(pure_alloc): Correct alignment for Lisp_Floats.
[emacs.git] / src / alloc.c
blob47885c67534637d3cbff3a1226b032b7b3a26718
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
29 /* Note that this declares bzero on OSF/1. How dumb. */
31 #include <signal.h>
33 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
34 memory. Can do this only if using gmalloc.c. */
36 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
37 #undef GC_MALLOC_CHECK
38 #endif
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "charset.h"
55 #include "syssignal.h"
56 #include <setjmp.h>
58 #ifdef HAVE_UNISTD_H
59 #include <unistd.h>
60 #else
61 extern POINTER_TYPE *sbrk ();
62 #endif
64 #ifdef DOUG_LEA_MALLOC
66 #include <malloc.h>
67 /* malloc.h #defines this as size_t, at least in glibc2. */
68 #ifndef __malloc_size_t
69 #define __malloc_size_t int
70 #endif
72 /* Specify maximum number of areas to mmap. It would be nice to use a
73 value that explicitly means "no limit". */
75 #define MMAP_MAX_AREAS 100000000
77 #else /* not DOUG_LEA_MALLOC */
79 /* The following come from gmalloc.c. */
81 #define __malloc_size_t size_t
82 extern __malloc_size_t _bytes_used;
83 extern __malloc_size_t __malloc_extra_blocks;
85 #endif /* not DOUG_LEA_MALLOC */
87 /* Macro to verify that storage intended for Lisp objects is not
88 out of range to fit in the space for a pointer.
89 ADDRESS is the start of the block, and SIZE
90 is the amount of space within which objects can start. */
92 #define VALIDATE_LISP_STORAGE(address, size) \
93 do \
94 { \
95 Lisp_Object val; \
96 XSETCONS (val, (char *) address + size); \
97 if ((char *) XCONS (val) != (char *) address + size) \
98 { \
99 xfree (address); \
100 memory_full (); \
102 } while (0)
104 /* Value of _bytes_used, when spare_memory was freed. */
106 static __malloc_size_t bytes_used_when_full;
108 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
109 to a struct Lisp_String. */
111 #define MARK_STRING(S) ((S)->size |= MARKBIT)
112 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
113 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
115 /* Value is the number of bytes/chars of S, a pointer to a struct
116 Lisp_String. This must be used instead of STRING_BYTES (S) or
117 S->size during GC, because S->size contains the mark bit for
118 strings. */
120 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
121 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
123 /* Number of bytes of consing done since the last gc. */
125 int consing_since_gc;
127 /* Count the amount of consing of various sorts of space. */
129 EMACS_INT cons_cells_consed;
130 EMACS_INT floats_consed;
131 EMACS_INT vector_cells_consed;
132 EMACS_INT symbols_consed;
133 EMACS_INT string_chars_consed;
134 EMACS_INT misc_objects_consed;
135 EMACS_INT intervals_consed;
136 EMACS_INT strings_consed;
138 /* Number of bytes of consing since GC before another GC should be done. */
140 EMACS_INT gc_cons_threshold;
142 /* Nonzero during GC. */
144 int gc_in_progress;
146 /* Nonzero means display messages at beginning and end of GC. */
148 int garbage_collection_messages;
150 #ifndef VIRT_ADDR_VARIES
151 extern
152 #endif /* VIRT_ADDR_VARIES */
153 int malloc_sbrk_used;
155 #ifndef VIRT_ADDR_VARIES
156 extern
157 #endif /* VIRT_ADDR_VARIES */
158 int malloc_sbrk_unused;
160 /* Two limits controlling how much undo information to keep. */
162 EMACS_INT undo_limit;
163 EMACS_INT undo_strong_limit;
165 /* Number of live and free conses etc. */
167 static int total_conses, total_markers, total_symbols, total_vector_size;
168 static int total_free_conses, total_free_markers, total_free_symbols;
169 static int total_free_floats, total_floats;
171 /* Points to memory space allocated as "spare", to be freed if we run
172 out of memory. */
174 static char *spare_memory;
176 /* Amount of spare memory to keep in reserve. */
178 #define SPARE_MEMORY (1 << 14)
180 /* Number of extra blocks malloc should get when it needs more core. */
182 static int malloc_hysteresis;
184 /* Non-nil means defun should do purecopy on the function definition. */
186 Lisp_Object Vpurify_flag;
188 /* Non-nil means we are handling a memory-full error. */
190 Lisp_Object Vmemory_full;
192 #ifndef HAVE_SHM
194 /* Force it into data space! */
196 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
197 #define PUREBEG (char *) pure
199 #else /* HAVE_SHM */
201 #define pure PURE_SEG_BITS /* Use shared memory segment */
202 #define PUREBEG (char *)PURE_SEG_BITS
204 #endif /* HAVE_SHM */
206 /* Pointer to the pure area, and its size. */
208 static char *purebeg;
209 static size_t pure_size;
211 /* Number of bytes of pure storage used before pure storage overflowed.
212 If this is non-zero, this implies that an overflow occurred. */
214 static size_t pure_bytes_used_before_overflow;
216 /* Value is non-zero if P points into pure space. */
218 #define PURE_POINTER_P(P) \
219 (((PNTR_COMPARISON_TYPE) (P) \
220 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
221 && ((PNTR_COMPARISON_TYPE) (P) \
222 >= (PNTR_COMPARISON_TYPE) purebeg))
224 /* Index in pure at which next pure object will be allocated.. */
226 EMACS_INT pure_bytes_used;
228 /* If nonzero, this is a warning delivered by malloc and not yet
229 displayed. */
231 char *pending_malloc_warning;
233 /* Pre-computed signal argument for use when memory is exhausted. */
235 Lisp_Object Vmemory_signal_data;
237 /* Maximum amount of C stack to save when a GC happens. */
239 #ifndef MAX_SAVE_STACK
240 #define MAX_SAVE_STACK 16000
241 #endif
243 /* Buffer in which we save a copy of the C stack at each GC. */
245 char *stack_copy;
246 int stack_copy_size;
248 /* Non-zero means ignore malloc warnings. Set during initialization.
249 Currently not used. */
251 int ignore_warnings;
253 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
255 /* Hook run after GC has finished. */
257 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
259 static void mark_buffer P_ ((Lisp_Object));
260 static void mark_kboards P_ ((void));
261 static void gc_sweep P_ ((void));
262 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263 static void mark_face_cache P_ ((struct face_cache *));
265 #ifdef HAVE_WINDOW_SYSTEM
266 static void mark_image P_ ((struct image *));
267 static void mark_image_cache P_ ((struct frame *));
268 #endif /* HAVE_WINDOW_SYSTEM */
270 static struct Lisp_String *allocate_string P_ ((void));
271 static void compact_small_strings P_ ((void));
272 static void free_large_strings P_ ((void));
273 static void sweep_strings P_ ((void));
275 extern int message_enable_multibyte;
277 /* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
281 enum mem_type
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
300 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303 #include <stdio.h> /* For fprintf. */
304 #endif
306 /* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
309 Lisp_Object Vdead;
311 #ifdef GC_MALLOC_CHECK
313 enum mem_type allocated_mem_type;
314 int dont_register_blocks;
316 #endif /* GC_MALLOC_CHECK */
318 /* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
323 A red-black tree is a balanced binary tree with the following
324 properties:
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
342 struct mem_node
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
351 /* Start and end of allocated region. */
352 void *start, *end;
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
357 /* Memory type. */
358 enum mem_type type;
361 /* Base address of stack. Set in main. */
363 Lisp_Object *stack_base;
365 /* Root of the tree describing allocated Lisp memory. */
367 static struct mem_node *mem_root;
369 /* Lowest and highest known address in the heap. */
371 static void *min_heap_address, *max_heap_address;
373 /* Sentinel node of the tree. */
375 static struct mem_node mem_z;
376 #define MEM_NIL &mem_z
378 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380 static void lisp_free P_ ((POINTER_TYPE *));
381 static void mark_stack P_ ((void));
382 static int live_vector_p P_ ((struct mem_node *, void *));
383 static int live_buffer_p P_ ((struct mem_node *, void *));
384 static int live_string_p P_ ((struct mem_node *, void *));
385 static int live_cons_p P_ ((struct mem_node *, void *));
386 static int live_symbol_p P_ ((struct mem_node *, void *));
387 static int live_float_p P_ ((struct mem_node *, void *));
388 static int live_misc_p P_ ((struct mem_node *, void *));
389 static void mark_maybe_object P_ ((Lisp_Object));
390 static void mark_memory P_ ((void *, void *));
391 static void mem_init P_ ((void));
392 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393 static void mem_insert_fixup P_ ((struct mem_node *));
394 static void mem_rotate_left P_ ((struct mem_node *));
395 static void mem_rotate_right P_ ((struct mem_node *));
396 static void mem_delete P_ ((struct mem_node *));
397 static void mem_delete_fixup P_ ((struct mem_node *));
398 static INLINE struct mem_node *mem_find P_ ((void *));
400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401 static void check_gcpros P_ ((void));
402 #endif
404 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
406 /* Recording what needs to be marked for gc. */
408 struct gcpro *gcprolist;
410 /* Addresses of staticpro'd variables. */
412 #define NSTATICS 1280
413 Lisp_Object *staticvec[NSTATICS] = {0};
415 /* Index of next unused slot in staticvec. */
417 int staticidx = 0;
419 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
422 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
423 ALIGNMENT must be a power of 2. */
425 #define ALIGN(SZ, ALIGNMENT) \
426 (((SZ) + (ALIGNMENT) - 1) & ~((ALIGNMENT) - 1))
430 /************************************************************************
431 Malloc
432 ************************************************************************/
434 /* Function malloc calls this if it finds we are near exhausting storage. */
436 void
437 malloc_warning (str)
438 char *str;
440 pending_malloc_warning = str;
444 /* Display an already-pending malloc warning. */
446 void
447 display_malloc_warning ()
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
464 /* Called if malloc returns zero. */
466 void
467 memory_full ()
469 Vmemory_full = Qt;
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
478 free (spare_memory);
479 spare_memory = 0;
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
489 /* Called if we can't allocate relocatable space for a buffer. */
491 void
492 buffer_memory_full ()
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
505 Vmemory_full = Qt;
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
514 /* Like malloc but check for no memory and block interrupt input.. */
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
520 register POINTER_TYPE *val;
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
526 if (!val && size)
527 memory_full ();
528 return val;
532 /* Like realloc but check for no memory and block interrupt input.. */
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
539 register POINTER_TYPE *val;
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
550 if (!val && size) memory_full ();
551 return val;
555 /* Like free but block interrupt input.. */
557 void
558 xfree (block)
559 POINTER_TYPE *block;
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
567 /* Like strdup, but uses xmalloc. */
569 char *
570 xstrdup (s)
571 const char *s;
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
584 static POINTER_TYPE *
585 lisp_malloc (nbytes, type)
586 size_t nbytes;
587 enum mem_type type;
589 register void *val;
591 BLOCK_INPUT;
593 #ifdef GC_MALLOC_CHECK
594 allocated_mem_type = type;
595 #endif
597 val = (void *) malloc (nbytes);
599 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
600 if (val && type != MEM_TYPE_NON_LISP)
601 mem_insert (val, (char *) val + nbytes, type);
602 #endif
604 UNBLOCK_INPUT;
605 if (!val && nbytes)
606 memory_full ();
607 return val;
611 /* Return a new buffer structure allocated from the heap with
612 a call to lisp_malloc. */
614 struct buffer *
615 allocate_buffer ()
617 struct buffer *b
618 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
619 MEM_TYPE_BUFFER);
620 VALIDATE_LISP_STORAGE (b, sizeof *b);
621 return b;
625 /* Free BLOCK. This must be called to free memory allocated with a
626 call to lisp_malloc. */
628 static void
629 lisp_free (block)
630 POINTER_TYPE *block;
632 BLOCK_INPUT;
633 free (block);
634 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
635 mem_delete (mem_find (block));
636 #endif
637 UNBLOCK_INPUT;
641 /* Arranging to disable input signals while we're in malloc.
643 This only works with GNU malloc. To help out systems which can't
644 use GNU malloc, all the calls to malloc, realloc, and free
645 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
646 pairs; unfortunately, we have no idea what C library functions
647 might call malloc, so we can't really protect them unless you're
648 using GNU malloc. Fortunately, most of the major operating can use
649 GNU malloc. */
651 #ifndef SYSTEM_MALLOC
652 #ifndef DOUG_LEA_MALLOC
653 extern void * (*__malloc_hook) P_ ((size_t));
654 extern void * (*__realloc_hook) P_ ((void *, size_t));
655 extern void (*__free_hook) P_ ((void *));
656 /* Else declared in malloc.h, perhaps with an extra arg. */
657 #endif /* DOUG_LEA_MALLOC */
658 static void * (*old_malloc_hook) ();
659 static void * (*old_realloc_hook) ();
660 static void (*old_free_hook) ();
662 /* This function is used as the hook for free to call. */
664 static void
665 emacs_blocked_free (ptr)
666 void *ptr;
668 BLOCK_INPUT;
670 #ifdef GC_MALLOC_CHECK
671 if (ptr)
673 struct mem_node *m;
675 m = mem_find (ptr);
676 if (m == MEM_NIL || m->start != ptr)
678 fprintf (stderr,
679 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
680 abort ();
682 else
684 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
685 mem_delete (m);
688 #endif /* GC_MALLOC_CHECK */
690 __free_hook = old_free_hook;
691 free (ptr);
693 /* If we released our reserve (due to running out of memory),
694 and we have a fair amount free once again,
695 try to set aside another reserve in case we run out once more. */
696 if (spare_memory == 0
697 /* Verify there is enough space that even with the malloc
698 hysteresis this call won't run out again.
699 The code here is correct as long as SPARE_MEMORY
700 is substantially larger than the block size malloc uses. */
701 && (bytes_used_when_full
702 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
703 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
705 __free_hook = emacs_blocked_free;
706 UNBLOCK_INPUT;
710 /* If we released our reserve (due to running out of memory),
711 and we have a fair amount free once again,
712 try to set aside another reserve in case we run out once more.
714 This is called when a relocatable block is freed in ralloc.c. */
716 void
717 refill_memory_reserve ()
719 if (spare_memory == 0)
720 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
724 /* This function is the malloc hook that Emacs uses. */
726 static void *
727 emacs_blocked_malloc (size)
728 size_t size;
730 void *value;
732 BLOCK_INPUT;
733 __malloc_hook = old_malloc_hook;
734 #ifdef DOUG_LEA_MALLOC
735 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
736 #else
737 __malloc_extra_blocks = malloc_hysteresis;
738 #endif
740 value = (void *) malloc (size);
742 #ifdef GC_MALLOC_CHECK
744 struct mem_node *m = mem_find (value);
745 if (m != MEM_NIL)
747 fprintf (stderr, "Malloc returned %p which is already in use\n",
748 value);
749 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
750 m->start, m->end, (char *) m->end - (char *) m->start,
751 m->type);
752 abort ();
755 if (!dont_register_blocks)
757 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
758 allocated_mem_type = MEM_TYPE_NON_LISP;
761 #endif /* GC_MALLOC_CHECK */
763 __malloc_hook = emacs_blocked_malloc;
764 UNBLOCK_INPUT;
766 /* fprintf (stderr, "%p malloc\n", value); */
767 return value;
771 /* This function is the realloc hook that Emacs uses. */
773 static void *
774 emacs_blocked_realloc (ptr, size)
775 void *ptr;
776 size_t size;
778 void *value;
780 BLOCK_INPUT;
781 __realloc_hook = old_realloc_hook;
783 #ifdef GC_MALLOC_CHECK
784 if (ptr)
786 struct mem_node *m = mem_find (ptr);
787 if (m == MEM_NIL || m->start != ptr)
789 fprintf (stderr,
790 "Realloc of %p which wasn't allocated with malloc\n",
791 ptr);
792 abort ();
795 mem_delete (m);
798 /* fprintf (stderr, "%p -> realloc\n", ptr); */
800 /* Prevent malloc from registering blocks. */
801 dont_register_blocks = 1;
802 #endif /* GC_MALLOC_CHECK */
804 value = (void *) realloc (ptr, size);
806 #ifdef GC_MALLOC_CHECK
807 dont_register_blocks = 0;
810 struct mem_node *m = mem_find (value);
811 if (m != MEM_NIL)
813 fprintf (stderr, "Realloc returns memory that is already in use\n");
814 abort ();
817 /* Can't handle zero size regions in the red-black tree. */
818 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
821 /* fprintf (stderr, "%p <- realloc\n", value); */
822 #endif /* GC_MALLOC_CHECK */
824 __realloc_hook = emacs_blocked_realloc;
825 UNBLOCK_INPUT;
827 return value;
831 /* Called from main to set up malloc to use our hooks. */
833 void
834 uninterrupt_malloc ()
836 if (__free_hook != emacs_blocked_free)
837 old_free_hook = __free_hook;
838 __free_hook = emacs_blocked_free;
840 if (__malloc_hook != emacs_blocked_malloc)
841 old_malloc_hook = __malloc_hook;
842 __malloc_hook = emacs_blocked_malloc;
844 if (__realloc_hook != emacs_blocked_realloc)
845 old_realloc_hook = __realloc_hook;
846 __realloc_hook = emacs_blocked_realloc;
849 #endif /* not SYSTEM_MALLOC */
853 /***********************************************************************
854 Interval Allocation
855 ***********************************************************************/
857 /* Number of intervals allocated in an interval_block structure.
858 The 1020 is 1024 minus malloc overhead. */
860 #define INTERVAL_BLOCK_SIZE \
861 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
863 /* Intervals are allocated in chunks in form of an interval_block
864 structure. */
866 struct interval_block
868 struct interval_block *next;
869 struct interval intervals[INTERVAL_BLOCK_SIZE];
872 /* Current interval block. Its `next' pointer points to older
873 blocks. */
875 struct interval_block *interval_block;
877 /* Index in interval_block above of the next unused interval
878 structure. */
880 static int interval_block_index;
882 /* Number of free and live intervals. */
884 static int total_free_intervals, total_intervals;
886 /* List of free intervals. */
888 INTERVAL interval_free_list;
890 /* Total number of interval blocks now in use. */
892 int n_interval_blocks;
895 /* Initialize interval allocation. */
897 static void
898 init_intervals ()
900 interval_block
901 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
902 MEM_TYPE_NON_LISP);
903 interval_block->next = 0;
904 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
905 interval_block_index = 0;
906 interval_free_list = 0;
907 n_interval_blocks = 1;
911 /* Return a new interval. */
913 INTERVAL
914 make_interval ()
916 INTERVAL val;
918 if (interval_free_list)
920 val = interval_free_list;
921 interval_free_list = INTERVAL_PARENT (interval_free_list);
923 else
925 if (interval_block_index == INTERVAL_BLOCK_SIZE)
927 register struct interval_block *newi;
929 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
930 MEM_TYPE_NON_LISP);
932 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
933 newi->next = interval_block;
934 interval_block = newi;
935 interval_block_index = 0;
936 n_interval_blocks++;
938 val = &interval_block->intervals[interval_block_index++];
940 consing_since_gc += sizeof (struct interval);
941 intervals_consed++;
942 RESET_INTERVAL (val);
943 return val;
947 /* Mark Lisp objects in interval I. */
949 static void
950 mark_interval (i, dummy)
951 register INTERVAL i;
952 Lisp_Object dummy;
954 if (XMARKBIT (i->plist))
955 abort ();
956 mark_object (&i->plist);
957 XMARK (i->plist);
961 /* Mark the interval tree rooted in TREE. Don't call this directly;
962 use the macro MARK_INTERVAL_TREE instead. */
964 static void
965 mark_interval_tree (tree)
966 register INTERVAL tree;
968 /* No need to test if this tree has been marked already; this
969 function is always called through the MARK_INTERVAL_TREE macro,
970 which takes care of that. */
972 /* XMARK expands to an assignment; the LHS of an assignment can't be
973 a cast. */
974 XMARK (tree->up.obj);
976 traverse_intervals_noorder (tree, mark_interval, Qnil);
980 /* Mark the interval tree rooted in I. */
982 #define MARK_INTERVAL_TREE(i) \
983 do { \
984 if (!NULL_INTERVAL_P (i) \
985 && ! XMARKBIT (i->up.obj)) \
986 mark_interval_tree (i); \
987 } while (0)
990 /* The oddity in the call to XUNMARK is necessary because XUNMARK
991 expands to an assignment to its argument, and most C compilers
992 don't support casts on the left operand of `='. */
994 #define UNMARK_BALANCE_INTERVALS(i) \
995 do { \
996 if (! NULL_INTERVAL_P (i)) \
998 XUNMARK ((i)->up.obj); \
999 (i) = balance_intervals (i); \
1001 } while (0)
1004 /* Number support. If NO_UNION_TYPE isn't in effect, we
1005 can't create number objects in macros. */
1006 #ifndef make_number
1007 Lisp_Object
1008 make_number (n)
1009 int n;
1011 Lisp_Object obj;
1012 obj.s.val = n;
1013 obj.s.type = Lisp_Int;
1014 return obj;
1016 #endif
1018 /***********************************************************************
1019 String Allocation
1020 ***********************************************************************/
1022 /* Lisp_Strings are allocated in string_block structures. When a new
1023 string_block is allocated, all the Lisp_Strings it contains are
1024 added to a free-list string_free_list. When a new Lisp_String is
1025 needed, it is taken from that list. During the sweep phase of GC,
1026 string_blocks that are entirely free are freed, except two which
1027 we keep.
1029 String data is allocated from sblock structures. Strings larger
1030 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1031 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1033 Sblocks consist internally of sdata structures, one for each
1034 Lisp_String. The sdata structure points to the Lisp_String it
1035 belongs to. The Lisp_String points back to the `u.data' member of
1036 its sdata structure.
1038 When a Lisp_String is freed during GC, it is put back on
1039 string_free_list, and its `data' member and its sdata's `string'
1040 pointer is set to null. The size of the string is recorded in the
1041 `u.nbytes' member of the sdata. So, sdata structures that are no
1042 longer used, can be easily recognized, and it's easy to compact the
1043 sblocks of small strings which we do in compact_small_strings. */
1045 /* Size in bytes of an sblock structure used for small strings. This
1046 is 8192 minus malloc overhead. */
1048 #define SBLOCK_SIZE 8188
1050 /* Strings larger than this are considered large strings. String data
1051 for large strings is allocated from individual sblocks. */
1053 #define LARGE_STRING_BYTES 1024
1055 /* Structure describing string memory sub-allocated from an sblock.
1056 This is where the contents of Lisp strings are stored. */
1058 struct sdata
1060 /* Back-pointer to the string this sdata belongs to. If null, this
1061 structure is free, and the NBYTES member of the union below
1062 contains the string's byte size (the same value that STRING_BYTES
1063 would return if STRING were non-null). If non-null, STRING_BYTES
1064 (STRING) is the size of the data, and DATA contains the string's
1065 contents. */
1066 struct Lisp_String *string;
1068 #ifdef GC_CHECK_STRING_BYTES
1070 EMACS_INT nbytes;
1071 unsigned char data[1];
1073 #define SDATA_NBYTES(S) (S)->nbytes
1074 #define SDATA_DATA(S) (S)->data
1076 #else /* not GC_CHECK_STRING_BYTES */
1078 union
1080 /* When STRING in non-null. */
1081 unsigned char data[1];
1083 /* When STRING is null. */
1084 EMACS_INT nbytes;
1085 } u;
1088 #define SDATA_NBYTES(S) (S)->u.nbytes
1089 #define SDATA_DATA(S) (S)->u.data
1091 #endif /* not GC_CHECK_STRING_BYTES */
1095 /* Structure describing a block of memory which is sub-allocated to
1096 obtain string data memory for strings. Blocks for small strings
1097 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1098 as large as needed. */
1100 struct sblock
1102 /* Next in list. */
1103 struct sblock *next;
1105 /* Pointer to the next free sdata block. This points past the end
1106 of the sblock if there isn't any space left in this block. */
1107 struct sdata *next_free;
1109 /* Start of data. */
1110 struct sdata first_data;
1113 /* Number of Lisp strings in a string_block structure. The 1020 is
1114 1024 minus malloc overhead. */
1116 #define STRINGS_IN_STRING_BLOCK \
1117 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1119 /* Structure describing a block from which Lisp_String structures
1120 are allocated. */
1122 struct string_block
1124 struct string_block *next;
1125 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
1128 /* Head and tail of the list of sblock structures holding Lisp string
1129 data. We always allocate from current_sblock. The NEXT pointers
1130 in the sblock structures go from oldest_sblock to current_sblock. */
1132 static struct sblock *oldest_sblock, *current_sblock;
1134 /* List of sblocks for large strings. */
1136 static struct sblock *large_sblocks;
1138 /* List of string_block structures, and how many there are. */
1140 static struct string_block *string_blocks;
1141 static int n_string_blocks;
1143 /* Free-list of Lisp_Strings. */
1145 static struct Lisp_String *string_free_list;
1147 /* Number of live and free Lisp_Strings. */
1149 static int total_strings, total_free_strings;
1151 /* Number of bytes used by live strings. */
1153 static int total_string_size;
1155 /* Given a pointer to a Lisp_String S which is on the free-list
1156 string_free_list, return a pointer to its successor in the
1157 free-list. */
1159 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1161 /* Return a pointer to the sdata structure belonging to Lisp string S.
1162 S must be live, i.e. S->data must not be null. S->data is actually
1163 a pointer to the `u.data' member of its sdata structure; the
1164 structure starts at a constant offset in front of that. */
1166 #ifdef GC_CHECK_STRING_BYTES
1168 #define SDATA_OF_STRING(S) \
1169 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1170 - sizeof (EMACS_INT)))
1172 #else /* not GC_CHECK_STRING_BYTES */
1174 #define SDATA_OF_STRING(S) \
1175 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1177 #endif /* not GC_CHECK_STRING_BYTES */
1179 /* Value is the size of an sdata structure large enough to hold NBYTES
1180 bytes of string data. The value returned includes a terminating
1181 NUL byte, the size of the sdata structure, and padding. */
1183 #ifdef GC_CHECK_STRING_BYTES
1185 #define SDATA_SIZE(NBYTES) \
1186 ((sizeof (struct Lisp_String *) \
1187 + (NBYTES) + 1 \
1188 + sizeof (EMACS_INT) \
1189 + sizeof (EMACS_INT) - 1) \
1190 & ~(sizeof (EMACS_INT) - 1))
1192 #else /* not GC_CHECK_STRING_BYTES */
1194 #define SDATA_SIZE(NBYTES) \
1195 ((sizeof (struct Lisp_String *) \
1196 + (NBYTES) + 1 \
1197 + sizeof (EMACS_INT) - 1) \
1198 & ~(sizeof (EMACS_INT) - 1))
1200 #endif /* not GC_CHECK_STRING_BYTES */
1202 /* Initialize string allocation. Called from init_alloc_once. */
1204 void
1205 init_strings ()
1207 total_strings = total_free_strings = total_string_size = 0;
1208 oldest_sblock = current_sblock = large_sblocks = NULL;
1209 string_blocks = NULL;
1210 n_string_blocks = 0;
1211 string_free_list = NULL;
1215 #ifdef GC_CHECK_STRING_BYTES
1217 static int check_string_bytes_count;
1219 void check_string_bytes P_ ((int));
1220 void check_sblock P_ ((struct sblock *));
1222 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1225 /* Like GC_STRING_BYTES, but with debugging check. */
1228 string_bytes (s)
1229 struct Lisp_String *s;
1231 int nbytes = (s->size_byte < 0 ? s->size : s->size_byte) & ~MARKBIT;
1232 if (!PURE_POINTER_P (s)
1233 && s->data
1234 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1235 abort ();
1236 return nbytes;
1239 /* Check validity Lisp strings' string_bytes member in B. */
1241 void
1242 check_sblock (b)
1243 struct sblock *b;
1245 struct sdata *from, *end, *from_end;
1247 end = b->next_free;
1249 for (from = &b->first_data; from < end; from = from_end)
1251 /* Compute the next FROM here because copying below may
1252 overwrite data we need to compute it. */
1253 int nbytes;
1255 /* Check that the string size recorded in the string is the
1256 same as the one recorded in the sdata structure. */
1257 if (from->string)
1258 CHECK_STRING_BYTES (from->string);
1260 if (from->string)
1261 nbytes = GC_STRING_BYTES (from->string);
1262 else
1263 nbytes = SDATA_NBYTES (from);
1265 nbytes = SDATA_SIZE (nbytes);
1266 from_end = (struct sdata *) ((char *) from + nbytes);
1271 /* Check validity of Lisp strings' string_bytes member. ALL_P
1272 non-zero means check all strings, otherwise check only most
1273 recently allocated strings. Used for hunting a bug. */
1275 void
1276 check_string_bytes (all_p)
1277 int all_p;
1279 if (all_p)
1281 struct sblock *b;
1283 for (b = large_sblocks; b; b = b->next)
1285 struct Lisp_String *s = b->first_data.string;
1286 if (s)
1287 CHECK_STRING_BYTES (s);
1290 for (b = oldest_sblock; b; b = b->next)
1291 check_sblock (b);
1293 else
1294 check_sblock (current_sblock);
1297 #endif /* GC_CHECK_STRING_BYTES */
1300 /* Return a new Lisp_String. */
1302 static struct Lisp_String *
1303 allocate_string ()
1305 struct Lisp_String *s;
1307 /* If the free-list is empty, allocate a new string_block, and
1308 add all the Lisp_Strings in it to the free-list. */
1309 if (string_free_list == NULL)
1311 struct string_block *b;
1312 int i;
1314 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1315 VALIDATE_LISP_STORAGE (b, sizeof *b);
1316 bzero (b, sizeof *b);
1317 b->next = string_blocks;
1318 string_blocks = b;
1319 ++n_string_blocks;
1321 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1323 s = b->strings + i;
1324 NEXT_FREE_LISP_STRING (s) = string_free_list;
1325 string_free_list = s;
1328 total_free_strings += STRINGS_IN_STRING_BLOCK;
1331 /* Pop a Lisp_String off the free-list. */
1332 s = string_free_list;
1333 string_free_list = NEXT_FREE_LISP_STRING (s);
1335 /* Probably not strictly necessary, but play it safe. */
1336 bzero (s, sizeof *s);
1338 --total_free_strings;
1339 ++total_strings;
1340 ++strings_consed;
1341 consing_since_gc += sizeof *s;
1343 #ifdef GC_CHECK_STRING_BYTES
1344 if (!noninteractive
1345 #ifdef MAC_OS8
1346 && current_sblock
1347 #endif
1350 if (++check_string_bytes_count == 200)
1352 check_string_bytes_count = 0;
1353 check_string_bytes (1);
1355 else
1356 check_string_bytes (0);
1358 #endif /* GC_CHECK_STRING_BYTES */
1360 return s;
1364 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1365 plus a NUL byte at the end. Allocate an sdata structure for S, and
1366 set S->data to its `u.data' member. Store a NUL byte at the end of
1367 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1368 S->data if it was initially non-null. */
1370 void
1371 allocate_string_data (s, nchars, nbytes)
1372 struct Lisp_String *s;
1373 int nchars, nbytes;
1375 struct sdata *data, *old_data;
1376 struct sblock *b;
1377 int needed, old_nbytes;
1379 /* Determine the number of bytes needed to store NBYTES bytes
1380 of string data. */
1381 needed = SDATA_SIZE (nbytes);
1383 if (nbytes > LARGE_STRING_BYTES)
1385 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1387 #ifdef DOUG_LEA_MALLOC
1388 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1389 because mapped region contents are not preserved in
1390 a dumped Emacs. */
1391 mallopt (M_MMAP_MAX, 0);
1392 #endif
1394 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1396 #ifdef DOUG_LEA_MALLOC
1397 /* Back to a reasonable maximum of mmap'ed areas. */
1398 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1399 #endif
1401 b->next_free = &b->first_data;
1402 b->first_data.string = NULL;
1403 b->next = large_sblocks;
1404 large_sblocks = b;
1406 else if (current_sblock == NULL
1407 || (((char *) current_sblock + SBLOCK_SIZE
1408 - (char *) current_sblock->next_free)
1409 < needed))
1411 /* Not enough room in the current sblock. */
1412 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1413 b->next_free = &b->first_data;
1414 b->first_data.string = NULL;
1415 b->next = NULL;
1417 if (current_sblock)
1418 current_sblock->next = b;
1419 else
1420 oldest_sblock = b;
1421 current_sblock = b;
1423 else
1424 b = current_sblock;
1426 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1427 old_nbytes = GC_STRING_BYTES (s);
1429 data = b->next_free;
1430 data->string = s;
1431 s->data = SDATA_DATA (data);
1432 #ifdef GC_CHECK_STRING_BYTES
1433 SDATA_NBYTES (data) = nbytes;
1434 #endif
1435 s->size = nchars;
1436 s->size_byte = nbytes;
1437 s->data[nbytes] = '\0';
1438 b->next_free = (struct sdata *) ((char *) data + needed);
1440 /* If S had already data assigned, mark that as free by setting its
1441 string back-pointer to null, and recording the size of the data
1442 in it. */
1443 if (old_data)
1445 SDATA_NBYTES (old_data) = old_nbytes;
1446 old_data->string = NULL;
1449 consing_since_gc += needed;
1453 /* Sweep and compact strings. */
1455 static void
1456 sweep_strings ()
1458 struct string_block *b, *next;
1459 struct string_block *live_blocks = NULL;
1461 string_free_list = NULL;
1462 total_strings = total_free_strings = 0;
1463 total_string_size = 0;
1465 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1466 for (b = string_blocks; b; b = next)
1468 int i, nfree = 0;
1469 struct Lisp_String *free_list_before = string_free_list;
1471 next = b->next;
1473 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1475 struct Lisp_String *s = b->strings + i;
1477 if (s->data)
1479 /* String was not on free-list before. */
1480 if (STRING_MARKED_P (s))
1482 /* String is live; unmark it and its intervals. */
1483 UNMARK_STRING (s);
1485 if (!NULL_INTERVAL_P (s->intervals))
1486 UNMARK_BALANCE_INTERVALS (s->intervals);
1488 ++total_strings;
1489 total_string_size += STRING_BYTES (s);
1491 else
1493 /* String is dead. Put it on the free-list. */
1494 struct sdata *data = SDATA_OF_STRING (s);
1496 /* Save the size of S in its sdata so that we know
1497 how large that is. Reset the sdata's string
1498 back-pointer so that we know it's free. */
1499 #ifdef GC_CHECK_STRING_BYTES
1500 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1501 abort ();
1502 #else
1503 data->u.nbytes = GC_STRING_BYTES (s);
1504 #endif
1505 data->string = NULL;
1507 /* Reset the strings's `data' member so that we
1508 know it's free. */
1509 s->data = NULL;
1511 /* Put the string on the free-list. */
1512 NEXT_FREE_LISP_STRING (s) = string_free_list;
1513 string_free_list = s;
1514 ++nfree;
1517 else
1519 /* S was on the free-list before. Put it there again. */
1520 NEXT_FREE_LISP_STRING (s) = string_free_list;
1521 string_free_list = s;
1522 ++nfree;
1526 /* Free blocks that contain free Lisp_Strings only, except
1527 the first two of them. */
1528 if (nfree == STRINGS_IN_STRING_BLOCK
1529 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1531 lisp_free (b);
1532 --n_string_blocks;
1533 string_free_list = free_list_before;
1535 else
1537 total_free_strings += nfree;
1538 b->next = live_blocks;
1539 live_blocks = b;
1543 string_blocks = live_blocks;
1544 free_large_strings ();
1545 compact_small_strings ();
1549 /* Free dead large strings. */
1551 static void
1552 free_large_strings ()
1554 struct sblock *b, *next;
1555 struct sblock *live_blocks = NULL;
1557 for (b = large_sblocks; b; b = next)
1559 next = b->next;
1561 if (b->first_data.string == NULL)
1562 lisp_free (b);
1563 else
1565 b->next = live_blocks;
1566 live_blocks = b;
1570 large_sblocks = live_blocks;
1574 /* Compact data of small strings. Free sblocks that don't contain
1575 data of live strings after compaction. */
1577 static void
1578 compact_small_strings ()
1580 struct sblock *b, *tb, *next;
1581 struct sdata *from, *to, *end, *tb_end;
1582 struct sdata *to_end, *from_end;
1584 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1585 to, and TB_END is the end of TB. */
1586 tb = oldest_sblock;
1587 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1588 to = &tb->first_data;
1590 /* Step through the blocks from the oldest to the youngest. We
1591 expect that old blocks will stabilize over time, so that less
1592 copying will happen this way. */
1593 for (b = oldest_sblock; b; b = b->next)
1595 end = b->next_free;
1596 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1598 for (from = &b->first_data; from < end; from = from_end)
1600 /* Compute the next FROM here because copying below may
1601 overwrite data we need to compute it. */
1602 int nbytes;
1604 #ifdef GC_CHECK_STRING_BYTES
1605 /* Check that the string size recorded in the string is the
1606 same as the one recorded in the sdata structure. */
1607 if (from->string
1608 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1609 abort ();
1610 #endif /* GC_CHECK_STRING_BYTES */
1612 if (from->string)
1613 nbytes = GC_STRING_BYTES (from->string);
1614 else
1615 nbytes = SDATA_NBYTES (from);
1617 nbytes = SDATA_SIZE (nbytes);
1618 from_end = (struct sdata *) ((char *) from + nbytes);
1620 /* FROM->string non-null means it's alive. Copy its data. */
1621 if (from->string)
1623 /* If TB is full, proceed with the next sblock. */
1624 to_end = (struct sdata *) ((char *) to + nbytes);
1625 if (to_end > tb_end)
1627 tb->next_free = to;
1628 tb = tb->next;
1629 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1630 to = &tb->first_data;
1631 to_end = (struct sdata *) ((char *) to + nbytes);
1634 /* Copy, and update the string's `data' pointer. */
1635 if (from != to)
1637 xassert (tb != b || to <= from);
1638 safe_bcopy ((char *) from, (char *) to, nbytes);
1639 to->string->data = SDATA_DATA (to);
1642 /* Advance past the sdata we copied to. */
1643 to = to_end;
1648 /* The rest of the sblocks following TB don't contain live data, so
1649 we can free them. */
1650 for (b = tb->next; b; b = next)
1652 next = b->next;
1653 lisp_free (b);
1656 tb->next_free = to;
1657 tb->next = NULL;
1658 current_sblock = tb;
1662 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1663 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1664 Both LENGTH and INIT must be numbers. */)
1665 (length, init)
1666 Lisp_Object length, init;
1668 register Lisp_Object val;
1669 register unsigned char *p, *end;
1670 int c, nbytes;
1672 CHECK_NATNUM (length);
1673 CHECK_NUMBER (init);
1675 c = XINT (init);
1676 if (SINGLE_BYTE_CHAR_P (c))
1678 nbytes = XINT (length);
1679 val = make_uninit_string (nbytes);
1680 p = SDATA (val);
1681 end = p + SCHARS (val);
1682 while (p != end)
1683 *p++ = c;
1685 else
1687 unsigned char str[MAX_MULTIBYTE_LENGTH];
1688 int len = CHAR_STRING (c, str);
1690 nbytes = len * XINT (length);
1691 val = make_uninit_multibyte_string (XINT (length), nbytes);
1692 p = SDATA (val);
1693 end = p + nbytes;
1694 while (p != end)
1696 bcopy (str, p, len);
1697 p += len;
1701 *p = 0;
1702 return val;
1706 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1707 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1708 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1709 (length, init)
1710 Lisp_Object length, init;
1712 register Lisp_Object val;
1713 struct Lisp_Bool_Vector *p;
1714 int real_init, i;
1715 int length_in_chars, length_in_elts, bits_per_value;
1717 CHECK_NATNUM (length);
1719 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1721 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1722 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1724 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1725 slot `size' of the struct Lisp_Bool_Vector. */
1726 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1727 p = XBOOL_VECTOR (val);
1729 /* Get rid of any bits that would cause confusion. */
1730 p->vector_size = 0;
1731 XSETBOOL_VECTOR (val, p);
1732 p->size = XFASTINT (length);
1734 real_init = (NILP (init) ? 0 : -1);
1735 for (i = 0; i < length_in_chars ; i++)
1736 p->data[i] = real_init;
1738 /* Clear the extraneous bits in the last byte. */
1739 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1740 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1741 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1743 return val;
1747 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1748 of characters from the contents. This string may be unibyte or
1749 multibyte, depending on the contents. */
1751 Lisp_Object
1752 make_string (contents, nbytes)
1753 const char *contents;
1754 int nbytes;
1756 register Lisp_Object val;
1757 int nchars, multibyte_nbytes;
1759 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1760 if (nbytes == nchars || nbytes != multibyte_nbytes)
1761 /* CONTENTS contains no multibyte sequences or contains an invalid
1762 multibyte sequence. We must make unibyte string. */
1763 val = make_unibyte_string (contents, nbytes);
1764 else
1765 val = make_multibyte_string (contents, nchars, nbytes);
1766 return val;
1770 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1772 Lisp_Object
1773 make_unibyte_string (contents, length)
1774 const char *contents;
1775 int length;
1777 register Lisp_Object val;
1778 val = make_uninit_string (length);
1779 bcopy (contents, SDATA (val), length);
1780 STRING_SET_UNIBYTE (val);
1781 return val;
1785 /* Make a multibyte string from NCHARS characters occupying NBYTES
1786 bytes at CONTENTS. */
1788 Lisp_Object
1789 make_multibyte_string (contents, nchars, nbytes)
1790 const char *contents;
1791 int nchars, nbytes;
1793 register Lisp_Object val;
1794 val = make_uninit_multibyte_string (nchars, nbytes);
1795 bcopy (contents, SDATA (val), nbytes);
1796 return val;
1800 /* Make a string from NCHARS characters occupying NBYTES bytes at
1801 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1803 Lisp_Object
1804 make_string_from_bytes (contents, nchars, nbytes)
1805 char *contents;
1806 int nchars, nbytes;
1808 register Lisp_Object val;
1809 val = make_uninit_multibyte_string (nchars, nbytes);
1810 bcopy (contents, SDATA (val), nbytes);
1811 if (SBYTES (val) == SCHARS (val))
1812 STRING_SET_UNIBYTE (val);
1813 return val;
1817 /* Make a string from NCHARS characters occupying NBYTES bytes at
1818 CONTENTS. The argument MULTIBYTE controls whether to label the
1819 string as multibyte. */
1821 Lisp_Object
1822 make_specified_string (contents, nchars, nbytes, multibyte)
1823 char *contents;
1824 int nchars, nbytes;
1825 int multibyte;
1827 register Lisp_Object val;
1828 val = make_uninit_multibyte_string (nchars, nbytes);
1829 bcopy (contents, SDATA (val), nbytes);
1830 if (!multibyte)
1831 STRING_SET_UNIBYTE (val);
1832 return val;
1836 /* Make a string from the data at STR, treating it as multibyte if the
1837 data warrants. */
1839 Lisp_Object
1840 build_string (str)
1841 const char *str;
1843 return make_string (str, strlen (str));
1847 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1848 occupying LENGTH bytes. */
1850 Lisp_Object
1851 make_uninit_string (length)
1852 int length;
1854 Lisp_Object val;
1855 val = make_uninit_multibyte_string (length, length);
1856 STRING_SET_UNIBYTE (val);
1857 return val;
1861 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1862 which occupy NBYTES bytes. */
1864 Lisp_Object
1865 make_uninit_multibyte_string (nchars, nbytes)
1866 int nchars, nbytes;
1868 Lisp_Object string;
1869 struct Lisp_String *s;
1871 if (nchars < 0)
1872 abort ();
1874 s = allocate_string ();
1875 allocate_string_data (s, nchars, nbytes);
1876 XSETSTRING (string, s);
1877 string_chars_consed += nbytes;
1878 return string;
1883 /***********************************************************************
1884 Float Allocation
1885 ***********************************************************************/
1887 /* We store float cells inside of float_blocks, allocating a new
1888 float_block with malloc whenever necessary. Float cells reclaimed
1889 by GC are put on a free list to be reallocated before allocating
1890 any new float cells from the latest float_block.
1892 Each float_block is just under 1020 bytes long, since malloc really
1893 allocates in units of powers of two and uses 4 bytes for its own
1894 overhead. */
1896 #define FLOAT_BLOCK_SIZE \
1897 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1899 struct float_block
1901 struct float_block *next;
1902 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1905 /* Current float_block. */
1907 struct float_block *float_block;
1909 /* Index of first unused Lisp_Float in the current float_block. */
1911 int float_block_index;
1913 /* Total number of float blocks now in use. */
1915 int n_float_blocks;
1917 /* Free-list of Lisp_Floats. */
1919 struct Lisp_Float *float_free_list;
1922 /* Initialize float allocation. */
1924 void
1925 init_float ()
1927 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1928 MEM_TYPE_FLOAT);
1929 float_block->next = 0;
1930 bzero ((char *) float_block->floats, sizeof float_block->floats);
1931 float_block_index = 0;
1932 float_free_list = 0;
1933 n_float_blocks = 1;
1937 /* Explicitly free a float cell by putting it on the free-list. */
1939 void
1940 free_float (ptr)
1941 struct Lisp_Float *ptr;
1943 *(struct Lisp_Float **)&ptr->data = float_free_list;
1944 #if GC_MARK_STACK
1945 ptr->type = Vdead;
1946 #endif
1947 float_free_list = ptr;
1951 /* Return a new float object with value FLOAT_VALUE. */
1953 Lisp_Object
1954 make_float (float_value)
1955 double float_value;
1957 register Lisp_Object val;
1959 if (float_free_list)
1961 /* We use the data field for chaining the free list
1962 so that we won't use the same field that has the mark bit. */
1963 XSETFLOAT (val, float_free_list);
1964 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1966 else
1968 if (float_block_index == FLOAT_BLOCK_SIZE)
1970 register struct float_block *new;
1972 new = (struct float_block *) lisp_malloc (sizeof *new,
1973 MEM_TYPE_FLOAT);
1974 VALIDATE_LISP_STORAGE (new, sizeof *new);
1975 new->next = float_block;
1976 float_block = new;
1977 float_block_index = 0;
1978 n_float_blocks++;
1980 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1983 XFLOAT_DATA (val) = float_value;
1984 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1985 consing_since_gc += sizeof (struct Lisp_Float);
1986 floats_consed++;
1987 return val;
1992 /***********************************************************************
1993 Cons Allocation
1994 ***********************************************************************/
1996 /* We store cons cells inside of cons_blocks, allocating a new
1997 cons_block with malloc whenever necessary. Cons cells reclaimed by
1998 GC are put on a free list to be reallocated before allocating
1999 any new cons cells from the latest cons_block.
2001 Each cons_block is just under 1020 bytes long,
2002 since malloc really allocates in units of powers of two
2003 and uses 4 bytes for its own overhead. */
2005 #define CONS_BLOCK_SIZE \
2006 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2008 struct cons_block
2010 struct cons_block *next;
2011 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2014 /* Current cons_block. */
2016 struct cons_block *cons_block;
2018 /* Index of first unused Lisp_Cons in the current block. */
2020 int cons_block_index;
2022 /* Free-list of Lisp_Cons structures. */
2024 struct Lisp_Cons *cons_free_list;
2026 /* Total number of cons blocks now in use. */
2028 int n_cons_blocks;
2031 /* Initialize cons allocation. */
2033 void
2034 init_cons ()
2036 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
2037 MEM_TYPE_CONS);
2038 cons_block->next = 0;
2039 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
2040 cons_block_index = 0;
2041 cons_free_list = 0;
2042 n_cons_blocks = 1;
2046 /* Explicitly free a cons cell by putting it on the free-list. */
2048 void
2049 free_cons (ptr)
2050 struct Lisp_Cons *ptr;
2052 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2053 #if GC_MARK_STACK
2054 ptr->car = Vdead;
2055 #endif
2056 cons_free_list = ptr;
2060 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2061 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2062 (car, cdr)
2063 Lisp_Object car, cdr;
2065 register Lisp_Object val;
2067 if (cons_free_list)
2069 /* We use the cdr for chaining the free list
2070 so that we won't use the same field that has the mark bit. */
2071 XSETCONS (val, cons_free_list);
2072 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2074 else
2076 if (cons_block_index == CONS_BLOCK_SIZE)
2078 register struct cons_block *new;
2079 new = (struct cons_block *) lisp_malloc (sizeof *new,
2080 MEM_TYPE_CONS);
2081 VALIDATE_LISP_STORAGE (new, sizeof *new);
2082 new->next = cons_block;
2083 cons_block = new;
2084 cons_block_index = 0;
2085 n_cons_blocks++;
2087 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2090 XSETCAR (val, car);
2091 XSETCDR (val, cdr);
2092 consing_since_gc += sizeof (struct Lisp_Cons);
2093 cons_cells_consed++;
2094 return val;
2098 /* Make a list of 2, 3, 4 or 5 specified objects. */
2100 Lisp_Object
2101 list2 (arg1, arg2)
2102 Lisp_Object arg1, arg2;
2104 return Fcons (arg1, Fcons (arg2, Qnil));
2108 Lisp_Object
2109 list3 (arg1, arg2, arg3)
2110 Lisp_Object arg1, arg2, arg3;
2112 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2116 Lisp_Object
2117 list4 (arg1, arg2, arg3, arg4)
2118 Lisp_Object arg1, arg2, arg3, arg4;
2120 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2124 Lisp_Object
2125 list5 (arg1, arg2, arg3, arg4, arg5)
2126 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2128 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2129 Fcons (arg5, Qnil)))));
2133 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2134 doc: /* Return a newly created list with specified arguments as elements.
2135 Any number of arguments, even zero arguments, are allowed.
2136 usage: (list &rest OBJECTS) */)
2137 (nargs, args)
2138 int nargs;
2139 register Lisp_Object *args;
2141 register Lisp_Object val;
2142 val = Qnil;
2144 while (nargs > 0)
2146 nargs--;
2147 val = Fcons (args[nargs], val);
2149 return val;
2153 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2154 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2155 (length, init)
2156 register Lisp_Object length, init;
2158 register Lisp_Object val;
2159 register int size;
2161 CHECK_NATNUM (length);
2162 size = XFASTINT (length);
2164 val = Qnil;
2165 while (size > 0)
2167 val = Fcons (init, val);
2168 --size;
2170 if (size > 0)
2172 val = Fcons (init, val);
2173 --size;
2175 if (size > 0)
2177 val = Fcons (init, val);
2178 --size;
2180 if (size > 0)
2182 val = Fcons (init, val);
2183 --size;
2185 if (size > 0)
2187 val = Fcons (init, val);
2188 --size;
2194 QUIT;
2197 return val;
2202 /***********************************************************************
2203 Vector Allocation
2204 ***********************************************************************/
2206 /* Singly-linked list of all vectors. */
2208 struct Lisp_Vector *all_vectors;
2210 /* Total number of vector-like objects now in use. */
2212 int n_vectors;
2215 /* Value is a pointer to a newly allocated Lisp_Vector structure
2216 with room for LEN Lisp_Objects. */
2218 static struct Lisp_Vector *
2219 allocate_vectorlike (len, type)
2220 EMACS_INT len;
2221 enum mem_type type;
2223 struct Lisp_Vector *p;
2224 size_t nbytes;
2226 #ifdef DOUG_LEA_MALLOC
2227 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2228 because mapped region contents are not preserved in
2229 a dumped Emacs. */
2230 mallopt (M_MMAP_MAX, 0);
2231 #endif
2233 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2234 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2236 #ifdef DOUG_LEA_MALLOC
2237 /* Back to a reasonable maximum of mmap'ed areas. */
2238 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2239 #endif
2241 VALIDATE_LISP_STORAGE (p, 0);
2242 consing_since_gc += nbytes;
2243 vector_cells_consed += len;
2245 p->next = all_vectors;
2246 all_vectors = p;
2247 ++n_vectors;
2248 return p;
2252 /* Allocate a vector with NSLOTS slots. */
2254 struct Lisp_Vector *
2255 allocate_vector (nslots)
2256 EMACS_INT nslots;
2258 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2259 v->size = nslots;
2260 return v;
2264 /* Allocate other vector-like structures. */
2266 struct Lisp_Hash_Table *
2267 allocate_hash_table ()
2269 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2270 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2271 EMACS_INT i;
2273 v->size = len;
2274 for (i = 0; i < len; ++i)
2275 v->contents[i] = Qnil;
2277 return (struct Lisp_Hash_Table *) v;
2281 struct window *
2282 allocate_window ()
2284 EMACS_INT len = VECSIZE (struct window);
2285 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2286 EMACS_INT i;
2288 for (i = 0; i < len; ++i)
2289 v->contents[i] = Qnil;
2290 v->size = len;
2292 return (struct window *) v;
2296 struct frame *
2297 allocate_frame ()
2299 EMACS_INT len = VECSIZE (struct frame);
2300 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2301 EMACS_INT i;
2303 for (i = 0; i < len; ++i)
2304 v->contents[i] = make_number (0);
2305 v->size = len;
2306 return (struct frame *) v;
2310 struct Lisp_Process *
2311 allocate_process ()
2313 EMACS_INT len = VECSIZE (struct Lisp_Process);
2314 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2315 EMACS_INT i;
2317 for (i = 0; i < len; ++i)
2318 v->contents[i] = Qnil;
2319 v->size = len;
2321 return (struct Lisp_Process *) v;
2325 struct Lisp_Vector *
2326 allocate_other_vector (len)
2327 EMACS_INT len;
2329 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2330 EMACS_INT i;
2332 for (i = 0; i < len; ++i)
2333 v->contents[i] = Qnil;
2334 v->size = len;
2336 return v;
2340 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2341 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2342 See also the function `vector'. */)
2343 (length, init)
2344 register Lisp_Object length, init;
2346 Lisp_Object vector;
2347 register EMACS_INT sizei;
2348 register int index;
2349 register struct Lisp_Vector *p;
2351 CHECK_NATNUM (length);
2352 sizei = XFASTINT (length);
2354 p = allocate_vector (sizei);
2355 for (index = 0; index < sizei; index++)
2356 p->contents[index] = init;
2358 XSETVECTOR (vector, p);
2359 return vector;
2363 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2364 doc: /* Return a newly created char-table, with purpose PURPOSE.
2365 Each element is initialized to INIT, which defaults to nil.
2366 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2367 The property's value should be an integer between 0 and 10. */)
2368 (purpose, init)
2369 register Lisp_Object purpose, init;
2371 Lisp_Object vector;
2372 Lisp_Object n;
2373 CHECK_SYMBOL (purpose);
2374 n = Fget (purpose, Qchar_table_extra_slots);
2375 CHECK_NUMBER (n);
2376 if (XINT (n) < 0 || XINT (n) > 10)
2377 args_out_of_range (n, Qnil);
2378 /* Add 2 to the size for the defalt and parent slots. */
2379 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2380 init);
2381 XCHAR_TABLE (vector)->top = Qt;
2382 XCHAR_TABLE (vector)->parent = Qnil;
2383 XCHAR_TABLE (vector)->purpose = purpose;
2384 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2385 return vector;
2389 /* Return a newly created sub char table with default value DEFALT.
2390 Since a sub char table does not appear as a top level Emacs Lisp
2391 object, we don't need a Lisp interface to make it. */
2393 Lisp_Object
2394 make_sub_char_table (defalt)
2395 Lisp_Object defalt;
2397 Lisp_Object vector
2398 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2399 XCHAR_TABLE (vector)->top = Qnil;
2400 XCHAR_TABLE (vector)->defalt = defalt;
2401 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2402 return vector;
2406 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2407 doc: /* Return a newly created vector with specified arguments as elements.
2408 Any number of arguments, even zero arguments, are allowed.
2409 usage: (vector &rest OBJECTS) */)
2410 (nargs, args)
2411 register int nargs;
2412 Lisp_Object *args;
2414 register Lisp_Object len, val;
2415 register int index;
2416 register struct Lisp_Vector *p;
2418 XSETFASTINT (len, nargs);
2419 val = Fmake_vector (len, Qnil);
2420 p = XVECTOR (val);
2421 for (index = 0; index < nargs; index++)
2422 p->contents[index] = args[index];
2423 return val;
2427 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2428 doc: /* Create a byte-code object with specified arguments as elements.
2429 The arguments should be the arglist, bytecode-string, constant vector,
2430 stack size, (optional) doc string, and (optional) interactive spec.
2431 The first four arguments are required; at most six have any
2432 significance.
2433 usage: (make-byte-code &rest ELEMENTS) */)
2434 (nargs, args)
2435 register int nargs;
2436 Lisp_Object *args;
2438 register Lisp_Object len, val;
2439 register int index;
2440 register struct Lisp_Vector *p;
2442 XSETFASTINT (len, nargs);
2443 if (!NILP (Vpurify_flag))
2444 val = make_pure_vector ((EMACS_INT) nargs);
2445 else
2446 val = Fmake_vector (len, Qnil);
2448 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2449 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2450 earlier because they produced a raw 8-bit string for byte-code
2451 and now such a byte-code string is loaded as multibyte while
2452 raw 8-bit characters converted to multibyte form. Thus, now we
2453 must convert them back to the original unibyte form. */
2454 args[1] = Fstring_as_unibyte (args[1]);
2456 p = XVECTOR (val);
2457 for (index = 0; index < nargs; index++)
2459 if (!NILP (Vpurify_flag))
2460 args[index] = Fpurecopy (args[index]);
2461 p->contents[index] = args[index];
2463 XSETCOMPILED (val, p);
2464 return val;
2469 /***********************************************************************
2470 Symbol Allocation
2471 ***********************************************************************/
2473 /* Each symbol_block is just under 1020 bytes long, since malloc
2474 really allocates in units of powers of two and uses 4 bytes for its
2475 own overhead. */
2477 #define SYMBOL_BLOCK_SIZE \
2478 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2480 struct symbol_block
2482 struct symbol_block *next;
2483 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2486 /* Current symbol block and index of first unused Lisp_Symbol
2487 structure in it. */
2489 struct symbol_block *symbol_block;
2490 int symbol_block_index;
2492 /* List of free symbols. */
2494 struct Lisp_Symbol *symbol_free_list;
2496 /* Total number of symbol blocks now in use. */
2498 int n_symbol_blocks;
2501 /* Initialize symbol allocation. */
2503 void
2504 init_symbol ()
2506 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2507 MEM_TYPE_SYMBOL);
2508 symbol_block->next = 0;
2509 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2510 symbol_block_index = 0;
2511 symbol_free_list = 0;
2512 n_symbol_blocks = 1;
2516 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2517 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2518 Its value and function definition are void, and its property list is nil. */)
2519 (name)
2520 Lisp_Object name;
2522 register Lisp_Object val;
2523 register struct Lisp_Symbol *p;
2525 CHECK_STRING (name);
2527 if (symbol_free_list)
2529 XSETSYMBOL (val, symbol_free_list);
2530 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2532 else
2534 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2536 struct symbol_block *new;
2537 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2538 MEM_TYPE_SYMBOL);
2539 VALIDATE_LISP_STORAGE (new, sizeof *new);
2540 new->next = symbol_block;
2541 symbol_block = new;
2542 symbol_block_index = 0;
2543 n_symbol_blocks++;
2545 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2548 p = XSYMBOL (val);
2549 p->xname = name;
2550 p->plist = Qnil;
2551 p->value = Qunbound;
2552 p->function = Qunbound;
2553 p->next = NULL;
2554 p->interned = SYMBOL_UNINTERNED;
2555 p->constant = 0;
2556 p->indirect_variable = 0;
2557 consing_since_gc += sizeof (struct Lisp_Symbol);
2558 symbols_consed++;
2559 return val;
2564 /***********************************************************************
2565 Marker (Misc) Allocation
2566 ***********************************************************************/
2568 /* Allocation of markers and other objects that share that structure.
2569 Works like allocation of conses. */
2571 #define MARKER_BLOCK_SIZE \
2572 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2574 struct marker_block
2576 struct marker_block *next;
2577 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2580 struct marker_block *marker_block;
2581 int marker_block_index;
2583 union Lisp_Misc *marker_free_list;
2585 /* Total number of marker blocks now in use. */
2587 int n_marker_blocks;
2589 void
2590 init_marker ()
2592 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2593 MEM_TYPE_MISC);
2594 marker_block->next = 0;
2595 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2596 marker_block_index = 0;
2597 marker_free_list = 0;
2598 n_marker_blocks = 1;
2601 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2603 Lisp_Object
2604 allocate_misc ()
2606 Lisp_Object val;
2608 if (marker_free_list)
2610 XSETMISC (val, marker_free_list);
2611 marker_free_list = marker_free_list->u_free.chain;
2613 else
2615 if (marker_block_index == MARKER_BLOCK_SIZE)
2617 struct marker_block *new;
2618 new = (struct marker_block *) lisp_malloc (sizeof *new,
2619 MEM_TYPE_MISC);
2620 VALIDATE_LISP_STORAGE (new, sizeof *new);
2621 new->next = marker_block;
2622 marker_block = new;
2623 marker_block_index = 0;
2624 n_marker_blocks++;
2626 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2629 consing_since_gc += sizeof (union Lisp_Misc);
2630 misc_objects_consed++;
2631 return val;
2634 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2635 INTEGER. This is used to package C values to call record_unwind_protect.
2636 The unwind function can get the C values back using XSAVE_VALUE. */
2638 Lisp_Object
2639 make_save_value (pointer, integer)
2640 void *pointer;
2641 int integer;
2643 register Lisp_Object val;
2644 register struct Lisp_Save_Value *p;
2646 val = allocate_misc ();
2647 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2648 p = XSAVE_VALUE (val);
2649 p->pointer = pointer;
2650 p->integer = integer;
2651 return val;
2654 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2655 doc: /* Return a newly allocated marker which does not point at any place. */)
2658 register Lisp_Object val;
2659 register struct Lisp_Marker *p;
2661 val = allocate_misc ();
2662 XMISCTYPE (val) = Lisp_Misc_Marker;
2663 p = XMARKER (val);
2664 p->buffer = 0;
2665 p->bytepos = 0;
2666 p->charpos = 0;
2667 p->chain = Qnil;
2668 p->insertion_type = 0;
2669 return val;
2672 /* Put MARKER back on the free list after using it temporarily. */
2674 void
2675 free_marker (marker)
2676 Lisp_Object marker;
2678 unchain_marker (marker);
2680 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2681 XMISC (marker)->u_free.chain = marker_free_list;
2682 marker_free_list = XMISC (marker);
2684 total_free_markers++;
2688 /* Return a newly created vector or string with specified arguments as
2689 elements. If all the arguments are characters that can fit
2690 in a string of events, make a string; otherwise, make a vector.
2692 Any number of arguments, even zero arguments, are allowed. */
2694 Lisp_Object
2695 make_event_array (nargs, args)
2696 register int nargs;
2697 Lisp_Object *args;
2699 int i;
2701 for (i = 0; i < nargs; i++)
2702 /* The things that fit in a string
2703 are characters that are in 0...127,
2704 after discarding the meta bit and all the bits above it. */
2705 if (!INTEGERP (args[i])
2706 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2707 return Fvector (nargs, args);
2709 /* Since the loop exited, we know that all the things in it are
2710 characters, so we can make a string. */
2712 Lisp_Object result;
2714 result = Fmake_string (make_number (nargs), make_number (0));
2715 for (i = 0; i < nargs; i++)
2717 SSET (result, i, XINT (args[i]));
2718 /* Move the meta bit to the right place for a string char. */
2719 if (XINT (args[i]) & CHAR_META)
2720 SSET (result, i, SREF (result, i) | 0x80);
2723 return result;
2729 /************************************************************************
2730 C Stack Marking
2731 ************************************************************************/
2733 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2735 /* Conservative C stack marking requires a method to identify possibly
2736 live Lisp objects given a pointer value. We do this by keeping
2737 track of blocks of Lisp data that are allocated in a red-black tree
2738 (see also the comment of mem_node which is the type of nodes in
2739 that tree). Function lisp_malloc adds information for an allocated
2740 block to the red-black tree with calls to mem_insert, and function
2741 lisp_free removes it with mem_delete. Functions live_string_p etc
2742 call mem_find to lookup information about a given pointer in the
2743 tree, and use that to determine if the pointer points to a Lisp
2744 object or not. */
2746 /* Initialize this part of alloc.c. */
2748 static void
2749 mem_init ()
2751 mem_z.left = mem_z.right = MEM_NIL;
2752 mem_z.parent = NULL;
2753 mem_z.color = MEM_BLACK;
2754 mem_z.start = mem_z.end = NULL;
2755 mem_root = MEM_NIL;
2759 /* Value is a pointer to the mem_node containing START. Value is
2760 MEM_NIL if there is no node in the tree containing START. */
2762 static INLINE struct mem_node *
2763 mem_find (start)
2764 void *start;
2766 struct mem_node *p;
2768 if (start < min_heap_address || start > max_heap_address)
2769 return MEM_NIL;
2771 /* Make the search always successful to speed up the loop below. */
2772 mem_z.start = start;
2773 mem_z.end = (char *) start + 1;
2775 p = mem_root;
2776 while (start < p->start || start >= p->end)
2777 p = start < p->start ? p->left : p->right;
2778 return p;
2782 /* Insert a new node into the tree for a block of memory with start
2783 address START, end address END, and type TYPE. Value is a
2784 pointer to the node that was inserted. */
2786 static struct mem_node *
2787 mem_insert (start, end, type)
2788 void *start, *end;
2789 enum mem_type type;
2791 struct mem_node *c, *parent, *x;
2793 if (start < min_heap_address)
2794 min_heap_address = start;
2795 if (end > max_heap_address)
2796 max_heap_address = end;
2798 /* See where in the tree a node for START belongs. In this
2799 particular application, it shouldn't happen that a node is already
2800 present. For debugging purposes, let's check that. */
2801 c = mem_root;
2802 parent = NULL;
2804 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2806 while (c != MEM_NIL)
2808 if (start >= c->start && start < c->end)
2809 abort ();
2810 parent = c;
2811 c = start < c->start ? c->left : c->right;
2814 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2816 while (c != MEM_NIL)
2818 parent = c;
2819 c = start < c->start ? c->left : c->right;
2822 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2824 /* Create a new node. */
2825 #ifdef GC_MALLOC_CHECK
2826 x = (struct mem_node *) _malloc_internal (sizeof *x);
2827 if (x == NULL)
2828 abort ();
2829 #else
2830 x = (struct mem_node *) xmalloc (sizeof *x);
2831 #endif
2832 x->start = start;
2833 x->end = end;
2834 x->type = type;
2835 x->parent = parent;
2836 x->left = x->right = MEM_NIL;
2837 x->color = MEM_RED;
2839 /* Insert it as child of PARENT or install it as root. */
2840 if (parent)
2842 if (start < parent->start)
2843 parent->left = x;
2844 else
2845 parent->right = x;
2847 else
2848 mem_root = x;
2850 /* Re-establish red-black tree properties. */
2851 mem_insert_fixup (x);
2853 return x;
2857 /* Re-establish the red-black properties of the tree, and thereby
2858 balance the tree, after node X has been inserted; X is always red. */
2860 static void
2861 mem_insert_fixup (x)
2862 struct mem_node *x;
2864 while (x != mem_root && x->parent->color == MEM_RED)
2866 /* X is red and its parent is red. This is a violation of
2867 red-black tree property #3. */
2869 if (x->parent == x->parent->parent->left)
2871 /* We're on the left side of our grandparent, and Y is our
2872 "uncle". */
2873 struct mem_node *y = x->parent->parent->right;
2875 if (y->color == MEM_RED)
2877 /* Uncle and parent are red but should be black because
2878 X is red. Change the colors accordingly and proceed
2879 with the grandparent. */
2880 x->parent->color = MEM_BLACK;
2881 y->color = MEM_BLACK;
2882 x->parent->parent->color = MEM_RED;
2883 x = x->parent->parent;
2885 else
2887 /* Parent and uncle have different colors; parent is
2888 red, uncle is black. */
2889 if (x == x->parent->right)
2891 x = x->parent;
2892 mem_rotate_left (x);
2895 x->parent->color = MEM_BLACK;
2896 x->parent->parent->color = MEM_RED;
2897 mem_rotate_right (x->parent->parent);
2900 else
2902 /* This is the symmetrical case of above. */
2903 struct mem_node *y = x->parent->parent->left;
2905 if (y->color == MEM_RED)
2907 x->parent->color = MEM_BLACK;
2908 y->color = MEM_BLACK;
2909 x->parent->parent->color = MEM_RED;
2910 x = x->parent->parent;
2912 else
2914 if (x == x->parent->left)
2916 x = x->parent;
2917 mem_rotate_right (x);
2920 x->parent->color = MEM_BLACK;
2921 x->parent->parent->color = MEM_RED;
2922 mem_rotate_left (x->parent->parent);
2927 /* The root may have been changed to red due to the algorithm. Set
2928 it to black so that property #5 is satisfied. */
2929 mem_root->color = MEM_BLACK;
2933 /* (x) (y)
2934 / \ / \
2935 a (y) ===> (x) c
2936 / \ / \
2937 b c a b */
2939 static void
2940 mem_rotate_left (x)
2941 struct mem_node *x;
2943 struct mem_node *y;
2945 /* Turn y's left sub-tree into x's right sub-tree. */
2946 y = x->right;
2947 x->right = y->left;
2948 if (y->left != MEM_NIL)
2949 y->left->parent = x;
2951 /* Y's parent was x's parent. */
2952 if (y != MEM_NIL)
2953 y->parent = x->parent;
2955 /* Get the parent to point to y instead of x. */
2956 if (x->parent)
2958 if (x == x->parent->left)
2959 x->parent->left = y;
2960 else
2961 x->parent->right = y;
2963 else
2964 mem_root = y;
2966 /* Put x on y's left. */
2967 y->left = x;
2968 if (x != MEM_NIL)
2969 x->parent = y;
2973 /* (x) (Y)
2974 / \ / \
2975 (y) c ===> a (x)
2976 / \ / \
2977 a b b c */
2979 static void
2980 mem_rotate_right (x)
2981 struct mem_node *x;
2983 struct mem_node *y = x->left;
2985 x->left = y->right;
2986 if (y->right != MEM_NIL)
2987 y->right->parent = x;
2989 if (y != MEM_NIL)
2990 y->parent = x->parent;
2991 if (x->parent)
2993 if (x == x->parent->right)
2994 x->parent->right = y;
2995 else
2996 x->parent->left = y;
2998 else
2999 mem_root = y;
3001 y->right = x;
3002 if (x != MEM_NIL)
3003 x->parent = y;
3007 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3009 static void
3010 mem_delete (z)
3011 struct mem_node *z;
3013 struct mem_node *x, *y;
3015 if (!z || z == MEM_NIL)
3016 return;
3018 if (z->left == MEM_NIL || z->right == MEM_NIL)
3019 y = z;
3020 else
3022 y = z->right;
3023 while (y->left != MEM_NIL)
3024 y = y->left;
3027 if (y->left != MEM_NIL)
3028 x = y->left;
3029 else
3030 x = y->right;
3032 x->parent = y->parent;
3033 if (y->parent)
3035 if (y == y->parent->left)
3036 y->parent->left = x;
3037 else
3038 y->parent->right = x;
3040 else
3041 mem_root = x;
3043 if (y != z)
3045 z->start = y->start;
3046 z->end = y->end;
3047 z->type = y->type;
3050 if (y->color == MEM_BLACK)
3051 mem_delete_fixup (x);
3053 #ifdef GC_MALLOC_CHECK
3054 _free_internal (y);
3055 #else
3056 xfree (y);
3057 #endif
3061 /* Re-establish the red-black properties of the tree, after a
3062 deletion. */
3064 static void
3065 mem_delete_fixup (x)
3066 struct mem_node *x;
3068 while (x != mem_root && x->color == MEM_BLACK)
3070 if (x == x->parent->left)
3072 struct mem_node *w = x->parent->right;
3074 if (w->color == MEM_RED)
3076 w->color = MEM_BLACK;
3077 x->parent->color = MEM_RED;
3078 mem_rotate_left (x->parent);
3079 w = x->parent->right;
3082 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3084 w->color = MEM_RED;
3085 x = x->parent;
3087 else
3089 if (w->right->color == MEM_BLACK)
3091 w->left->color = MEM_BLACK;
3092 w->color = MEM_RED;
3093 mem_rotate_right (w);
3094 w = x->parent->right;
3096 w->color = x->parent->color;
3097 x->parent->color = MEM_BLACK;
3098 w->right->color = MEM_BLACK;
3099 mem_rotate_left (x->parent);
3100 x = mem_root;
3103 else
3105 struct mem_node *w = x->parent->left;
3107 if (w->color == MEM_RED)
3109 w->color = MEM_BLACK;
3110 x->parent->color = MEM_RED;
3111 mem_rotate_right (x->parent);
3112 w = x->parent->left;
3115 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3117 w->color = MEM_RED;
3118 x = x->parent;
3120 else
3122 if (w->left->color == MEM_BLACK)
3124 w->right->color = MEM_BLACK;
3125 w->color = MEM_RED;
3126 mem_rotate_left (w);
3127 w = x->parent->left;
3130 w->color = x->parent->color;
3131 x->parent->color = MEM_BLACK;
3132 w->left->color = MEM_BLACK;
3133 mem_rotate_right (x->parent);
3134 x = mem_root;
3139 x->color = MEM_BLACK;
3143 /* Value is non-zero if P is a pointer to a live Lisp string on
3144 the heap. M is a pointer to the mem_block for P. */
3146 static INLINE int
3147 live_string_p (m, p)
3148 struct mem_node *m;
3149 void *p;
3151 if (m->type == MEM_TYPE_STRING)
3153 struct string_block *b = (struct string_block *) m->start;
3154 int offset = (char *) p - (char *) &b->strings[0];
3156 /* P must point to the start of a Lisp_String structure, and it
3157 must not be on the free-list. */
3158 return (offset >= 0
3159 && offset % sizeof b->strings[0] == 0
3160 && ((struct Lisp_String *) p)->data != NULL);
3162 else
3163 return 0;
3167 /* Value is non-zero if P is a pointer to a live Lisp cons on
3168 the heap. M is a pointer to the mem_block for P. */
3170 static INLINE int
3171 live_cons_p (m, p)
3172 struct mem_node *m;
3173 void *p;
3175 if (m->type == MEM_TYPE_CONS)
3177 struct cons_block *b = (struct cons_block *) m->start;
3178 int offset = (char *) p - (char *) &b->conses[0];
3180 /* P must point to the start of a Lisp_Cons, not be
3181 one of the unused cells in the current cons block,
3182 and not be on the free-list. */
3183 return (offset >= 0
3184 && offset % sizeof b->conses[0] == 0
3185 && (b != cons_block
3186 || offset / sizeof b->conses[0] < cons_block_index)
3187 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3189 else
3190 return 0;
3194 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3195 the heap. M is a pointer to the mem_block for P. */
3197 static INLINE int
3198 live_symbol_p (m, p)
3199 struct mem_node *m;
3200 void *p;
3202 if (m->type == MEM_TYPE_SYMBOL)
3204 struct symbol_block *b = (struct symbol_block *) m->start;
3205 int offset = (char *) p - (char *) &b->symbols[0];
3207 /* P must point to the start of a Lisp_Symbol, not be
3208 one of the unused cells in the current symbol block,
3209 and not be on the free-list. */
3210 return (offset >= 0
3211 && offset % sizeof b->symbols[0] == 0
3212 && (b != symbol_block
3213 || offset / sizeof b->symbols[0] < symbol_block_index)
3214 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3216 else
3217 return 0;
3221 /* Value is non-zero if P is a pointer to a live Lisp float on
3222 the heap. M is a pointer to the mem_block for P. */
3224 static INLINE int
3225 live_float_p (m, p)
3226 struct mem_node *m;
3227 void *p;
3229 if (m->type == MEM_TYPE_FLOAT)
3231 struct float_block *b = (struct float_block *) m->start;
3232 int offset = (char *) p - (char *) &b->floats[0];
3234 /* P must point to the start of a Lisp_Float, not be
3235 one of the unused cells in the current float block,
3236 and not be on the free-list. */
3237 return (offset >= 0
3238 && offset % sizeof b->floats[0] == 0
3239 && (b != float_block
3240 || offset / sizeof b->floats[0] < float_block_index)
3241 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
3243 else
3244 return 0;
3248 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3249 the heap. M is a pointer to the mem_block for P. */
3251 static INLINE int
3252 live_misc_p (m, p)
3253 struct mem_node *m;
3254 void *p;
3256 if (m->type == MEM_TYPE_MISC)
3258 struct marker_block *b = (struct marker_block *) m->start;
3259 int offset = (char *) p - (char *) &b->markers[0];
3261 /* P must point to the start of a Lisp_Misc, not be
3262 one of the unused cells in the current misc block,
3263 and not be on the free-list. */
3264 return (offset >= 0
3265 && offset % sizeof b->markers[0] == 0
3266 && (b != marker_block
3267 || offset / sizeof b->markers[0] < marker_block_index)
3268 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3270 else
3271 return 0;
3275 /* Value is non-zero if P is a pointer to a live vector-like object.
3276 M is a pointer to the mem_block for P. */
3278 static INLINE int
3279 live_vector_p (m, p)
3280 struct mem_node *m;
3281 void *p;
3283 return (p == m->start
3284 && m->type >= MEM_TYPE_VECTOR
3285 && m->type <= MEM_TYPE_WINDOW);
3289 /* Value is non-zero of P is a pointer to a live buffer. M is a
3290 pointer to the mem_block for P. */
3292 static INLINE int
3293 live_buffer_p (m, p)
3294 struct mem_node *m;
3295 void *p;
3297 /* P must point to the start of the block, and the buffer
3298 must not have been killed. */
3299 return (m->type == MEM_TYPE_BUFFER
3300 && p == m->start
3301 && !NILP (((struct buffer *) p)->name));
3304 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3306 #if GC_MARK_STACK
3308 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3310 /* Array of objects that are kept alive because the C stack contains
3311 a pattern that looks like a reference to them . */
3313 #define MAX_ZOMBIES 10
3314 static Lisp_Object zombies[MAX_ZOMBIES];
3316 /* Number of zombie objects. */
3318 static int nzombies;
3320 /* Number of garbage collections. */
3322 static int ngcs;
3324 /* Average percentage of zombies per collection. */
3326 static double avg_zombies;
3328 /* Max. number of live and zombie objects. */
3330 static int max_live, max_zombies;
3332 /* Average number of live objects per GC. */
3334 static double avg_live;
3336 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3337 doc: /* Show information about live and zombie objects. */)
3340 Lisp_Object args[7];
3341 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
3342 args[1] = make_number (ngcs);
3343 args[2] = make_float (avg_live);
3344 args[3] = make_float (avg_zombies);
3345 args[4] = make_float (avg_zombies / avg_live / 100);
3346 args[5] = make_number (max_live);
3347 args[6] = make_number (max_zombies);
3348 return Fmessage (7, args);
3351 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3354 /* Mark OBJ if we can prove it's a Lisp_Object. */
3356 static INLINE void
3357 mark_maybe_object (obj)
3358 Lisp_Object obj;
3360 void *po = (void *) XPNTR (obj);
3361 struct mem_node *m = mem_find (po);
3363 if (m != MEM_NIL)
3365 int mark_p = 0;
3367 switch (XGCTYPE (obj))
3369 case Lisp_String:
3370 mark_p = (live_string_p (m, po)
3371 && !STRING_MARKED_P ((struct Lisp_String *) po));
3372 break;
3374 case Lisp_Cons:
3375 mark_p = (live_cons_p (m, po)
3376 && !XMARKBIT (XCONS (obj)->car));
3377 break;
3379 case Lisp_Symbol:
3380 mark_p = (live_symbol_p (m, po)
3381 && !XMARKBIT (XSYMBOL (obj)->plist));
3382 break;
3384 case Lisp_Float:
3385 mark_p = (live_float_p (m, po)
3386 && !XMARKBIT (XFLOAT (obj)->type));
3387 break;
3389 case Lisp_Vectorlike:
3390 /* Note: can't check GC_BUFFERP before we know it's a
3391 buffer because checking that dereferences the pointer
3392 PO which might point anywhere. */
3393 if (live_vector_p (m, po))
3394 mark_p = (!GC_SUBRP (obj)
3395 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
3396 else if (live_buffer_p (m, po))
3397 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
3398 break;
3400 case Lisp_Misc:
3401 if (live_misc_p (m, po))
3403 switch (XMISCTYPE (obj))
3405 case Lisp_Misc_Marker:
3406 mark_p = !XMARKBIT (XMARKER (obj)->chain);
3407 break;
3409 case Lisp_Misc_Buffer_Local_Value:
3410 case Lisp_Misc_Some_Buffer_Local_Value:
3411 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
3412 break;
3414 case Lisp_Misc_Overlay:
3415 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
3416 break;
3419 break;
3421 case Lisp_Int:
3422 case Lisp_Type_Limit:
3423 break;
3426 if (mark_p)
3428 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3429 if (nzombies < MAX_ZOMBIES)
3430 zombies[nzombies] = *p;
3431 ++nzombies;
3432 #endif
3433 mark_object (&obj);
3439 /* If P points to Lisp data, mark that as live if it isn't already
3440 marked. */
3442 static INLINE void
3443 mark_maybe_pointer (p)
3444 void *p;
3446 struct mem_node *m;
3448 /* Quickly rule out some values which can't point to Lisp data. We
3449 assume that Lisp data is aligned on even addresses. */
3450 if ((EMACS_INT) p & 1)
3451 return;
3453 m = mem_find (p);
3454 if (m != MEM_NIL)
3456 Lisp_Object obj = Qnil;
3458 switch (m->type)
3460 case MEM_TYPE_NON_LISP:
3461 /* Nothing to do; not a pointer to Lisp memory. */
3462 break;
3464 case MEM_TYPE_BUFFER:
3465 if (live_buffer_p (m, p)
3466 && !XMARKBIT (((struct buffer *) p)->name))
3467 XSETVECTOR (obj, p);
3468 break;
3470 case MEM_TYPE_CONS:
3471 if (live_cons_p (m, p)
3472 && !XMARKBIT (((struct Lisp_Cons *) p)->car))
3473 XSETCONS (obj, p);
3474 break;
3476 case MEM_TYPE_STRING:
3477 if (live_string_p (m, p)
3478 && !STRING_MARKED_P ((struct Lisp_String *) p))
3479 XSETSTRING (obj, p);
3480 break;
3482 case MEM_TYPE_MISC:
3483 if (live_misc_p (m, p))
3485 Lisp_Object tem;
3486 XSETMISC (tem, p);
3488 switch (XMISCTYPE (tem))
3490 case Lisp_Misc_Marker:
3491 if (!XMARKBIT (XMARKER (tem)->chain))
3492 obj = tem;
3493 break;
3495 case Lisp_Misc_Buffer_Local_Value:
3496 case Lisp_Misc_Some_Buffer_Local_Value:
3497 if (!XMARKBIT (XBUFFER_LOCAL_VALUE (tem)->realvalue))
3498 obj = tem;
3499 break;
3501 case Lisp_Misc_Overlay:
3502 if (!XMARKBIT (XOVERLAY (tem)->plist))
3503 obj = tem;
3504 break;
3507 break;
3509 case MEM_TYPE_SYMBOL:
3510 if (live_symbol_p (m, p)
3511 && !XMARKBIT (((struct Lisp_Symbol *) p)->plist))
3512 XSETSYMBOL (obj, p);
3513 break;
3515 case MEM_TYPE_FLOAT:
3516 if (live_float_p (m, p)
3517 && !XMARKBIT (((struct Lisp_Float *) p)->type))
3518 XSETFLOAT (obj, p);
3519 break;
3521 case MEM_TYPE_VECTOR:
3522 case MEM_TYPE_PROCESS:
3523 case MEM_TYPE_HASH_TABLE:
3524 case MEM_TYPE_FRAME:
3525 case MEM_TYPE_WINDOW:
3526 if (live_vector_p (m, p))
3528 Lisp_Object tem;
3529 XSETVECTOR (tem, p);
3530 if (!GC_SUBRP (tem)
3531 && !(XVECTOR (tem)->size & ARRAY_MARK_FLAG))
3532 obj = tem;
3534 break;
3536 default:
3537 abort ();
3540 if (!GC_NILP (obj))
3541 mark_object (&obj);
3546 /* Mark Lisp objects referenced from the address range START..END. */
3548 static void
3549 mark_memory (start, end)
3550 void *start, *end;
3552 Lisp_Object *p;
3553 void **pp;
3555 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3556 nzombies = 0;
3557 #endif
3559 /* Make START the pointer to the start of the memory region,
3560 if it isn't already. */
3561 if (end < start)
3563 void *tem = start;
3564 start = end;
3565 end = tem;
3568 /* Mark Lisp_Objects. */
3569 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3570 mark_maybe_object (*p);
3572 /* Mark Lisp data pointed to. This is necessary because, in some
3573 situations, the C compiler optimizes Lisp objects away, so that
3574 only a pointer to them remains. Example:
3576 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3579 Lisp_Object obj = build_string ("test");
3580 struct Lisp_String *s = XSTRING (obj);
3581 Fgarbage_collect ();
3582 fprintf (stderr, "test `%s'\n", s->data);
3583 return Qnil;
3586 Here, `obj' isn't really used, and the compiler optimizes it
3587 away. The only reference to the life string is through the
3588 pointer `s'. */
3590 for (pp = (void **) start; (void *) pp < end; ++pp)
3591 mark_maybe_pointer (*pp);
3594 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3595 the GCC system configuration. In gcc 3.2, the only systems for
3596 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3597 by others?) and ns32k-pc532-min. */
3599 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3601 static int setjmp_tested_p, longjmps_done;
3603 #define SETJMP_WILL_LIKELY_WORK "\
3605 Emacs garbage collector has been changed to use conservative stack\n\
3606 marking. Emacs has determined that the method it uses to do the\n\
3607 marking will likely work on your system, but this isn't sure.\n\
3609 If you are a system-programmer, or can get the help of a local wizard\n\
3610 who is, please take a look at the function mark_stack in alloc.c, and\n\
3611 verify that the methods used are appropriate for your system.\n\
3613 Please mail the result to <emacs-devel@gnu.org>.\n\
3616 #define SETJMP_WILL_NOT_WORK "\
3618 Emacs garbage collector has been changed to use conservative stack\n\
3619 marking. Emacs has determined that the default method it uses to do the\n\
3620 marking will not work on your system. We will need a system-dependent\n\
3621 solution for your system.\n\
3623 Please take a look at the function mark_stack in alloc.c, and\n\
3624 try to find a way to make it work on your system.\n\
3626 Note that you may get false negatives, depending on the compiler.\n\
3627 In particular, you need to use -O with GCC for this test.\n\
3629 Please mail the result to <emacs-devel@gnu.org>.\n\
3633 /* Perform a quick check if it looks like setjmp saves registers in a
3634 jmp_buf. Print a message to stderr saying so. When this test
3635 succeeds, this is _not_ a proof that setjmp is sufficient for
3636 conservative stack marking. Only the sources or a disassembly
3637 can prove that. */
3639 static void
3640 test_setjmp ()
3642 char buf[10];
3643 register int x;
3644 jmp_buf jbuf;
3645 int result = 0;
3647 /* Arrange for X to be put in a register. */
3648 sprintf (buf, "1");
3649 x = strlen (buf);
3650 x = 2 * x - 1;
3652 setjmp (jbuf);
3653 if (longjmps_done == 1)
3655 /* Came here after the longjmp at the end of the function.
3657 If x == 1, the longjmp has restored the register to its
3658 value before the setjmp, and we can hope that setjmp
3659 saves all such registers in the jmp_buf, although that
3660 isn't sure.
3662 For other values of X, either something really strange is
3663 taking place, or the setjmp just didn't save the register. */
3665 if (x == 1)
3666 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3667 else
3669 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3670 exit (1);
3674 ++longjmps_done;
3675 x = 2;
3676 if (longjmps_done == 1)
3677 longjmp (jbuf, 1);
3680 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3683 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3685 /* Abort if anything GCPRO'd doesn't survive the GC. */
3687 static void
3688 check_gcpros ()
3690 struct gcpro *p;
3691 int i;
3693 for (p = gcprolist; p; p = p->next)
3694 for (i = 0; i < p->nvars; ++i)
3695 if (!survives_gc_p (p->var[i]))
3696 abort ();
3699 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3701 static void
3702 dump_zombies ()
3704 int i;
3706 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3707 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3709 fprintf (stderr, " %d = ", i);
3710 debug_print (zombies[i]);
3714 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3717 /* Mark live Lisp objects on the C stack.
3719 There are several system-dependent problems to consider when
3720 porting this to new architectures:
3722 Processor Registers
3724 We have to mark Lisp objects in CPU registers that can hold local
3725 variables or are used to pass parameters.
3727 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3728 something that either saves relevant registers on the stack, or
3729 calls mark_maybe_object passing it each register's contents.
3731 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3732 implementation assumes that calling setjmp saves registers we need
3733 to see in a jmp_buf which itself lies on the stack. This doesn't
3734 have to be true! It must be verified for each system, possibly
3735 by taking a look at the source code of setjmp.
3737 Stack Layout
3739 Architectures differ in the way their processor stack is organized.
3740 For example, the stack might look like this
3742 +----------------+
3743 | Lisp_Object | size = 4
3744 +----------------+
3745 | something else | size = 2
3746 +----------------+
3747 | Lisp_Object | size = 4
3748 +----------------+
3749 | ... |
3751 In such a case, not every Lisp_Object will be aligned equally. To
3752 find all Lisp_Object on the stack it won't be sufficient to walk
3753 the stack in steps of 4 bytes. Instead, two passes will be
3754 necessary, one starting at the start of the stack, and a second
3755 pass starting at the start of the stack + 2. Likewise, if the
3756 minimal alignment of Lisp_Objects on the stack is 1, four passes
3757 would be necessary, each one starting with one byte more offset
3758 from the stack start.
3760 The current code assumes by default that Lisp_Objects are aligned
3761 equally on the stack. */
3763 static void
3764 mark_stack ()
3766 int i;
3767 jmp_buf j;
3768 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3769 void *end;
3771 /* This trick flushes the register windows so that all the state of
3772 the process is contained in the stack. */
3773 #ifdef sparc
3774 asm ("ta 3");
3775 #endif
3777 /* Save registers that we need to see on the stack. We need to see
3778 registers used to hold register variables and registers used to
3779 pass parameters. */
3780 #ifdef GC_SAVE_REGISTERS_ON_STACK
3781 GC_SAVE_REGISTERS_ON_STACK (end);
3782 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3784 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3785 setjmp will definitely work, test it
3786 and print a message with the result
3787 of the test. */
3788 if (!setjmp_tested_p)
3790 setjmp_tested_p = 1;
3791 test_setjmp ();
3793 #endif /* GC_SETJMP_WORKS */
3795 setjmp (j);
3796 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3797 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3799 /* This assumes that the stack is a contiguous region in memory. If
3800 that's not the case, something has to be done here to iterate
3801 over the stack segments. */
3802 #ifndef GC_LISP_OBJECT_ALIGNMENT
3803 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
3804 #endif
3805 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
3806 mark_memory ((char *) stack_base + i, end);
3808 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3809 check_gcpros ();
3810 #endif
3814 #endif /* GC_MARK_STACK != 0 */
3818 /***********************************************************************
3819 Pure Storage Management
3820 ***********************************************************************/
3822 /* Allocate room for SIZE bytes from pure Lisp storage and return a
3823 pointer to it. TYPE is the Lisp type for which the memory is
3824 allocated. TYPE < 0 means it's not used for a Lisp object.
3826 If store_pure_type_info is set and TYPE is >= 0, the type of
3827 the allocated object is recorded in pure_types. */
3829 static POINTER_TYPE *
3830 pure_alloc (size, type)
3831 size_t size;
3832 int type;
3834 size_t nbytes;
3835 POINTER_TYPE *result;
3836 char *beg = purebeg;
3838 /* Give Lisp_Floats an extra alignment. */
3839 if (type == Lisp_Float)
3841 size_t alignment;
3842 #if defined __GNUC__ && __GNUC__ >= 2
3843 alignment = __alignof (struct Lisp_Float);
3844 #else
3845 alignment = sizeof (struct Lisp_Float);
3846 #endif
3847 /* Make sure beg + pure_bytes_used is correctly aligned for a
3848 Lisp_Float, which might need stricter alignment than
3849 EMACS_INT. */
3850 pure_bytes_used
3851 = (ALIGN ((EMACS_UINT) (beg + pure_bytes_used), alignment)
3852 - (EMACS_UINT) beg);
3855 nbytes = ALIGN (size, sizeof (EMACS_INT));
3857 if (pure_bytes_used + nbytes > pure_size)
3859 /* Don't allocate a large amount here,
3860 because it might get mmap'd and then its address
3861 might not be usable. */
3862 beg = purebeg = (char *) xmalloc (10000);
3863 pure_size = 10000;
3864 pure_bytes_used_before_overflow += pure_bytes_used;
3865 pure_bytes_used = 0;
3868 result = (POINTER_TYPE *) (beg + pure_bytes_used);
3869 pure_bytes_used += nbytes;
3870 return result;
3874 /* Print a warning if PURESIZE is too small. */
3876 void
3877 check_pure_size ()
3879 if (pure_bytes_used_before_overflow)
3880 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
3881 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
3885 /* Return a string allocated in pure space. DATA is a buffer holding
3886 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3887 non-zero means make the result string multibyte.
3889 Must get an error if pure storage is full, since if it cannot hold
3890 a large string it may be able to hold conses that point to that
3891 string; then the string is not protected from gc. */
3893 Lisp_Object
3894 make_pure_string (data, nchars, nbytes, multibyte)
3895 char *data;
3896 int nchars, nbytes;
3897 int multibyte;
3899 Lisp_Object string;
3900 struct Lisp_String *s;
3902 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
3903 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
3904 s->size = nchars;
3905 s->size_byte = multibyte ? nbytes : -1;
3906 bcopy (data, s->data, nbytes);
3907 s->data[nbytes] = '\0';
3908 s->intervals = NULL_INTERVAL;
3909 XSETSTRING (string, s);
3910 return string;
3914 /* Return a cons allocated from pure space. Give it pure copies
3915 of CAR as car and CDR as cdr. */
3917 Lisp_Object
3918 pure_cons (car, cdr)
3919 Lisp_Object car, cdr;
3921 register Lisp_Object new;
3922 struct Lisp_Cons *p;
3924 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
3925 XSETCONS (new, p);
3926 XSETCAR (new, Fpurecopy (car));
3927 XSETCDR (new, Fpurecopy (cdr));
3928 return new;
3932 /* Value is a float object with value NUM allocated from pure space. */
3934 Lisp_Object
3935 make_pure_float (num)
3936 double num;
3938 register Lisp_Object new;
3939 struct Lisp_Float *p;
3941 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
3942 XSETFLOAT (new, p);
3943 XFLOAT_DATA (new) = num;
3944 return new;
3948 /* Return a vector with room for LEN Lisp_Objects allocated from
3949 pure space. */
3951 Lisp_Object
3952 make_pure_vector (len)
3953 EMACS_INT len;
3955 Lisp_Object new;
3956 struct Lisp_Vector *p;
3957 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
3959 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
3960 XSETVECTOR (new, p);
3961 XVECTOR (new)->size = len;
3962 return new;
3966 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3967 doc: /* Make a copy of OBJECT in pure storage.
3968 Recursively copies contents of vectors and cons cells.
3969 Does not copy symbols. Copies strings without text properties. */)
3970 (obj)
3971 register Lisp_Object obj;
3973 if (NILP (Vpurify_flag))
3974 return obj;
3976 if (PURE_POINTER_P (XPNTR (obj)))
3977 return obj;
3979 if (CONSP (obj))
3980 return pure_cons (XCAR (obj), XCDR (obj));
3981 else if (FLOATP (obj))
3982 return make_pure_float (XFLOAT_DATA (obj));
3983 else if (STRINGP (obj))
3984 return make_pure_string (SDATA (obj), SCHARS (obj),
3985 SBYTES (obj),
3986 STRING_MULTIBYTE (obj));
3987 else if (COMPILEDP (obj) || VECTORP (obj))
3989 register struct Lisp_Vector *vec;
3990 register int i, size;
3992 size = XVECTOR (obj)->size;
3993 if (size & PSEUDOVECTOR_FLAG)
3994 size &= PSEUDOVECTOR_SIZE_MASK;
3995 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
3996 for (i = 0; i < size; i++)
3997 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
3998 if (COMPILEDP (obj))
3999 XSETCOMPILED (obj, vec);
4000 else
4001 XSETVECTOR (obj, vec);
4002 return obj;
4004 else if (MARKERP (obj))
4005 error ("Attempt to copy a marker to pure storage");
4007 return obj;
4012 /***********************************************************************
4013 Protection from GC
4014 ***********************************************************************/
4016 /* Put an entry in staticvec, pointing at the variable with address
4017 VARADDRESS. */
4019 void
4020 staticpro (varaddress)
4021 Lisp_Object *varaddress;
4023 staticvec[staticidx++] = varaddress;
4024 if (staticidx >= NSTATICS)
4025 abort ();
4028 struct catchtag
4030 Lisp_Object tag;
4031 Lisp_Object val;
4032 struct catchtag *next;
4035 struct backtrace
4037 struct backtrace *next;
4038 Lisp_Object *function;
4039 Lisp_Object *args; /* Points to vector of args. */
4040 int nargs; /* Length of vector. */
4041 /* If nargs is UNEVALLED, args points to slot holding list of
4042 unevalled args. */
4043 char evalargs;
4048 /***********************************************************************
4049 Protection from GC
4050 ***********************************************************************/
4052 /* Temporarily prevent garbage collection. */
4055 inhibit_garbage_collection ()
4057 int count = SPECPDL_INDEX ();
4058 int nbits = min (VALBITS, BITS_PER_INT);
4060 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4061 return count;
4065 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4066 doc: /* Reclaim storage for Lisp objects no longer needed.
4067 Returns info on amount of space in use:
4068 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4069 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4070 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4071 (USED-STRINGS . FREE-STRINGS))
4072 Garbage collection happens automatically if you cons more than
4073 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */)
4076 register struct gcpro *tail;
4077 register struct specbinding *bind;
4078 struct catchtag *catch;
4079 struct handler *handler;
4080 register struct backtrace *backlist;
4081 char stack_top_variable;
4082 register int i;
4083 int message_p;
4084 Lisp_Object total[8];
4085 int count = SPECPDL_INDEX ();
4087 /* Can't GC if pure storage overflowed because we can't determine
4088 if something is a pure object or not. */
4089 if (pure_bytes_used_before_overflow)
4090 return Qnil;
4092 /* In case user calls debug_print during GC,
4093 don't let that cause a recursive GC. */
4094 consing_since_gc = 0;
4096 /* Save what's currently displayed in the echo area. */
4097 message_p = push_message ();
4098 record_unwind_protect (pop_message_unwind, Qnil);
4100 /* Save a copy of the contents of the stack, for debugging. */
4101 #if MAX_SAVE_STACK > 0
4102 if (NILP (Vpurify_flag))
4104 i = &stack_top_variable - stack_bottom;
4105 if (i < 0) i = -i;
4106 if (i < MAX_SAVE_STACK)
4108 if (stack_copy == 0)
4109 stack_copy = (char *) xmalloc (stack_copy_size = i);
4110 else if (stack_copy_size < i)
4111 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4112 if (stack_copy)
4114 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4115 bcopy (stack_bottom, stack_copy, i);
4116 else
4117 bcopy (&stack_top_variable, stack_copy, i);
4121 #endif /* MAX_SAVE_STACK > 0 */
4123 if (garbage_collection_messages)
4124 message1_nolog ("Garbage collecting...");
4126 BLOCK_INPUT;
4128 shrink_regexp_cache ();
4130 /* Don't keep undo information around forever. */
4132 register struct buffer *nextb = all_buffers;
4134 while (nextb)
4136 /* If a buffer's undo list is Qt, that means that undo is
4137 turned off in that buffer. Calling truncate_undo_list on
4138 Qt tends to return NULL, which effectively turns undo back on.
4139 So don't call truncate_undo_list if undo_list is Qt. */
4140 if (! EQ (nextb->undo_list, Qt))
4141 nextb->undo_list
4142 = truncate_undo_list (nextb->undo_list, undo_limit,
4143 undo_strong_limit);
4145 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4146 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4148 /* If a buffer's gap size is more than 10% of the buffer
4149 size, or larger than 2000 bytes, then shrink it
4150 accordingly. Keep a minimum size of 20 bytes. */
4151 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4153 if (nextb->text->gap_size > size)
4155 struct buffer *save_current = current_buffer;
4156 current_buffer = nextb;
4157 make_gap (-(nextb->text->gap_size - size));
4158 current_buffer = save_current;
4162 nextb = nextb->next;
4166 gc_in_progress = 1;
4168 /* clear_marks (); */
4170 /* Mark all the special slots that serve as the roots of accessibility.
4172 Usually the special slots to mark are contained in particular structures.
4173 Then we know no slot is marked twice because the structures don't overlap.
4174 In some cases, the structures point to the slots to be marked.
4175 For these, we use MARKBIT to avoid double marking of the slot. */
4177 for (i = 0; i < staticidx; i++)
4178 mark_object (staticvec[i]);
4180 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4181 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4182 mark_stack ();
4183 #else
4184 for (tail = gcprolist; tail; tail = tail->next)
4185 for (i = 0; i < tail->nvars; i++)
4186 if (!XMARKBIT (tail->var[i]))
4188 /* Explicit casting prevents compiler warning about
4189 discarding the `volatile' qualifier. */
4190 mark_object ((Lisp_Object *)&tail->var[i]);
4191 XMARK (tail->var[i]);
4193 #endif
4195 mark_byte_stack ();
4196 for (bind = specpdl; bind != specpdl_ptr; bind++)
4198 mark_object (&bind->symbol);
4199 mark_object (&bind->old_value);
4201 for (catch = catchlist; catch; catch = catch->next)
4203 mark_object (&catch->tag);
4204 mark_object (&catch->val);
4206 for (handler = handlerlist; handler; handler = handler->next)
4208 mark_object (&handler->handler);
4209 mark_object (&handler->var);
4211 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4213 if (!XMARKBIT (*backlist->function))
4215 mark_object (backlist->function);
4216 XMARK (*backlist->function);
4218 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4219 i = 0;
4220 else
4221 i = backlist->nargs - 1;
4222 for (; i >= 0; i--)
4223 if (!XMARKBIT (backlist->args[i]))
4225 mark_object (&backlist->args[i]);
4226 XMARK (backlist->args[i]);
4229 mark_kboards ();
4231 /* Look thru every buffer's undo list
4232 for elements that update markers that were not marked,
4233 and delete them. */
4235 register struct buffer *nextb = all_buffers;
4237 while (nextb)
4239 /* If a buffer's undo list is Qt, that means that undo is
4240 turned off in that buffer. Calling truncate_undo_list on
4241 Qt tends to return NULL, which effectively turns undo back on.
4242 So don't call truncate_undo_list if undo_list is Qt. */
4243 if (! EQ (nextb->undo_list, Qt))
4245 Lisp_Object tail, prev;
4246 tail = nextb->undo_list;
4247 prev = Qnil;
4248 while (CONSP (tail))
4250 if (GC_CONSP (XCAR (tail))
4251 && GC_MARKERP (XCAR (XCAR (tail)))
4252 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
4254 if (NILP (prev))
4255 nextb->undo_list = tail = XCDR (tail);
4256 else
4258 tail = XCDR (tail);
4259 XSETCDR (prev, tail);
4262 else
4264 prev = tail;
4265 tail = XCDR (tail);
4270 nextb = nextb->next;
4274 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4275 mark_stack ();
4276 #endif
4278 gc_sweep ();
4280 /* Clear the mark bits that we set in certain root slots. */
4282 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4283 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4284 for (tail = gcprolist; tail; tail = tail->next)
4285 for (i = 0; i < tail->nvars; i++)
4286 XUNMARK (tail->var[i]);
4287 #endif
4289 unmark_byte_stack ();
4290 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4292 XUNMARK (*backlist->function);
4293 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4294 i = 0;
4295 else
4296 i = backlist->nargs - 1;
4297 for (; i >= 0; i--)
4298 XUNMARK (backlist->args[i]);
4300 XUNMARK (buffer_defaults.name);
4301 XUNMARK (buffer_local_symbols.name);
4303 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4304 dump_zombies ();
4305 #endif
4307 UNBLOCK_INPUT;
4309 /* clear_marks (); */
4310 gc_in_progress = 0;
4312 consing_since_gc = 0;
4313 if (gc_cons_threshold < 10000)
4314 gc_cons_threshold = 10000;
4316 if (garbage_collection_messages)
4318 if (message_p || minibuf_level > 0)
4319 restore_message ();
4320 else
4321 message1_nolog ("Garbage collecting...done");
4324 unbind_to (count, Qnil);
4326 total[0] = Fcons (make_number (total_conses),
4327 make_number (total_free_conses));
4328 total[1] = Fcons (make_number (total_symbols),
4329 make_number (total_free_symbols));
4330 total[2] = Fcons (make_number (total_markers),
4331 make_number (total_free_markers));
4332 total[3] = make_number (total_string_size);
4333 total[4] = make_number (total_vector_size);
4334 total[5] = Fcons (make_number (total_floats),
4335 make_number (total_free_floats));
4336 total[6] = Fcons (make_number (total_intervals),
4337 make_number (total_free_intervals));
4338 total[7] = Fcons (make_number (total_strings),
4339 make_number (total_free_strings));
4341 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4343 /* Compute average percentage of zombies. */
4344 double nlive = 0;
4346 for (i = 0; i < 7; ++i)
4347 nlive += XFASTINT (XCAR (total[i]));
4349 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4350 max_live = max (nlive, max_live);
4351 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4352 max_zombies = max (nzombies, max_zombies);
4353 ++ngcs;
4355 #endif
4357 if (!NILP (Vpost_gc_hook))
4359 int count = inhibit_garbage_collection ();
4360 safe_run_hooks (Qpost_gc_hook);
4361 unbind_to (count, Qnil);
4364 return Flist (sizeof total / sizeof *total, total);
4368 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4369 only interesting objects referenced from glyphs are strings. */
4371 static void
4372 mark_glyph_matrix (matrix)
4373 struct glyph_matrix *matrix;
4375 struct glyph_row *row = matrix->rows;
4376 struct glyph_row *end = row + matrix->nrows;
4378 for (; row < end; ++row)
4379 if (row->enabled_p)
4381 int area;
4382 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4384 struct glyph *glyph = row->glyphs[area];
4385 struct glyph *end_glyph = glyph + row->used[area];
4387 for (; glyph < end_glyph; ++glyph)
4388 if (GC_STRINGP (glyph->object)
4389 && !STRING_MARKED_P (XSTRING (glyph->object)))
4390 mark_object (&glyph->object);
4396 /* Mark Lisp faces in the face cache C. */
4398 static void
4399 mark_face_cache (c)
4400 struct face_cache *c;
4402 if (c)
4404 int i, j;
4405 for (i = 0; i < c->used; ++i)
4407 struct face *face = FACE_FROM_ID (c->f, i);
4409 if (face)
4411 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4412 mark_object (&face->lface[j]);
4419 #ifdef HAVE_WINDOW_SYSTEM
4421 /* Mark Lisp objects in image IMG. */
4423 static void
4424 mark_image (img)
4425 struct image *img;
4427 mark_object (&img->spec);
4429 if (!NILP (img->data.lisp_val))
4430 mark_object (&img->data.lisp_val);
4434 /* Mark Lisp objects in image cache of frame F. It's done this way so
4435 that we don't have to include xterm.h here. */
4437 static void
4438 mark_image_cache (f)
4439 struct frame *f;
4441 forall_images_in_image_cache (f, mark_image);
4444 #endif /* HAVE_X_WINDOWS */
4448 /* Mark reference to a Lisp_Object.
4449 If the object referred to has not been seen yet, recursively mark
4450 all the references contained in it. */
4452 #define LAST_MARKED_SIZE 500
4453 Lisp_Object *last_marked[LAST_MARKED_SIZE];
4454 int last_marked_index;
4456 /* For debugging--call abort when we cdr down this many
4457 links of a list, in mark_object. In debugging,
4458 the call to abort will hit a breakpoint.
4459 Normally this is zero and the check never goes off. */
4460 int mark_object_loop_halt;
4462 void
4463 mark_object (argptr)
4464 Lisp_Object *argptr;
4466 Lisp_Object *objptr = argptr;
4467 register Lisp_Object obj;
4468 #ifdef GC_CHECK_MARKED_OBJECTS
4469 void *po;
4470 struct mem_node *m;
4471 #endif
4472 int cdr_count = 0;
4474 loop:
4475 obj = *objptr;
4476 loop2:
4477 XUNMARK (obj);
4479 if (PURE_POINTER_P (XPNTR (obj)))
4480 return;
4482 last_marked[last_marked_index++] = objptr;
4483 if (last_marked_index == LAST_MARKED_SIZE)
4484 last_marked_index = 0;
4486 /* Perform some sanity checks on the objects marked here. Abort if
4487 we encounter an object we know is bogus. This increases GC time
4488 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4489 #ifdef GC_CHECK_MARKED_OBJECTS
4491 po = (void *) XPNTR (obj);
4493 /* Check that the object pointed to by PO is known to be a Lisp
4494 structure allocated from the heap. */
4495 #define CHECK_ALLOCATED() \
4496 do { \
4497 m = mem_find (po); \
4498 if (m == MEM_NIL) \
4499 abort (); \
4500 } while (0)
4502 /* Check that the object pointed to by PO is live, using predicate
4503 function LIVEP. */
4504 #define CHECK_LIVE(LIVEP) \
4505 do { \
4506 if (!LIVEP (m, po)) \
4507 abort (); \
4508 } while (0)
4510 /* Check both of the above conditions. */
4511 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4512 do { \
4513 CHECK_ALLOCATED (); \
4514 CHECK_LIVE (LIVEP); \
4515 } while (0) \
4517 #else /* not GC_CHECK_MARKED_OBJECTS */
4519 #define CHECK_ALLOCATED() (void) 0
4520 #define CHECK_LIVE(LIVEP) (void) 0
4521 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4523 #endif /* not GC_CHECK_MARKED_OBJECTS */
4525 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4527 case Lisp_String:
4529 register struct Lisp_String *ptr = XSTRING (obj);
4530 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4531 MARK_INTERVAL_TREE (ptr->intervals);
4532 MARK_STRING (ptr);
4533 #ifdef GC_CHECK_STRING_BYTES
4534 /* Check that the string size recorded in the string is the
4535 same as the one recorded in the sdata structure. */
4536 CHECK_STRING_BYTES (ptr);
4537 #endif /* GC_CHECK_STRING_BYTES */
4539 break;
4541 case Lisp_Vectorlike:
4542 #ifdef GC_CHECK_MARKED_OBJECTS
4543 m = mem_find (po);
4544 if (m == MEM_NIL && !GC_SUBRP (obj)
4545 && po != &buffer_defaults
4546 && po != &buffer_local_symbols)
4547 abort ();
4548 #endif /* GC_CHECK_MARKED_OBJECTS */
4550 if (GC_BUFFERP (obj))
4552 if (!XMARKBIT (XBUFFER (obj)->name))
4554 #ifdef GC_CHECK_MARKED_OBJECTS
4555 if (po != &buffer_defaults && po != &buffer_local_symbols)
4557 struct buffer *b;
4558 for (b = all_buffers; b && b != po; b = b->next)
4560 if (b == NULL)
4561 abort ();
4563 #endif /* GC_CHECK_MARKED_OBJECTS */
4564 mark_buffer (obj);
4567 else if (GC_SUBRP (obj))
4568 break;
4569 else if (GC_COMPILEDP (obj))
4570 /* We could treat this just like a vector, but it is better to
4571 save the COMPILED_CONSTANTS element for last and avoid
4572 recursion there. */
4574 register struct Lisp_Vector *ptr = XVECTOR (obj);
4575 register EMACS_INT size = ptr->size;
4576 register int i;
4578 if (size & ARRAY_MARK_FLAG)
4579 break; /* Already marked */
4581 CHECK_LIVE (live_vector_p);
4582 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4583 size &= PSEUDOVECTOR_SIZE_MASK;
4584 for (i = 0; i < size; i++) /* and then mark its elements */
4586 if (i != COMPILED_CONSTANTS)
4587 mark_object (&ptr->contents[i]);
4589 /* This cast should be unnecessary, but some Mips compiler complains
4590 (MIPS-ABI + SysVR4, DC/OSx, etc). */
4591 objptr = (Lisp_Object *) &ptr->contents[COMPILED_CONSTANTS];
4592 goto loop;
4594 else if (GC_FRAMEP (obj))
4596 register struct frame *ptr = XFRAME (obj);
4597 register EMACS_INT size = ptr->size;
4599 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4600 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4602 CHECK_LIVE (live_vector_p);
4603 mark_object (&ptr->name);
4604 mark_object (&ptr->icon_name);
4605 mark_object (&ptr->title);
4606 mark_object (&ptr->focus_frame);
4607 mark_object (&ptr->selected_window);
4608 mark_object (&ptr->minibuffer_window);
4609 mark_object (&ptr->param_alist);
4610 mark_object (&ptr->scroll_bars);
4611 mark_object (&ptr->condemned_scroll_bars);
4612 mark_object (&ptr->menu_bar_items);
4613 mark_object (&ptr->face_alist);
4614 mark_object (&ptr->menu_bar_vector);
4615 mark_object (&ptr->buffer_predicate);
4616 mark_object (&ptr->buffer_list);
4617 mark_object (&ptr->menu_bar_window);
4618 mark_object (&ptr->tool_bar_window);
4619 mark_face_cache (ptr->face_cache);
4620 #ifdef HAVE_WINDOW_SYSTEM
4621 mark_image_cache (ptr);
4622 mark_object (&ptr->tool_bar_items);
4623 mark_object (&ptr->desired_tool_bar_string);
4624 mark_object (&ptr->current_tool_bar_string);
4625 #endif /* HAVE_WINDOW_SYSTEM */
4627 else if (GC_BOOL_VECTOR_P (obj))
4629 register struct Lisp_Vector *ptr = XVECTOR (obj);
4631 if (ptr->size & ARRAY_MARK_FLAG)
4632 break; /* Already marked */
4633 CHECK_LIVE (live_vector_p);
4634 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4636 else if (GC_WINDOWP (obj))
4638 register struct Lisp_Vector *ptr = XVECTOR (obj);
4639 struct window *w = XWINDOW (obj);
4640 register EMACS_INT size = ptr->size;
4641 register int i;
4643 /* Stop if already marked. */
4644 if (size & ARRAY_MARK_FLAG)
4645 break;
4647 /* Mark it. */
4648 CHECK_LIVE (live_vector_p);
4649 ptr->size |= ARRAY_MARK_FLAG;
4651 /* There is no Lisp data above The member CURRENT_MATRIX in
4652 struct WINDOW. Stop marking when that slot is reached. */
4653 for (i = 0;
4654 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4655 i++)
4656 mark_object (&ptr->contents[i]);
4658 /* Mark glyphs for leaf windows. Marking window matrices is
4659 sufficient because frame matrices use the same glyph
4660 memory. */
4661 if (NILP (w->hchild)
4662 && NILP (w->vchild)
4663 && w->current_matrix)
4665 mark_glyph_matrix (w->current_matrix);
4666 mark_glyph_matrix (w->desired_matrix);
4669 else if (GC_HASH_TABLE_P (obj))
4671 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4672 EMACS_INT size = h->size;
4674 /* Stop if already marked. */
4675 if (size & ARRAY_MARK_FLAG)
4676 break;
4678 /* Mark it. */
4679 CHECK_LIVE (live_vector_p);
4680 h->size |= ARRAY_MARK_FLAG;
4682 /* Mark contents. */
4683 /* Do not mark next_free or next_weak.
4684 Being in the next_weak chain
4685 should not keep the hash table alive.
4686 No need to mark `count' since it is an integer. */
4687 mark_object (&h->test);
4688 mark_object (&h->weak);
4689 mark_object (&h->rehash_size);
4690 mark_object (&h->rehash_threshold);
4691 mark_object (&h->hash);
4692 mark_object (&h->next);
4693 mark_object (&h->index);
4694 mark_object (&h->user_hash_function);
4695 mark_object (&h->user_cmp_function);
4697 /* If hash table is not weak, mark all keys and values.
4698 For weak tables, mark only the vector. */
4699 if (GC_NILP (h->weak))
4700 mark_object (&h->key_and_value);
4701 else
4702 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4705 else
4707 register struct Lisp_Vector *ptr = XVECTOR (obj);
4708 register EMACS_INT size = ptr->size;
4709 register int i;
4711 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4712 CHECK_LIVE (live_vector_p);
4713 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4714 if (size & PSEUDOVECTOR_FLAG)
4715 size &= PSEUDOVECTOR_SIZE_MASK;
4717 for (i = 0; i < size; i++) /* and then mark its elements */
4718 mark_object (&ptr->contents[i]);
4720 break;
4722 case Lisp_Symbol:
4724 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4725 struct Lisp_Symbol *ptrx;
4727 if (XMARKBIT (ptr->plist)) break;
4728 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4729 XMARK (ptr->plist);
4730 mark_object ((Lisp_Object *) &ptr->value);
4731 mark_object (&ptr->function);
4732 mark_object (&ptr->plist);
4734 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4735 MARK_STRING (XSTRING (ptr->xname));
4736 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4738 /* Note that we do not mark the obarray of the symbol.
4739 It is safe not to do so because nothing accesses that
4740 slot except to check whether it is nil. */
4741 ptr = ptr->next;
4742 if (ptr)
4744 /* For the benefit of the last_marked log. */
4745 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
4746 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4747 XSETSYMBOL (obj, ptrx);
4748 /* We can't goto loop here because *objptr doesn't contain an
4749 actual Lisp_Object with valid datatype field. */
4750 goto loop2;
4753 break;
4755 case Lisp_Misc:
4756 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4757 switch (XMISCTYPE (obj))
4759 case Lisp_Misc_Marker:
4760 XMARK (XMARKER (obj)->chain);
4761 /* DO NOT mark thru the marker's chain.
4762 The buffer's markers chain does not preserve markers from gc;
4763 instead, markers are removed from the chain when freed by gc. */
4764 break;
4766 case Lisp_Misc_Buffer_Local_Value:
4767 case Lisp_Misc_Some_Buffer_Local_Value:
4769 register struct Lisp_Buffer_Local_Value *ptr
4770 = XBUFFER_LOCAL_VALUE (obj);
4771 if (XMARKBIT (ptr->realvalue)) break;
4772 XMARK (ptr->realvalue);
4773 /* If the cdr is nil, avoid recursion for the car. */
4774 if (EQ (ptr->cdr, Qnil))
4776 objptr = &ptr->realvalue;
4777 goto loop;
4779 mark_object (&ptr->realvalue);
4780 mark_object (&ptr->buffer);
4781 mark_object (&ptr->frame);
4782 objptr = &ptr->cdr;
4783 goto loop;
4786 case Lisp_Misc_Intfwd:
4787 case Lisp_Misc_Boolfwd:
4788 case Lisp_Misc_Objfwd:
4789 case Lisp_Misc_Buffer_Objfwd:
4790 case Lisp_Misc_Kboard_Objfwd:
4791 /* Don't bother with Lisp_Buffer_Objfwd,
4792 since all markable slots in current buffer marked anyway. */
4793 /* Don't need to do Lisp_Objfwd, since the places they point
4794 are protected with staticpro. */
4795 break;
4797 case Lisp_Misc_Overlay:
4799 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4800 if (!XMARKBIT (ptr->plist))
4802 XMARK (ptr->plist);
4803 mark_object (&ptr->start);
4804 mark_object (&ptr->end);
4805 objptr = &ptr->plist;
4806 goto loop;
4809 break;
4811 default:
4812 abort ();
4814 break;
4816 case Lisp_Cons:
4818 register struct Lisp_Cons *ptr = XCONS (obj);
4819 if (XMARKBIT (ptr->car)) break;
4820 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4821 XMARK (ptr->car);
4822 /* If the cdr is nil, avoid recursion for the car. */
4823 if (EQ (ptr->cdr, Qnil))
4825 objptr = &ptr->car;
4826 cdr_count = 0;
4827 goto loop;
4829 mark_object (&ptr->car);
4830 objptr = &ptr->cdr;
4831 cdr_count++;
4832 if (cdr_count == mark_object_loop_halt)
4833 abort ();
4834 goto loop;
4837 case Lisp_Float:
4838 CHECK_ALLOCATED_AND_LIVE (live_float_p);
4839 XMARK (XFLOAT (obj)->type);
4840 break;
4842 case Lisp_Int:
4843 break;
4845 default:
4846 abort ();
4849 #undef CHECK_LIVE
4850 #undef CHECK_ALLOCATED
4851 #undef CHECK_ALLOCATED_AND_LIVE
4854 /* Mark the pointers in a buffer structure. */
4856 static void
4857 mark_buffer (buf)
4858 Lisp_Object buf;
4860 register struct buffer *buffer = XBUFFER (buf);
4861 register Lisp_Object *ptr;
4862 Lisp_Object base_buffer;
4864 /* This is the buffer's markbit */
4865 mark_object (&buffer->name);
4866 XMARK (buffer->name);
4868 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
4870 if (CONSP (buffer->undo_list))
4872 Lisp_Object tail;
4873 tail = buffer->undo_list;
4875 while (CONSP (tail))
4877 register struct Lisp_Cons *ptr = XCONS (tail);
4879 if (XMARKBIT (ptr->car))
4880 break;
4881 XMARK (ptr->car);
4882 if (GC_CONSP (ptr->car)
4883 && ! XMARKBIT (XCAR (ptr->car))
4884 && GC_MARKERP (XCAR (ptr->car)))
4886 XMARK (XCAR_AS_LVALUE (ptr->car));
4887 mark_object (&XCDR_AS_LVALUE (ptr->car));
4889 else
4890 mark_object (&ptr->car);
4892 if (CONSP (ptr->cdr))
4893 tail = ptr->cdr;
4894 else
4895 break;
4898 mark_object (&XCDR_AS_LVALUE (tail));
4900 else
4901 mark_object (&buffer->undo_list);
4903 for (ptr = &buffer->name + 1;
4904 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4905 ptr++)
4906 mark_object (ptr);
4908 /* If this is an indirect buffer, mark its base buffer. */
4909 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
4911 XSETBUFFER (base_buffer, buffer->base_buffer);
4912 mark_buffer (base_buffer);
4917 /* Mark the pointers in the kboard objects. */
4919 static void
4920 mark_kboards ()
4922 KBOARD *kb;
4923 Lisp_Object *p;
4924 for (kb = all_kboards; kb; kb = kb->next_kboard)
4926 if (kb->kbd_macro_buffer)
4927 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4928 mark_object (p);
4929 mark_object (&kb->Voverriding_terminal_local_map);
4930 mark_object (&kb->Vlast_command);
4931 mark_object (&kb->Vreal_last_command);
4932 mark_object (&kb->Vprefix_arg);
4933 mark_object (&kb->Vlast_prefix_arg);
4934 mark_object (&kb->kbd_queue);
4935 mark_object (&kb->defining_kbd_macro);
4936 mark_object (&kb->Vlast_kbd_macro);
4937 mark_object (&kb->Vsystem_key_alist);
4938 mark_object (&kb->system_key_syms);
4939 mark_object (&kb->Vdefault_minibuffer_frame);
4940 mark_object (&kb->echo_string);
4945 /* Value is non-zero if OBJ will survive the current GC because it's
4946 either marked or does not need to be marked to survive. */
4949 survives_gc_p (obj)
4950 Lisp_Object obj;
4952 int survives_p;
4954 switch (XGCTYPE (obj))
4956 case Lisp_Int:
4957 survives_p = 1;
4958 break;
4960 case Lisp_Symbol:
4961 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4962 break;
4964 case Lisp_Misc:
4965 switch (XMISCTYPE (obj))
4967 case Lisp_Misc_Marker:
4968 survives_p = XMARKBIT (obj);
4969 break;
4971 case Lisp_Misc_Buffer_Local_Value:
4972 case Lisp_Misc_Some_Buffer_Local_Value:
4973 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4974 break;
4976 case Lisp_Misc_Intfwd:
4977 case Lisp_Misc_Boolfwd:
4978 case Lisp_Misc_Objfwd:
4979 case Lisp_Misc_Buffer_Objfwd:
4980 case Lisp_Misc_Kboard_Objfwd:
4981 survives_p = 1;
4982 break;
4984 case Lisp_Misc_Overlay:
4985 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4986 break;
4988 default:
4989 abort ();
4991 break;
4993 case Lisp_String:
4995 struct Lisp_String *s = XSTRING (obj);
4996 survives_p = STRING_MARKED_P (s);
4998 break;
5000 case Lisp_Vectorlike:
5001 if (GC_BUFFERP (obj))
5002 survives_p = XMARKBIT (XBUFFER (obj)->name);
5003 else if (GC_SUBRP (obj))
5004 survives_p = 1;
5005 else
5006 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
5007 break;
5009 case Lisp_Cons:
5010 survives_p = XMARKBIT (XCAR (obj));
5011 break;
5013 case Lisp_Float:
5014 survives_p = XMARKBIT (XFLOAT (obj)->type);
5015 break;
5017 default:
5018 abort ();
5021 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5026 /* Sweep: find all structures not marked, and free them. */
5028 static void
5029 gc_sweep ()
5031 /* Remove or mark entries in weak hash tables.
5032 This must be done before any object is unmarked. */
5033 sweep_weak_hash_tables ();
5035 sweep_strings ();
5036 #ifdef GC_CHECK_STRING_BYTES
5037 if (!noninteractive)
5038 check_string_bytes (1);
5039 #endif
5041 /* Put all unmarked conses on free list */
5043 register struct cons_block *cblk;
5044 struct cons_block **cprev = &cons_block;
5045 register int lim = cons_block_index;
5046 register int num_free = 0, num_used = 0;
5048 cons_free_list = 0;
5050 for (cblk = cons_block; cblk; cblk = *cprev)
5052 register int i;
5053 int this_free = 0;
5054 for (i = 0; i < lim; i++)
5055 if (!XMARKBIT (cblk->conses[i].car))
5057 this_free++;
5058 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5059 cons_free_list = &cblk->conses[i];
5060 #if GC_MARK_STACK
5061 cons_free_list->car = Vdead;
5062 #endif
5064 else
5066 num_used++;
5067 XUNMARK (cblk->conses[i].car);
5069 lim = CONS_BLOCK_SIZE;
5070 /* If this block contains only free conses and we have already
5071 seen more than two blocks worth of free conses then deallocate
5072 this block. */
5073 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5075 *cprev = cblk->next;
5076 /* Unhook from the free list. */
5077 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5078 lisp_free (cblk);
5079 n_cons_blocks--;
5081 else
5083 num_free += this_free;
5084 cprev = &cblk->next;
5087 total_conses = num_used;
5088 total_free_conses = num_free;
5091 /* Put all unmarked floats on free list */
5093 register struct float_block *fblk;
5094 struct float_block **fprev = &float_block;
5095 register int lim = float_block_index;
5096 register int num_free = 0, num_used = 0;
5098 float_free_list = 0;
5100 for (fblk = float_block; fblk; fblk = *fprev)
5102 register int i;
5103 int this_free = 0;
5104 for (i = 0; i < lim; i++)
5105 if (!XMARKBIT (fblk->floats[i].type))
5107 this_free++;
5108 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5109 float_free_list = &fblk->floats[i];
5110 #if GC_MARK_STACK
5111 float_free_list->type = Vdead;
5112 #endif
5114 else
5116 num_used++;
5117 XUNMARK (fblk->floats[i].type);
5119 lim = FLOAT_BLOCK_SIZE;
5120 /* If this block contains only free floats and we have already
5121 seen more than two blocks worth of free floats then deallocate
5122 this block. */
5123 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5125 *fprev = fblk->next;
5126 /* Unhook from the free list. */
5127 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5128 lisp_free (fblk);
5129 n_float_blocks--;
5131 else
5133 num_free += this_free;
5134 fprev = &fblk->next;
5137 total_floats = num_used;
5138 total_free_floats = num_free;
5141 /* Put all unmarked intervals on free list */
5143 register struct interval_block *iblk;
5144 struct interval_block **iprev = &interval_block;
5145 register int lim = interval_block_index;
5146 register int num_free = 0, num_used = 0;
5148 interval_free_list = 0;
5150 for (iblk = interval_block; iblk; iblk = *iprev)
5152 register int i;
5153 int this_free = 0;
5155 for (i = 0; i < lim; i++)
5157 if (! XMARKBIT (iblk->intervals[i].plist))
5159 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5160 interval_free_list = &iblk->intervals[i];
5161 this_free++;
5163 else
5165 num_used++;
5166 XUNMARK (iblk->intervals[i].plist);
5169 lim = INTERVAL_BLOCK_SIZE;
5170 /* If this block contains only free intervals and we have already
5171 seen more than two blocks worth of free intervals then
5172 deallocate this block. */
5173 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5175 *iprev = iblk->next;
5176 /* Unhook from the free list. */
5177 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5178 lisp_free (iblk);
5179 n_interval_blocks--;
5181 else
5183 num_free += this_free;
5184 iprev = &iblk->next;
5187 total_intervals = num_used;
5188 total_free_intervals = num_free;
5191 /* Put all unmarked symbols on free list */
5193 register struct symbol_block *sblk;
5194 struct symbol_block **sprev = &symbol_block;
5195 register int lim = symbol_block_index;
5196 register int num_free = 0, num_used = 0;
5198 symbol_free_list = NULL;
5200 for (sblk = symbol_block; sblk; sblk = *sprev)
5202 int this_free = 0;
5203 struct Lisp_Symbol *sym = sblk->symbols;
5204 struct Lisp_Symbol *end = sym + lim;
5206 for (; sym < end; ++sym)
5208 /* Check if the symbol was created during loadup. In such a case
5209 it might be pointed to by pure bytecode which we don't trace,
5210 so we conservatively assume that it is live. */
5211 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5213 if (!XMARKBIT (sym->plist) && !pure_p)
5215 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5216 symbol_free_list = sym;
5217 #if GC_MARK_STACK
5218 symbol_free_list->function = Vdead;
5219 #endif
5220 ++this_free;
5222 else
5224 ++num_used;
5225 if (!pure_p)
5226 UNMARK_STRING (XSTRING (sym->xname));
5227 XUNMARK (sym->plist);
5231 lim = SYMBOL_BLOCK_SIZE;
5232 /* If this block contains only free symbols and we have already
5233 seen more than two blocks worth of free symbols then deallocate
5234 this block. */
5235 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5237 *sprev = sblk->next;
5238 /* Unhook from the free list. */
5239 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5240 lisp_free (sblk);
5241 n_symbol_blocks--;
5243 else
5245 num_free += this_free;
5246 sprev = &sblk->next;
5249 total_symbols = num_used;
5250 total_free_symbols = num_free;
5253 /* Put all unmarked misc's on free list.
5254 For a marker, first unchain it from the buffer it points into. */
5256 register struct marker_block *mblk;
5257 struct marker_block **mprev = &marker_block;
5258 register int lim = marker_block_index;
5259 register int num_free = 0, num_used = 0;
5261 marker_free_list = 0;
5263 for (mblk = marker_block; mblk; mblk = *mprev)
5265 register int i;
5266 int this_free = 0;
5267 EMACS_INT already_free = -1;
5269 for (i = 0; i < lim; i++)
5271 Lisp_Object *markword;
5272 switch (mblk->markers[i].u_marker.type)
5274 case Lisp_Misc_Marker:
5275 markword = &mblk->markers[i].u_marker.chain;
5276 break;
5277 case Lisp_Misc_Buffer_Local_Value:
5278 case Lisp_Misc_Some_Buffer_Local_Value:
5279 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
5280 break;
5281 case Lisp_Misc_Overlay:
5282 markword = &mblk->markers[i].u_overlay.plist;
5283 break;
5284 case Lisp_Misc_Free:
5285 /* If the object was already free, keep it
5286 on the free list. */
5287 markword = (Lisp_Object *) &already_free;
5288 break;
5289 default:
5290 markword = 0;
5291 break;
5293 if (markword && !XMARKBIT (*markword))
5295 Lisp_Object tem;
5296 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5298 /* tem1 avoids Sun compiler bug */
5299 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
5300 XSETMARKER (tem, tem1);
5301 unchain_marker (tem);
5303 /* Set the type of the freed object to Lisp_Misc_Free.
5304 We could leave the type alone, since nobody checks it,
5305 but this might catch bugs faster. */
5306 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5307 mblk->markers[i].u_free.chain = marker_free_list;
5308 marker_free_list = &mblk->markers[i];
5309 this_free++;
5311 else
5313 num_used++;
5314 if (markword)
5315 XUNMARK (*markword);
5318 lim = MARKER_BLOCK_SIZE;
5319 /* If this block contains only free markers and we have already
5320 seen more than two blocks worth of free markers then deallocate
5321 this block. */
5322 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5324 *mprev = mblk->next;
5325 /* Unhook from the free list. */
5326 marker_free_list = mblk->markers[0].u_free.chain;
5327 lisp_free (mblk);
5328 n_marker_blocks--;
5330 else
5332 num_free += this_free;
5333 mprev = &mblk->next;
5337 total_markers = num_used;
5338 total_free_markers = num_free;
5341 /* Free all unmarked buffers */
5343 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5345 while (buffer)
5346 if (!XMARKBIT (buffer->name))
5348 if (prev)
5349 prev->next = buffer->next;
5350 else
5351 all_buffers = buffer->next;
5352 next = buffer->next;
5353 lisp_free (buffer);
5354 buffer = next;
5356 else
5358 XUNMARK (buffer->name);
5359 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5360 prev = buffer, buffer = buffer->next;
5364 /* Free all unmarked vectors */
5366 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5367 total_vector_size = 0;
5369 while (vector)
5370 if (!(vector->size & ARRAY_MARK_FLAG))
5372 if (prev)
5373 prev->next = vector->next;
5374 else
5375 all_vectors = vector->next;
5376 next = vector->next;
5377 lisp_free (vector);
5378 n_vectors--;
5379 vector = next;
5382 else
5384 vector->size &= ~ARRAY_MARK_FLAG;
5385 if (vector->size & PSEUDOVECTOR_FLAG)
5386 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5387 else
5388 total_vector_size += vector->size;
5389 prev = vector, vector = vector->next;
5393 #ifdef GC_CHECK_STRING_BYTES
5394 if (!noninteractive)
5395 check_string_bytes (1);
5396 #endif
5402 /* Debugging aids. */
5404 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5405 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5406 This may be helpful in debugging Emacs's memory usage.
5407 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5410 Lisp_Object end;
5412 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5414 return end;
5417 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5418 doc: /* Return a list of counters that measure how much consing there has been.
5419 Each of these counters increments for a certain kind of object.
5420 The counters wrap around from the largest positive integer to zero.
5421 Garbage collection does not decrease them.
5422 The elements of the value are as follows:
5423 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5424 All are in units of 1 = one object consed
5425 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5426 objects consed.
5427 MISCS include overlays, markers, and some internal types.
5428 Frames, windows, buffers, and subprocesses count as vectors
5429 (but the contents of a buffer's text do not count here). */)
5432 Lisp_Object consed[8];
5434 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5435 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5436 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5437 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5438 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5439 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5440 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5441 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5443 return Flist (8, consed);
5446 int suppress_checking;
5447 void
5448 die (msg, file, line)
5449 const char *msg;
5450 const char *file;
5451 int line;
5453 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5454 file, line, msg);
5455 abort ();
5458 /* Initialization */
5460 void
5461 init_alloc_once ()
5463 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5464 purebeg = PUREBEG;
5465 pure_size = PURESIZE;
5466 pure_bytes_used = 0;
5467 pure_bytes_used_before_overflow = 0;
5469 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5470 mem_init ();
5471 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5472 #endif
5474 all_vectors = 0;
5475 ignore_warnings = 1;
5476 #ifdef DOUG_LEA_MALLOC
5477 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5478 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5479 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5480 #endif
5481 init_strings ();
5482 init_cons ();
5483 init_symbol ();
5484 init_marker ();
5485 init_float ();
5486 init_intervals ();
5488 #ifdef REL_ALLOC
5489 malloc_hysteresis = 32;
5490 #else
5491 malloc_hysteresis = 0;
5492 #endif
5494 spare_memory = (char *) malloc (SPARE_MEMORY);
5496 ignore_warnings = 0;
5497 gcprolist = 0;
5498 byte_stack_list = 0;
5499 staticidx = 0;
5500 consing_since_gc = 0;
5501 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5502 #ifdef VIRT_ADDR_VARIES
5503 malloc_sbrk_unused = 1<<22; /* A large number */
5504 malloc_sbrk_used = 100000; /* as reasonable as any number */
5505 #endif /* VIRT_ADDR_VARIES */
5508 void
5509 init_alloc ()
5511 gcprolist = 0;
5512 byte_stack_list = 0;
5513 #if GC_MARK_STACK
5514 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5515 setjmp_tested_p = longjmps_done = 0;
5516 #endif
5517 #endif
5520 void
5521 syms_of_alloc ()
5523 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5524 doc: /* *Number of bytes of consing between garbage collections.
5525 Garbage collection can happen automatically once this many bytes have been
5526 allocated since the last garbage collection. All data types count.
5528 Garbage collection happens automatically only when `eval' is called.
5530 By binding this temporarily to a large number, you can effectively
5531 prevent garbage collection during a part of the program. */);
5533 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5534 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5536 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5537 doc: /* Number of cons cells that have been consed so far. */);
5539 DEFVAR_INT ("floats-consed", &floats_consed,
5540 doc: /* Number of floats that have been consed so far. */);
5542 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5543 doc: /* Number of vector cells that have been consed so far. */);
5545 DEFVAR_INT ("symbols-consed", &symbols_consed,
5546 doc: /* Number of symbols that have been consed so far. */);
5548 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5549 doc: /* Number of string characters that have been consed so far. */);
5551 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5552 doc: /* Number of miscellaneous objects that have been consed so far. */);
5554 DEFVAR_INT ("intervals-consed", &intervals_consed,
5555 doc: /* Number of intervals that have been consed so far. */);
5557 DEFVAR_INT ("strings-consed", &strings_consed,
5558 doc: /* Number of strings that have been consed so far. */);
5560 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5561 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5562 This means that certain objects should be allocated in shared (pure) space. */);
5564 DEFVAR_INT ("undo-limit", &undo_limit,
5565 doc: /* Keep no more undo information once it exceeds this size.
5566 This limit is applied when garbage collection happens.
5567 The size is counted as the number of bytes occupied,
5568 which includes both saved text and other data. */);
5569 undo_limit = 20000;
5571 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5572 doc: /* Don't keep more than this much size of undo information.
5573 A command which pushes past this size is itself forgotten.
5574 This limit is applied when garbage collection happens.
5575 The size is counted as the number of bytes occupied,
5576 which includes both saved text and other data. */);
5577 undo_strong_limit = 30000;
5579 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5580 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5581 garbage_collection_messages = 0;
5583 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5584 doc: /* Hook run after garbage collection has finished. */);
5585 Vpost_gc_hook = Qnil;
5586 Qpost_gc_hook = intern ("post-gc-hook");
5587 staticpro (&Qpost_gc_hook);
5589 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5590 doc: /* Precomputed `signal' argument for memory-full error. */);
5591 /* We build this in advance because if we wait until we need it, we might
5592 not be able to allocate the memory to hold it. */
5593 Vmemory_signal_data
5594 = list2 (Qerror,
5595 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5597 DEFVAR_LISP ("memory-full", &Vmemory_full,
5598 doc: /* Non-nil means we are handling a memory-full error. */);
5599 Vmemory_full = Qnil;
5601 staticpro (&Qgc_cons_threshold);
5602 Qgc_cons_threshold = intern ("gc-cons-threshold");
5604 staticpro (&Qchar_table_extra_slots);
5605 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5607 defsubr (&Scons);
5608 defsubr (&Slist);
5609 defsubr (&Svector);
5610 defsubr (&Smake_byte_code);
5611 defsubr (&Smake_list);
5612 defsubr (&Smake_vector);
5613 defsubr (&Smake_char_table);
5614 defsubr (&Smake_string);
5615 defsubr (&Smake_bool_vector);
5616 defsubr (&Smake_symbol);
5617 defsubr (&Smake_marker);
5618 defsubr (&Spurecopy);
5619 defsubr (&Sgarbage_collect);
5620 defsubr (&Smemory_limit);
5621 defsubr (&Smemory_use_counts);
5623 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5624 defsubr (&Sgc_status);
5625 #endif