the malloc
937 hysteresis this call won't run out again.
938 The code here is correct as long as SPARE_MEMORY
939 is substantially larger than the block size malloc uses. */
940 && (bytes_used_when_full
941 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
942 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
944 __free_hook = emacs_blocked_free;
945 UNBLOCK_INPUT;
949 /* If we released our reserve (due to running out of memory),
950 and we have a fair amount free once again,
951 try to set aside another reserve in case we run out once more.
953 This is called when a relocatable block is freed in ralloc.c. */
955 void
956 refill_memory_reserve ()
958 if (spare_memory == 0)
959 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
963 /* This function is the malloc hook that Emacs uses. */
965 static void *
966 emacs_blocked_malloc (size)
967 size_t size;
969 void *value;
971 BLOCK_INPUT;
972 __malloc_hook = old_malloc_hook;
973 #ifdef DOUG_LEA_MALLOC
974 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
975 #else
976 __malloc_extra_blocks = malloc_hysteresis;
977 #endif
979 value = (void *) malloc (size);
981 #ifdef GC_MALLOC_CHECK
983 struct mem_node *m = mem_find (value);
984 if (m != MEM_NIL)
986 fprintf (stderr, "Malloc returned %p which is already in use\n",
987 value);
988 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
989 m->start, m->end, (char *) m->end - (char *) m->start,
990 m->type);
991 abort ();
994 if (!dont_register_blocks)
996 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
997 allocated_mem_type = MEM_TYPE_NON_LISP;
1000 #endif /* GC_MALLOC_CHECK */
1002 __malloc_hook = emacs_blocked_malloc;
1003 UNBLOCK_INPUT;
1005 /* fprintf (stderr, "%p malloc\n", value); */
1006 return value;
1010 /* This function is the realloc hook that Emacs uses. */
1012 static void *
1013 emacs_blocked_realloc (ptr, size)
1014 void *ptr;
1015 size_t size;
1017 void *value;
1019 BLOCK_INPUT;
1020 __realloc_hook = old_realloc_hook;
1022 #ifdef GC_MALLOC_CHECK
1023 if (ptr)
1025 struct mem_node *m = mem_find (ptr);
1026 if (m == MEM_NIL || m->start != ptr)
1028 fprintf (stderr,
1029 "Realloc of %p which wasn't allocated with malloc\n",
1030 ptr);
1031 abort ();
1034 mem_delete (m);
1037 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1039 /* Prevent malloc from registering blocks. */
1040 dont_register_blocks = 1;
1041 #endif /* GC_MALLOC_CHECK */
1043 value = (void *) realloc (ptr, size);
1045 #ifdef GC_MALLOC_CHECK
1046 dont_register_blocks = 0;
1049 struct mem_node *m = mem_find (value);
1050 if (m != MEM_NIL)
1052 fprintf (stderr, "Realloc returns memory that is already in use\n");
1053 abort ();
1056 /* Can't handle zero size regions in the red-black tree. */
1057 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1060 /* fprintf (stderr, "%p <- realloc\n", value); */
1061 #endif /* GC_MALLOC_CHECK */
1063 __realloc_hook = emacs_blocked_realloc;
1064 UNBLOCK_INPUT;
1066 return value;
1070 /* Called from main to set up malloc to use our hooks. */
1072 void
1073 uninterrupt_malloc ()
1075 if (__free_hook != emacs_blocked_free)
1076 old_free_hook = __free_hook;
1077 __free_hook = emacs_blocked_free;
1079 if (__malloc_hook != emacs_blocked_malloc)
1080 old_malloc_hook = __malloc_hook;
1081 __malloc_hook = emacs_blocked_malloc;
1083 if (__realloc_hook != emacs_blocked_realloc)
1084 old_realloc_hook = __realloc_hook;
1085 __realloc_hook = emacs_blocked_realloc;
1088 #endif /* not SYSTEM_MALLOC */
1092 /***********************************************************************
1093 Interval Allocation
1094 ***********************************************************************/
1096 /* Number of intervals allocated in an interval_block structure.
1097 The 1020 is 1024 minus malloc overhead. */
1099 #define INTERVAL_BLOCK_SIZE \
1100 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1102 /* Intervals are allocated in chunks in form of an interval_block
1103 structure. */
1105 struct interval_block
1107 struct interval_block *next;
1108 struct interval intervals[INTERVAL_BLOCK_SIZE];
1111 /* Current interval block. Its `next' pointer points to older
1112 blocks. */
1114 struct interval_block *interval_block;
1116 /* Index in interval_block above of the next unused interval
1117 structure. */
1119 static int interval_block_index;
1121 /* Number of free and live intervals. */
1123 static int total_free_intervals, total_intervals;
1125 /* List of free intervals. */
1127 INTERVAL interval_free_list;
1129 /* Total number of interval blocks now in use. */
1131 int n_interval_blocks;
1134 /* Initialize interval allocation. */
1136 static void
1137 init_intervals ()
1139 interval_block = NULL;
1140 interval_block_index = INTERVAL_BLOCK_SIZE;
1141 interval_free_list = 0;
1142 n_interval_blocks = 0;
1146 /* Return a new interval. */
1148 INTERVAL
1149 make_interval ()
1151 INTERVAL val;
1153 if (interval_free_list)
1155 val = interval_free_list;
1156 interval_free_list = INTERVAL_PARENT (interval_free_list);
1158 else
1160 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1162 register struct interval_block *newi;
1164 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1165 MEM_TYPE_NON_LISP);
1167 newi->next = interval_block;
1168 interval_block = newi;
1169 interval_block_index = 0;
1170 n_interval_blocks++;
1172 val = &interval_block->intervals[interval_block_index++];
1174 consing_since_gc += sizeof (struct interval);
1175 intervals_consed++;
1176 RESET_INTERVAL (val);
1177 val->gcmarkbit = 0;
1178 return val;
1182 /* Mark Lisp objects in interval I. */
1184 static void
1185 mark_interval (i, dummy)
1186 register INTERVAL i;
1187 Lisp_Object dummy;
1189 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1190 i->gcmarkbit = 1;
1191 mark_object (i->plist);
1195 /* Mark the interval tree rooted in TREE. Don't call this directly;
1196 use the macro MARK_INTERVAL_TREE instead. */
1198 static void
1199 mark_interval_tree (tree)
1200 register INTERVAL tree;
1202 /* No need to test if this tree has been marked already; this
1203 function is always called through the MARK_INTERVAL_TREE macro,
1204 which takes care of that. */
1206 traverse_intervals_noorder (tree, mark_interval, Qnil);
1210 /* Mark the interval tree rooted in I. */
1212 #define MARK_INTERVAL_TREE(i) \
1213 do { \
1214 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1215 mark_interval_tree (i); \
1216 } while (0)
1219 #define UNMARK_BALANCE_INTERVALS(i) \
1220 do { \
1221 if (! NULL_INTERVAL_P (i)) \
1222 (i) = balance_intervals (i); \
1223 } while (0)
1226 /* Number support. If NO_UNION_TYPE isn't in effect, we
1227 can't create number objects in macros. */
1228 #ifndef make_number
1229 Lisp_Object
1230 make_number (n)
1231 int n;
1233 Lisp_Object obj;
1234 obj.s.val = n;
1235 obj.s.type = Lisp_Int;
1236 return obj;
1238 #endif
1240 /***********************************************************************
1241 String Allocation
1242 ***********************************************************************/
1244 /* Lisp_Strings are allocated in string_block structures. When a new
1245 string_block is allocated, all the Lisp_Strings it contains are
1246 added to a free-list string_free_list. When a new Lisp_String is
1247 needed, it is taken from that list. During the sweep phase of GC,
1248 string_blocks that are entirely free are freed, except two which
1249 we keep.
1251 String data is allocated from sblock structures. Strings larger
1252 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1253 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1255 Sblocks consist internally of sdata structures, one for each
1256 Lisp_String. The sdata structure points to the Lisp_String it
1257 belongs to. The Lisp_String points back to the `u.data' member of
1258 its sdata structure.
1260 When a Lisp_String is freed during GC, it is put back on
1261 string_free_list, and its `data' member and its sdata's `string'
1262 pointer is set to null. The size of the string is recorded in the
1263 `u.nbytes' member of the sdata. So, sdata structures that are no
1264 longer used, can be easily recognized, and it's easy to compact the
1265 sblocks of small strings which we do in compact_small_strings. */
1267 /* Size in bytes of an sblock structure used for small strings. This
1268 is 8192 minus malloc overhead. */
1270 #define SBLOCK_SIZE 8188
1272 /* Strings larger than this are considered large strings. String data
1273 for large strings is allocated from individual sblocks. */
1275 #define LARGE_STRING_BYTES 1024
1277 /* Structure describing string memory sub-allocated from an sblock.
1278 This is where the contents of Lisp strings are stored. */
1280 struct sdata
1282 /* Back-pointer to the string this sdata belongs to. If null, this
1283 structure is free, and the NBYTES member of the union below
1284 contains the string's byte size (the same value that STRING_BYTES
1285 would return if STRING were non-null). If non-null, STRING_BYTES
1286 (STRING) is the size of the data, and DATA contains the string's
1287 contents. */
1288 struct Lisp_String *string;
1290 #ifdef GC_CHECK_STRING_BYTES
1292 EMACS_INT nbytes;
1293 unsigned char data[1];
1295 #define SDATA_NBYTES(S) (S)->nbytes
1296 #define SDATA_DATA(S) (S)->data
1298 #else /* not GC_CHECK_STRING_BYTES */
1300 union
1302 /* When STRING in non-null. */
1303 unsigned char data[1];
1305 /* When STRING is null. */
1306 EMACS_INT nbytes;
1307 } u;
1310 #define SDATA_NBYTES(S) (S)->u.nbytes
1311 #define SDATA_DATA(S) (S)->u.data
1313 #endif /* not GC_CHECK_STRING_BYTES */
1317 /* Structure describing a block of memory which is sub-allocated to
1318 obtain string data memory for strings. Blocks for small strings
1319 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1320 as large as needed. */
1322 struct sblock
1324 /* Next in list. */
1325 struct sblock *next;
1327 /* Pointer to the next free sdata block. This points past the end
1328 of the sblock if there isn't any space left in this block. */
1329 struct sdata *next_free;
1331 /* Start of data. */
1332 struct sdata first_data;
1335 /* Number of Lisp strings in a string_block structure. The 1020 is
1336 1024 minus malloc overhead. */
1338 #define STRING_BLOCK_SIZE \
1339 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1341 /* Structure describing a block from which Lisp_String structures
1342 are allocated. */
1344 struct string_block
1346 struct string_block *next;
1347 struct Lisp_String strings[STRING_BLOCK_SIZE];
1350 /* Head and tail of the list of sblock structures holding Lisp string
1351 data. We always allocate from current_sblock. The NEXT pointers
1352 in the sblock structures go from oldest_sblock to current_sblock. */
1354 static struct sblock *oldest_sblock, *current_sblock;
1356 /* List of sblocks for large strings. */
1358 static struct sblock *large_sblocks;
1360 /* List of string_block structures, and how many there are. */
1362 static struct string_block *string_blocks;
1363 static int n_string_blocks;
1365 /* Free-list of Lisp_Strings. */
1367 static struct Lisp_String *string_free_list;
1369 /* Number of live and free Lisp_Strings. */
1371 static int total_strings, total_free_strings;
1373 /* Number of bytes used by live strings. */
1375 static int total_string_size;
1377 /* Given a pointer to a Lisp_String S which is on the free-list
1378 string_free_list, return a pointer to its successor in the
1379 free-list. */
1381 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1383 /* Return a pointer to the sdata structure belonging to Lisp string S.
1384 S must be live, i.e. S->data must not be null. S->data is actually
1385 a pointer to the `u.data' member of its sdata structure; the
1386 structure starts at a constant offset in front of that. */
1388 #ifdef GC_CHECK_STRING_BYTES
1390 #define SDATA_OF_STRING(S) \
1391 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1392 - sizeof (EMACS_INT)))
1394 #else /* not GC_CHECK_STRING_BYTES */
1396 #define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1399 #endif /* not GC_CHECK_STRING_BYTES */
1401 /* Value is the size of an sdata structure large enough to hold NBYTES
1402 bytes of string data. The value returned includes a terminating
1403 NUL byte, the size of the sdata structure, and padding. */
1405 #ifdef GC_CHECK_STRING_BYTES
1407 #define SDATA_SIZE(NBYTES) \
1408 ((sizeof (struct Lisp_String *) \
1409 + (NBYTES) + 1 \
1410 + sizeof (EMACS_INT) \
1411 + sizeof (EMACS_INT) - 1) \
1412 & ~(sizeof (EMACS_INT) - 1))
1414 #else /* not GC_CHECK_STRING_BYTES */
1416 #define SDATA_SIZE(NBYTES) \
1417 ((sizeof (struct Lisp_String *) \
1418 + (NBYTES) + 1 \
1419 + sizeof (EMACS_INT) - 1) \
1420 & ~(sizeof (EMACS_INT) - 1))
1422 #endif /* not GC_CHECK_STRING_BYTES */
1424 /* Initialize string allocation. Called from init_alloc_once. */
1426 void
1427 init_strings ()
1429 total_strings = total_free_strings = total_string_size = 0;
1430 oldest_sblock = current_sblock = large_sblocks = NULL;
1431 string_blocks = NULL;
1432 n_string_blocks = 0;
1433 string_free_list = NULL;
1437 #ifdef GC_CHECK_STRING_BYTES
1439 static int check_string_bytes_count;
1441 void check_string_bytes P_ ((int));
1442 void check_sblock P_ ((struct sblock *));
1444 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1447 /* Like GC_STRING_BYTES, but with debugging check. */
1450 string_bytes (s)
1451 struct Lisp_String *s;
1453 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1454 if (!PURE_POINTER_P (s)
1455 && s->data
1456 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1457 abort ();
1458 return nbytes;
1461 /* Check validity of Lisp strings' string_bytes member in B. */
1463 void
1464 check_sblock (b)
1465 struct sblock *b;
1467 struct sdata *from, *end, *from_end;
1469 end = b->next_free;
1471 for (from = &b->first_data; from < end; from = from_end)
1473 /* Compute the next FROM here because copying below may
1474 overwrite data we need to compute it. */
1475 int nbytes;
1477 /* Check that the string size recorded in the string is the
1478 same as the one recorded in the sdata structure. */
1479 if (from->string)
1480 CHECK_STRING_BYTES (from->string);
1482 if (from->string)
1483 nbytes = GC_STRING_BYTES (from->string);
1484 else
1485 nbytes = SDATA_NBYTES (from);
1487 nbytes = SDATA_SIZE (nbytes);
1488 from_end = (struct sdata *) ((char *) from + nbytes);
1493 /* Check validity of Lisp strings' string_bytes member. ALL_P
1494 non-zero means check all strings, otherwise check only most
1495 recently allocated strings. Used for hunting a bug. */
1497 void
1498 check_string_bytes (all_p)
1499 int all_p;
1501 if (all_p)
1503 struct sblock *b;
1505 for (b = large_sblocks; b; b = b->next)
1507 struct Lisp_String *s = b->first_data.string;
1508 if (s)
1509 CHECK_STRING_BYTES (s);
1512 for (b = oldest_sblock; b; b = b->next)
1513 check_sblock (b);
1515 else
1516 check_sblock (current_sblock);
1519 #endif /* GC_CHECK_STRING_BYTES */
1522 /* Return a new Lisp_String. */
1524 static struct Lisp_String *
1525 allocate_string ()
1527 struct Lisp_String *s;
1529 /* If the free-list is empty, allocate a new string_block, and
1530 add all the Lisp_Strings in it to the free-list. */
1531 if (string_free_list == NULL)
1533 struct string_block *b;
1534 int i;
1536 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1537 bzero (b, sizeof *b);
1538 b->next = string_blocks;
1539 string_blocks = b;
1540 ++n_string_blocks;
1542 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1544 s = b->strings + i;
1545 NEXT_FREE_LISP_STRING (s) = string_free_list;
1546 string_free_list = s;
1549 total_free_strings += STRING_BLOCK_SIZE;
1552 /* Pop a Lisp_String off the free-list. */
1553 s = string_free_list;
1554 string_free_list = NEXT_FREE_LISP_STRING (s);
1556 /* Probably not strictly necessary, but play it safe. */
1557 bzero (s, sizeof *s);
1559 --total_free_strings;
1560 ++total_strings;
1561 ++strings_consed;
1562 consing_since_gc += sizeof *s;
1564 #ifdef GC_CHECK_STRING_BYTES
1565 if (!noninteractive
1566 #ifdef MAC_OS8
1567 && current_sblock
1568 #endif
1571 if (++check_string_bytes_count == 200)
1573 check_string_bytes_count = 0;
1574 check_string_bytes (1);
1576 else
1577 check_string_bytes (0);
1579 #endif /* GC_CHECK_STRING_BYTES */
1581 return s;
1585 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1586 plus a NUL byte at the end. Allocate an sdata structure for S, and
1587 set S->data to its `u.data' member. Store a NUL byte at the end of
1588 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1589 S->data if it was initially non-null. */
1591 void
1592 allocate_string_data (s, nchars, nbytes)
1593 struct Lisp_String *s;
1594 int nchars, nbytes;
1596 struct sdata *data, *old_data;
1597 struct sblock *b;
1598 int needed, old_nbytes;
1600 /* Determine the number of bytes needed to store NBYTES bytes
1601 of string data. */
1602 needed = SDATA_SIZE (nbytes);
1604 if (nbytes > LARGE_STRING_BYTES)
1606 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1608 #ifdef DOUG_LEA_MALLOC
1609 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1610 because mapped region contents are not preserved in
1611 a dumped Emacs.
1613 In case you think of allowing it in a dumped Emacs at the
1614 cost of not being able to re-dump, there's another reason:
1615 mmap'ed data typically have an address towards the top of the
1616 address space, which won't fit into an EMACS_INT (at least on
1617 32-bit systems with the current tagging scheme). --fx */
1618 mallopt (M_MMAP_MAX, 0);
1619 #endif
1621 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1623 #ifdef DOUG_LEA_MALLOC
1624 /* Back to a reasonable maximum of mmap'ed areas. */
1625 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1626 #endif
1628 b->next_free = &b->first_data;
1629 b->first_data.string = NULL;
1630 b->next = large_sblocks;
1631 large_sblocks = b;
1633 else if (current_sblock == NULL
1634 || (((char *) current_sblock + SBLOCK_SIZE
1635 - (char *) current_sblock->next_free)
1636 < needed))
1638 /* Not enough room in the current sblock. */
1639 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1640 b->next_free = &b->first_data;
1641 b->first_data.string = NULL;
1642 b->next = NULL;
1644 if (current_sblock)
1645 current_sblock->next = b;
1646 else
1647 oldest_sblock = b;
1648 current_sblock = b;
1650 else
1651 b = current_sblock;
1653 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1654 old_nbytes = GC_STRING_BYTES (s);
1656 data = b->next_free;
1657 data->string = s;
1658 s->data = SDATA_DATA (data);
1659 #ifdef GC_CHECK_STRING_BYTES
1660 SDATA_NBYTES (data) = nbytes;
1661 #endif
1662 s->size = nchars;
1663 s->size_byte = nbytes;
1664 s->data[nbytes] = '\0';
1665 b->next_free = (struct sdata *) ((char *) data + needed);
1667 /* If S had already data assigned, mark that as free by setting its
1668 string back-pointer to null, and recording the size of the data
1669 in it. */
1670 if (old_data)
1672 SDATA_NBYTES (old_data) = old_nbytes;
1673 old_data->string = NULL;
1676 consing_since_gc += needed;
1680 /* Sweep and compact strings. */
1682 static void
1683 sweep_strings ()
1685 struct string_block *b, *next;
1686 struct string_block *live_blocks = NULL;
1688 string_free_list = NULL;
1689 total_strings = total_free_strings = 0;
1690 total_string_size = 0;
1692 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1693 for (b = string_blocks; b; b = next)
1695 int i, nfree = 0;
1696 struct Lisp_String *free_list_before = string_free_list;
1698 next = b->next;
1700 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1702 struct Lisp_String *s = b->strings + i;
1704 if (s->data)
1706 /* String was not on free-list before. */
1707 if (STRING_MARKED_P (s))
1709 /* String is live; unmark it and its intervals. */
1710 UNMARK_STRING (s);
1712 if (!NULL_INTERVAL_P (s->intervals))
1713 UNMARK_BALANCE_INTERVALS (s->intervals);
1715 ++total_strings;
1716 total_string_size += STRING_BYTES (s);
1718 else
1720 /* String is dead. Put it on the free-list. */
1721 struct sdata *data = SDATA_OF_STRING (s);
1723 /* Save the size of S in its sdata so that we know
1724 how large that is. Reset the sdata's string
1725 back-pointer so that we know it's free. */
1726 #ifdef GC_CHECK_STRING_BYTES
1727 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1728 abort ();
1729 #else
1730 data->u.nbytes = GC_STRING_BYTES (s);
1731 #endif
1732 data->string = NULL;
1734 /* Reset the strings's `data' member so that we
1735 know it's free. */
1736 s->data = NULL;
1738 /* Put the string on the free-list. */
1739 NEXT_FREE_LISP_STRING (s) = string_free_list;
1740 string_free_list = s;
1741 ++nfree;
1744 else
1746 /* S was on the free-list before. Put it there again. */
1747 NEXT_FREE_LISP_STRING (s) = string_free_list;
1748 string_free_list = s;
1749 ++nfree;
1753 /* Free blocks that contain free Lisp_Strings only, except
1754 the first two of them. */
1755 if (nfree == STRING_BLOCK_SIZE
1756 && total_free_strings > STRING_BLOCK_SIZE)
1758 lisp_free (b);
1759 --n_string_blocks;
1760 string_free_list = free_list_before;
1762 else
1764 total_free_strings += nfree;
1765 b->next = live_blocks;
1766 live_blocks = b;
1770 string_blocks = live_blocks;
1771 free_large_strings ();
1772 compact_small_strings ();
1776 /* Free dead large strings. */
1778 static void
1779 free_large_strings ()
1781 struct sblock *b, *next;
1782 struct sblock *live_blocks = NULL;
1784 for (b = large_sblocks; b; b = next)
1786 next = b->next;
1788 if (b->first_data.string == NULL)
1789 lisp_free (b);
1790 else
1792 b->next = live_blocks;
1793 live_blocks = b;
1797 large_sblocks = live_blocks;
1801 /* Compact data of small strings. Free sblocks that don't contain
1802 data of live strings after compaction. */
1804 static void
1805 compact_small_strings ()
1807 struct sblock *b, *tb, *next;
1808 struct sdata *from, *to, *end, *tb_end;
1809 struct sdata *to_end, *from_end;
1811 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1812 to, and TB_END is the end of TB. */
1813 tb = oldest_sblock;
1814 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1815 to = &tb->first_data;
1817 /* Step through the blocks from the oldest to the youngest. We
1818 expect that old blocks will stabilize over time, so that less
1819 copying will happen this way. */
1820 for (b = oldest_sblock; b; b = b->next)
1822 end = b->next_free;
1823 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1825 for (from = &b->first_data; from < end; from = from_end)
1827 /* Compute the next FROM here because copying below may
1828 overwrite data we need to compute it. */
1829 int nbytes;
1831 #ifdef GC_CHECK_STRING_BYTES
1832 /* Check that the string size recorded in the string is the
1833 same as the one recorded in the sdata structure. */
1834 if (from->string
1835 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1836 abort ();
1837 #endif /* GC_CHECK_STRING_BYTES */
1839 if (from->string)
1840 nbytes = GC_STRING_BYTES (from->string);
1841 else
1842 nbytes = SDATA_NBYTES (from);
1844 nbytes = SDATA_SIZE (nbytes);
1845 from_end = (struct sdata *) ((char *) from + nbytes);
1847 /* FROM->string non-null means it's alive. Copy its data. */
1848 if (from->string)
1850 /* If TB is full, proceed with the next sblock. */
1851 to_end = (struct sdata *) ((char *) to + nbytes);
1852 if (to_end > tb_end)
1854 tb->next_free = to;
1855 tb = tb->next;
1856 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1857 to = &tb->first_data;
1858 to_end = (struct sdata *) ((char *) to + nbytes);
1861 /* Copy, and update the string's `data' pointer. */
1862 if (from != to)
1864 xassert (tb != b || to <= from);
1865 safe_bcopy ((char *) from, (char *) to, nbytes);
1866 to->string->data = SDATA_DATA (to);
1869 /* Advance past the sdata we copied to. */
1870 to = to_end;
1875 /* The rest of the sblocks following TB don't contain live data, so
1876 we can free them. */
1877 for (b = tb->next; b; b = next)
1879 next = b->next;
1880 lisp_free (b);
1883 tb->next_free = to;
1884 tb->next = NULL;
1885 current_sblock = tb;
1889 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1890 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1891 Both LENGTH and INIT must be numbers. */)
1892 (length, init)
1893 Lisp_Object length, init;
1895 register Lisp_Object val;
1896 register unsigned char *p, *end;
1897 int c, nbytes;
1899 CHECK_NATNUM (length);
1900 CHECK_NUMBER (init);
1902 c = XINT (init);
1903 if (SINGLE_BYTE_CHAR_P (c))
1905 nbytes = XINT (length);
1906 val = make_uninit_string (nbytes);
1907 p = SDATA (val);
1908 end = p + SCHARS (val);
1909 while (p != end)
1910 *p++ = c;
1912 else
1914 unsigned char str[MAX_MULTIBYTE_LENGTH];
1915 int len = CHAR_STRING (c, str);
1917 nbytes = len * XINT (length);
1918 val = make_uninit_multibyte_string (XINT (length), nbytes);
1919 p = SDATA (val);
1920 end = p + nbytes;
1921 while (p != end)
1923 bcopy (str, p, len);
1924 p += len;
1928 *p = 0;
1929 return val;
1933 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1934 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1935 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1936 (length, init)
1937 Lisp_Object length, init;
1939 register Lisp_Object val;
1940 struct Lisp_Bool_Vector *p;
1941 int real_init, i;
1942 int length_in_chars, length_in_elts, bits_per_value;
1944 CHECK_NATNUM (length);
1946 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1948 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1949 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1951 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1952 slot `size' of the struct Lisp_Bool_Vector. */
1953 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1954 p = XBOOL_VECTOR (val);
1956 /* Get rid of any bits that would cause confusion. */
1957 p->vector_size = 0;
1958 XSETBOOL_VECTOR (val, p);
1959 p->size = XFASTINT (length);
1961 real_init = (NILP (init) ? 0 : -1);
1962 for (i = 0; i < length_in_chars ; i++)
1963 p->data[i] = real_init;
1965 /* Clear the extraneous bits in the last byte. */
1966 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1967 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1968 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1970 return val;
1974 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1975 of characters from the contents. This string may be unibyte or
1976 multibyte, depending on the contents. */
1978 Lisp_Object
1979 make_string (contents, nbytes)
1980 const char *contents;
1981 int nbytes;
1983 register Lisp_Object val;
1984 int nchars, multibyte_nbytes;
1986 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1987 if (nbytes == nchars || nbytes != multibyte_nbytes)
1988 /* CONTENTS contains no multibyte sequences or contains an invalid
1989 multibyte sequence. We must make unibyte string. */
1990 val = make_unibyte_string (contents, nbytes);
1991 else
1992 val = make_multibyte_string (contents, nchars, nbytes);
1993 return val;
1997 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1999 Lisp_Object
2000 make_unibyte_string (contents, length)
2001 const char *contents;
2002 int length;
2004 register Lisp_Object val;
2005 val = make_uninit_string (length);
2006 bcopy (contents, SDATA (val), length);
2007 STRING_SET_UNIBYTE (val);
2008 return val;
2012 /* Make a multibyte string from NCHARS characters occupying NBYTES
2013 bytes at CONTENTS. */
2015 Lisp_Object
2016 make_multibyte_string (contents, nchars, nbytes)
2017 const char *contents;
2018 int nchars, nbytes;
2020 register Lisp_Object val;
2021 val = make_uninit_multibyte_string (nchars, nbytes);
2022 bcopy (contents, SDATA (val), nbytes);
2023 return val;
2027 /* Make a string from NCHARS characters occupying NBYTES bytes at
2028 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2030 Lisp_Object
2031 make_string_from_bytes (contents, nchars, nbytes)
2032 const char *contents;
2033 int nchars, nbytes;
2035 register Lisp_Object val;
2036 val = make_uninit_multibyte_string (nchars, nbytes);
2037 bcopy (contents, SDATA (val), nbytes);
2038 if (SBYTES (val) == SCHARS (val))
2039 STRING_SET_UNIBYTE (val);
2040 return val;
2044 /* Make a string from NCHARS characters occupying NBYTES bytes at
2045 CONTENTS. The argument MULTIBYTE controls whether to label the
2046 string as multibyte. If NCHARS is negative, it counts the number of
2047 characters by itself. */
2049 Lisp_Object
2050 make_specified_string (contents, nchars, nbytes, multibyte)
2051 const char *contents;
2052 int nchars, nbytes;
2053 int multibyte;
2055 register Lisp_Object val;
2057 if (nchars < 0)
2059 if (multibyte)
2060 nchars = multibyte_chars_in_text (contents, nbytes);
2061 else
2062 nchars = nbytes;
2064 val = make_uninit_multibyte_string (nchars, nbytes);
2065 bcopy (contents, SDATA (val), nbytes);
2066 if (!multibyte)
2067 STRING_SET_UNIBYTE (val);
2068 return val;
2072 /* Make a string from the data at STR, treating it as multibyte if the
2073 data warrants. */
2075 Lisp_Object
2076 build_string (str)
2077 const char *str;
2079 return make_string (str, strlen (str));
2083 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2084 occupying LENGTH bytes. */
2086 Lisp_Object
2087 make_uninit_string (length)
2088 int length;
2090 Lisp_Object val;
2091 val = make_uninit_multibyte_string (length, length);
2092 STRING_SET_UNIBYTE (val);
2093 return val;
2097 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2098 which occupy NBYTES bytes. */
2100 Lisp_Object
2101 make_uninit_multibyte_string (nchars, nbytes)
2102 int nchars, nbytes;
2104 Lisp_Object string;
2105 struct Lisp_String *s;
2107 if (nchars < 0)
2108 abort ();
2110 s = allocate_string ();
2111 allocate_string_data (s, nchars, nbytes);
2112 XSETSTRING (string, s);
2113 string_chars_consed += nbytes;
2114 return string;
2119 /***********************************************************************
2120 Float Allocation
2121 ***********************************************************************/
2123 /* We store float cells inside of float_blocks, allocating a new
2124 float_block with malloc whenever necessary. Float cells reclaimed
2125 by GC are put on a free list to be reallocated before allocating
2126 any new float cells from the latest float_block. */
2128 #define FLOAT_BLOCK_SIZE \
2129 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2130 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2132 #define GETMARKBIT(block,n) \
2133 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2134 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2135 & 1)
2137 #define SETMARKBIT(block,n) \
2138 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2139 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2141 #define UNSETMARKBIT(block,n) \
2142 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2143 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2145 #define FLOAT_BLOCK(fptr) \
2146 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2148 #define FLOAT_INDEX(fptr) \
2149 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2151 struct float_block
2153 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2154 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2155 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2156 struct float_block *next;
2159 #define FLOAT_MARKED_P(fptr) \
2160 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2162 #define FLOAT_MARK(fptr) \
2163 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2165 #define FLOAT_UNMARK(fptr) \
2166 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2168 /* Current float_block. */
2170 struct float_block *float_block;
2172 /* Index of first unused Lisp_Float in the current float_block. */
2174 int float_block_index;
2176 /* Total number of float blocks now in use. */
2178 int n_float_blocks;
2180 /* Free-list of Lisp_Floats. */
2182 struct Lisp_Float *float_free_list;
2185 /* Initialize float allocation. */
2187 void
2188 init_float ()
2190 float_block = NULL;
2191 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2192 float_free_list = 0;
2193 n_float_blocks = 0;
2197 /* Explicitly free a float cell by putting it on the free-list. */
2199 void
2200 free_float (ptr)
2201 struct Lisp_Float *ptr;
2203 *(struct Lisp_Float **)&ptr->data = float_free_list;
2204 float_free_list = ptr;
2208 /* Return a new float object with value FLOAT_VALUE. */
2210 Lisp_Object
2211 make_float (float_value)
2212 double float_value;
2214 register Lisp_Object val;
2216 if (float_free_list)
2218 /* We use the data field for chaining the free list
2219 so that we won't use the same field that has the mark bit. */
2220 XSETFLOAT (val, float_free_list);
2221 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2223 else
2225 if (float_block_index == FLOAT_BLOCK_SIZE)
2227 register struct float_block *new;
2229 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2230 MEM_TYPE_FLOAT);
2231 new->next = float_block;
2232 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2233 float_block = new;
2234 float_block_index = 0;
2235 n_float_blocks++;
2237 XSETFLOAT (val, &float_block->floats[float_block_index]);
2238 float_block_index++;
2241 XFLOAT_DATA (val) = float_value;
2242 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2243 consing_since_gc += sizeof (struct Lisp_Float);
2244 floats_consed++;
2245 return val;
2250 /***********************************************************************
2251 Cons Allocation
2252 ***********************************************************************/
2254 /* We store cons cells inside of cons_blocks, allocating a new
2255 cons_block with malloc whenever necessary. Cons cells reclaimed by
2256 GC are put on a free list to be reallocated before allocating
2257 any new cons cells from the latest cons_block. */
2259 #define CONS_BLOCK_SIZE \
2260 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2261 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2263 #define CONS_BLOCK(fptr) \
2264 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2266 #define CONS_INDEX(fptr) \
2267 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2269 struct cons_block
2271 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2272 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2273 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2274 struct cons_block *next;
2277 #define CONS_MARKED_P(fptr) \
2278 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2280 #define CONS_MARK(fptr) \
2281 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2283 #define CONS_UNMARK(fptr) \
2284 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2286 /* Current cons_block. */
2288 struct cons_block *cons_block;
2290 /* Index of first unused Lisp_Cons in the current block. */
2292 int cons_block_index;
2294 /* Free-list of Lisp_Cons structures. */
2296 struct Lisp_Cons *cons_free_list;
2298 /* Total number of cons blocks now in use. */
2300 int n_cons_blocks;
2303 /* Initialize cons allocation. */
2305 void
2306 init_cons ()
2308 cons_block = NULL;
2309 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2310 cons_free_list = 0;
2311 n_cons_blocks = 0;
2315 /* Explicitly free a cons cell by putting it on the free-list. */
2317 void
2318 free_cons (ptr)
2319 struct Lisp_Cons *ptr;
2321 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2322 #if GC_MARK_STACK
2323 ptr->car = Vdead;
2324 #endif
2325 cons_free_list = ptr;
2329 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2330 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2331 (car, cdr)
2332 Lisp_Object car, cdr;
2334 register Lisp_Object val;
2336 if (cons_free_list)
2338 /* We use the cdr for chaining the free list
2339 so that we won't use the same field that has the mark bit. */
2340 XSETCONS (val, cons_free_list);
2341 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2343 else
2345 if (cons_block_index == CONS_BLOCK_SIZE)
2347 register struct cons_block *new;
2348 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2349 MEM_TYPE_CONS);
2350 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2351 new->next = cons_block;
2352 cons_block = new;
2353 cons_block_index = 0;
2354 n_cons_blocks++;
2356 XSETCONS (val, &cons_block->conses[cons_block_index]);
2357 cons_block_index++;
2360 XSETCAR (val, car);
2361 XSETCDR (val, cdr);
2362 eassert (!CONS_MARKED_P (XCONS (val)));
2363 consing_since_gc += sizeof (struct Lisp_Cons);
2364 cons_cells_consed++;
2365 return val;
2369 /* Make a list of 2, 3, 4 or 5 specified objects. */
2371 Lisp_Object
2372 list2 (arg1, arg2)
2373 Lisp_Object arg1, arg2;
2375 return Fcons (arg1, Fcons (arg2, Qnil));
2379 Lisp_Object
2380 list3 (arg1, arg2, arg3)
2381 Lisp_Object arg1, arg2, arg3;
2383 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2387 Lisp_Object
2388 list4 (arg1, arg2, arg3, arg4)
2389 Lisp_Object arg1, arg2, arg3, arg4;
2391 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2395 Lisp_Object
2396 list5 (arg1, arg2, arg3, arg4, arg5)
2397 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2399 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2400 Fcons (arg5, Qnil)))));
2404 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2405 doc: /* Return a newly created list with specified arguments as elements.
2406 Any number of arguments, even zero arguments, are allowed.
2407 usage: (list &rest OBJECTS) */)
2408 (nargs, args)
2409 int nargs;
2410 register Lisp_Object *args;
2412 register Lisp_Object val;
2413 val = Qnil;
2415 while (nargs > 0)
2417 nargs--;
2418 val = Fcons (args[nargs], val);
2420 return val;
2424 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2425 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2426 (length, init)
2427 register Lisp_Object length, init;
2429 register Lisp_Object val;
2430 register int size;
2432 CHECK_NATNUM (length);
2433 size = XFASTINT (length);
2435 val = Qnil;
2436 while (size > 0)
2438 val = Fcons (init, val);
2439 --size;
2441 if (size > 0)
2443 val = Fcons (init, val);
2444 --size;
2446 if (size > 0)
2448 val = Fcons (init, val);
2449 --size;
2451 if (size > 0)
2453 val = Fcons (init, val);
2454 --size;
2456 if (size > 0)
2458 val = Fcons (init, val);
2459 --size;
2465 QUIT;
2468 return val;
2473 /***********************************************************************
2474 Vector Allocation
2475 ***********************************************************************/
2477 /* Singly-linked list of all vectors. */
2479 struct Lisp_Vector *all_vectors;
2481 /* Total number of vector-like objects now in use. */
2483 int n_vectors;
2486 /* Value is a pointer to a newly allocated Lisp_Vector structure
2487 with room for LEN Lisp_Objects. */
2489 static struct Lisp_Vector *
2490 allocate_vectorlike (len, type)
2491 EMACS_INT len;
2492 enum mem_type type;
2494 struct Lisp_Vector *p;
2495 size_t nbytes;
2497 #ifdef DOUG_LEA_MALLOC
2498 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2499 because mapped region contents are not preserved in
2500 a dumped Emacs. */
2501 mallopt (M_MMAP_MAX, 0);
2502 #endif
2504 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2505 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2507 #ifdef DOUG_LEA_MALLOC
2508 /* Back to a reasonable maximum of mmap'ed areas. */
2509 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2510 #endif
2512 consing_since_gc += nbytes;
2513 vector_cells_consed += len;
2515 p->next = all_vectors;
2516 all_vectors = p;
2517 ++n_vectors;
2518 return p;
2522 /* Allocate a vector with NSLOTS slots. */
2524 struct Lisp_Vector *
2525 allocate_vector (nslots)
2526 EMACS_INT nslots;
2528 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2529 v->size = nslots;
2530 return v;
2534 /* Allocate other vector-like structures. */
2536 struct Lisp_Hash_Table *
2537 allocate_hash_table ()
2539 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2540 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2541 EMACS_INT i;
2543 v->size = len;
2544 for (i = 0; i < len; ++i)
2545 v->contents[i] = Qnil;
2547 return (struct Lisp_Hash_Table *) v;
2551 struct window *
2552 allocate_window ()
2554 EMACS_INT len = VECSIZE (struct window);
2555 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2556 EMACS_INT i;
2558 for (i = 0; i < len; ++i)
2559 v->contents[i] = Qnil;
2560 v->size = len;
2562 return (struct window *) v;
2566 struct frame *
2567 allocate_frame ()
2569 EMACS_INT len = VECSIZE (struct frame);
2570 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2571 EMACS_INT i;
2573 for (i = 0; i < len; ++i)
2574 v->contents[i] = make_number (0);
2575 v->size = len;
2576 return (struct frame *) v;
2580 struct Lisp_Process *
2581 allocate_process ()
2583 EMACS_INT len = VECSIZE (struct Lisp_Process);
2584 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2585 EMACS_INT i;
2587 for (i = 0; i < len; ++i)
2588 v->contents[i] = Qnil;
2589 v->size = len;
2591 return (struct Lisp_Process *) v;
2595 struct Lisp_Vector *
2596 allocate_other_vector (len)
2597 EMACS_INT len;
2599 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2600 EMACS_INT i;
2602 for (i = 0; i < len; ++i)
2603 v->contents[i] = Qnil;
2604 v->size = len;
2606 return v;
2610 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2611 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2612 See also the function `vector'. */)
2613 (length, init)
2614 register Lisp_Object length, init;
2616 Lisp_Object vector;
2617 register EMACS_INT sizei;
2618 register int index;
2619 register struct Lisp_Vector *p;
2621 CHECK_NATNUM (length);
2622 sizei = XFASTINT (length);
2624 p = allocate_vector (sizei);
2625 for (index = 0; index < sizei; index++)
2626 p->contents[index] = init;
2628 XSETVECTOR (vector, p);
2629 return vector;
2633 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2634 doc: /* Return a newly created char-table, with purpose PURPOSE.
2635 Each element is initialized to INIT, which defaults to nil.
2636 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2637 The property's value should be an integer between 0 and 10. */)
2638 (purpose, init)
2639 register Lisp_Object purpose, init;
2641 Lisp_Object vector;
2642 Lisp_Object n;
2643 CHECK_SYMBOL (purpose);
2644 n = Fget (purpose, Qchar_table_extra_slots);
2645 CHECK_NUMBER (n);
2646 if (XINT (n) < 0 || XINT (n) > 10)
2647 args_out_of_range (n, Qnil);
2648 /* Add 2 to the size for the defalt and parent slots. */
2649 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2650 init);
2651 XCHAR_TABLE (vector)->top = Qt;
2652 XCHAR_TABLE (vector)->parent = Qnil;
2653 XCHAR_TABLE (vector)->purpose = purpose;
2654 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2655 return vector;
2659 /* Return a newly created sub char table with default value DEFALT.
2660 Since a sub char table does not appear as a top level Emacs Lisp
2661 object, we don't need a Lisp interface to make it. */
2663 Lisp_Object
2664 make_sub_char_table (defalt)
2665 Lisp_Object defalt;
2667 Lisp_Object vector
2668 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2669 XCHAR_TABLE (vector)->top = Qnil;
2670 XCHAR_TABLE (vector)->defalt = defalt;
2671 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2672 return vector;
2676 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2677 doc: /* Return a newly created vector with specified arguments as elements.
2678 Any number of arguments, even zero arguments, are allowed.
2679 usage: (vector &rest OBJECTS) */)
2680 (nargs, args)
2681 register int nargs;
2682 Lisp_Object *args;
2684 register Lisp_Object len, val;
2685 register int index;
2686 register struct Lisp_Vector *p;
2688 XSETFASTINT (len, nargs);
2689 val = Fmake_vector (len, Qnil);
2690 p = XVECTOR (val);
2691 for (index = 0; index < nargs; index++)
2692 p->contents[index] = args[index];
2693 return val;
2697 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2698 doc: /* Create a byte-code object with specified arguments as elements.
2699 The arguments should be the arglist, bytecode-string, constant vector,
2700 stack size, (optional) doc string, and (optional) interactive spec.
2701 The first four arguments are required; at most six have any
2702 significance.
2703 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2704 (nargs, args)
2705 register int nargs;
2706 Lisp_Object *args;
2708 register Lisp_Object len, val;
2709 register int index;
2710 register struct Lisp_Vector *p;
2712 XSETFASTINT (len, nargs);
2713 if (!NILP (Vpurify_flag))
2714 val = make_pure_vector ((EMACS_INT) nargs);
2715 else
2716 val = Fmake_vector (len, Qnil);
2718 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2719 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2720 earlier because they produced a raw 8-bit string for byte-code
2721 and now such a byte-code string is loaded as multibyte while
2722 raw 8-bit characters converted to multibyte form. Thus, now we
2723 must convert them back to the original unibyte form. */
2724 args[1] = Fstring_as_unibyte (args[1]);
2726 p = XVECTOR (val);
2727 for (index = 0; index < nargs; index++)
2729 if (!NILP (Vpurify_flag))
2730 args[index] = Fpurecopy (args[index]);
2731 p->contents[index] = args[index];
2733 XSETCOMPILED (val, p);
2734 return val;
2739 /***********************************************************************
2740 Symbol Allocation
2741 ***********************************************************************/
2743 /* Each symbol_block is just under 1020 bytes long, since malloc
2744 really allocates in units of powers of two and uses 4 bytes for its
2745 own overhead. */
2747 #define SYMBOL_BLOCK_SIZE \
2748 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2750 struct symbol_block
2752 struct symbol_block *next;
2753 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2756 /* Current symbol block and index of first unused Lisp_Symbol
2757 structure in it. */
2759 struct symbol_block *symbol_block;
2760 int symbol_block_index;
2762 /* List of free symbols. */
2764 struct Lisp_Symbol *symbol_free_list;
2766 /* Total number of symbol blocks now in use. */
2768 int n_symbol_blocks;
2771 /* Initialize symbol allocation. */
2773 void
2774 init_symbol ()
2776 symbol_block = NULL;
2777 symbol_block_index = SYMBOL_BLOCK_SIZE;
2778 symbol_free_list = 0;
2779 n_symbol_blocks = 0;
2783 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2784 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2785 Its value and function definition are void, and its property list is nil. */)
2786 (name)
2787 Lisp_Object name;
2789 register Lisp_Object val;
2790 register struct Lisp_Symbol *p;
2792 CHECK_STRING (name);
2794 if (symbol_free_list)
2796 XSETSYMBOL (val, symbol_free_list);
2797 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2799 else
2801 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2803 struct symbol_block *new;
2804 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2805 MEM_TYPE_SYMBOL);
2806 new->next = symbol_block;
2807 symbol_block = new;
2808 symbol_block_index = 0;
2809 n_symbol_blocks++;
2811 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2812 symbol_block_index++;
2815 p = XSYMBOL (val);
2816 p->xname = name;
2817 p->plist = Qnil;
2818 p->value = Qunbound;
2819 p->function = Qunbound;
2820 p->next = NULL;
2821 p->gcmarkbit = 0;
2822 p->interned = SYMBOL_UNINTERNED;
2823 p->constant = 0;
2824 p->indirect_variable = 0;
2825 consing_since_gc += sizeof (struct Lisp_Symbol);
2826 symbols_consed++;
2827 return val;
2832 /***********************************************************************
2833 Marker (Misc) Allocation
2834 ***********************************************************************/
2836 /* Allocation of markers and other objects that share that structure.
2837 Works like allocation of conses. */
2839 #define MARKER_BLOCK_SIZE \
2840 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2842 struct marker_block
2844 struct marker_block *next;
2845 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2848 struct marker_block *marker_block;
2849 int marker_block_index;
2851 union Lisp_Misc *marker_free_list;
2853 /* Total number of marker blocks now in use. */
2855 int n_marker_blocks;
2857 void
2858 init_marker ()
2860 marker_block = NULL;
2861 marker_block_index = MARKER_BLOCK_SIZE;
2862 marker_free_list = 0;
2863 n_marker_blocks = 0;
2866 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2868 Lisp_Object
2869 allocate_misc ()
2871 Lisp_Object val;
2873 if (marker_free_list)
2875 XSETMISC (val, marker_free_list);
2876 marker_free_list = marker_free_list->u_free.chain;
2878 else
2880 if (marker_block_index == MARKER_BLOCK_SIZE)
2882 struct marker_block *new;
2883 new = (struct marker_block *) lisp_malloc (sizeof *new,
2884 MEM_TYPE_MISC);
2885 new->next = marker_block;
2886 marker_block = new;
2887 marker_block_index = 0;
2888 n_marker_blocks++;
2890 XSETMISC (val, &marker_block->markers[marker_block_index]);
2891 marker_block_index++;
2894 consing_since_gc += sizeof (union Lisp_Misc);
2895 misc_objects_consed++;
2896 XMARKER (val)->gcmarkbit = 0;
2897 return val;
2900 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2901 INTEGER. This is used to package C values to call record_unwind_protect.
2902 The unwind function can get the C values back using XSAVE_VALUE. */
2904 Lisp_Object
2905 make_save_value (pointer, integer)
2906 void *pointer;
2907 int integer;
2909 register Lisp_Object val;
2910 register struct Lisp_Save_Value *p;
2912 val = allocate_misc ();
2913 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2914 p = XSAVE_VALUE (val);
2915 p->pointer = pointer;
2916 p->integer = integer;
2917 return val;
2920 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2921 doc: /* Return a newly allocated marker which does not point at any place. */)
2924 register Lisp_Object val;
2925 register struct Lisp_Marker *p;
2927 val = allocate_misc ();
2928 XMISCTYPE (val) = Lisp_Misc_Marker;
2929 p = XMARKER (val);
2930 p->buffer = 0;
2931 p->bytepos = 0;
2932 p->charpos = 0;
2933 p->next = NULL;
2934 p->insertion_type = 0;
2935 return val;
2938 /* Put MARKER back on the free list after using it temporarily. */
2940 void
2941 free_marker (marker)
2942 Lisp_Object marker;
2944 unchain_marker (XMARKER (marker));
2946 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2947 XMISC (marker)->u_free.chain = marker_free_list;
2948 marker_free_list = XMISC (marker);
2950 total_free_markers++;
2954 /* Return a newly created vector or string with specified arguments as
2955 elements. If all the arguments are characters that can fit
2956 in a string of events, make a string; otherwise, make a vector.
2958 Any number of arguments, even zero arguments, are allowed. */
2960 Lisp_Object
2961 make_event_array (nargs, args)
2962 register int nargs;
2963 Lisp_Object *args;
2965 int i;
2967 for (i = 0; i < nargs; i++)
2968 /* The things that fit in a string
2969 are characters that are in 0...127,
2970 after discarding the meta bit and all the bits above it. */
2971 if (!INTEGERP (args[i])
2972 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2973 return Fvector (nargs, args);
2975 /* Since the loop exited, we know that all the things in it are
2976 characters, so we can make a string. */
2978 Lisp_Object result;
2980 result = Fmake_string (make_number (nargs), make_number (0));
2981 for (i = 0; i < nargs; i++)
2983 SSET (result, i, XINT (args[i]));
2984 /* Move the meta bit to the right place for a string char. */
2985 if (XINT (args[i]) & CHAR_META)
2986 SSET (result, i, SREF (result, i) | 0x80);
2989 return result;
2995 /************************************************************************
2996 C Stack Marking
2997 ************************************************************************/
2999 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3001 /* Conservative C stack marking requires a method to identify possibly
3002 live Lisp objects given a pointer value. We do this by keeping
3003 track of blocks of Lisp data that are allocated in a red-black tree
3004 (see also the comment of mem_node which is the type of nodes in
3005 that tree). Function lisp_malloc adds information for an allocated
3006 block to the red-black tree with calls to mem_insert, and function
3007 lisp_free removes it with mem_delete. Functions live_string_p etc
3008 call mem_find to lookup information about a given pointer in the
3009 tree, and use that to determine if the pointer points to a Lisp
3010 object or not. */
3012 /* Initialize this part of alloc.c. */
3014 static void
3015 mem_init ()
3017 mem_z.left = mem_z.right = MEM_NIL;
3018 mem_z.parent = NULL;
3019 mem_z.color = MEM_BLACK;
3020 mem_z.start = mem_z.end = NULL;
3021 mem_root = MEM_NIL;
3025 /* Value is a pointer to the mem_node containing START. Value is
3026 MEM_NIL if there is no node in the tree containing START. */
3028 static INLINE struct mem_node *
3029 mem_find (start)
3030 void *start;
3032 struct mem_node *p;
3034 if (start < min_heap_address || start > max_heap_address)
3035 return MEM_NIL;
3037 /* Make the search always successful to speed up the loop below. */
3038 mem_z.start = start;
3039 mem_z.end = (char *) start + 1;
3041 p = mem_root;
3042 while (start < p->start || start >= p->end)
3043 p = start < p->start ? p->left : p->right;
3044 return p;
3048 /* Insert a new node into the tree for a block of memory with start
3049 address START, end address END, and type TYPE. Value is a
3050 pointer to the node that was inserted. */
3052 static struct mem_node *
3053 mem_insert (start, end, type)
3054 void *start, *end;
3055 enum mem_type type;
3057 struct mem_node *c, *parent, *x;
3059 if (start < min_heap_address)
3060 min_heap_address = start;
3061 if (end > max_heap_address)
3062 max_heap_address = end;
3064 /* See where in the tree a node for START belongs. In this
3065 particular application, it shouldn't happen that a node is already
3066 present. For debugging purposes, let's check that. */
3067 c = mem_root;
3068 parent = NULL;
3070 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3072 while (c != MEM_NIL)
3074 if (start >= c->start && start < c->end)
3075 abort ();
3076 parent = c;
3077 c = start < c->start ? c->left : c->right;
3080 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3082 while (c != MEM_NIL)
3084 parent = c;
3085 c = start < c->start ? c->left : c->right;
3088 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3090 /* Create a new node. */
3091 #ifdef GC_MALLOC_CHECK
3092 x = (struct mem_node *) _malloc_internal (sizeof *x);
3093 if (x == NULL)
3094 abort ();
3095 #else
3096 x = (struct mem_node *) xmalloc (sizeof *x);
3097 #endif
3098 x->start = start;
3099 x->end = end;
3100 x->type = type;
3101 x->parent = parent;
3102 x->left = x->right = MEM_NIL;
3103 x->color = MEM_RED;
3105 /* Insert it as child of PARENT or install it as root. */
3106 if (parent)
3108 if (start < parent->start)
3109 parent->left = x;
3110 else
3111 parent->right = x;
3113 else
3114 mem_root = x;
3116 /* Re-establish red-black tree properties. */
3117 mem_insert_fixup (x);
3119 return x;
3123 /* Re-establish the red-black properties of the tree, and thereby
3124 balance the tree, after node X has been inserted; X is always red. */
3126 static void
3127 mem_insert_fixup (x)
3128 struct mem_node *x;
3130 while (x != mem_root && x->parent->color == MEM_RED)
3132 /* X is red and its parent is red. This is a violation of
3133 red-black tree property #3. */
3135 if (x->parent == x->parent->parent->left)
3137 /* We're on the left side of our grandparent, and Y is our
3138 "uncle". */
3139 struct mem_node *y = x->parent->parent->right;
3141 if (y->color == MEM_RED)
3143 /* Uncle and parent are red but should be black because
3144 X is red. Change the colors accordingly and proceed
3145 with the grandparent. */
3146 x->parent->color = MEM_BLACK;
3147 y->color = MEM_BLACK;
3148 x->parent->parent->color = MEM_RED;
3149 x = x->parent->parent;
3151 else
3153 /* Parent and uncle have different colors; parent is
3154 red, uncle is black. */
3155 if (x == x->parent->right)
3157 x = x->parent;
3158 mem_rotate_left (x);
3161 x->parent->color = MEM_BLACK;
3162 x->parent->parent->color = MEM_RED;
3163 mem_rotate_right (x->parent->parent);
3166 else
3168 /* This is the symmetrical case of above. */
3169 struct mem_node *y = x->parent->parent->left;
3171 if (y->color == MEM_RED)
3173 x->parent->color = MEM_BLACK;
3174 y->color = MEM_BLACK;
3175 x->parent->parent->color = MEM_RED;
3176 x = x->parent->parent;
3178 else
3180 if (x == x->parent->left)
3182 x = x->parent;
3183 mem_rotate_right (x);
3186 x->parent->color = MEM_BLACK;
3187 x->parent->parent->color = MEM_RED;
3188 mem_rotate_left (x->parent->parent);
3193 /* The root may have been changed to red due to the algorithm. Set
3194 it to black so that property #5 is satisfied. */
3195 mem_root->color = MEM_BLACK;
3199 /* (x) (y)
3200 / \ / \
3201 a (y) ===> (x) c
3202 / \ / \
3203 b c a b */
3205 static void
3206 mem_rotate_left (x)
3207 struct mem_node *x;
3209 struct mem_node *y;
3211 /* Turn y's left sub-tree into x's right sub-tree. */
3212 y = x->right;
3213 x->right = y->left;
3214 if (y->left != MEM_NIL)
3215 y->left->parent = x;
3217 /* Y's parent was x's parent. */
3218 if (y != MEM_NIL)
3219 y->parent = x->parent;
3221 /* Get the parent to point to y instead of x. */
3222 if (x->parent)
3224 if (x == x->parent->left)
3225 x->parent->left = y;
3226 else
3227 x->parent->right = y;
3229 else
3230 mem_root = y;
3232 /* Put x on y's left. */
3233 y->left = x;
3234 if (x != MEM_NIL)
3235 x->parent = y;
3239 /* (x) (Y)
3240 / \ / \
3241 (y) c ===> a (x)
3242 / \ / \
3243 a b b c */
3245 static void
3246 mem_rotate_right (x)
3247 struct mem_node *x;
3249 struct mem_node *y = x->left;
3251 x->left = y->right;
3252 if (y->right != MEM_NIL)
3253 y->right->parent = x;
3255 if (y != MEM_NIL)
3256 y->parent = x->parent;
3257 if (x->parent)
3259 if (x == x->parent->right)
3260 x->parent->right = y;
3261 else
3262 x->parent->left = y;
3264 else
3265 mem_root = y;
3267 y->right = x;
3268 if (x != MEM_NIL)
3269 x->parent = y;
3273 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3275 static void
3276 mem_delete (z)
3277 struct mem_node *z;
3279 struct mem_node *x, *y;
3281 if (!z || z == MEM_NIL)
3282 return;
3284 if (z->left == MEM_NIL || z->right == MEM_NIL)
3285 y = z;
3286 else
3288 y = z->right;
3289 while (y->left != MEM_NIL)
3290 y = y->left;
3293 if (y->left != MEM_NIL)
3294 x = y->left;
3295 else
3296 x = y->right;
3298 x->parent = y->parent;
3299 if (y->parent)
3301 if (y == y->parent->left)
3302 y->parent->left = x;
3303 else
3304 y->parent->right = x;
3306 else
3307 mem_root = x;
3309 if (y != z)
3311 z->start = y->start;
3312 z->end = y->end;
3313 z->type = y->type;
3316 if (y->color == MEM_BLACK)
3317 mem_delete_fixup (x);
3319 #ifdef GC_MALLOC_CHECK
3320 _free_internal (y);
3321 #else
3322 xfree (y);
3323 #endif
3327 /* Re-establish the red-black properties of the tree, after a
3328 deletion. */
3330 static void
3331 mem_delete_fixup (x)
3332 struct mem_node *x;
3334 while (x != mem_root && x->color == MEM_BLACK)
3336 if (x == x->parent->left)
3338 struct mem_node *w = x->parent->right;
3340 if (w->color == MEM_RED)
3342 w->color = MEM_BLACK;
3343 x->parent->color = MEM_RED;
3344 mem_rotate_left (x->parent);
3345 w = x->parent->right;
3348 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3350 w->color = MEM_RED;
3351 x = x->parent;
3353 else
3355 if (w->right->color == MEM_BLACK)
3357 w->left->color = MEM_BLACK;
3358 w->color = MEM_RED;
3359 mem_rotate_right (w);
3360 w = x->parent->right;
3362 w->color = x->parent->color;
3363 x->parent->color = MEM_BLACK;
3364 w->right->color = MEM_BLACK;
3365 mem_rotate_left (x->parent);
3366 x = mem_root;
3369 else
3371 struct mem_node *w = x->parent->left;
3373 if (w->color == MEM_RED)
3375 w->color = MEM_BLACK;
3376 x->parent->color = MEM_RED;
3377 mem_rotate_right (x->parent);
3378 w = x->parent->left;
3381 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3383 w->color = MEM_RED;
3384 x = x->parent;
3386 else
3388 if (w->left->color == MEM_BLACK)
3390 w->right->color = MEM_BLACK;
3391 w->color = MEM_RED;
3392 mem_rotate_left (w);
3393 w = x->parent->left;
3396 w->color = x->parent->color;
3397 x->parent->color = MEM_BLACK;
3398 w->left->color = MEM_BLACK;
3399 mem_rotate_right (x->parent);
3400 x = mem_root;
3405 x->color = MEM_BLACK;
3409 /* Value is non-zero if P is a pointer to a live Lisp string on
3410 the heap. M is a pointer to the mem_block for P. */
3412 static INLINE int
3413 live_string_p (m, p)
3414 struct mem_node *m;
3415 void *p;
3417 if (m->type == MEM_TYPE_STRING)
3419 struct string_block *b = (struct string_block *) m->start;
3420 int offset = (char *) p - (char *) &b->strings[0];
3422 /* P must point to the start of a Lisp_String structure, and it
3423 must not be on the free-list. */
3424 return (offset >= 0
3425 && offset % sizeof b->strings[0] == 0
3426 && ((struct Lisp_String *) p)->data != NULL);
3428 else
3429 return 0;
3433 /* Value is non-zero if P is a pointer to a live Lisp cons on
3434 the heap. M is a pointer to the mem_block for P. */
3436 static INLINE int
3437 live_cons_p (m, p)
3438 struct mem_node *m;
3439 void *p;
3441 if (m->type == MEM_TYPE_CONS)
3443 struct cons_block *b = (struct cons_block *) m->start;
3444 int offset = (char *) p - (char *) &b->conses[0];
3446 /* P must point to the start of a Lisp_Cons, not be
3447 one of the unused cells in the current cons block,
3448 and not be on the free-list. */
3449 return (offset >= 0
3450 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3451 && offset % sizeof b->conses[0] == 0
3452 && (b != cons_block
3453 || offset / sizeof b->conses[0] < cons_block_index)
3454 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3456 else
3457 return 0;
3461 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3462 the heap. M is a pointer to the mem_block for P. */
3464 static INLINE int
3465 live_symbol_p (m, p)
3466 struct mem_node *m;
3467 void *p;
3469 if (m->type == MEM_TYPE_SYMBOL)
3471 struct symbol_block *b = (struct symbol_block *) m->start;
3472 int offset = (char *) p - (char *) &b->symbols[0];
3474 /* P must point to the start of a Lisp_Symbol, not be
3475 one of the unused cells in the current symbol block,
3476 and not be on the free-list. */
3477 return (offset >= 0
3478 && offset % sizeof b->symbols[0] == 0
3479 && (b != symbol_block
3480 || offset / sizeof b->symbols[0] < symbol_block_index)
3481 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3483 else
3484 return 0;
3488 /* Value is non-zero if P is a pointer to a live Lisp float on
3489 the heap. M is a pointer to the mem_block for P. */
3491 static INLINE int
3492 live_float_p (m, p)
3493 struct mem_node *m;
3494 void *p;
3496 if (m->type == MEM_TYPE_FLOAT)
3498 struct float_block *b = (struct float_block *) m->start;
3499 int offset = (char *) p - (char *) &b->floats[0];
3501 /* P must point to the start of a Lisp_Float and not be
3502 one of the unused cells in the current float block. */
3503 return (offset >= 0
3504 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3505 && offset % sizeof b->floats[0] == 0
3506 && (b != float_block
3507 || offset / sizeof b->floats[0] < float_block_index));
3509 else
3510 return 0;
3514 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3515 the heap. M is a pointer to the mem_block for P. */
3517 static INLINE int
3518 live_misc_p (m, p)
3519 struct mem_node *m;
3520 void *p;
3522 if (m->type == MEM_TYPE_MISC)
3524 struct marker_block *b = (struct marker_block *) m->start;
3525 int offset = (char *) p - (char *) &b->markers[0];
3527 /* P must point to the start of a Lisp_Misc, not be
3528 one of the unused cells in the current misc block,
3529 and not be on the free-list. */
3530 return (offset >= 0
3531 && offset % sizeof b->markers[0] == 0
3532 && (b != marker_block
3533 || offset / sizeof b->markers[0] < marker_block_index)
3534 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3536 else
3537 return 0;
3541 /* Value is non-zero if P is a pointer to a live vector-like object.
3542 M is a pointer to the mem_block for P. */
3544 static INLINE int
3545 live_vector_p (m, p)
3546 struct mem_node *m;
3547 void *p;
3549 return (p == m->start
3550 && m->type >= MEM_TYPE_VECTOR
3551 && m->type <= MEM_TYPE_WINDOW);
3555 /* Value is non-zero if P is a pointer to a live buffer. M is a
3556 pointer to the mem_block for P. */
3558 static INLINE int
3559 live_buffer_p (m, p)
3560 struct mem_node *m;
3561 void *p;
3563 /* P must point to the start of the block, and the buffer
3564 must not have been killed. */
3565 return (m->type == MEM_TYPE_BUFFER
3566 && p == m->start
3567 && !NILP (((struct buffer *) p)->name));
3570 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3572 #if GC_MARK_STACK
3574 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3576 /* Array of objects that are kept alive because the C stack contains
3577 a pattern that looks like a reference to them . */
3579 #define MAX_ZOMBIES 10
3580 static Lisp_Object zombies[MAX_ZOMBIES];
3582 /* Number of zombie objects. */
3584 static int nzombies;
3586 /* Number of garbage collections. */
3588 static int ngcs;
3590 /* Average percentage of zombies per collection. */
3592 static double avg_zombies;
3594 /* Max. number of live and zombie objects. */
3596 static int max_live, max_zombies;
3598 /* Average number of live objects per GC. */
3600 static double avg_live;
3602 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3603 doc: /* Show information about live and zombie objects. */)
3606 Lisp_Object args[8], zombie_list = Qnil;
3607 int i;
3608 for (i = 0; i < nzombies; i++)
3609 zombie_list = Fcons (zombies[i], zombie_list);
3610 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3611 args[1] = make_number (ngcs);
3612 args[2] = make_float (avg_live);
3613 args[3] = make_float (avg_zombies);
3614 args[4] = make_float (avg_zombies / avg_live / 100);
3615 args[5] = make_number (max_live);
3616 args[6] = make_number (max_zombies);
3617 args[7] = zombie_list;
3618 return Fmessage (8, args);
3621 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3624 /* Mark OBJ if we can prove it's a Lisp_Object. */
3626 static INLINE void
3627 mark_maybe_object (obj)
3628 Lisp_Object obj;
3630 void *po = (void *) XPNTR (obj);
3631 struct mem_node *m = mem_find (po);
3633 if (m != MEM_NIL)
3635 int mark_p = 0;
3637 switch (XGCTYPE (obj))
3639 case Lisp_String:
3640 mark_p = (live_string_p (m, po)
3641 && !STRING_MARKED_P ((struct Lisp_String *) po));
3642 break;
3644 case Lisp_Cons:
3645 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3646 break;
3648 case Lisp_Symbol:
3649 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3650 break;
3652 case Lisp_Float:
3653 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3654 break;
3656 case Lisp_Vectorlike:
3657 /* Note: can't check GC_BUFFERP before we know it's a
3658 buffer because checking that dereferences the pointer
3659 PO which might point anywhere. */
3660 if (live_vector_p (m, po))
3661 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3662 else if (live_buffer_p (m, po))
3663 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3664 break;
3666 case Lisp_Misc:
3667 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3668 break;
3670 case Lisp_Int:
3671 case Lisp_Type_Limit:
3672 break;
3675 if (mark_p)
3677 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3678 if (nzombies < MAX_ZOMBIES)
3679 zombies[nzombies] = obj;
3680 ++nzombies;
3681 #endif
3682 mark_object (obj);
3688 /* If P points to Lisp data, mark that as live if it isn't already
3689 marked. */
3691 static INLINE void
3692 mark_maybe_pointer (p)
3693 void *p;
3695 struct mem_node *m;
3697 /* Quickly rule out some values which can't point to Lisp data. We
3698 assume that Lisp data is aligned on even addresses. */
3699 if ((EMACS_INT) p & 1)
3700 return;
3702 m = mem_find (p);
3703 if (m != MEM_NIL)
3705 Lisp_Object obj = Qnil;
3707 switch (m->type)
3709 case MEM_TYPE_NON_LISP:
3710 /* Nothing to do; not a pointer to Lisp memory. */
3711 break;
3713 case MEM_TYPE_BUFFER:
3714 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3715 XSETVECTOR (obj, p);
3716 break;
3718 case MEM_TYPE_CONS:
3719 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3720 XSETCONS (obj, p);
3721 break;
3723 case MEM_TYPE_STRING:
3724 if (live_string_p (m, p)
3725 && !STRING_MARKED_P ((struct Lisp_String *) p))
3726 XSETSTRING (obj, p);
3727 break;
3729 case MEM_TYPE_MISC:
3730 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3731 XSETMISC (obj, p);
3732 break;
3734 case MEM_TYPE_SYMBOL:
3735 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3736 XSETSYMBOL (obj, p);
3737 break;
3739 case MEM_TYPE_FLOAT:
3740 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3741 XSETFLOAT (obj, p);
3742 break;
3744 case MEM_TYPE_VECTOR:
3745 case MEM_TYPE_PROCESS:
3746 case MEM_TYPE_HASH_TABLE:
3747 case MEM_TYPE_FRAME:
3748 case MEM_TYPE_WINDOW:
3749 if (live_vector_p (m, p))
3751 Lisp_Object tem;
3752 XSETVECTOR (tem, p);
3753 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3754 obj = tem;
3756 break;
3758 default:
3759 abort ();
3762 if (!GC_NILP (obj))
3763 mark_object (obj);
3768 /* Mark Lisp objects referenced from the address range START..END. */
3770 static void
3771 mark_memory (start, end)
3772 void *start, *end;
3774 Lisp_Object *p;
3775 void **pp;
3777 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3778 nzombies = 0;
3779 #endif
3781 /* Make START the pointer to the start of the memory region,
3782 if it isn't already. */
3783 if (end < start)
3785 void *tem = start;
3786 start = end;
3787 end = tem;
3790 /* Mark Lisp_Objects. */
3791 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3792 mark_maybe_object (*p);
3794 /* Mark Lisp data pointed to. This is necessary because, in some
3795 situations, the C compiler optimizes Lisp objects away, so that
3796 only a pointer to them remains. Example:
3798 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3801 Lisp_Object obj = build_string ("test");
3802 struct Lisp_String *s = XSTRING (obj);
3803 Fgarbage_collect ();
3804 fprintf (stderr, "test `%s'\n", s->data);
3805 return Qnil;
3808 Here, `obj' isn't really used, and the compiler optimizes it
3809 away. The only reference to the life string is through the
3810 pointer `s'. */
3812 for (pp = (void **) start; (void *) pp < end; ++pp)
3813 mark_maybe_pointer (*pp);
3816 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3817 the GCC system configuration. In gcc 3.2, the only systems for
3818 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3819 by others?) and ns32k-pc532-min. */
3821 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3823 static int setjmp_tested_p, longjmps_done;
3825 #define SETJMP_WILL_LIKELY_WORK "\
3827 Emacs garbage collector has been changed to use conservative stack\n\
3828 marking. Emacs has determined that the method it uses to do the\n\
3829 marking will likely work on your system, but this isn't sure.\n\
3831 If you are a system-programmer, or can get the help of a local wizard\n\
3832 who is, please take a look at the function mark_stack in alloc.c, and\n\
3833 verify that the methods used are appropriate for your system.\n\
3835 Please mail the result to <emacs-devel@gnu.org>.\n\
3838 #define SETJMP_WILL_NOT_WORK "\
3840 Emacs garbage collector has been changed to use conservative stack\n\
3841 marking. Emacs has determined that the default method it uses to do the\n\
3842 marking will not work on your system. We will need a system-dependent\n\
3843 solution for your system.\n\
3845 Please take a look at the function mark_stack in alloc.c, and\n\
3846 try to find a way to make it work on your system.\n\
3848 Note that you may get false negatives, depending on the compiler.\n\
3849 In particular, you need to use -O with GCC for this test.\n\
3851 Please mail the result to <emacs-devel@gnu.org>.\n\
3855 /* Perform a quick check if it looks like setjmp saves registers in a
3856 jmp_buf. Print a message to stderr saying so. When this test
3857 succeeds, this is _not_ a proof that setjmp is sufficient for
3858 conservative stack marking. Only the sources or a disassembly
3859 can prove that. */
3861 static void
3862 test_setjmp ()
3864 char buf[10];
3865 register int x;
3866 jmp_buf jbuf;
3867 int result = 0;
3869 /* Arrange for X to be put in a register. */
3870 sprintf (buf, "1");
3871 x = strlen (buf);
3872 x = 2 * x - 1;
3874 setjmp (jbuf);
3875 if (longjmps_done == 1)
3877 /* Came here after the longjmp at the end of the function.
3879 If x == 1, the longjmp has restored the register to its
3880 value before the setjmp, and we can hope that setjmp
3881 saves all such registers in the jmp_buf, although that
3882 isn't sure.
3884 For other values of X, either something really strange is
3885 taking place, or the setjmp just didn't save the register. */
3887 if (x == 1)
3888 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3889 else
3891 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3892 exit (1);
3896 ++longjmps_done;
3897 x = 2;
3898 if (longjmps_done == 1)
3899 longjmp (jbuf, 1);
3902 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3905 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3907 /* Abort if anything GCPRO'd doesn't survive the GC. */
3909 static void
3910 check_gcpros ()
3912 struct gcpro *p;
3913 int i;
3915 for (p = gcprolist; p; p = p->next)
3916 for (i = 0; i < p->nvars; ++i)
3917 if (!survives_gc_p (p->var[i]))
3918 /* FIXME: It's not necessarily a bug. It might just be that the
3919 GCPRO is unnecessary or should release the object sooner. */
3920 abort ();
3923 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3925 static void
3926 dump_zombies ()
3928 int i;
3930 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3931 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3933 fprintf (stderr, " %d = ", i);
3934 debug_print (zombies[i]);
3938 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3941 /* Mark live Lisp objects on the C stack.
3943 There are several system-dependent problems to consider when
3944 porting this to new architectures:
3946 Processor Registers
3948 We have to mark Lisp objects in CPU registers that can hold local
3949 variables or are used to pass parameters.
3951 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3952 something that either saves relevant registers on the stack, or
3953 calls mark_maybe_object passing it each register's contents.
3955 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3956 implementation assumes that calling setjmp saves registers we need
3957 to see in a jmp_buf which itself lies on the stack. This doesn't
3958 have to be true! It must be verified for each system, possibly
3959 by taking a look at the source code of setjmp.
3961 Stack Layout
3963 Architectures differ in the way their processor stack is organized.
3964 For example, the stack might look like this
3966 +----------------+
3967 | Lisp_Object | size = 4
3968 +----------------+
3969 | something else | size = 2
3970 +----------------+
3971 | Lisp_Object | size = 4
3972 +----------------+
3973 | ... |
3975 In such a case, not every Lisp_Object will be aligned equally. To
3976 find all Lisp_Object on the stack it won't be sufficient to walk
3977 the stack in steps of 4 bytes. Instead, two passes will be
3978 necessary, one starting at the start of the stack, and a second
3979 pass starting at the start of the stack + 2. Likewise, if the
3980 minimal alignment of Lisp_Objects on the stack is 1, four passes
3981 would be necessary, each one starting with one byte more offset
3982 from the stack start.
3984 The current code assumes by default that Lisp_Objects are aligned
3985 equally on the stack. */
3987 static void
3988 mark_stack ()
3990 int i;
3991 jmp_buf j;
3992 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3993 void *end;
3995 /* This trick flushes the register windows so that all the state of
3996 the process is contained in the stack. */
3997 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
3998 needed on ia64 too. See mach_dep.c, where it also says inline
3999 assembler doesn't work with relevant proprietary compilers. */
4000 #ifdef sparc
4001 asm ("ta 3");
4002 #endif
4004 /* Save registers that we need to see on the stack. We need to see
4005 registers used to hold register variables and registers used to
4006 pass parameters. */
4007 #ifdef GC_SAVE_REGISTERS_ON_STACK
4008 GC_SAVE_REGISTERS_ON_STACK (end);
4009 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4011 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4012 setjmp will definitely work, test it
4013 and print a message with the result
4014 of the test. */
4015 if (!setjmp_tested_p)
4017 setjmp_tested_p = 1;
4018 test_setjmp ();
4020 #endif /* GC_SETJMP_WORKS */
4022 setjmp (j);
4023 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4024 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4026 /* This assumes that the stack is a contiguous region in memory. If
4027 that's not the case, something has to be done here to iterate
4028 over the stack segments. */
4029 #ifndef GC_LISP_OBJECT_ALIGNMENT
4030 #ifdef __GNUC__
4031 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4032 #else
4033 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4034 #endif
4035 #endif
4036 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4037 mark_memory ((char *) stack_base + i, end);
4039 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4040 check_gcpros ();
4041 #endif
4045 #endif /* GC_MARK_STACK != 0 */
4049 /***********************************************************************
4050 Pure Storage Management
4051 ***********************************************************************/
4053 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4054 pointer to it. TYPE is the Lisp type for which the memory is
4055 allocated. TYPE < 0 means it's not used for a Lisp object.
4057 If store_pure_type_info is set and TYPE is >= 0, the type of
4058 the allocated object is recorded in pure_types. */
4060 static POINTER_TYPE *
4061 pure_alloc (size, type)
4062 size_t size;
4063 int type;
4065 POINTER_TYPE *result;
4066 size_t alignment = sizeof (EMACS_INT);
4068 /* Give Lisp_Floats an extra alignment. */
4069 if (type == Lisp_Float)
4071 #if defined __GNUC__ && __GNUC__ >= 2
4072 alignment = __alignof (struct Lisp_Float);
4073 #else
4074 alignment = sizeof (struct Lisp_Float);
4075 #endif
4078 again:
4079 result = ALIGN (purebeg + pure_bytes_used, alignment);
4080 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4082 if (pure_bytes_used <= pure_size)
4083 return result;
4085 /* Don't allocate a large amount here,
4086 because it might get mmap'd and then its address
4087 might not be usable. */
4088 purebeg = (char *) xmalloc (10000);
4089 pure_size = 10000;
4090 pure_bytes_used_before_overflow += pure_bytes_used - size;
4091 pure_bytes_used = 0;
4092 goto again;
4096 /* Print a warning if PURESIZE is too small. */
4098 void
4099 check_pure_size ()
4101 if (pure_bytes_used_before_overflow)
4102 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4103 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4107 /* Return a string allocated in pure space. DATA is a buffer holding
4108 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4109 non-zero means make the result string multibyte.
4111 Must get an error if pure storage is full, since if it cannot hold
4112 a large string it may be able to hold conses that point to that
4113 string; then the string is not protected from gc. */
4115 Lisp_Object
4116 make_pure_string (data, nchars, nbytes, multibyte)
4117 char *data;
4118 int nchars, nbytes;
4119 int multibyte;
4121 Lisp_Object string;
4122 struct Lisp_String *s;
4124 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4125 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4126 s->size = nchars;
4127 s->size_byte = multibyte ? nbytes : -1;
4128 bcopy (data, s->data, nbytes);
4129 s->data[nbytes] = '\0';
4130 s->intervals = NULL_INTERVAL;
4131 XSETSTRING (string, s);
4132 return string;
4136 /* Return a cons allocated from pure space. Give it pure copies
4137 of CAR as car and CDR as cdr. */
4139 Lisp_Object
4140 pure_cons (car, cdr)
4141 Lisp_Object car, cdr;
4143 register Lisp_Object new;
4144 struct Lisp_Cons *p;
4146 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4147 XSETCONS (new, p);
4148 XSETCAR (new, Fpurecopy (car));
4149 XSETCDR (new, Fpurecopy (cdr));
4150 return new;
4154 /* Value is a float object with value NUM allocated from pure space. */
4156 Lisp_Object
4157 make_pure_float (num)
4158 double num;
4160 register Lisp_Object new;
4161 struct Lisp_Float *p;
4163 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4164 XSETFLOAT (new, p);
4165 XFLOAT_DATA (new) = num;
4166 return new;
4170 /* Return a vector with room for LEN Lisp_Objects allocated from
4171 pure space. */
4173 Lisp_Object
4174 make_pure_vector (len)
4175 EMACS_INT len;
4177 Lisp_Object new;
4178 struct Lisp_Vector *p;
4179 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4181 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4182 XSETVECTOR (new, p);
4183 XVECTOR (new)->size = len;
4184 return new;
4188 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4189 doc: /* Make a copy of OBJECT in pure storage.
4190 Recursively copies contents of vectors and cons cells.
4191 Does not copy symbols. Copies strings without text properties. */)
4192 (obj)
4193 register Lisp_Object obj;
4195 if (NILP (Vpurify_flag))
4196 return obj;
4198 if (PURE_POINTER_P (XPNTR (obj)))
4199 return obj;
4201 if (CONSP (obj))
4202 return pure_cons (XCAR (obj), XCDR (obj));
4203 else if (FLOATP (obj))
4204 return make_pure_float (XFLOAT_DATA (obj));
4205 else if (STRINGP (obj))
4206 return make_pure_string (SDATA (obj), SCHARS (obj),
4207 SBYTES (obj),
4208 STRING_MULTIBYTE (obj));
4209 else if (COMPILEDP (obj) || VECTORP (obj))
4211 register struct Lisp_Vector *vec;
4212 register int i, size;
4214 size = XVECTOR (obj)->size;
4215 if (size & PSEUDOVECTOR_FLAG)
4216 size &= PSEUDOVECTOR_SIZE_MASK;
4217 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
4218 for (i = 0; i < size; i++)
4219 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4220 if (COMPILEDP (obj))
4221 XSETCOMPILED (obj, vec);
4222 else
4223 XSETVECTOR (obj, vec);
4224 return obj;
4226 else if (MARKERP (obj))
4227 error ("Attempt to copy a marker to pure storage");
4229 return obj;
4234 /***********************************************************************
4235 Protection from GC
4236 ***********************************************************************/
4238 /* Put an entry in staticvec, pointing at the variable with address
4239 VARADDRESS. */
4241 void
4242 staticpro (varaddress)
4243 Lisp_Object *varaddress;
4245 staticvec[staticidx++] = varaddress;
4246 if (staticidx >= NSTATICS)
4247 abort ();
4250 struct catchtag
4252 Lisp_Object tag;
4253 Lisp_Object val;
4254 struct catchtag *next;
4257 struct backtrace
4259 struct backtrace *next;
4260 Lisp_Object *function;
4261 Lisp_Object *args; /* Points to vector of args. */
4262 int nargs; /* Length of vector. */
4263 /* If nargs is UNEVALLED, args points to slot holding list of
4264 unevalled args. */
4265 char evalargs;
4270 /***********************************************************************
4271 Protection from GC
4272 ***********************************************************************/
4274 /* Temporarily prevent garbage collection. */
4277 inhibit_garbage_collection ()
4279 int count = SPECPDL_INDEX ();
4280 int nbits = min (VALBITS, BITS_PER_INT);
4282 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4283 return count;
4287 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4288 doc: /* Reclaim storage for Lisp objects no longer needed.
4289 Garbage collection happens automatically if you cons more than
4290 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4291 `garbage-collect' normally returns a list with info on amount of space in use:
4292 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4293 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4294 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4295 (USED-STRINGS . FREE-STRINGS))
4296 However, if there was overflow in pure space, `garbage-collect'
4297 returns nil, because real GC can't be done. */)
4300 register struct specbinding *bind;
4301 struct catchtag *catch;
4302 struct handler *handler;
4303 register struct backtrace *backlist;
4304 char stack_top_variable;
4305 register int i;
4306 int message_p;
4307 Lisp_Object total[8];
4308 int count = SPECPDL_INDEX ();
4309 EMACS_TIME t1, t2, t3;
4311 if (abort_on_gc)
4312 abort ();
4314 EMACS_GET_TIME (t1);
4316 /* Can't GC if pure storage overflowed because we can't determine
4317 if something is a pure object or not. */
4318 if (pure_bytes_used_before_overflow)
4319 return Qnil;
4321 /* In case user calls debug_print during GC,
4322 don't let that cause a recursive GC. */
4323 consing_since_gc = 0;
4325 /* Save what's currently displayed in the echo area. */
4326 message_p = push_message ();
4327 record_unwind_protect (pop_message_unwind, Qnil);
4329 /* Save a copy of the contents of the stack, for debugging. */
4330 #if MAX_SAVE_STACK > 0
4331 if (NILP (Vpurify_flag))
4333 i = &stack_top_variable - stack_bottom;
4334 if (i < 0) i = -i;
4335 if (i < MAX_SAVE_STACK)
4337 if (stack_copy == 0)
4338 stack_copy = (char *) xmalloc (stack_copy_size = i);
4339 else if (stack_copy_size < i)
4340 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4341 if (stack_copy)
4343 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4344 bcopy (stack_bottom, stack_copy, i);
4345 else
4346 bcopy (&stack_top_variable, stack_copy, i);
4350 #endif /* MAX_SAVE_STACK > 0 */
4352 if (garbage_collection_messages)
4353 message1_nolog ("Garbage collecting...");
4355 BLOCK_INPUT;
4357 shrink_regexp_cache ();
4359 /* Don't keep undo information around forever. */
4361 register struct buffer *nextb = all_buffers;
4363 while (nextb)
4365 /* If a buffer's undo list is Qt, that means that undo is
4366 turned off in that buffer. Calling truncate_undo_list on
4367 Qt tends to return NULL, which effectively turns undo back on.
4368 So don't call truncate_undo_list if undo_list is Qt. */
4369 if (! EQ (nextb->undo_list, Qt))
4370 nextb->undo_list
4371 = truncate_undo_list (nextb->undo_list, undo_limit,
4372 undo_strong_limit);
4374 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4375 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4377 /* If a buffer's gap size is more than 10% of the buffer
4378 size, or larger than 2000 bytes, then shrink it
4379 accordingly. Keep a minimum size of 20 bytes. */
4380 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4382 if (nextb->text->gap_size > size)
4384 struct buffer *save_current = current_buffer;
4385 current_buffer = nextb;
4386 make_gap (-(nextb->text->gap_size - size));
4387 current_buffer = save_current;
4391 nextb = nextb->next;
4395 gc_in_progress = 1;
4397 /* clear_marks (); */
4399 /* Mark all the special slots that serve as the roots of accessibility. */
4401 for (i = 0; i < staticidx; i++)
4402 mark_object (*staticvec[i]);
4404 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4405 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4406 mark_stack ();
4407 #else
4409 register struct gcpro *tail;
4410 for (tail = gcprolist; tail; tail = tail->next)
4411 for (i = 0; i < tail->nvars; i++)
4412 mark_object (tail->var[i]);
4414 #endif
4416 mark_byte_stack ();
4417 for (bind = specpdl; bind != specpdl_ptr; bind++)
4419 mark_object (bind->symbol);
4420 mark_object (bind->old_value);
4422 for (catch = catchlist; catch; catch = catch->next)
4424 mark_object (catch->tag);
4425 mark_object (catch->val);
4427 for (handler = handlerlist; handler; handler = handler->next)
4429 mark_object (handler->handler);
4430 mark_object (handler->var);
4432 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4434 mark_object (*backlist->function);
4436 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4437 i = 0;
4438 else
4439 i = backlist->nargs - 1;
4440 for (; i >= 0; i--)
4441 mark_object (backlist->args[i]);
4443 mark_kboards ();
4445 /* Look thru every buffer's undo list
4446 for elements that update markers that were not marked,
4447 and delete them. */
4449 register struct buffer *nextb = all_buffers;
4451 while (nextb)
4453 /* If a buffer's undo list is Qt, that means that undo is
4454 turned off in that buffer. Calling truncate_undo_list on
4455 Qt tends to return NULL, which effectively turns undo back on.
4456 So don't call truncate_undo_list if undo_list is Qt. */
4457 if (! EQ (nextb->undo_list, Qt))
4459 Lisp_Object tail, prev;
4460 tail = nextb->undo_list;
4461 prev = Qnil;
4462 while (CONSP (tail))
4464 if (GC_CONSP (XCAR (tail))
4465 && GC_MARKERP (XCAR (XCAR (tail)))
4466 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4468 if (NILP (prev))
4469 nextb->undo_list = tail = XCDR (tail);
4470 else
4472 tail = XCDR (tail);
4473 XSETCDR (prev, tail);
4476 else
4478 prev = tail;
4479 tail = XCDR (tail);
4484 nextb = nextb->next;
4488 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4489 mark_stack ();
4490 #endif
4492 #ifdef USE_GTK
4494 extern void xg_mark_data ();
4495 xg_mark_data ();
4497 #endif
4499 gc_sweep ();
4501 /* Clear the mark bits that we set in certain root slots. */
4503 unmark_byte_stack ();
4504 VECTOR_UNMARK (&buffer_defaults);
4505 VECTOR_UNMARK (&buffer_local_symbols);
4507 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4508 dump_zombies ();
4509 #endif
4511 UNBLOCK_INPUT;
4513 /* clear_marks (); */
4514 gc_in_progress = 0;
4516 consing_since_gc = 0;
4517 if (gc_cons_threshold < 10000)
4518 gc_cons_threshold = 10000;
4520 if (garbage_collection_messages)
4522 if (message_p || minibuf_level > 0)
4523 restore_message ();
4524 else
4525 message1_nolog ("Garbage collecting...done");
4528 unbind_to (count, Qnil);
4530 total[0] = Fcons (make_number (total_conses),
4531 make_number (total_free_conses));
4532 total[1] = Fcons (make_number (total_symbols),
4533 make_number (total_free_symbols));
4534 total[2] = Fcons (make_number (total_markers),
4535 make_number (total_free_markers));
4536 total[3] = make_number (total_string_size);
4537 total[4] = make_number (total_vector_size);
4538 total[5] = Fcons (make_number (total_floats),
4539 make_number (total_free_floats));
4540 total[6] = Fcons (make_number (total_intervals),
4541 make_number (total_free_intervals));
4542 total[7] = Fcons (make_number (total_strings),
4543 make_number (total_free_strings));
4545 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4547 /* Compute average percentage of zombies. */
4548 double nlive = 0;
4550 for (i = 0; i < 7; ++i)
4551 if (CONSP (total[i]))
4552 nlive += XFASTINT (XCAR (total[i]));
4554 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4555 max_live = max (nlive, max_live);
4556 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4557 max_zombies = max (nzombies, max_zombies);
4558 ++ngcs;
4560 #endif
4562 if (!NILP (Vpost_gc_hook))
4564 int count = inhibit_garbage_collection ();
4565 safe_run_hooks (Qpost_gc_hook);
4566 unbind_to (count, Qnil);
4569 /* Accumulate statistics. */
4570 EMACS_GET_TIME (t2);
4571 EMACS_SUB_TIME (t3, t2, t1);
4572 if (FLOATP (Vgc_elapsed))
4573 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4574 EMACS_SECS (t3) +
4575 EMACS_USECS (t3) * 1.0e-6);
4576 gcs_done++;
4578 return Flist (sizeof total / sizeof *total, total);
4582 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4583 only interesting objects referenced from glyphs are strings. */
4585 static void
4586 mark_glyph_matrix (matrix)
4587 struct glyph_matrix *matrix;
4589 struct glyph_row *row = matrix->rows;
4590 struct glyph_row *end = row + matrix->nrows;
4592 for (; row < end; ++row)
4593 if (row->enabled_p)
4595 int area;
4596 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4598 struct glyph *glyph = row->glyphs[area];
4599 struct glyph *end_glyph = glyph + row->used[area];
4601 for (; glyph < end_glyph; ++glyph)
4602 if (GC_STRINGP (glyph->object)
4603 && !STRING_MARKED_P (XSTRING (glyph->object)))
4604 mark_object (glyph->object);
4610 /* Mark Lisp faces in the face cache C. */
4612 static void
4613 mark_face_cache (c)
4614 struct face_cache *c;
4616 if (c)
4618 int i, j;
4619 for (i = 0; i < c->used; ++i)
4621 struct face *face = FACE_FROM_ID (c->f, i);
4623 if (face)
4625 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4626 mark_object (face->lface[j]);
4633 #ifdef HAVE_WINDOW_SYSTEM
4635 /* Mark Lisp objects in image IMG. */
4637 static void
4638 mark_image (img)
4639 struct image *img;
4641 mark_object (img->spec);
4643 if (!NILP (img->data.lisp_val))
4644 mark_object (img->data.lisp_val);
4648 /* Mark Lisp objects in image cache of frame F. It's done this way so
4649 that we don't have to include xterm.h here. */
4651 static void
4652 mark_image_cache (f)
4653 struct frame *f;
4655 forall_images_in_image_cache (f, mark_image);
4658 #endif /* HAVE_X_WINDOWS */
4662 /* Mark reference to a Lisp_Object.
4663 If the object referred to has not been seen yet, recursively mark
4664 all the references contained in it. */
4666 #define LAST_MARKED_SIZE 500
4667 Lisp_Object last_marked[LAST_MARKED_SIZE];
4668 int last_marked_index;
4670 /* For debugging--call abort when we cdr down this many
4671 links of a list, in mark_object. In debugging,
4672 the call to abort will hit a breakpoint.
4673 Normally this is zero and the check never goes off. */
4674 int mark_object_loop_halt;
4676 void
4677 mark_object (arg)
4678 Lisp_Object arg;
4680 register Lisp_Object obj = arg;
4681 #ifdef GC_CHECK_MARKED_OBJECTS
4682 void *po;
4683 struct mem_node *m;
4684 #endif
4685 int cdr_count = 0;
4687 loop:
4689 if (PURE_POINTER_P (XPNTR (obj)))
4690 return;
4692 last_marked[last_marked_index++] = obj;
4693 if (last_marked_index == LAST_MARKED_SIZE)
4694 last_marked_index = 0;
4696 /* Perform some sanity checks on the objects marked here. Abort if
4697 we encounter an object we know is bogus. This increases GC time
4698 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4699 #ifdef GC_CHECK_MARKED_OBJECTS
4701 po = (void *) XPNTR (obj);
4703 /* Check that the object pointed to by PO is known to be a Lisp
4704 structure allocated from the heap. */
4705 #define CHECK_ALLOCATED() \
4706 do { \
4707 m = mem_find (po); \
4708 if (m == MEM_NIL) \
4709 abort (); \
4710 } while (0)
4712 /* Check that the object pointed to by PO is live, using predicate
4713 function LIVEP. */
4714 #define CHECK_LIVE(LIVEP) \
4715 do { \
4716 if (!LIVEP (m, po)) \
4717 abort (); \
4718 } while (0)
4720 /* Check both of the above conditions. */
4721 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4722 do { \
4723 CHECK_ALLOCATED (); \
4724 CHECK_LIVE (LIVEP); \
4725 } while (0) \
4727 #else /* not GC_CHECK_MARKED_OBJECTS */
4729 #define CHECK_ALLOCATED() (void) 0
4730 #define CHECK_LIVE(LIVEP) (void) 0
4731 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4733 #endif /* not GC_CHECK_MARKED_OBJECTS */
4735 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4737 case Lisp_String:
4739 register struct Lisp_String *ptr = XSTRING (obj);
4740 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4741 MARK_INTERVAL_TREE (ptr->intervals);
4742 MARK_STRING (ptr);
4743 #ifdef GC_CHECK_STRING_BYTES
4744 /* Check that the string size recorded in the string is the
4745 same as the one recorded in the sdata structure. */
4746 CHECK_STRING_BYTES (ptr);
4747 #endif /* GC_CHECK_STRING_BYTES */
4749 break;
4751 case Lisp_Vectorlike:
4752 #ifdef GC_CHECK_MARKED_OBJECTS
4753 m = mem_find (po);
4754 if (m == MEM_NIL && !GC_SUBRP (obj)
4755 && po != &buffer_defaults
4756 && po != &buffer_local_symbols)
4757 abort ();
4758 #endif /* GC_CHECK_MARKED_OBJECTS */
4760 if (GC_BUFFERP (obj))
4762 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4764 #ifdef GC_CHECK_MARKED_OBJECTS
4765 if (po != &buffer_defaults && po != &buffer_local_symbols)
4767 struct buffer *b;
4768 for (b = all_buffers; b && b != po; b = b->next)
4770 if (b == NULL)
4771 abort ();
4773 #endif /* GC_CHECK_MARKED_OBJECTS */
4774 mark_buffer (obj);
4777 else if (GC_SUBRP (obj))
4778 break;
4779 else if (GC_COMPILEDP (obj))
4780 /* We could treat this just like a vector, but it is better to
4781 save the COMPILED_CONSTANTS element for last and avoid
4782 recursion there. */
4784 register struct Lisp_Vector *ptr = XVECTOR (obj);
4785 register EMACS_INT size = ptr->size;
4786 register int i;
4788 if (VECTOR_MARKED_P (ptr))
4789 break; /* Already marked */
4791 CHECK_LIVE (live_vector_p);
4792 VECTOR_MARK (ptr); /* Else mark it */
4793 size &= PSEUDOVECTOR_SIZE_MASK;
4794 for (i = 0; i < size; i++) /* and then mark its elements */
4796 if (i != COMPILED_CONSTANTS)
4797 mark_object (ptr->contents[i]);
4799 obj = ptr->contents[COMPILED_CONSTANTS];
4800 goto loop;
4802 else if (GC_FRAMEP (obj))
4804 register struct frame *ptr = XFRAME (obj);
4806 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4807 VECTOR_MARK (ptr); /* Else mark it */
4809 CHECK_LIVE (live_vector_p);
4810 mark_object (ptr->name);
4811 mark_object (ptr->icon_name);
4812 mark_object (ptr->title);
4813 mark_object (ptr->focus_frame);
4814 mark_object (ptr->selected_window);
4815 mark_object (ptr->minibuffer_window);
4816 mark_object (ptr->param_alist);
4817 mark_object (ptr->scroll_bars);
4818 mark_object (ptr->condemned_scroll_bars);
4819 mark_object (ptr->menu_bar_items);
4820 mark_object (ptr->face_alist);
4821 mark_object (ptr->menu_bar_vector);
4822 mark_object (ptr->buffer_predicate);
4823 mark_object (ptr->buffer_list);
4824 mark_object (ptr->menu_bar_window);
4825 mark_object (ptr->tool_bar_window);
4826 mark_face_cache (ptr->face_cache);
4827 #ifdef HAVE_WINDOW_SYSTEM
4828 mark_image_cache (ptr);
4829 mark_object (ptr->tool_bar_items);
4830 mark_object (ptr->desired_tool_bar_string);
4831 mark_object (ptr->current_tool_bar_string);
4832 #endif /* HAVE_WINDOW_SYSTEM */
4834 else if (GC_BOOL_VECTOR_P (obj))
4836 register struct Lisp_Vector *ptr = XVECTOR (obj);
4838 if (VECTOR_MARKED_P (ptr))
4839 break; /* Already marked */
4840 CHECK_LIVE (live_vector_p);
4841 VECTOR_MARK (ptr); /* Else mark it */
4843 else if (GC_WINDOWP (obj))
4845 register struct Lisp_Vector *ptr = XVECTOR (obj);
4846 struct window *w = XWINDOW (obj);
4847 register int i;
4849 /* Stop if already marked. */
4850 if (VECTOR_MARKED_P (ptr))
4851 break;
4853 /* Mark it. */
4854 CHECK_LIVE (live_vector_p);
4855 VECTOR_MARK (ptr);
4857 /* There is no Lisp data above The member CURRENT_MATRIX in
4858 struct WINDOW. Stop marking when that slot is reached. */
4859 for (i = 0;
4860 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4861 i++)
4862 mark_object (ptr->contents[i]);
4864 /* Mark glyphs for leaf windows. Marking window matrices is
4865 sufficient because frame matrices use the same glyph
4866 memory. */
4867 if (NILP (w->hchild)
4868 && NILP (w->vchild)
4869 && w->current_matrix)
4871 mark_glyph_matrix (w->current_matrix);
4872 mark_glyph_matrix (w->desired_matrix);
4875 else if (GC_HASH_TABLE_P (obj))
4877 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4879 /* Stop if already marked. */
4880 if (VECTOR_MARKED_P (h))
4881 break;
4883 /* Mark it. */
4884 CHECK_LIVE (live_vector_p);
4885 VECTOR_MARK (h);
4887 /* Mark contents. */
4888 /* Do not mark next_free or next_weak.
4889 Being in the next_weak chain
4890 should not keep the hash table alive.
4891 No need to mark `count' since it is an integer. */
4892 mark_object (h->test);
4893 mark_object (h->weak);
4894 mark_object (h->rehash_size);
4895 mark_object (h->rehash_threshold);
4896 mark_object (h->hash);
4897 mark_object (h->next);
4898 mark_object (h->index);
4899 mark_object (h->user_hash_function);
4900 mark_object (h->user_cmp_function);
4902 /* If hash table is not weak, mark all keys and values.
4903 For weak tables, mark only the vector. */
4904 if (GC_NILP (h->weak))
4905 mark_object (h->key_and_value);
4906 else
4907 VECTOR_MARK (XVECTOR (h->key_and_value));
4909 else
4911 register struct Lisp_Vector *ptr = XVECTOR (obj);
4912 register EMACS_INT size = ptr->size;
4913 register int i;
4915 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4916 CHECK_LIVE (live_vector_p);
4917 VECTOR_MARK (ptr); /* Else mark it */
4918 if (size & PSEUDOVECTOR_FLAG)
4919 size &= PSEUDOVECTOR_SIZE_MASK;
4921 for (i = 0; i < size; i++) /* and then mark its elements */
4922 mark_object (ptr->contents[i]);
4924 break;
4926 case Lisp_Symbol:
4928 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4929 struct Lisp_Symbol *ptrx;
4931 if (ptr->gcmarkbit) break;
4932 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4933 ptr->gcmarkbit = 1;
4934 mark_object (ptr->value);
4935 mark_object (ptr->function);
4936 mark_object (ptr->plist);
4938 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4939 MARK_STRING (XSTRING (ptr->xname));
4940 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4942 /* Note that we do not mark the obarray of the symbol.
4943 It is safe not to do so because nothing accesses that
4944 slot except to check whether it is nil. */
4945 ptr = ptr->next;
4946 if (ptr)
4948 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4949 XSETSYMBOL (obj, ptrx);
4950 goto loop;
4953 break;
4955 case Lisp_Misc:
4956 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4957 if (XMARKER (obj)->gcmarkbit)
4958 break;
4959 XMARKER (obj)->gcmarkbit = 1;
4960 switch (XMISCTYPE (obj))
4962 case Lisp_Misc_Buffer_Local_Value:
4963 case Lisp_Misc_Some_Buffer_Local_Value:
4965 register struct Lisp_Buffer_Local_Value *ptr
4966 = XBUFFER_LOCAL_VALUE (obj);
4967 /* If the cdr is nil, avoid recursion for the car. */
4968 if (EQ (ptr->cdr, Qnil))
4970 obj = ptr->realvalue;
4971 goto loop;
4973 mark_object (ptr->realvalue);
4974 mark_object (ptr->buffer);
4975 mark_object (ptr->frame);
4976 obj = ptr->cdr;
4977 goto loop;
4980 case Lisp_Misc_Marker:
4981 /* DO NOT mark thru the marker's chain.
4982 The buffer's markers chain does not preserve markers from gc;
4983 instead, markers are removed from the chain when freed by gc. */
4984 case Lisp_Misc_Intfwd:
4985 case Lisp_Misc_Boolfwd:
4986 case Lisp_Misc_Objfwd:
4987 case Lisp_Misc_Buffer_Objfwd:
4988 case Lisp_Misc_Kboard_Objfwd:
4989 /* Don't bother with Lisp_Buffer_Objfwd,
4990 since all markable slots in current buffer marked anyway. */
4991 /* Don't need to do Lisp_Objfwd, since the places they point
4992 are protected with staticpro. */
4993 case Lisp_Misc_Save_Value:
4994 break;
4996 case Lisp_Misc_Overlay:
4998 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4999 mark_object (ptr->start);
5000 mark_object (ptr->end);
5001 mark_object (ptr->plist);
5002 if (ptr->next)
5004 XSETMISC (obj, ptr->next);
5005 goto loop;
5008 break;
5010 default:
5011 abort ();
5013 break;
5015 case Lisp_Cons:
5017 register struct Lisp_Cons *ptr = XCONS (obj);
5018 if (CONS_MARKED_P (ptr)) break;
5019 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5020 CONS_MARK (ptr);
5021 /* If the cdr is nil, avoid recursion for the car. */
5022 if (EQ (ptr->cdr, Qnil))
5024 obj = ptr->car;
5025 cdr_count = 0;
5026 goto loop;
5028 mark_object (ptr->car);
5029 obj = ptr->cdr;
5030 cdr_count++;
5031 if (cdr_count == mark_object_loop_halt)
5032 abort ();
5033 goto loop;
5036 case Lisp_Float:
5037 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5038 FLOAT_MARK (XFLOAT (obj));
5039 break;
5041 case Lisp_Int:
5042 break;
5044 default:
5045 abort ();
5048 #undef CHECK_LIVE
5049 #undef CHECK_ALLOCATED
5050 #undef CHECK_ALLOCATED_AND_LIVE
5053 /* Mark the pointers in a buffer structure. */
5055 static void
5056 mark_buffer (buf)
5057 Lisp_Object buf;
5059 register struct buffer *buffer = XBUFFER (buf);
5060 register Lisp_Object *ptr, tmp;
5061 Lisp_Object base_buffer;
5063 VECTOR_MARK (buffer);
5065 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5067 if (CONSP (buffer->undo_list))
5069 Lisp_Object tail;
5070 tail = buffer->undo_list;
5072 /* We mark the undo list specially because
5073 its pointers to markers should be weak. */
5075 while (CONSP (tail))
5077 register struct Lisp_Cons *ptr = XCONS (tail);
5079 if (CONS_MARKED_P (ptr))
5080 break;
5081 CONS_MARK (ptr);
5082 if (GC_CONSP (ptr->car)
5083 && !CONS_MARKED_P (XCONS (ptr->car))
5084 && GC_MARKERP (XCAR (ptr->car)))
5086 CONS_MARK (XCONS (ptr->car));
5087 mark_object (XCDR (ptr->car));
5089 else
5090 mark_object (ptr->car);
5092 if (CONSP (ptr->cdr))
5093 tail = ptr->cdr;
5094 else
5095 break;
5098 mark_object (XCDR (tail));
5100 else
5101 mark_object (buffer->undo_list);
5103 if (buffer->overlays_before)
5105 XSETMISC (tmp, buffer->overlays_before);
5106 mark_object (tmp);
5108 if (buffer->overlays_after)
5110 XSETMISC (tmp, buffer->overlays_after);
5111 mark_object (tmp);
5114 for (ptr = &buffer->name;
5115 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5116 ptr++)
5117 mark_object (*ptr);
5119 /* If this is an indirect buffer, mark its base buffer. */
5120 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5122 XSETBUFFER (base_buffer, buffer->base_buffer);
5123 mark_buffer (base_buffer);
5128 /* Value is non-zero if OBJ will survive the current GC because it's
5129 either marked or does not need to be marked to survive. */
5132 survives_gc_p (obj)
5133 Lisp_Object obj;
5135 int survives_p;
5137 switch (XGCTYPE (obj))
5139 case Lisp_Int:
5140 survives_p = 1;
5141 break;
5143 case Lisp_Symbol:
5144 survives_p = XSYMBOL (obj)->gcmarkbit;
5145 break;
5147 case Lisp_Misc:
5148 survives_p = XMARKER (obj)->gcmarkbit;
5149 break;
5151 case Lisp_String:
5152 survives_p = STRING_MARKED_P (XSTRING (obj));
5153 break;
5155 case Lisp_Vectorlike:
5156 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5157 break;
5159 case Lisp_Cons:
5160 survives_p = CONS_MARKED_P (XCONS (obj));
5161 break;
5163 case Lisp_Float:
5164 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5165 break;
5167 default:
5168 abort ();
5171 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5176 /* Sweep: find all structures not marked, and free them. */
5178 static void
5179 gc_sweep ()
5181 /* Remove or mark entries in weak hash tables.
5182 This must be done before any object is unmarked. */
5183 sweep_weak_hash_tables ();
5185 sweep_strings ();
5186 #ifdef GC_CHECK_STRING_BYTES
5187 if (!noninteractive)
5188 check_string_bytes (1);
5189 #endif
5191 /* Put all unmarked conses on free list */
5193 register struct cons_block *cblk;
5194 struct cons_block **cprev = &cons_block;
5195 register int lim = cons_block_index;
5196 register int num_free = 0, num_used = 0;
5198 cons_free_list = 0;
5200 for (cblk = cons_block; cblk; cblk = *cprev)
5202 register int i;
5203 int this_free = 0;
5204 for (i = 0; i < lim; i++)
5205 if (!CONS_MARKED_P (&cblk->conses[i]))
5207 this_free++;
5208 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5209 cons_free_list = &cblk->conses[i];
5210 #if GC_MARK_STACK
5211 cons_free_list->car = Vdead;
5212 #endif
5214 else
5216 num_used++;
5217 CONS_UNMARK (&cblk->conses[i]);
5219 lim = CONS_BLOCK_SIZE;
5220 /* If this block contains only free conses and we have already
5221 seen more than two blocks worth of free conses then deallocate
5222 this block. */
5223 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5225 *cprev = cblk->next;
5226 /* Unhook from the free list. */
5227 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5228 lisp_align_free (cblk);
5229 n_cons_blocks--;
5231 else
5233 num_free += this_free;
5234 cprev = &cblk->next;
5237 total_conses = num_used;
5238 total_free_conses = num_free;
5241 /* Put all unmarked floats on free list */
5243 register struct float_block *fblk;
5244 struct float_block **fprev = &float_block;
5245 register int lim = float_block_index;
5246 register int num_free = 0, num_used = 0;
5248 float_free_list = 0;
5250 for (fblk = float_block; fblk; fblk = *fprev)
5252 register int i;
5253 int this_free = 0;
5254 for (i = 0; i < lim; i++)
5255 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5257 this_free++;
5258 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5259 float_free_list = &fblk->floats[i];
5261 else
5263 num_used++;
5264 FLOAT_UNMARK (&fblk->floats[i]);
5266 lim = FLOAT_BLOCK_SIZE;
5267 /* If this block contains only free floats and we have already
5268 seen more than two blocks worth of free floats then deallocate
5269 this block. */
5270 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5272 *fprev = fblk->next;
5273 /* Unhook from the free list. */
5274 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5275 lisp_align_free (fblk);
5276 n_float_blocks--;
5278 else
5280 num_free += this_free;
5281 fprev = &fblk->next;
5284 total_floats = num_used;
5285 total_free_floats = num_free;
5288 /* Put all unmarked intervals on free list */
5290 register struct interval_block *iblk;
5291 struct interval_block **iprev = &interval_block;
5292 register int lim = interval_block_index;
5293 register int num_free = 0, num_used = 0;
5295 interval_free_list = 0;
5297 for (iblk = interval_block; iblk; iblk = *iprev)
5299 register int i;
5300 int this_free = 0;
5302 for (i = 0; i < lim; i++)
5304 if (!iblk->intervals[i].gcmarkbit)
5306 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5307 interval_free_list = &iblk->intervals[i];
5308 this_free++;
5310 else
5312 num_used++;
5313 iblk->intervals[i].gcmarkbit = 0;
5316 lim = INTERVAL_BLOCK_SIZE;
5317 /* If this block contains only free intervals and we have already
5318 seen more than two blocks worth of free intervals then
5319 deallocate this block. */
5320 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5322 *iprev = iblk->next;
5323 /* Unhook from the free list. */
5324 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5325 lisp_free (iblk);
5326 n_interval_blocks--;
5328 else
5330 num_free += this_free;
5331 iprev = &iblk->next;
5334 total_intervals = num_used;
5335 total_free_intervals = num_free;
5338 /* Put all unmarked symbols on free list */
5340 register struct symbol_block *sblk;
5341 struct symbol_block **sprev = &symbol_block;
5342 register int lim = symbol_block_index;
5343 register int num_free = 0, num_used = 0;
5345 symbol_free_list = NULL;
5347 for (sblk = symbol_block; sblk; sblk = *sprev)
5349 int this_free = 0;
5350 struct Lisp_Symbol *sym = sblk->symbols;
5351 struct Lisp_Symbol *end = sym + lim;
5353 for (; sym < end; ++sym)
5355 /* Check if the symbol was created during loadup. In such a case
5356 it might be pointed to by pure bytecode which we don't trace,
5357 so we conservatively assume that it is live. */
5358 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5360 if (!sym->gcmarkbit && !pure_p)
5362 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5363 symbol_free_list = sym;
5364 #if GC_MARK_STACK
5365 symbol_free_list->function = Vdead;
5366 #endif
5367 ++this_free;
5369 else
5371 ++num_used;
5372 if (!pure_p)
5373 UNMARK_STRING (XSTRING (sym->xname));
5374 sym->gcmarkbit = 0;
5378 lim = SYMBOL_BLOCK_SIZE;
5379 /* If this block contains only free symbols and we have already
5380 seen more than two blocks worth of free symbols then deallocate
5381 this block. */
5382 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5384 *sprev = sblk->next;
5385 /* Unhook from the free list. */
5386 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5387 lisp_free (sblk);
5388 n_symbol_blocks--;
5390 else
5392 num_free += this_free;
5393 sprev = &sblk->next;
5396 total_symbols = num_used;
5397 total_free_symbols = num_free;
5400 /* Put all unmarked misc's on free list.
5401 For a marker, first unchain it from the buffer it points into. */
5403 register struct marker_block *mblk;
5404 struct marker_block **mprev = &marker_block;
5405 register int lim = marker_block_index;
5406 register int num_free = 0, num_used = 0;
5408 marker_free_list = 0;
5410 for (mblk = marker_block; mblk; mblk = *mprev)
5412 register int i;
5413 int this_free = 0;
5415 for (i = 0; i < lim; i++)
5417 if (!mblk->markers[i].u_marker.gcmarkbit)
5419 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5420 unchain_marker (&mblk->markers[i].u_marker);
5421 /* Set the type of the freed object to Lisp_Misc_Free.
5422 We could leave the type alone, since nobody checks it,
5423 but this might catch bugs faster. */
5424 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5425 mblk->markers[i].u_free.chain = marker_free_list;
5426 marker_free_list = &mblk->markers[i];
5427 this_free++;
5429 else
5431 num_used++;
5432 mblk->markers[i].u_marker.gcmarkbit = 0;
5435 lim = MARKER_BLOCK_SIZE;
5436 /* If this block contains only free markers and we have already
5437 seen more than two blocks worth of free markers then deallocate
5438 this block. */
5439 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5441 *mprev = mblk->next;
5442 /* Unhook from the free list. */
5443 marker_free_list = mblk->markers[0].u_free.chain;
5444 lisp_free (mblk);
5445 n_marker_blocks--;
5447 else
5449 num_free += this_free;
5450 mprev = &mblk->next;
5454 total_markers = num_used;
5455 total_free_markers = num_free;
5458 /* Free all unmarked buffers */
5460 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5462 while (buffer)
5463 if (!VECTOR_MARKED_P (buffer))
5465 if (prev)
5466 prev->next = buffer->next;
5467 else
5468 all_buffers = buffer->next;
5469 next = buffer->next;
5470 lisp_free (buffer);
5471 buffer = next;
5473 else
5475 VECTOR_UNMARK (buffer);
5476 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5477 prev = buffer, buffer = buffer->next;
5481 /* Free all unmarked vectors */
5483 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5484 total_vector_size = 0;
5486 while (vector)
5487 if (!VECTOR_MARKED_P (vector))
5489 if (prev)
5490 prev->next = vector->next;
5491 else
5492 all_vectors = vector->next;
5493 next = vector->next;
5494 lisp_free (vector);
5495 n_vectors--;
5496 vector = next;
5499 else
5501 VECTOR_UNMARK (vector);
5502 if (vector->size & PSEUDOVECTOR_FLAG)
5503 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5504 else
5505 total_vector_size += vector->size;
5506 prev = vector, vector = vector->next;
5510 #ifdef GC_CHECK_STRING_BYTES
5511 if (!noninteractive)
5512 check_string_bytes (1);
5513 #endif
5519 /* Debugging aids. */
5521 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5522 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5523 This may be helpful in debugging Emacs's memory usage.
5524 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5527 Lisp_Object end;
5529 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5531 return end;
5534 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5535 doc: /* Return a list of counters that measure how much consing there has been.
5536 Each of these counters increments for a certain kind of object.
5537 The counters wrap around from the largest positive integer to zero.
5538 Garbage collection does not decrease them.
5539 The elements of the value are as follows:
5540 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5541 All are in units of 1 = one object consed
5542 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5543 objects consed.
5544 MISCS include overlays, markers, and some internal types.
5545 Frames, windows, buffers, and subprocesses count as vectors
5546 (but the contents of a buffer's text do not count here). */)
5549 Lisp_Object consed[8];
5551 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5552 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5553 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5554 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5555 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5556 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5557 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5558 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5560 return Flist (8, consed);
5563 int suppress_checking;
5564 void
5565 die (msg, file, line)
5566 const char *msg;
5567 const char *file;
5568 int line;
5570 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5571 file, line, msg);
5572 abort ();
5575 /* Initialization */
5577 void
5578 init_alloc_once ()
5580 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5581 purebeg = PUREBEG;
5582 pure_size = PURESIZE;
5583 pure_bytes_used = 0;
5584 pure_bytes_used_before_overflow = 0;
5586 /* Initialize the list of free aligned blocks. */
5587 free_ablock = NULL;
5589 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5590 mem_init ();
5591 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5592 #endif
5594 all_vectors = 0;
5595 ignore_warnings = 1;
5596 #ifdef DOUG_LEA_MALLOC
5597 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5598 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5599 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5600 #endif
5601 init_strings ();
5602 init_cons ();
5603 init_symbol ();
5604 init_marker ();
5605 init_float ();
5606 init_intervals ();
5608 #ifdef REL_ALLOC
5609 malloc_hysteresis = 32;
5610 #else
5611 malloc_hysteresis = 0;
5612 #endif
5614 spare_memory = (char *) malloc (SPARE_MEMORY);
5616 ignore_warnings = 0;
5617 gcprolist = 0;
5618 byte_stack_list = 0;
5619 staticidx = 0;
5620 consing_since_gc = 0;
5621 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5622 #ifdef VIRT_ADDR_VARIES
5623 malloc_sbrk_unused = 1<<22; /* A large number */
5624 malloc_sbrk_used = 100000; /* as reasonable as any number */
5625 #endif /* VIRT_ADDR_VARIES */
5628 void
5629 init_alloc ()
5631 gcprolist = 0;
5632 byte_stack_list = 0;
5633 #if GC_MARK_STACK
5634 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5635 setjmp_tested_p = longjmps_done = 0;
5636 #endif
5637 #endif
5638 Vgc_elapsed = make_float (0.0);
5639 gcs_done = 0;
5642 void
5643 syms_of_alloc ()
5645 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5646 doc: /* *Number of bytes of consing between garbage collections.
5647 Garbage collection can happen automatically once this many bytes have been
5648 allocated since the last garbage collection. All data types count.
5650 Garbage collection happens automatically only when `eval' is called.
5652 By binding this temporarily to a large number, you can effectively
5653 prevent garbage collection during a part of the program. */);
5655 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5656 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5658 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5659 doc: /* Number of cons cells that have been consed so far. */);
5661 DEFVAR_INT ("floats-consed", &floats_consed,
5662 doc: /* Number of floats that have been consed so far. */);
5664 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5665 doc: /* Number of vector cells that have been consed so far. */);
5667 DEFVAR_INT ("symbols-consed", &symbols_consed,
5668 doc: /* Number of symbols that have been consed so far. */);
5670 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5671 doc: /* Number of string characters that have been consed so far. */);
5673 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5674 doc: /* Number of miscellaneous objects that have been consed so far. */);
5676 DEFVAR_INT ("intervals-consed", &intervals_consed,
5677 doc: /* Number of intervals that have been consed so far. */);
5679 DEFVAR_INT ("strings-consed", &strings_consed,
5680 doc: /* Number of strings that have been consed so far. */);
5682 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5683 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5684 This means that certain objects should be allocated in shared (pure) space. */);
5686 DEFVAR_INT ("undo-limit", &undo_limit,
5687 doc: /* Keep no more undo information once it exceeds this size.
5688 This limit is applied when garbage collection happens.
5689 The size is counted as the number of bytes occupied,
5690 which includes both saved text and other data. */);
5691 undo_limit = 20000;
5693 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5694 doc: /* Don't keep more than this much size of undo information.
5695 A command which pushes past this size is itself forgotten.
5696 This limit is applied when garbage collection happens.
5697 The size is counted as the number of bytes occupied,
5698 which includes both saved text and other data. */);
5699 undo_strong_limit = 30000;
5701 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5702 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5703 garbage_collection_messages = 0;
5705 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5706 doc: /* Hook run after garbage collection has finished. */);
5707 Vpost_gc_hook = Qnil;
5708 Qpost_gc_hook = intern ("post-gc-hook");
5709 staticpro (&Qpost_gc_hook);
5711 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5712 doc: /* Precomputed `signal' argument for memory-full error. */);
5713 /* We build this in advance because if we wait until we need it, we might
5714 not be able to allocate the memory to hold it. */
5715 Vmemory_signal_data
5716 = list2 (Qerror,
5717 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5719 DEFVAR_LISP ("memory-full", &Vmemory_full,
5720 doc: /* Non-nil means we are handling a memory-full error. */);
5721 Vmemory_full = Qnil;
5723 staticpro (&Qgc_cons_threshold);
5724 Qgc_cons_threshold = intern ("gc-cons-threshold");
5726 staticpro (&Qchar_table_extra_slots);
5727 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5729 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5730 doc: /* Accumulated time elapsed in garbage collections.
5731 The time is in seconds as a floating point value. */);
5732 DEFVAR_INT ("gcs-done", &gcs_done,
5733 doc: /* Accumulated number of garbage collections done. */);
5735 defsubr (&Scons);
5736 defsubr (&Slist);
5737 defsubr (&Svector);
5738 defsubr (&Smake_byte_code);
5739 defsubr (&Smake_list);
5740 defsubr (&Smake_vector);
5741 defsubr (&Smake_char_table);
5742 defsubr (&Smake_string);
5743 defsubr (&Smake_bool_vector);
5744 defsubr (&Smake_symbol);
5745 defsubr (&Smake_marker);
5746 defsubr (&Spurecopy);
5747 defsubr (&Sgarbage_collect);
5748 defsubr (&Smemory_limit);
5749 defsubr (&Smemory_use_counts);
5751 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5752 defsubr (&Sgc_status);
5753 #endif
5756 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5757 (do not change this comment) */