
Neural Nets and genetic algoritms

Tobias Nielsen - 200975

December 17, 2006

Contents

1 Neural nets 2
1.1 Sub task A . 3
1.2 Sub task B . 3
1.3 Sub task C . 5
1.4 Sub task D . 5
1.5 Sub task E . 6

2 Genetic algorithms 7
2.1 Experiment 1 . 7

2.1.1 Conclusion . 9
2.2 Experiment 2 . 9
2.3 Experiment 3 . 10

2.3.1 Conclusion . 11

1

1 Neural nets

For this first task, i have created a trivial perlscript that aids me in testing the different
parameter’s fairly easy.

The script has been made as a frontend to the rbp program.

The scripts handles a fair treatment of data, training and evaluation data by dividing up the
data in tree chunks of data. The test and evaluation data is selected by sliding a window
through the full data as visualized in the figure below.

Training data

Data serie

Validation dataTestdata

Figure 1: Sliding window in data structure

After this a mean value of the result of the training, testing and evaluation is being calculated
and visualized as a metric of the system in focus.

The system is always executedd with following parametres if nothing else is stated (raw copy
from perl source)

tolerance => 0.1,
eta => 0.1,
momentum => 0.5,
seed => 7,
weights => 1,
maxruns => 4000,
numTrainData => 5,
numEvalData => 5

Table 1: Default params for execution of the rbp program

Since i keep the focus on the actual performance of the network and not on specific coding, I
will leave out the code for the program here since its trivial to implement a simular script in
awk, perl or a simular scripting language.

2

1.1 Sub task A

First i have to perform a clean run with all the default data set.

The first runs gives me an average success rate on the training set of 10% solved. This is
offcourse not good.

We then try it with a more aggressive random function with a range of ±10 which gives
almost the same result.

The reason for this is that the net is implemented by using the sigmoid function which is only
able to provide an output between 0 and 1. Therefore it is fair to expect that the system will
perform better if we scale the output so its in this range.

1.2 Sub task B

By simply rescaling the output data by a form similar to the following formula:

NewOn = On ·
1

2 ·max(O)
+ 0.5

The part here that is interesting is that the output will be forced to be in the whole aspect
of the output function. This is not a good solution since we are using the sigmoid function
which only approaches one as its input goes towards infinity and zero as it goes towards minus
infinity. Therefore its wiser to chose it a bit lower so therefore we simply chose the formula
to be like this instead:

NewOn = On ·
1

2 · 10
+ 0.5

After scaling, we perform a test where we vary the η and the α values. The η goes from 0.1
−→ 0.9 in steps of 0.1 while we also tests the α in four steps: 0.0 (no momentum), 0.1 (a
little momentum), 0.5 (mean momentum) and 0.9 (high momentum).

The result is as follows:

A: moment, n: eta, NI: number of iterations before best error
MNI: The number of iterations before training converged, Eval: Evaluation test.
A: 0.0 n: 0.1 Avg: 60.000 % 0.09597 NI: 29.3 MNI: 214.0 - Eval: 48.89 % 0.11511
A: 0.1 n: 0.1 Avg: 59.048 % 0.09672 NI: 26.9 MNI: 192.5 - Eval: 48.89 % 0.11507
A: 0.5 n: 0.1 Avg: 59.048 % 0.10050 NI: 23.6 MNI: 108.7 - Eval: 48.89 % 0.11539
A: 0.9 n: 0.1 Avg: 63.810 % 0.09999 NI: 15.8 MNI: 37.2 - Eval: 47.78 % 0.13317

A: 0.0 n: 0.2 Avg: 53.333 % 0.12006 NI: 119.1 MNI: 651.5 - Eval: 39.84 % 0.15526
A: 0.1 n: 0.2 Avg: 49.524 % 0.12017 NI: 51.6 MNI: 289.5 - Eval: 42.22 % 0.14538
A: 0.5 n: 0.2 Avg: 60.000 % 0.10234 NI: 15.1 MNI: 52.4 - Eval: 50.48 % 0.11383

3

A: 0.9 n: 0.2 Avg: 60.000 % 0.10721 NI: 14.9 MNI: 26.7 - Eval: 43.65 % 0.15353

A: 0.0 n: 0.3 Avg: 58.095 % 0.12423 NI: 547.0 MNI: 2286.5 - Eval: 29.52 % 0.20171
A: 0.1 n: 0.3 Avg: 57.143 % 0.11233 NI: 343.5 MNI: 1448.6 - Eval: 37.46 % 0.17482
A: 0.5 n: 0.3 Avg: 52.381 % 0.12531 NI: 45.5 MNI: 141.3 - Eval: 43.02 % 0.14108
A: 0.9 n: 0.3 Avg: 60.000 % 0.11654 NI: 63.7 MNI: 298.9 - Eval: 43.65 % 0.14840

A: 0.0 n: 0.4 Avg: 49.524 % 0.16874 NI: 573.8 MNI: 4000.0 - Eval: 19.84 % 0.27521
A: 0.1 n: 0.4 Avg: 33.333 % 0.17286 NI: 1028.5 MNI: 3562.9 - Eval: 24.60 % 0.23646
A: 0.5 n: 0.4 Avg: 49.524 % 0.14941 NI: 467.1 MNI: 1073.7 - Eval: 38.89 % 0.18638
A: 0.9 n: 0.4 Avg: 64.762 % 0.12674 NI: 651.9 MNI: 2849.7 - Eval: 32.06 % 0.23907

A: 0.0 n: 0.5 Avg: 48.571 % 0.16248 NI: 732.9 MNI: 4000.0 - Eval: 7.94 % 0.36500
A: 0.1 n: 0.5 Avg: 43.810 % 0.16937 NI: 818.1 MNI: 4000.0 - Eval: 8.73 % 0.33956
A: 0.5 n: 0.5 Avg: 55.238 % 0.13089 NI: 343.8 MNI: 2839.8 - Eval: 34.60 % 0.20447
A: 0.9 n: 0.5 Avg: 65.714 % 0.15292 NI: 1076.2 MNI: 3270.5 - Eval: 6.35 % 0.36429

A: 0.0 n: 0.6 Avg: 37.143 % 0.18689 NI: 572.9 MNI: 4000.0 - Eval: 5.56 % 0.42387
A: 0.1 n: 0.6 Avg: 43.810 % 0.15470 NI: 947.1 MNI: 4000.0 - Eval: 9.52 % 0.38888
A: 0.5 n: 0.6 Avg: 59.048 % 0.14748 NI: 1027.1 MNI: 3841.0 - Eval: 17.46 % 0.28309
A: 0.9 n: 0.6 Avg: 62.857 % 0.11036 NI: 1589.5 MNI: 3748.9 - Eval: 9.68 % 0.35795

A: 0.0 n: 0.7 Avg: 47.619 % 0.15134 NI: 893.8 MNI: 4000.0 - Eval: 5.72 % 0.37993
A: 0.1 n: 0.7 Avg: 50.476 % 0.14198 NI: 1204.8 MNI: 4000.0 - Eval: 8.25 % 0.37717
A: 0.5 n: 0.7 Avg: 53.333 % 0.14647 NI: 720.5 MNI: 3938.5 - Eval: 13.02 % 0.31374
A: 0.9 n: 0.7 Avg: 57.143 % 0.13547 NI: 1276.2 MNI: 4000.0 - Eval: 6.35 % 0.39775

A: 0.0 n: 0.8 Avg: 39.048 % 0.15658 NI: 793.3 MNI: 4000.0 - Eval: 7.14 % 0.41579
A: 0.1 n: 0.8 Avg: 38.095 % 0.16927 NI: 1138.1 MNI: 4000.0 - Eval: 7.94 % 0.36448
A: 0.5 n: 0.8 Avg: 57.143 % 0.18183 NI: 1345.7 MNI: 4000.0 - Eval: 11.91 % 0.34615
A: 0.9 n: 0.8 Avg: 53.333 % 0.15273 NI: 1264.3 MNI: 4000.0 - Eval: 5.56 % 0.41922

A: 0.0 n: 0.9 Avg: 33.333 % 0.18981 NI: 827.6 MNI: 4000.0 - Eval: 5.56 % 0.42584
A: 0.1 n: 0.9 Avg: 34.286 % 0.20470 NI: 1216.2 MNI: 4000.0 - Eval: 6.35 % 0.41298
A: 0.5 n: 0.9 Avg: 62.857 % 0.13415 NI: 1838.6 MNI: 4000.0 - Eval: 5.56 % 0.39886
A: 0.9 n: 0.9 Avg: 54.286 % 0.15042 NI: 1880.5 MNI: 4000.0 - Eval: 3.18 % 0.44752

It is quickly seen that the network trains well with a small η and a medium α in the system.
It seems that a quick scan shows that the test sets reach a maximum with an η at 0.1 and a
α at 0.9. The validation shows a α of 0 and an η of 0.1 is the best result. But a look at the
fastest convergence shows that it is with an η of 0.2 and a α of 0.9

When the η gets larger, it starts to take longer time for the system to learn when we apply
a α to the system. The reason for this is presumeable because the system tends to be erratic
and therefore the α cuts the performence down instead of improving it.

4

1.3 Sub task C

By looking at the inverse conversion function which will be like follows:

Oreal = (Oresult − 0.5) · 2 · 10

We can easy conclude from above that a tolerance can move the real output 2 steps in either
direction of the correct answer.

If we pick a single run with an η of 0.1 and a α of 0.1, the output becomes:

T: 0.10 Avg: 63.810 % 0.09877 NI: 250.4 MNI: 846.0 - Eval: 47.78 % 0.15291
T: 0.09 Avg: 62.857 % 0.09617 NI: 264.2 MNI: 1071.6 - Eval: 39.84 % 0.15985
T: 0.08 Avg: 60.000 % 0.09242 NI: 459.4 MNI: 1758.6 - Eval: 33.49 % 0.16983
T: 0.07 Avg: 59.048 % 0.09039 NI: 537.4 MNI: 3390.0 - Eval: 28.73 % 0.18049
T: 0.06 Avg: 54.286 % 0.08957 NI: 556.3 MNI: 3647.0 - Eval: 27.14 % 0.17734
T: 0.05 Avg: 48.571 % 0.08830 NI: 582.1 MNI: 3811.1 - Eval: 23.97 % 0.17743

It is certain that the smaller tolerance forces the system to train harder in order to reach a
goal and therefore the efficency drops slowly as its not able to reach a goal as easy as before.
But another thing is happening - the system is training further before it reach a local minuma
and thereby reaching a smaller error. I suppose the reason for this is that the network is not
trained on celldata that is within the tolerance - thereby being more fit.

1.4 Sub task D

By changing the seed the random number generater is started in a different position than
before and thefore gives the system completly new possibilities. This can give a better result
and it can also provide a completely unsolveable result that forces the weights in to a local
minima by which it can get out of. I have here picked some results:

S: seed number
S: 7 Avg: 59.048 % 0.09672 NI: 26.9 MNI: 192.5 - Eval: 48.89 % 0.11507
S: 10 Avg: 47.619 % 0.13118 NI: 42.3 MNI: 417.9 - Eval: 38.25 % 0.16395
S: 15 Avg: 66.667 % 0.11464 NI: 34.8 MNI: 306.1 - Eval: 34.60 % 0.14415
S: 20 Avg: 58.095 % 0.12115 NI: 78.4 MNI: 846.3 - Eval: 43.02 % 0.15955
S: 25 Avg: 45.714 % 0.13183 NI: 44.7 MNI: 266.6 - Eval: 46.98 % 0.14585

As can be seen, a seed of 15 gives a good result for the test data, but not for the evaluation
data - a seed of 25 gives better results for the evaluation data.

5

1.5 Sub task E

Here i will perform a few test to see how the system varies with the number of internal neurons

in: Number of inner neurons
in 7 Avg: 59.048 % 0.09672 NI: 26.9 MNI: 192.5 - Eval: 48.89 % 0.11507
in 8 Avg: 62.857 % 0.09069 NI: 27.0 MNI: 408.2 - Eval: 49.05 % 0.12159
in 9 Avg: 59.048 % 0.09932 NI: 32.0 MNI: 280.6 - Eval: 47.46 % 0.11803
in 6 Avg: 61.905 % 0.10232 NI: 50.8 MNI: 490.4 - Eval: 51.90 % 0.11852
in 5 Avg: 60.000 % 0.11110 NI: 90.2 MNI: 778.0 - Eval: 36.67 % 0.15025
in 4 Avg: 60.952 % 0.10410 NI: 84.4 MNI: 493.0 - Eval: 39.84 % 0.14984
in 3 Avg: 69.524 % 0.09571 NI: 83.6 MNI:1018.1 - Eval: 47.14 % 0.12184
in 2 Avg: 65.714 % 0.10647 NI: 228.5 MNI:2214.1 - Eval: 47.46 % 0.13018
in 7x Avg: 46.667 % 0.16674 NI: 905.2 MNI:4000.0 - Eval: 12.70 % 0.35603

As it can be seen there is little difference between running with 7, 9 or 6 neurons, since it
gives a fair output compared to what has been achieved prievious. But reducing it as far as
2 inner neurons shows that the system cannot be trained easily. On the other hand, looking
at the error gives an idea that the best result is about 7 or 8 neurons. A last attempt was to
connect all inputs directly to the output of the system - This didn’t give a good result which
indicates that the output isn’t directly linearly dependent on the inputs.

6

2 Genetic algorithms

In this task, i will examine Genetic Algorithms and its abillity to perform with different basic
parameters. The program that i will use for this task is the PGA program by Peter Ross

2.1 Experiment 1

In the first experiment i will first test what influence the chromosome length has on the
outcome. I start out with the default length of 32 bits and the max-1 problem. The Max-1
will be used for the rest of this experiment I have initially set the migration and the mutation
rate to 0.

The result as can be seen from one experimental run is as follows:

Generation: 730 Evaluations so far: 3900
Pop.......Average..........Best.(max = 32)
0 = 32.0000000 32.0000000
1 = 32.0000000 32.0000000
2 = 30.0000000 30.0000000
3 = 30.0000000 30.0000000
4 = 30.0000000 30.0000000

In this run, its only two of the five populations which reach a complete result. The last tree
is missing two bits each.

I repeat the task five times and gets simular results.

This is a risk when all the chromosomes from a single population has a specific bit not set in
either of the chromosomes. This will newer be altered since the population is newer allowed
to mutate - only crossover. An crossover with an external population can aid in helping this
problem - but that is outside the scope of this experiemnt.

As i increase the chromosome length, the situation seems to worsen even more as can be seen
below with a length of 50 and 100:

Generation: 780 Evaluations so far: 4150
Pop.......Average..........Best.(max = 50)
0 = 46.0000000 46.0000000
1 = 49.0000000 49.0000000
2 = 49.0000000 49.0000000
3 = 46.0000000 46.0000000
4 = 46.0000000 46.0000000

7

Generation: 3540 Evaluations so far: 17950
Pop.......Average..........Best.(max = 100)
0 = 81.0000000 81.0000000
1 = 82.0000000 82.0000000
2 = 82.0000000 82.0000000
3 = 85.0000000 85.0000000
4 = 85.0000000 85.0000000

By increasing the population size, the tendency can be lowered somewhat as can bee seen by
the below run - we show here with a chromosome length of 100 and population size of 100
and 200.

Generation: 2230 Evaluations so far: 11650
Pop.......Average..........Best.(max = 100)
0 = 91.0000000 91.0000000
1 = 91.0000000 91.0000000
2 = 92.0000000 92.0000000
3 = 89.0000000 89.0000000
4 = 90.0000000 90.0000000

Generation: 4360 Evaluations so far: 22800
Pop.......Average..........Best.(max = 100)
0 = 99.0000000 99.0000000
1 = 100.0000000 100.0000000
2 = 97.0000000 97.0000000
3 = 99.0000000 99.0000000
4 = 98.0000000 98.0000000

So this shows that the system can actually converge with a large enough population. By
having a larger population, the chance that all bits set spread over a single population is
bigger.

Generally it is quite likely that all the different bits will be represented in a smaller population,
but since some of the chromosomes sometimes is not selected for breeding, vital bits can also
be lost in this way.

The number of generations also increases since there is now wider range of possible breed
solutions available.

If i try to increase the population we can also raise the statistical chance that an optimal
solution will be found. It is therefore raised to 400:

Generation: 8430 Evaluations so far: 44150

8

Pop.......Average..........Best.(max = 100)
0 = 100.0000000 100.0000000
1 = 100.0000000 100.0000000
2 = 100.0000000 100.0000000
3 = 100.0000000 100.0000000
4 = 100.0000000 100.0000000

Another possible choice could be to allow crossover to produce twins. This reduces the chance
for loss of bits and therefore could convert faster.

The repetition of the above experiment produces the following result:

Generation: 4370 Evaluations so far: 45700
Pop.......Average..........Best.(max = 100)
0 = 100.0000000 100.0000000
1 = 100.0000000 100.0000000
2 = 100.0000000 100.0000000
3 = 100.0000000 100.0000000
4 = 100.0000000 100.0000000

This causes the number of generations to drop to nearly half, but off course the number of
evaluations happens at almost the same amount

2.1.1 Conclusion

The fact that a single population can tend to converge to a solution in a fixed area can be a
problem in a single population. This seems to be possible to alter this by allowing crossover
from other islands. This is due to a single island becomming to simular, but compared with
another island it may be wery different and therefore it can produce a rather fresh input to
a population that is “stuck!!”

2.2 Experiment 2

In this second experiment, i will examine whatever the rank selection method or the fittest
selection method proves the best result. First to summarise, i will give a small description of
the difference of the two methods.

The fitness selection choose by examining the result of the evaluation of the chromosome. If
the chromosomes in question all performs almost similar, they all get an similar chance to
breed again on the other hand the better an item does the bigger the amount of breeding’s it
can produce - even to the point where its the only one breeding. This can be perceived as a
way of cake slicing where the better you do, the greater slice you get.

9

When using rank selection, a forced choice is being made - even if the chromosomes all
performs almost similar, the best is always selected even though it may only be slightly
better than the rest. Since a selection is enforced, this method is often considered more
brutal than the fitness function.

By looking at these initial two runs, its quickly visible that the rank function reaches its goal
as do fitness. But it also finds the result faster. So i will choose to use the number of iterations
to measure performance over a mean of five or more runs - which gives a macroscopic view
of the different runs.

2.3 Experiment 3

Now i will try to examine what kind of aid we get by crossover. The opposite of crossover is
only mutation. The first test i will try is by the De Jong 3 (now DJ3) function. This will be
tested by first having no crossover and next normal two point crossover plus finally uniform
crossover. The final runs with DJ5 and modified binary 6 (now BF6), will be done only with
no and two-point crossover.

All runs are performed with initially following arguments:

pga -P1 -p100 -srank

Then the result is presented in table

Eval crossover mean iterations
DJ3 none 2000 - 3000
DJ3 two 1300 - 1500
DJ3 uniform 1200 - 1600
DJ5 none 2600 - 7100
DJ5 two 2500 - 4600
BF6 none 2000 - 3000
BF6 two 2500 - 3500
BF6 uniform 4000 - 9000

Table 2: Running with different types of crossover

It seems in table 2, there are some differences in the matter of the evaluation problem since
it clear that the last BF6 evaluation function doesn’t perform two well in the situation. I
suppose for this situation that the reason the crossover performs so bad as it does in these
scenarios is that the crossover is allowed to switch in all positions.

It again in table 3 on the next page, depends on the problem what ever the results become.
It seems for the DJ3 problem seems to suffer when the mutation rate was changed from it
orriginal 1 bit per cromosome to a tree bit mutation. The BF6 problem tends to improwe
slightly when the amounts of bits changed per mutation increases.

10

Eval mutation mean iterations
DJ3 0.03125 1300 - 1500
DJ3 0.062 2800 - 3500
DJ3 0.10 2800 - 3500
DJ5 0.03125 2600 - 4000
DJ5 0.062 3000 - 4000
DJ5 0.1 3000 - 4000
BF6 0.03125 3000 - 5000
BF6 0.062 3000 - 5000
BF6 0.10 2800 - 4000

Table 3: Running with different quantities of mutation (1,2,3 bits)

2.3.1 Conclusion

In this final experiment i had a single idea that i considered severel times, but could not see
how i could get the PGA program to perfrom: By having crossover in a direct binary form, its
quite likely that a single bit mutation can cause a huge difference. This is due to dataseries
may implementing as several longer than one bit values. That means that a sudden crossover
in the middle of such a value, will have a huge a huge impact and therefore move it a far way
out of its current area. This can be avoided by using some level of scheming to avoid violent
crossovers - but i could not see how i could get PGA to do such a task.

11

