* net/tramp.el (tramp-handle-file-accessible-directory-p): New defun.
[emacs.git] / src / intervals.c
blob807bbbfaa3311d98031dd1f7cc2a091df1a7c12c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2012 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 /* NOTES:
22 Have to ensure that we can't put symbol nil on a plist, or some
23 functions may work incorrectly.
25 An idea: Have the owner of the tree keep count of splits and/or
26 insertion lengths (in intervals), and balance after every N.
28 Need to call *_left_hook when buffer is killed.
30 Scan for zero-length, or 0-length to see notes about handling
31 zero length interval-markers.
33 There are comments around about freeing intervals. It might be
34 faster to explicitly free them (put them on the free list) than
35 to GC them.
40 #include <config.h>
42 #define INTERVALS_INLINE EXTERN_INLINE
44 #include <intprops.h>
45 #include "lisp.h"
46 #include "intervals.h"
47 #include "character.h"
48 #include "buffer.h"
49 #include "puresize.h"
50 #include "keyboard.h"
51 #include "keymap.h"
53 /* Test for membership, allowing for t (actually any non-cons) to mean the
54 universal set. */
56 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
58 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
59 static INTERVAL merge_interval_right (INTERVAL);
60 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
62 /* Utility functions for intervals. */
64 /* Use these functions to set Lisp_Object
65 or pointer slots of struct interval. */
67 static void
68 set_interval_object (INTERVAL i, Lisp_Object obj)
70 eassert (BUFFERP (obj) || STRINGP (obj));
71 i->up_obj = 1;
72 i->up.obj = obj;
75 static void
76 set_interval_left (INTERVAL i, INTERVAL left)
78 i->left = left;
81 static void
82 set_interval_right (INTERVAL i, INTERVAL right)
84 i->right = right;
87 /* Make the parent of D be whatever the parent of S is, regardless
88 of the type. This is used when balancing an interval tree. */
90 static void
91 copy_interval_parent (INTERVAL d, INTERVAL s)
93 d->up = s->up;
94 d->up_obj = s->up_obj;
97 /* Create the root interval of some object, a buffer or string. */
99 INTERVAL
100 create_root_interval (Lisp_Object parent)
102 INTERVAL new;
104 CHECK_IMPURE (parent);
106 new = make_interval ();
108 if (BUFFERP (parent))
110 new->total_length = (BUF_Z (XBUFFER (parent))
111 - BUF_BEG (XBUFFER (parent)));
112 eassert (0 <= TOTAL_LENGTH (new));
113 set_buffer_intervals (XBUFFER (parent), new);
114 new->position = BEG;
116 else if (STRINGP (parent))
118 new->total_length = SCHARS (parent);
119 eassert (0 <= TOTAL_LENGTH (new));
120 set_string_intervals (parent, new);
121 new->position = 0;
124 set_interval_object (new, parent);
126 return new;
129 /* Make the interval TARGET have exactly the properties of SOURCE */
131 void
132 copy_properties (register INTERVAL source, register INTERVAL target)
134 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
135 return;
137 COPY_INTERVAL_CACHE (source, target);
138 set_interval_plist (target, Fcopy_sequence (source->plist));
141 /* Merge the properties of interval SOURCE into the properties
142 of interval TARGET. That is to say, each property in SOURCE
143 is added to TARGET if TARGET has no such property as yet. */
145 static void
146 merge_properties (register INTERVAL source, register INTERVAL target)
148 register Lisp_Object o, sym, val;
150 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
151 return;
153 MERGE_INTERVAL_CACHE (source, target);
155 o = source->plist;
156 while (CONSP (o))
158 sym = XCAR (o);
159 o = XCDR (o);
160 CHECK_CONS (o);
162 val = target->plist;
163 while (CONSP (val) && !EQ (XCAR (val), sym))
165 val = XCDR (val);
166 if (!CONSP (val))
167 break;
168 val = XCDR (val);
171 if (NILP (val))
173 val = XCAR (o);
174 set_interval_plist (target, Fcons (sym, Fcons (val, target->plist)));
176 o = XCDR (o);
180 /* Return true if the two intervals have the same properties. */
182 bool
183 intervals_equal (INTERVAL i0, INTERVAL i1)
185 Lisp_Object i0_cdr, i0_sym;
186 Lisp_Object i1_cdr, i1_val;
188 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
189 return 1;
191 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
192 return 0;
194 i0_cdr = i0->plist;
195 i1_cdr = i1->plist;
196 while (CONSP (i0_cdr) && CONSP (i1_cdr))
198 i0_sym = XCAR (i0_cdr);
199 i0_cdr = XCDR (i0_cdr);
200 if (!CONSP (i0_cdr))
201 return 0;
202 i1_val = i1->plist;
203 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
205 i1_val = XCDR (i1_val);
206 if (!CONSP (i1_val))
207 return 0;
208 i1_val = XCDR (i1_val);
211 /* i0 has something i1 doesn't. */
212 if (EQ (i1_val, Qnil))
213 return 0;
215 /* i0 and i1 both have sym, but it has different values in each. */
216 if (!CONSP (i1_val)
217 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
218 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
219 return 0;
221 i0_cdr = XCDR (i0_cdr);
223 i1_cdr = XCDR (i1_cdr);
224 if (!CONSP (i1_cdr))
225 return 0;
226 i1_cdr = XCDR (i1_cdr);
229 /* Lengths of the two plists were equal. */
230 return (NILP (i0_cdr) && NILP (i1_cdr));
234 /* Traverse an interval tree TREE, performing FUNCTION on each node.
235 No guarantee is made about the order of traversal.
236 Pass FUNCTION two args: an interval, and ARG. */
238 void
239 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
241 /* Minimize stack usage. */
242 while (tree)
244 (*function) (tree, arg);
245 if (!tree->right)
246 tree = tree->left;
247 else
249 traverse_intervals_noorder (tree->left, function, arg);
250 tree = tree->right;
255 /* Traverse an interval tree TREE, performing FUNCTION on each node.
256 Pass FUNCTION two args: an interval, and ARG. */
258 void
259 traverse_intervals (INTERVAL tree, ptrdiff_t position,
260 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
262 while (tree)
264 traverse_intervals (tree->left, position, function, arg);
265 position += LEFT_TOTAL_LENGTH (tree);
266 tree->position = position;
267 (*function) (tree, arg);
268 position += LENGTH (tree); tree = tree->right;
272 #if 0
274 static int icount;
275 static int idepth;
276 static int zero_length;
278 /* These functions are temporary, for debugging purposes only. */
280 INTERVAL search_interval, found_interval;
282 void
283 check_for_interval (INTERVAL i)
285 if (i == search_interval)
287 found_interval = i;
288 icount++;
292 INTERVAL
293 search_for_interval (INTERVAL i, INTERVAL tree)
295 icount = 0;
296 search_interval = i;
297 found_interval = NULL;
298 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
299 return found_interval;
302 static void
303 inc_interval_count (INTERVAL i)
305 icount++;
306 if (LENGTH (i) == 0)
307 zero_length++;
308 if (depth > idepth)
309 idepth = depth;
313 count_intervals (INTERVAL i)
315 icount = 0;
316 idepth = 0;
317 zero_length = 0;
318 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
320 return icount;
323 static INTERVAL
324 root_interval (INTERVAL interval)
326 register INTERVAL i = interval;
328 while (! ROOT_INTERVAL_P (i))
329 i = INTERVAL_PARENT (i);
331 return i;
333 #endif
335 /* Assuming that a left child exists, perform the following operation:
338 / \ / \
339 B => A
340 / \ / \
344 static INTERVAL
345 rotate_right (INTERVAL interval)
347 INTERVAL i;
348 INTERVAL B = interval->left;
349 ptrdiff_t old_total = interval->total_length;
351 /* Deal with any Parent of A; make it point to B. */
352 if (! ROOT_INTERVAL_P (interval))
354 if (AM_LEFT_CHILD (interval))
355 set_interval_left (INTERVAL_PARENT (interval), B);
356 else
357 set_interval_right (INTERVAL_PARENT (interval), B);
359 copy_interval_parent (B, interval);
361 /* Make B the parent of A */
362 i = B->right;
363 set_interval_right (B, interval);
364 set_interval_parent (interval, B);
366 /* Make A point to c */
367 set_interval_left (interval, i);
368 if (i)
369 set_interval_parent (i, interval);
371 /* A's total length is decreased by the length of B and its left child. */
372 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
373 eassert (0 <= TOTAL_LENGTH (interval));
375 /* B must have the same total length of A. */
376 B->total_length = old_total;
377 eassert (0 <= TOTAL_LENGTH (B));
379 return B;
382 /* Assuming that a right child exists, perform the following operation:
385 / \ / \
386 B => A
387 / \ / \
391 static INTERVAL
392 rotate_left (INTERVAL interval)
394 INTERVAL i;
395 INTERVAL B = interval->right;
396 ptrdiff_t old_total = interval->total_length;
398 /* Deal with any parent of A; make it point to B. */
399 if (! ROOT_INTERVAL_P (interval))
401 if (AM_LEFT_CHILD (interval))
402 set_interval_left (INTERVAL_PARENT (interval), B);
403 else
404 set_interval_right (INTERVAL_PARENT (interval), B);
406 copy_interval_parent (B, interval);
408 /* Make B the parent of A */
409 i = B->left;
410 set_interval_left (B, interval);
411 set_interval_parent (interval, B);
413 /* Make A point to c */
414 set_interval_right (interval, i);
415 if (i)
416 set_interval_parent (i, interval);
418 /* A's total length is decreased by the length of B and its right child. */
419 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
420 eassert (0 <= TOTAL_LENGTH (interval));
422 /* B must have the same total length of A. */
423 B->total_length = old_total;
424 eassert (0 <= TOTAL_LENGTH (B));
426 return B;
429 /* Balance an interval tree with the assumption that the subtrees
430 themselves are already balanced. */
432 static INTERVAL
433 balance_an_interval (INTERVAL i)
435 register ptrdiff_t old_diff, new_diff;
437 while (1)
439 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
440 if (old_diff > 0)
442 /* Since the left child is longer, there must be one. */
443 new_diff = i->total_length - i->left->total_length
444 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
445 if (eabs (new_diff) >= old_diff)
446 break;
447 i = rotate_right (i);
448 balance_an_interval (i->right);
450 else if (old_diff < 0)
452 /* Since the right child is longer, there must be one. */
453 new_diff = i->total_length - i->right->total_length
454 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
455 if (eabs (new_diff) >= -old_diff)
456 break;
457 i = rotate_left (i);
458 balance_an_interval (i->left);
460 else
461 break;
463 return i;
466 /* Balance INTERVAL, potentially stuffing it back into its parent
467 Lisp Object. */
469 static INTERVAL
470 balance_possible_root_interval (INTERVAL interval)
472 Lisp_Object parent;
473 bool have_parent = 0;
475 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
476 return interval;
478 if (INTERVAL_HAS_OBJECT (interval))
480 have_parent = 1;
481 GET_INTERVAL_OBJECT (parent, interval);
483 interval = balance_an_interval (interval);
485 if (have_parent)
487 if (BUFFERP (parent))
488 set_buffer_intervals (XBUFFER (parent), interval);
489 else if (STRINGP (parent))
490 set_string_intervals (parent, interval);
493 return interval;
496 /* Balance the interval tree TREE. Balancing is by weight
497 (the amount of text). */
499 static INTERVAL
500 balance_intervals_internal (register INTERVAL tree)
502 /* Balance within each side. */
503 if (tree->left)
504 balance_intervals_internal (tree->left);
505 if (tree->right)
506 balance_intervals_internal (tree->right);
507 return balance_an_interval (tree);
510 /* Advertised interface to balance intervals. */
512 INTERVAL
513 balance_intervals (INTERVAL tree)
515 return tree ? balance_intervals_internal (tree) : NULL;
518 /* Rebalance text properties of B. */
520 static void
521 buffer_balance_intervals (struct buffer *b)
523 INTERVAL i;
525 eassert (b != NULL);
526 i = buffer_intervals (b);
527 if (i)
528 set_buffer_intervals (b, balance_an_interval (i));
531 /* Split INTERVAL into two pieces, starting the second piece at
532 character position OFFSET (counting from 0), relative to INTERVAL.
533 INTERVAL becomes the left-hand piece, and the right-hand piece
534 (second, lexicographically) is returned.
536 The size and position fields of the two intervals are set based upon
537 those of the original interval. The property list of the new interval
538 is reset, thus it is up to the caller to do the right thing with the
539 result.
541 Note that this does not change the position of INTERVAL; if it is a root,
542 it is still a root after this operation. */
544 INTERVAL
545 split_interval_right (INTERVAL interval, ptrdiff_t offset)
547 INTERVAL new = make_interval ();
548 ptrdiff_t position = interval->position;
549 ptrdiff_t new_length = LENGTH (interval) - offset;
551 new->position = position + offset;
552 set_interval_parent (new, interval);
554 if (NULL_RIGHT_CHILD (interval))
556 set_interval_right (interval, new);
557 new->total_length = new_length;
558 eassert (0 <= TOTAL_LENGTH (new));
560 else
562 /* Insert the new node between INTERVAL and its right child. */
563 set_interval_right (new, interval->right);
564 set_interval_parent (interval->right, new);
565 set_interval_right (interval, new);
566 new->total_length = new_length + new->right->total_length;
567 eassert (0 <= TOTAL_LENGTH (new));
568 balance_an_interval (new);
571 balance_possible_root_interval (interval);
573 return new;
576 /* Split INTERVAL into two pieces, starting the second piece at
577 character position OFFSET (counting from 0), relative to INTERVAL.
578 INTERVAL becomes the right-hand piece, and the left-hand piece
579 (first, lexicographically) is returned.
581 The size and position fields of the two intervals are set based upon
582 those of the original interval. The property list of the new interval
583 is reset, thus it is up to the caller to do the right thing with the
584 result.
586 Note that this does not change the position of INTERVAL; if it is a root,
587 it is still a root after this operation. */
589 INTERVAL
590 split_interval_left (INTERVAL interval, ptrdiff_t offset)
592 INTERVAL new = make_interval ();
593 ptrdiff_t new_length = offset;
595 new->position = interval->position;
596 interval->position = interval->position + offset;
597 set_interval_parent (new, interval);
599 if (NULL_LEFT_CHILD (interval))
601 set_interval_left (interval, new);
602 new->total_length = new_length;
603 eassert (0 <= TOTAL_LENGTH (new));
605 else
607 /* Insert the new node between INTERVAL and its left child. */
608 set_interval_left (new, interval->left);
609 set_interval_parent (new->left, new);
610 set_interval_left (interval, new);
611 new->total_length = new_length + new->left->total_length;
612 eassert (0 <= TOTAL_LENGTH (new));
613 balance_an_interval (new);
616 balance_possible_root_interval (interval);
618 return new;
621 /* Return the proper position for the first character
622 described by the interval tree SOURCE.
623 This is 1 if the parent is a buffer,
624 0 if the parent is a string or if there is no parent.
626 Don't use this function on an interval which is the child
627 of another interval! */
629 static int
630 interval_start_pos (INTERVAL source)
632 Lisp_Object parent;
634 if (!source)
635 return 0;
637 if (! INTERVAL_HAS_OBJECT (source))
638 return 0;
639 GET_INTERVAL_OBJECT (parent, source);
640 if (BUFFERP (parent))
641 return BUF_BEG (XBUFFER (parent));
642 return 0;
645 /* Find the interval containing text position POSITION in the text
646 represented by the interval tree TREE. POSITION is a buffer
647 position (starting from 1) or a string index (starting from 0).
648 If POSITION is at the end of the buffer or string,
649 return the interval containing the last character.
651 The `position' field, which is a cache of an interval's position,
652 is updated in the interval found. Other functions (e.g., next_interval)
653 will update this cache based on the result of find_interval. */
655 INTERVAL
656 find_interval (register INTERVAL tree, register ptrdiff_t position)
658 /* The distance from the left edge of the subtree at TREE
659 to POSITION. */
660 register ptrdiff_t relative_position;
662 if (!tree)
663 return NULL;
665 relative_position = position;
666 if (INTERVAL_HAS_OBJECT (tree))
668 Lisp_Object parent;
669 GET_INTERVAL_OBJECT (parent, tree);
670 if (BUFFERP (parent))
671 relative_position -= BUF_BEG (XBUFFER (parent));
674 eassert (relative_position <= TOTAL_LENGTH (tree));
676 tree = balance_possible_root_interval (tree);
678 while (1)
680 if (relative_position < LEFT_TOTAL_LENGTH (tree))
682 tree = tree->left;
684 else if (! NULL_RIGHT_CHILD (tree)
685 && relative_position >= (TOTAL_LENGTH (tree)
686 - RIGHT_TOTAL_LENGTH (tree)))
688 relative_position -= (TOTAL_LENGTH (tree)
689 - RIGHT_TOTAL_LENGTH (tree));
690 tree = tree->right;
692 else
694 tree->position
695 = (position - relative_position /* left edge of *tree. */
696 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
698 return tree;
703 /* Find the succeeding interval (lexicographically) to INTERVAL.
704 Sets the `position' field based on that of INTERVAL (see
705 find_interval). */
707 INTERVAL
708 next_interval (register INTERVAL interval)
710 register INTERVAL i = interval;
711 register ptrdiff_t next_position;
713 if (!i)
714 return NULL;
715 next_position = interval->position + LENGTH (interval);
717 if (! NULL_RIGHT_CHILD (i))
719 i = i->right;
720 while (! NULL_LEFT_CHILD (i))
721 i = i->left;
723 i->position = next_position;
724 return i;
727 while (! NULL_PARENT (i))
729 if (AM_LEFT_CHILD (i))
731 i = INTERVAL_PARENT (i);
732 i->position = next_position;
733 return i;
736 i = INTERVAL_PARENT (i);
739 return NULL;
742 /* Find the preceding interval (lexicographically) to INTERVAL.
743 Sets the `position' field based on that of INTERVAL (see
744 find_interval). */
746 INTERVAL
747 previous_interval (register INTERVAL interval)
749 register INTERVAL i;
751 if (!interval)
752 return NULL;
754 if (! NULL_LEFT_CHILD (interval))
756 i = interval->left;
757 while (! NULL_RIGHT_CHILD (i))
758 i = i->right;
760 i->position = interval->position - LENGTH (i);
761 return i;
764 i = interval;
765 while (! NULL_PARENT (i))
767 if (AM_RIGHT_CHILD (i))
769 i = INTERVAL_PARENT (i);
771 i->position = interval->position - LENGTH (i);
772 return i;
774 i = INTERVAL_PARENT (i);
777 return NULL;
780 /* Find the interval containing POS given some non-NULL INTERVAL
781 in the same tree. Note that we need to update interval->position
782 if we go down the tree.
783 To speed up the process, we assume that the ->position of
784 I and all its parents is already uptodate. */
785 INTERVAL
786 update_interval (register INTERVAL i, ptrdiff_t pos)
788 if (!i)
789 return NULL;
791 while (1)
793 if (pos < i->position)
795 /* Move left. */
796 if (pos >= i->position - TOTAL_LENGTH (i->left))
798 i->left->position = i->position - TOTAL_LENGTH (i->left)
799 + LEFT_TOTAL_LENGTH (i->left);
800 i = i->left; /* Move to the left child */
802 else if (NULL_PARENT (i))
803 error ("Point before start of properties");
804 else
805 i = INTERVAL_PARENT (i);
806 continue;
808 else if (pos >= INTERVAL_LAST_POS (i))
810 /* Move right. */
811 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
813 i->right->position = INTERVAL_LAST_POS (i)
814 + LEFT_TOTAL_LENGTH (i->right);
815 i = i->right; /* Move to the right child */
817 else if (NULL_PARENT (i))
818 error ("Point %"pD"d after end of properties", pos);
819 else
820 i = INTERVAL_PARENT (i);
821 continue;
823 else
824 return i;
828 /* Effect an adjustment corresponding to the addition of LENGTH characters
829 of text. Do this by finding the interval containing POSITION in the
830 interval tree TREE, and then adjusting all of its ancestors by adding
831 LENGTH to them.
833 If POSITION is the first character of an interval, meaning that point
834 is actually between the two intervals, make the new text belong to
835 the interval which is "sticky".
837 If both intervals are "sticky", then make them belong to the left-most
838 interval. Another possibility would be to create a new interval for
839 this text, and make it have the merged properties of both ends. */
841 static INTERVAL
842 adjust_intervals_for_insertion (INTERVAL tree,
843 ptrdiff_t position, ptrdiff_t length)
845 INTERVAL i;
846 INTERVAL temp;
847 bool eobp = 0;
848 Lisp_Object parent;
849 ptrdiff_t offset;
851 eassert (TOTAL_LENGTH (tree) > 0);
853 GET_INTERVAL_OBJECT (parent, tree);
854 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
856 /* If inserting at point-max of a buffer, that position will be out
857 of range. Remember that buffer positions are 1-based. */
858 if (position >= TOTAL_LENGTH (tree) + offset)
860 position = TOTAL_LENGTH (tree) + offset;
861 eobp = 1;
864 i = find_interval (tree, position);
866 /* If in middle of an interval which is not sticky either way,
867 we must not just give its properties to the insertion.
868 So split this interval at the insertion point.
870 Originally, the if condition here was this:
871 (! (position == i->position || eobp)
872 && END_NONSTICKY_P (i)
873 && FRONT_NONSTICKY_P (i))
874 But, these macros are now unreliable because of introduction of
875 Vtext_property_default_nonsticky. So, we always check properties
876 one by one if POSITION is in middle of an interval. */
877 if (! (position == i->position || eobp))
879 Lisp_Object tail;
880 Lisp_Object front, rear;
882 tail = i->plist;
884 /* Properties font-sticky and rear-nonsticky override
885 Vtext_property_default_nonsticky. So, if they are t, we can
886 skip one by one checking of properties. */
887 rear = textget (i->plist, Qrear_nonsticky);
888 if (! CONSP (rear) && ! NILP (rear))
890 /* All properties are nonsticky. We split the interval. */
891 goto check_done;
893 front = textget (i->plist, Qfront_sticky);
894 if (! CONSP (front) && ! NILP (front))
896 /* All properties are sticky. We don't split the interval. */
897 tail = Qnil;
898 goto check_done;
901 /* Does any actual property pose an actual problem? We break
902 the loop if we find a nonsticky property. */
903 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
905 Lisp_Object prop, tmp;
906 prop = XCAR (tail);
908 /* Is this particular property front-sticky? */
909 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
910 continue;
912 /* Is this particular property rear-nonsticky? */
913 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
914 break;
916 /* Is this particular property recorded as sticky or
917 nonsticky in Vtext_property_default_nonsticky? */
918 tmp = Fassq (prop, Vtext_property_default_nonsticky);
919 if (CONSP (tmp))
921 if (NILP (tmp))
922 continue;
923 break;
926 /* By default, a text property is rear-sticky, thus we
927 continue the loop. */
930 check_done:
931 /* If any property is a real problem, split the interval. */
932 if (! NILP (tail))
934 temp = split_interval_right (i, position - i->position);
935 copy_properties (i, temp);
936 i = temp;
940 /* If we are positioned between intervals, check the stickiness of
941 both of them. We have to do this too, if we are at BEG or Z. */
942 if (position == i->position || eobp)
944 register INTERVAL prev;
946 if (position == BEG)
947 prev = 0;
948 else if (eobp)
950 prev = i;
951 i = 0;
953 else
954 prev = previous_interval (i);
956 /* Even if we are positioned between intervals, we default
957 to the left one if it exists. We extend it now and split
958 off a part later, if stickiness demands it. */
959 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
961 temp->total_length += length;
962 eassert (0 <= TOTAL_LENGTH (temp));
963 temp = balance_possible_root_interval (temp);
966 /* If at least one interval has sticky properties,
967 we check the stickiness property by property.
969 Originally, the if condition here was this:
970 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
971 But, these macros are now unreliable because of introduction
972 of Vtext_property_default_nonsticky. So, we always have to
973 check stickiness of properties one by one. If cache of
974 stickiness is implemented in the future, we may be able to
975 use those macros again. */
976 if (1)
978 Lisp_Object pleft, pright;
979 struct interval newi;
981 RESET_INTERVAL (&newi);
982 pleft = prev ? prev->plist : Qnil;
983 pright = i ? i->plist : Qnil;
984 set_interval_plist (&newi, merge_properties_sticky (pleft, pright));
986 if (! prev) /* i.e. position == BEG */
988 if (! intervals_equal (i, &newi))
990 i = split_interval_left (i, length);
991 set_interval_plist (i, newi.plist);
994 else if (! intervals_equal (prev, &newi))
996 prev = split_interval_right (prev, position - prev->position);
997 set_interval_plist (prev, newi.plist);
998 if (i && intervals_equal (prev, i))
999 merge_interval_right (prev);
1002 /* We will need to update the cache here later. */
1004 else if (! prev && ! NILP (i->plist))
1006 /* Just split off a new interval at the left.
1007 Since I wasn't front-sticky, the empty plist is ok. */
1008 i = split_interval_left (i, length);
1012 /* Otherwise just extend the interval. */
1013 else
1015 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1017 temp->total_length += length;
1018 eassert (0 <= TOTAL_LENGTH (temp));
1019 temp = balance_possible_root_interval (temp);
1023 return tree;
1026 /* Any property might be front-sticky on the left, rear-sticky on the left,
1027 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1028 can be arranged in a matrix with rows denoting the left conditions and
1029 columns denoting the right conditions:
1030 _ __ _
1031 _ FR FR FR FR
1032 FR__ 0 1 2 3
1033 _FR 4 5 6 7
1034 FR 8 9 A B
1035 FR C D E F
1037 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1038 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1039 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1040 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1041 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1042 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1043 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1044 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1046 We inherit from whoever has a sticky side facing us. If both sides
1047 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1048 non-nil value for the current property. If both sides do, then we take
1049 from the left.
1051 When we inherit a property, we get its stickiness as well as its value.
1052 So, when we merge the above two lists, we expect to get this:
1054 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1055 rear-nonsticky (p6 pa)
1056 p0 L p1 L p2 L p3 L p6 R p7 R
1057 pa R pb R pc L pd L pe L pf L)
1059 The optimizable special cases are:
1060 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1061 left rear-nonsticky = t, right front-sticky = t (inherit right)
1062 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1065 static Lisp_Object
1066 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1068 Lisp_Object props, front, rear;
1069 Lisp_Object lfront, lrear, rfront, rrear;
1070 Lisp_Object tail1, tail2, sym, lval, rval, cat;
1071 bool use_left, use_right, lpresent;
1073 props = Qnil;
1074 front = Qnil;
1075 rear = Qnil;
1076 lfront = textget (pleft, Qfront_sticky);
1077 lrear = textget (pleft, Qrear_nonsticky);
1078 rfront = textget (pright, Qfront_sticky);
1079 rrear = textget (pright, Qrear_nonsticky);
1081 /* Go through each element of PRIGHT. */
1082 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1084 Lisp_Object tmp;
1086 sym = XCAR (tail1);
1088 /* Sticky properties get special treatment. */
1089 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1090 continue;
1092 rval = Fcar (XCDR (tail1));
1093 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1094 if (EQ (sym, XCAR (tail2)))
1095 break;
1097 /* Indicate whether the property is explicitly defined on the left.
1098 (We know it is defined explicitly on the right
1099 because otherwise we don't get here.) */
1100 lpresent = ! NILP (tail2);
1101 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1103 /* Even if lrear or rfront say nothing about the stickiness of
1104 SYM, Vtext_property_default_nonsticky may give default
1105 stickiness to SYM. */
1106 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1107 use_left = (lpresent
1108 && ! (TMEM (sym, lrear)
1109 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1110 use_right = (TMEM (sym, rfront)
1111 || (CONSP (tmp) && NILP (XCDR (tmp))));
1112 if (use_left && use_right)
1114 if (NILP (lval))
1115 use_left = 0;
1116 else if (NILP (rval))
1117 use_right = 0;
1119 if (use_left)
1121 /* We build props as (value sym ...) rather than (sym value ...)
1122 because we plan to nreverse it when we're done. */
1123 props = Fcons (lval, Fcons (sym, props));
1124 if (TMEM (sym, lfront))
1125 front = Fcons (sym, front);
1126 if (TMEM (sym, lrear))
1127 rear = Fcons (sym, rear);
1129 else if (use_right)
1131 props = Fcons (rval, Fcons (sym, props));
1132 if (TMEM (sym, rfront))
1133 front = Fcons (sym, front);
1134 if (TMEM (sym, rrear))
1135 rear = Fcons (sym, rear);
1139 /* Now go through each element of PLEFT. */
1140 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1142 Lisp_Object tmp;
1144 sym = XCAR (tail2);
1146 /* Sticky properties get special treatment. */
1147 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1148 continue;
1150 /* If sym is in PRIGHT, we've already considered it. */
1151 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1152 if (EQ (sym, XCAR (tail1)))
1153 break;
1154 if (! NILP (tail1))
1155 continue;
1157 lval = Fcar (XCDR (tail2));
1159 /* Even if lrear or rfront say nothing about the stickiness of
1160 SYM, Vtext_property_default_nonsticky may give default
1161 stickiness to SYM. */
1162 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1164 /* Since rval is known to be nil in this loop, the test simplifies. */
1165 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1167 props = Fcons (lval, Fcons (sym, props));
1168 if (TMEM (sym, lfront))
1169 front = Fcons (sym, front);
1171 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1173 /* The value is nil, but we still inherit the stickiness
1174 from the right. */
1175 front = Fcons (sym, front);
1176 if (TMEM (sym, rrear))
1177 rear = Fcons (sym, rear);
1180 props = Fnreverse (props);
1181 if (! NILP (rear))
1182 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1184 cat = textget (props, Qcategory);
1185 if (! NILP (front)
1187 /* If we have inherited a front-stick category property that is t,
1188 we don't need to set up a detailed one. */
1189 ! (! NILP (cat) && SYMBOLP (cat)
1190 && EQ (Fget (cat, Qfront_sticky), Qt)))
1191 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1192 return props;
1196 /* Delete a node I from its interval tree by merging its subtrees
1197 into one subtree which is then returned. Caller is responsible for
1198 storing the resulting subtree into its parent. */
1200 static INTERVAL
1201 delete_node (register INTERVAL i)
1203 register INTERVAL migrate, this;
1204 register ptrdiff_t migrate_amt;
1206 if (!i->left)
1207 return i->right;
1208 if (!i->right)
1209 return i->left;
1211 migrate = i->left;
1212 migrate_amt = i->left->total_length;
1213 this = i->right;
1214 this->total_length += migrate_amt;
1215 while (this->left)
1217 this = this->left;
1218 this->total_length += migrate_amt;
1220 eassert (0 <= TOTAL_LENGTH (this));
1221 set_interval_left (this, migrate);
1222 set_interval_parent (migrate, this);
1224 return i->right;
1227 /* Delete interval I from its tree by calling `delete_node'
1228 and properly connecting the resultant subtree.
1230 I is presumed to be empty; that is, no adjustments are made
1231 for the length of I. */
1233 static void
1234 delete_interval (register INTERVAL i)
1236 register INTERVAL parent;
1237 ptrdiff_t amt = LENGTH (i);
1239 eassert (amt == 0); /* Only used on zero-length intervals now. */
1241 if (ROOT_INTERVAL_P (i))
1243 Lisp_Object owner;
1244 GET_INTERVAL_OBJECT (owner, i);
1245 parent = delete_node (i);
1246 if (parent)
1247 set_interval_object (parent, owner);
1249 if (BUFFERP (owner))
1250 set_buffer_intervals (XBUFFER (owner), parent);
1251 else if (STRINGP (owner))
1252 set_string_intervals (owner, parent);
1253 else
1254 emacs_abort ();
1256 return;
1259 parent = INTERVAL_PARENT (i);
1260 if (AM_LEFT_CHILD (i))
1262 set_interval_left (parent, delete_node (i));
1263 if (parent->left)
1264 set_interval_parent (parent->left, parent);
1266 else
1268 set_interval_right (parent, delete_node (i));
1269 if (parent->right)
1270 set_interval_parent (parent->right, parent);
1274 /* Find the interval in TREE corresponding to the relative position
1275 FROM and delete as much as possible of AMOUNT from that interval.
1276 Return the amount actually deleted, and if the interval was
1277 zeroed-out, delete that interval node from the tree.
1279 Note that FROM is actually origin zero, aka relative to the
1280 leftmost edge of tree. This is appropriate since we call ourselves
1281 recursively on subtrees.
1283 Do this by recursing down TREE to the interval in question, and
1284 deleting the appropriate amount of text. */
1286 static ptrdiff_t
1287 interval_deletion_adjustment (register INTERVAL tree, register ptrdiff_t from,
1288 register ptrdiff_t amount)
1290 register ptrdiff_t relative_position = from;
1292 if (!tree)
1293 return 0;
1295 /* Left branch. */
1296 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1298 ptrdiff_t subtract = interval_deletion_adjustment (tree->left,
1299 relative_position,
1300 amount);
1301 tree->total_length -= subtract;
1302 eassert (0 <= TOTAL_LENGTH (tree));
1303 return subtract;
1305 /* Right branch. */
1306 else if (relative_position >= (TOTAL_LENGTH (tree)
1307 - RIGHT_TOTAL_LENGTH (tree)))
1309 ptrdiff_t subtract;
1311 relative_position -= (tree->total_length
1312 - RIGHT_TOTAL_LENGTH (tree));
1313 subtract = interval_deletion_adjustment (tree->right,
1314 relative_position,
1315 amount);
1316 tree->total_length -= subtract;
1317 eassert (0 <= TOTAL_LENGTH (tree));
1318 return subtract;
1320 /* Here -- this node. */
1321 else
1323 /* How much can we delete from this interval? */
1324 ptrdiff_t my_amount = ((tree->total_length
1325 - RIGHT_TOTAL_LENGTH (tree))
1326 - relative_position);
1328 if (amount > my_amount)
1329 amount = my_amount;
1331 tree->total_length -= amount;
1332 eassert (0 <= TOTAL_LENGTH (tree));
1333 if (LENGTH (tree) == 0)
1334 delete_interval (tree);
1336 return amount;
1339 /* Never reach here. */
1342 /* Effect the adjustments necessary to the interval tree of BUFFER to
1343 correspond to the deletion of LENGTH characters from that buffer
1344 text. The deletion is effected at position START (which is a
1345 buffer position, i.e. origin 1). */
1347 static void
1348 adjust_intervals_for_deletion (struct buffer *buffer,
1349 ptrdiff_t start, ptrdiff_t length)
1351 ptrdiff_t left_to_delete = length;
1352 INTERVAL tree = buffer_intervals (buffer);
1353 Lisp_Object parent;
1354 ptrdiff_t offset;
1356 GET_INTERVAL_OBJECT (parent, tree);
1357 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1359 if (!tree)
1360 return;
1362 eassert (start <= offset + TOTAL_LENGTH (tree)
1363 && start + length <= offset + TOTAL_LENGTH (tree));
1365 if (length == TOTAL_LENGTH (tree))
1367 set_buffer_intervals (buffer, NULL);
1368 return;
1371 if (ONLY_INTERVAL_P (tree))
1373 tree->total_length -= length;
1374 eassert (0 <= TOTAL_LENGTH (tree));
1375 return;
1378 if (start > offset + TOTAL_LENGTH (tree))
1379 start = offset + TOTAL_LENGTH (tree);
1380 while (left_to_delete > 0)
1382 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1383 left_to_delete);
1384 tree = buffer_intervals (buffer);
1385 if (left_to_delete == tree->total_length)
1387 set_buffer_intervals (buffer, NULL);
1388 return;
1393 /* Make the adjustments necessary to the interval tree of BUFFER to
1394 represent an addition or deletion of LENGTH characters starting
1395 at position START. Addition or deletion is indicated by the sign
1396 of LENGTH. */
1398 void
1399 offset_intervals (struct buffer *buffer, ptrdiff_t start, ptrdiff_t length)
1401 if (!buffer_intervals (buffer) || length == 0)
1402 return;
1404 if (length > 0)
1405 adjust_intervals_for_insertion (buffer_intervals (buffer),
1406 start, length);
1407 else
1409 lint_assume (- TYPE_MAXIMUM (ptrdiff_t) <= length);
1410 adjust_intervals_for_deletion (buffer, start, -length);
1414 /* Merge interval I with its lexicographic successor. The resulting
1415 interval is returned, and has the properties of the original
1416 successor. The properties of I are lost. I is removed from the
1417 interval tree.
1419 IMPORTANT:
1420 The caller must verify that this is not the last (rightmost)
1421 interval. */
1423 static INTERVAL
1424 merge_interval_right (register INTERVAL i)
1426 register ptrdiff_t absorb = LENGTH (i);
1427 register INTERVAL successor;
1429 /* Find the succeeding interval. */
1430 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1431 as we descend. */
1433 successor = i->right;
1434 while (! NULL_LEFT_CHILD (successor))
1436 successor->total_length += absorb;
1437 eassert (0 <= TOTAL_LENGTH (successor));
1438 successor = successor->left;
1441 successor->total_length += absorb;
1442 eassert (0 <= TOTAL_LENGTH (successor));
1443 delete_interval (i);
1444 return successor;
1447 /* Zero out this interval. */
1448 i->total_length -= absorb;
1449 eassert (0 <= TOTAL_LENGTH (i));
1451 successor = i;
1452 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1453 we ascend. */
1455 if (AM_LEFT_CHILD (successor))
1457 successor = INTERVAL_PARENT (successor);
1458 delete_interval (i);
1459 return successor;
1462 successor = INTERVAL_PARENT (successor);
1463 successor->total_length -= absorb;
1464 eassert (0 <= TOTAL_LENGTH (successor));
1467 /* This must be the rightmost or last interval and cannot
1468 be merged right. The caller should have known. */
1469 emacs_abort ();
1472 /* Merge interval I with its lexicographic predecessor. The resulting
1473 interval is returned, and has the properties of the original predecessor.
1474 The properties of I are lost. Interval node I is removed from the tree.
1476 IMPORTANT:
1477 The caller must verify that this is not the first (leftmost) interval. */
1479 INTERVAL
1480 merge_interval_left (register INTERVAL i)
1482 register ptrdiff_t absorb = LENGTH (i);
1483 register INTERVAL predecessor;
1485 /* Find the preceding interval. */
1486 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1487 adding ABSORB as we go. */
1489 predecessor = i->left;
1490 while (! NULL_RIGHT_CHILD (predecessor))
1492 predecessor->total_length += absorb;
1493 eassert (0 <= TOTAL_LENGTH (predecessor));
1494 predecessor = predecessor->right;
1497 predecessor->total_length += absorb;
1498 eassert (0 <= TOTAL_LENGTH (predecessor));
1499 delete_interval (i);
1500 return predecessor;
1503 /* Zero out this interval. */
1504 i->total_length -= absorb;
1505 eassert (0 <= TOTAL_LENGTH (i));
1507 predecessor = i;
1508 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1509 subtracting ABSORB. */
1511 if (AM_RIGHT_CHILD (predecessor))
1513 predecessor = INTERVAL_PARENT (predecessor);
1514 delete_interval (i);
1515 return predecessor;
1518 predecessor = INTERVAL_PARENT (predecessor);
1519 predecessor->total_length -= absorb;
1520 eassert (0 <= TOTAL_LENGTH (predecessor));
1523 /* This must be the leftmost or first interval and cannot
1524 be merged left. The caller should have known. */
1525 emacs_abort ();
1528 /* Create a copy of SOURCE but with the default value of UP. */
1530 static INTERVAL
1531 reproduce_interval (INTERVAL source)
1533 register INTERVAL target = make_interval ();
1535 target->total_length = source->total_length;
1536 target->position = source->position;
1538 copy_properties (source, target);
1540 if (! NULL_LEFT_CHILD (source))
1541 set_interval_left (target, reproduce_tree (source->left, target));
1542 if (! NULL_RIGHT_CHILD (source))
1543 set_interval_right (target, reproduce_tree (source->right, target));
1545 return target;
1548 /* Make an exact copy of interval tree SOURCE which descends from
1549 PARENT. This is done by recursing through SOURCE, copying
1550 the current interval and its properties, and then adjusting
1551 the pointers of the copy. */
1553 static INTERVAL
1554 reproduce_tree (INTERVAL source, INTERVAL parent)
1556 INTERVAL target = reproduce_interval (source);
1557 set_interval_parent (target, parent);
1558 return target;
1561 static INTERVAL
1562 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1564 INTERVAL target = reproduce_interval (source);
1565 set_interval_object (target, parent);
1566 return target;
1569 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1570 LENGTH is the length of the text in SOURCE.
1572 The `position' field of the SOURCE intervals is assumed to be
1573 consistent with its parent; therefore, SOURCE must be an
1574 interval tree made with copy_interval or must be the whole
1575 tree of a buffer or a string.
1577 This is used in insdel.c when inserting Lisp_Strings into the
1578 buffer. The text corresponding to SOURCE is already in the buffer
1579 when this is called. The intervals of new tree are a copy of those
1580 belonging to the string being inserted; intervals are never
1581 shared.
1583 If the inserted text had no intervals associated, and we don't
1584 want to inherit the surrounding text's properties, this function
1585 simply returns -- offset_intervals should handle placing the
1586 text in the correct interval, depending on the sticky bits.
1588 If the inserted text had properties (intervals), then there are two
1589 cases -- either insertion happened in the middle of some interval,
1590 or between two intervals.
1592 If the text goes into the middle of an interval, then new intervals
1593 are created in the middle, and new text has the union of its properties
1594 and those of the text into which it was inserted.
1596 If the text goes between two intervals, then if neither interval
1597 had its appropriate sticky property set (front_sticky, rear_sticky),
1598 the new text has only its properties. If one of the sticky properties
1599 is set, then the new text "sticks" to that region and its properties
1600 depend on merging as above. If both the preceding and succeeding
1601 intervals to the new text are "sticky", then the new text retains
1602 only its properties, as if neither sticky property were set. Perhaps
1603 we should consider merging all three sets of properties onto the new
1604 text... */
1606 void
1607 graft_intervals_into_buffer (INTERVAL source, ptrdiff_t position,
1608 ptrdiff_t length, struct buffer *buffer,
1609 bool inherit)
1611 INTERVAL tree = buffer_intervals (buffer);
1612 INTERVAL under, over, this;
1613 ptrdiff_t over_used;
1615 /* If the new text has no properties, then with inheritance it
1616 becomes part of whatever interval it was inserted into.
1617 To prevent inheritance, we must clear out the properties
1618 of the newly inserted text. */
1619 if (!source)
1621 Lisp_Object buf;
1622 if (!inherit && tree && length > 0)
1624 XSETBUFFER (buf, buffer);
1625 set_text_properties_1 (make_number (position),
1626 make_number (position + length),
1627 Qnil, buf,
1628 find_interval (tree, position));
1630 /* Shouldn't be necessary. --Stef */
1631 buffer_balance_intervals (buffer);
1632 return;
1635 eassert (length == TOTAL_LENGTH (source));
1637 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == length)
1639 /* The inserted text constitutes the whole buffer, so
1640 simply copy over the interval structure. */
1641 Lisp_Object buf;
1643 XSETBUFFER (buf, buffer);
1644 set_buffer_intervals (buffer, reproduce_tree_obj (source, buf));
1645 buffer_intervals (buffer)->position = BUF_BEG (buffer);
1646 eassert (buffer_intervals (buffer)->up_obj == 1);
1647 return;
1649 else if (!tree)
1651 /* Create an interval tree in which to place a copy
1652 of the intervals of the inserted string. */
1653 Lisp_Object buf;
1655 XSETBUFFER (buf, buffer);
1656 tree = create_root_interval (buf);
1658 /* Paranoia -- the text has already been added, so
1659 this buffer should be of non-zero length. */
1660 eassert (TOTAL_LENGTH (tree) > 0);
1662 this = under = find_interval (tree, position);
1663 eassert (under);
1664 over = find_interval (source, interval_start_pos (source));
1666 /* Here for insertion in the middle of an interval.
1667 Split off an equivalent interval to the right,
1668 then don't bother with it any more. */
1670 if (position > under->position)
1672 INTERVAL end_unchanged
1673 = split_interval_left (this, position - under->position);
1674 copy_properties (under, end_unchanged);
1675 under->position = position;
1677 else
1679 /* This call may have some effect because previous_interval may
1680 update `position' fields of intervals. Thus, don't ignore it
1681 for the moment. Someone please tell me the truth (K.Handa). */
1682 INTERVAL prev = previous_interval (under);
1683 (void) prev;
1684 #if 0
1685 /* But, this code surely has no effect. And, anyway,
1686 END_NONSTICKY_P is unreliable now. */
1687 if (prev && !END_NONSTICKY_P (prev))
1688 prev = 0;
1689 #endif /* 0 */
1692 /* Insertion is now at beginning of UNDER. */
1694 /* The inserted text "sticks" to the interval `under',
1695 which means it gets those properties.
1696 The properties of under are the result of
1697 adjust_intervals_for_insertion, so stickiness has
1698 already been taken care of. */
1700 /* OVER is the interval we are copying from next.
1701 OVER_USED says how many characters' worth of OVER
1702 have already been copied into target intervals.
1703 UNDER is the next interval in the target. */
1704 over_used = 0;
1705 while (over)
1707 /* If UNDER is longer than OVER, split it. */
1708 if (LENGTH (over) - over_used < LENGTH (under))
1710 this = split_interval_left (under, LENGTH (over) - over_used);
1711 copy_properties (under, this);
1713 else
1714 this = under;
1716 /* THIS is now the interval to copy or merge into.
1717 OVER covers all of it. */
1718 if (inherit)
1719 merge_properties (over, this);
1720 else
1721 copy_properties (over, this);
1723 /* If THIS and OVER end at the same place,
1724 advance OVER to a new source interval. */
1725 if (LENGTH (this) == LENGTH (over) - over_used)
1727 over = next_interval (over);
1728 over_used = 0;
1730 else
1731 /* Otherwise just record that more of OVER has been used. */
1732 over_used += LENGTH (this);
1734 /* Always advance to a new target interval. */
1735 under = next_interval (this);
1738 buffer_balance_intervals (buffer);
1741 /* Get the value of property PROP from PLIST,
1742 which is the plist of an interval.
1743 We check for direct properties, for categories with property PROP,
1744 and for PROP appearing on the default-text-properties list. */
1746 Lisp_Object
1747 textget (Lisp_Object plist, register Lisp_Object prop)
1749 return lookup_char_property (plist, prop, 1);
1752 Lisp_Object
1753 lookup_char_property (Lisp_Object plist, Lisp_Object prop, bool textprop)
1755 Lisp_Object tail, fallback = Qnil;
1757 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1759 register Lisp_Object tem;
1760 tem = XCAR (tail);
1761 if (EQ (prop, tem))
1762 return Fcar (XCDR (tail));
1763 if (EQ (tem, Qcategory))
1765 tem = Fcar (XCDR (tail));
1766 if (SYMBOLP (tem))
1767 fallback = Fget (tem, prop);
1771 if (! NILP (fallback))
1772 return fallback;
1773 /* Check for alternative properties */
1774 tail = Fassq (prop, Vchar_property_alias_alist);
1775 if (! NILP (tail))
1777 tail = XCDR (tail);
1778 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1779 fallback = Fplist_get (plist, XCAR (tail));
1782 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1783 fallback = Fplist_get (Vdefault_text_properties, prop);
1784 return fallback;
1788 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1789 byte position BYTEPOS. */
1791 void
1792 temp_set_point_both (struct buffer *buffer,
1793 ptrdiff_t charpos, ptrdiff_t bytepos)
1795 /* In a single-byte buffer, the two positions must be equal. */
1796 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer))
1797 eassert (charpos == bytepos);
1799 eassert (charpos <= bytepos);
1800 eassert (charpos <= BUF_ZV (buffer) || BUF_BEGV (buffer) <= charpos);
1802 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1805 /* Set point "temporarily", without checking any text properties. */
1807 void
1808 temp_set_point (struct buffer *buffer, ptrdiff_t charpos)
1810 temp_set_point_both (buffer, charpos,
1811 buf_charpos_to_bytepos (buffer, charpos));
1814 /* Set point in BUFFER to CHARPOS. If the target position is
1815 before an intangible character, move to an ok place. */
1817 void
1818 set_point (ptrdiff_t charpos)
1820 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1823 /* If there's an invisible character at position POS + TEST_OFFS in the
1824 current buffer, and the invisible property has a `stickiness' such that
1825 inserting a character at position POS would inherit the property it,
1826 return POS + ADJ, otherwise return POS. If TEST_INTANG, intangibility
1827 is required as well as invisibility.
1829 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1831 Note that `stickiness' is determined by overlay marker insertion types,
1832 if the invisible property comes from an overlay. */
1834 static ptrdiff_t
1835 adjust_for_invis_intang (ptrdiff_t pos, ptrdiff_t test_offs, ptrdiff_t adj,
1836 bool test_intang)
1838 Lisp_Object invis_propval, invis_overlay;
1839 Lisp_Object test_pos;
1841 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1842 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1843 return pos;
1845 test_pos = make_number (pos + test_offs);
1847 invis_propval
1848 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1849 &invis_overlay);
1851 if ((!test_intang
1852 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1853 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1854 /* This next test is true if the invisible property has a stickiness
1855 such that an insertion at POS would inherit it. */
1856 && (NILP (invis_overlay)
1857 /* Invisible property is from a text-property. */
1858 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1859 == (test_offs == 0 ? 1 : -1))
1860 /* Invisible property is from an overlay. */
1861 : (test_offs == 0
1862 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1863 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1864 pos += adj;
1866 return pos;
1869 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1870 position BYTEPOS. If the target position is
1871 before an intangible character, move to an ok place. */
1873 void
1874 set_point_both (ptrdiff_t charpos, ptrdiff_t bytepos)
1876 register INTERVAL to, from, toprev, fromprev;
1877 ptrdiff_t buffer_point;
1878 ptrdiff_t old_position = PT;
1879 /* This ensures that we move forward past intangible text when the
1880 initial position is the same as the destination, in the rare
1881 instances where this is important, e.g. in line-move-finish
1882 (simple.el). */
1883 bool backwards = charpos < old_position;
1884 bool have_overlays;
1885 ptrdiff_t original_position;
1887 bset_point_before_scroll (current_buffer, Qnil);
1889 if (charpos == PT)
1890 return;
1892 /* In a single-byte buffer, the two positions must be equal. */
1893 eassert (ZV != ZV_BYTE || charpos == bytepos);
1895 /* Check this now, before checking if the buffer has any intervals.
1896 That way, we can catch conditions which break this sanity check
1897 whether or not there are intervals in the buffer. */
1898 eassert (charpos <= ZV && charpos >= BEGV);
1900 have_overlays = buffer_has_overlays ();
1902 /* If we have no text properties and overlays,
1903 then we can do it quickly. */
1904 if (!buffer_intervals (current_buffer) && ! have_overlays)
1906 temp_set_point_both (current_buffer, charpos, bytepos);
1907 return;
1910 /* Set TO to the interval containing the char after CHARPOS,
1911 and TOPREV to the interval containing the char before CHARPOS.
1912 Either one may be null. They may be equal. */
1913 to = find_interval (buffer_intervals (current_buffer), charpos);
1914 if (charpos == BEGV)
1915 toprev = 0;
1916 else if (to && to->position == charpos)
1917 toprev = previous_interval (to);
1918 else
1919 toprev = to;
1921 buffer_point = (PT == ZV ? ZV - 1 : PT);
1923 /* Set FROM to the interval containing the char after PT,
1924 and FROMPREV to the interval containing the char before PT.
1925 Either one may be null. They may be equal. */
1926 /* We could cache this and save time. */
1927 from = find_interval (buffer_intervals (current_buffer), buffer_point);
1928 if (buffer_point == BEGV)
1929 fromprev = 0;
1930 else if (from && from->position == PT)
1931 fromprev = previous_interval (from);
1932 else if (buffer_point != PT)
1933 fromprev = from, from = 0;
1934 else
1935 fromprev = from;
1937 /* Moving within an interval. */
1938 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1939 && ! have_overlays)
1941 temp_set_point_both (current_buffer, charpos, bytepos);
1942 return;
1945 original_position = charpos;
1947 /* If the new position is between two intangible characters
1948 with the same intangible property value,
1949 move forward or backward until a change in that property. */
1950 if (NILP (Vinhibit_point_motion_hooks)
1951 && ((to && toprev)
1952 || have_overlays)
1953 /* Intangibility never stops us from positioning at the beginning
1954 or end of the buffer, so don't bother checking in that case. */
1955 && charpos != BEGV && charpos != ZV)
1957 Lisp_Object pos;
1958 Lisp_Object intangible_propval;
1960 if (backwards)
1962 /* If the preceding character is both intangible and invisible,
1963 and the invisible property is `rear-sticky', perturb it so
1964 that the search starts one character earlier -- this ensures
1965 that point can never move to the end of an invisible/
1966 intangible/rear-sticky region. */
1967 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
1969 XSETINT (pos, charpos);
1971 /* If following char is intangible,
1972 skip back over all chars with matching intangible property. */
1974 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
1976 if (! NILP (intangible_propval))
1978 while (XINT (pos) > BEGV
1979 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1980 Qintangible, Qnil),
1981 intangible_propval))
1982 pos = Fprevious_char_property_change (pos, Qnil);
1984 /* Set CHARPOS from POS, and if the final intangible character
1985 that we skipped over is also invisible, and the invisible
1986 property is `front-sticky', perturb it to be one character
1987 earlier -- this ensures that point can never move to the
1988 beginning of an invisible/intangible/front-sticky region. */
1989 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
1992 else
1994 /* If the following character is both intangible and invisible,
1995 and the invisible property is `front-sticky', perturb it so
1996 that the search starts one character later -- this ensures
1997 that point can never move to the beginning of an
1998 invisible/intangible/front-sticky region. */
1999 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2001 XSETINT (pos, charpos);
2003 /* If preceding char is intangible,
2004 skip forward over all chars with matching intangible property. */
2006 intangible_propval = Fget_char_property (make_number (charpos - 1),
2007 Qintangible, Qnil);
2009 if (! NILP (intangible_propval))
2011 while (XINT (pos) < ZV
2012 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2013 intangible_propval))
2014 pos = Fnext_char_property_change (pos, Qnil);
2016 /* Set CHARPOS from POS, and if the final intangible character
2017 that we skipped over is also invisible, and the invisible
2018 property is `rear-sticky', perturb it to be one character
2019 later -- this ensures that point can never move to the
2020 end of an invisible/intangible/rear-sticky region. */
2021 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2025 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2028 if (charpos != original_position)
2030 /* Set TO to the interval containing the char after CHARPOS,
2031 and TOPREV to the interval containing the char before CHARPOS.
2032 Either one may be null. They may be equal. */
2033 to = find_interval (buffer_intervals (current_buffer), charpos);
2034 if (charpos == BEGV)
2035 toprev = 0;
2036 else if (to && to->position == charpos)
2037 toprev = previous_interval (to);
2038 else
2039 toprev = to;
2042 /* Here TO is the interval after the stopping point
2043 and TOPREV is the interval before the stopping point.
2044 One or the other may be null. */
2046 temp_set_point_both (current_buffer, charpos, bytepos);
2048 /* We run point-left and point-entered hooks here, if the
2049 two intervals are not equivalent. These hooks take
2050 (old_point, new_point) as arguments. */
2051 if (NILP (Vinhibit_point_motion_hooks)
2052 && (! intervals_equal (from, to)
2053 || ! intervals_equal (fromprev, toprev)))
2055 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2057 if (fromprev)
2058 leave_before = textget (fromprev->plist, Qpoint_left);
2059 else
2060 leave_before = Qnil;
2062 if (from)
2063 leave_after = textget (from->plist, Qpoint_left);
2064 else
2065 leave_after = Qnil;
2067 if (toprev)
2068 enter_before = textget (toprev->plist, Qpoint_entered);
2069 else
2070 enter_before = Qnil;
2072 if (to)
2073 enter_after = textget (to->plist, Qpoint_entered);
2074 else
2075 enter_after = Qnil;
2077 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2078 call2 (leave_before, make_number (old_position),
2079 make_number (charpos));
2080 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2081 call2 (leave_after, make_number (old_position),
2082 make_number (charpos));
2084 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2085 call2 (enter_before, make_number (old_position),
2086 make_number (charpos));
2087 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2088 call2 (enter_after, make_number (old_position),
2089 make_number (charpos));
2093 /* Move point to POSITION, unless POSITION is inside an intangible
2094 segment that reaches all the way to point. */
2096 void
2097 move_if_not_intangible (ptrdiff_t position)
2099 Lisp_Object pos;
2100 Lisp_Object intangible_propval;
2102 XSETINT (pos, position);
2104 if (! NILP (Vinhibit_point_motion_hooks))
2105 /* If intangible is inhibited, always move point to POSITION. */
2107 else if (PT < position && XINT (pos) < ZV)
2109 /* We want to move forward, so check the text before POSITION. */
2111 intangible_propval = Fget_char_property (pos,
2112 Qintangible, Qnil);
2114 /* If following char is intangible,
2115 skip back over all chars with matching intangible property. */
2116 if (! NILP (intangible_propval))
2117 while (XINT (pos) > BEGV
2118 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2119 Qintangible, Qnil),
2120 intangible_propval))
2121 pos = Fprevious_char_property_change (pos, Qnil);
2123 else if (XINT (pos) > BEGV)
2125 /* We want to move backward, so check the text after POSITION. */
2127 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2128 Qintangible, Qnil);
2130 /* If following char is intangible,
2131 skip forward over all chars with matching intangible property. */
2132 if (! NILP (intangible_propval))
2133 while (XINT (pos) < ZV
2134 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2135 intangible_propval))
2136 pos = Fnext_char_property_change (pos, Qnil);
2139 else if (position < BEGV)
2140 position = BEGV;
2141 else if (position > ZV)
2142 position = ZV;
2144 /* If the whole stretch between PT and POSITION isn't intangible,
2145 try moving to POSITION (which means we actually move farther
2146 if POSITION is inside of intangible text). */
2148 if (XINT (pos) != PT)
2149 SET_PT (position);
2152 /* If text at position POS has property PROP, set *VAL to the property
2153 value, *START and *END to the beginning and end of a region that
2154 has the same property, and return true. Otherwise return false.
2156 OBJECT is the string or buffer to look for the property in;
2157 nil means the current buffer. */
2159 bool
2160 get_property_and_range (ptrdiff_t pos, Lisp_Object prop, Lisp_Object *val,
2161 ptrdiff_t *start, ptrdiff_t *end, Lisp_Object object)
2163 INTERVAL i, prev, next;
2165 if (NILP (object))
2166 i = find_interval (buffer_intervals (current_buffer), pos);
2167 else if (BUFFERP (object))
2168 i = find_interval (buffer_intervals (XBUFFER (object)), pos);
2169 else if (STRINGP (object))
2170 i = find_interval (string_intervals (object), pos);
2171 else
2172 emacs_abort ();
2174 if (!i || (i->position + LENGTH (i) <= pos))
2175 return 0;
2176 *val = textget (i->plist, prop);
2177 if (NILP (*val))
2178 return 0;
2180 next = i; /* remember it in advance */
2181 prev = previous_interval (i);
2182 while (prev
2183 && EQ (*val, textget (prev->plist, prop)))
2184 i = prev, prev = previous_interval (prev);
2185 *start = i->position;
2187 next = next_interval (i);
2188 while (next && EQ (*val, textget (next->plist, prop)))
2189 i = next, next = next_interval (next);
2190 *end = i->position + LENGTH (i);
2192 return 1;
2195 /* Return the proper local keymap TYPE for position POSITION in
2196 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2197 specified by the PROP property, if any. Otherwise, if TYPE is
2198 `local-map' use BUFFER's local map.
2200 POSITION must be in the accessible part of BUFFER. */
2202 Lisp_Object
2203 get_local_map (register ptrdiff_t position, register struct buffer *buffer,
2204 Lisp_Object type)
2206 Lisp_Object prop, lispy_position, lispy_buffer;
2207 ptrdiff_t old_begv, old_zv, old_begv_byte, old_zv_byte;
2209 /* Perhaps we should just change `position' to the limit. */
2210 if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
2211 emacs_abort ();
2213 /* Ignore narrowing, so that a local map continues to be valid even if
2214 the visible region contains no characters and hence no properties. */
2215 old_begv = BUF_BEGV (buffer);
2216 old_zv = BUF_ZV (buffer);
2217 old_begv_byte = BUF_BEGV_BYTE (buffer);
2218 old_zv_byte = BUF_ZV_BYTE (buffer);
2220 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2221 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2223 XSETFASTINT (lispy_position, position);
2224 XSETBUFFER (lispy_buffer, buffer);
2225 /* First check if the CHAR has any property. This is because when
2226 we click with the mouse, the mouse pointer is really pointing
2227 to the CHAR after POS. */
2228 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2229 /* If not, look at the POS's properties. This is necessary because when
2230 editing a field with a `local-map' property, we want insertion at the end
2231 to obey the `local-map' property. */
2232 if (NILP (prop))
2233 prop = get_pos_property (lispy_position, type, lispy_buffer);
2235 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2236 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2238 /* Use the local map only if it is valid. */
2239 prop = get_keymap (prop, 0, 0);
2240 if (CONSP (prop))
2241 return prop;
2243 if (EQ (type, Qkeymap))
2244 return Qnil;
2245 else
2246 return BVAR (buffer, keymap);
2249 /* Produce an interval tree reflecting the intervals in
2250 TREE from START to START + LENGTH.
2251 The new interval tree has no parent and has a starting-position of 0. */
2253 INTERVAL
2254 copy_intervals (INTERVAL tree, ptrdiff_t start, ptrdiff_t length)
2256 register INTERVAL i, new, t;
2257 register ptrdiff_t got, prevlen;
2259 if (!tree || length <= 0)
2260 return NULL;
2262 i = find_interval (tree, start);
2263 eassert (i && LENGTH (i) > 0);
2265 /* If there is only one interval and it's the default, return nil. */
2266 if ((start - i->position + 1 + length) < LENGTH (i)
2267 && DEFAULT_INTERVAL_P (i))
2268 return NULL;
2270 new = make_interval ();
2271 new->position = 0;
2272 got = (LENGTH (i) - (start - i->position));
2273 new->total_length = length;
2274 eassert (0 <= TOTAL_LENGTH (new));
2275 copy_properties (i, new);
2277 t = new;
2278 prevlen = got;
2279 while (got < length)
2281 i = next_interval (i);
2282 t = split_interval_right (t, prevlen);
2283 copy_properties (i, t);
2284 prevlen = LENGTH (i);
2285 got += prevlen;
2288 return balance_an_interval (new);
2291 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2293 void
2294 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2295 ptrdiff_t position, ptrdiff_t length)
2297 INTERVAL interval_copy = copy_intervals (buffer_intervals (buffer),
2298 position, length);
2299 if (!interval_copy)
2300 return;
2302 set_interval_object (interval_copy, string);
2303 set_string_intervals (string, interval_copy);
2306 /* Return true if strings S1 and S2 have identical properties.
2307 Assume they have identical characters. */
2309 bool
2310 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2312 INTERVAL i1, i2;
2313 ptrdiff_t pos = 0;
2314 ptrdiff_t end = SCHARS (s1);
2316 i1 = find_interval (string_intervals (s1), 0);
2317 i2 = find_interval (string_intervals (s2), 0);
2319 while (pos < end)
2321 /* Determine how far we can go before we reach the end of I1 or I2. */
2322 ptrdiff_t len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2323 ptrdiff_t len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2324 ptrdiff_t distance = min (len1, len2);
2326 /* If we ever find a mismatch between the strings,
2327 they differ. */
2328 if (! intervals_equal (i1, i2))
2329 return 0;
2331 /* Advance POS till the end of the shorter interval,
2332 and advance one or both interval pointers for the new position. */
2333 pos += distance;
2334 if (len1 == distance)
2335 i1 = next_interval (i1);
2336 if (len2 == distance)
2337 i2 = next_interval (i2);
2339 return 1;
2342 /* Recursively adjust interval I in the current buffer
2343 for setting enable_multibyte_characters to MULTI_FLAG.
2344 The range of interval I is START ... END in characters,
2345 START_BYTE ... END_BYTE in bytes. */
2347 static void
2348 set_intervals_multibyte_1 (INTERVAL i, bool multi_flag,
2349 ptrdiff_t start, ptrdiff_t start_byte,
2350 ptrdiff_t end, ptrdiff_t end_byte)
2352 /* Fix the length of this interval. */
2353 if (multi_flag)
2354 i->total_length = end - start;
2355 else
2356 i->total_length = end_byte - start_byte;
2357 eassert (0 <= TOTAL_LENGTH (i));
2359 if (TOTAL_LENGTH (i) == 0)
2361 delete_interval (i);
2362 return;
2365 /* Recursively fix the length of the subintervals. */
2366 if (i->left)
2368 ptrdiff_t left_end, left_end_byte;
2370 if (multi_flag)
2372 ptrdiff_t temp;
2373 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2374 left_end = BYTE_TO_CHAR (left_end_byte);
2376 temp = CHAR_TO_BYTE (left_end);
2378 /* If LEFT_END_BYTE is in the middle of a character,
2379 adjust it and LEFT_END to a char boundary. */
2380 if (left_end_byte > temp)
2382 left_end_byte = temp;
2384 if (left_end_byte < temp)
2386 left_end--;
2387 left_end_byte = CHAR_TO_BYTE (left_end);
2390 else
2392 left_end = start + LEFT_TOTAL_LENGTH (i);
2393 left_end_byte = CHAR_TO_BYTE (left_end);
2396 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2397 left_end, left_end_byte);
2399 if (i->right)
2401 ptrdiff_t right_start_byte, right_start;
2403 if (multi_flag)
2405 ptrdiff_t temp;
2407 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2408 right_start = BYTE_TO_CHAR (right_start_byte);
2410 /* If RIGHT_START_BYTE is in the middle of a character,
2411 adjust it and RIGHT_START to a char boundary. */
2412 temp = CHAR_TO_BYTE (right_start);
2414 if (right_start_byte < temp)
2416 right_start_byte = temp;
2418 if (right_start_byte > temp)
2420 right_start++;
2421 right_start_byte = CHAR_TO_BYTE (right_start);
2424 else
2426 right_start = end - RIGHT_TOTAL_LENGTH (i);
2427 right_start_byte = CHAR_TO_BYTE (right_start);
2430 set_intervals_multibyte_1 (i->right, multi_flag,
2431 right_start, right_start_byte,
2432 end, end_byte);
2435 /* Rounding to char boundaries can theoretically ake this interval
2436 spurious. If so, delete one child, and copy its property list
2437 to this interval. */
2438 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2440 if ((i)->left)
2442 set_interval_plist (i, i->left->plist);
2443 (i)->left->total_length = 0;
2444 delete_interval ((i)->left);
2446 else
2448 set_interval_plist (i, i->right->plist);
2449 (i)->right->total_length = 0;
2450 delete_interval ((i)->right);
2455 /* Update the intervals of the current buffer
2456 to fit the contents as multibyte (if MULTI_FLAG)
2457 or to fit them as non-multibyte (if not MULTI_FLAG). */
2459 void
2460 set_intervals_multibyte (bool multi_flag)
2462 INTERVAL i = buffer_intervals (current_buffer);
2464 if (i)
2465 set_intervals_multibyte_1 (i, multi_flag, BEG, BEG_BYTE, Z, Z_BYTE);