
LibTomCrypt
Developer Manual

Tom St Denis
LibTom Projects

This document is part of the LibTomCrypt package and is hereby
released into the public domain.

Open Source. Open Academia. Open Minds.

Tom St Denis
Ottawa, Ontario

Canada

Contents

1 Introduction 1
1.1 What is the LibTomCrypt? 1

1.1.1 What the library IS for? 1
1.2 Why did I write it? . 2

1.2.1 Modular . 3
1.3 License . 3
1.4 Patent Disclosure . 4
1.5 Thanks . 4

2 The Application Programming Interface (API) 7
2.1 Introduction . 7
2.2 Macros . 8
2.3 Functions with Variable Length Output 9
2.4 Functions that need a PRNG 10
2.5 Functions that use Arrays of Octets 11

3 Symmetric Block Ciphers 13
3.1 Core Functions . 13

3.1.1 Key Scheduling 13
3.1.2 ECB Encryption and Decryption 14
3.1.3 Self–Testing . 15
3.1.4 Key Sizing . 15
3.1.5 Cipher Termination 16
3.1.6 Simple Encryption Demonstration 16

3.2 Key Sizes and Number of Rounds 17
3.3 The Cipher Descriptors 17

iii

3.3.1 Notes . 20

3.4 Symmetric Modes of Operations 22

3.4.1 Background . 22

3.4.2 Choice of Mode 24

3.4.3 Ciphertext Stealing 25

3.4.4 Initialization . 25

3.4.5 Encryption and Decryption 26

3.4.6 IV Manipulation 27

3.4.7 Stream Termination 28

3.4.8 Examples . 29

3.4.9 LRW Mode . 30

3.4.10 F8 Mode . 32

3.5 Encrypt and Authenticate Modes 34

3.5.1 EAX Mode . 34

3.5.2 OCB Mode . 38

3.5.3 CCM Mode . 41

3.5.4 GCM Mode . 43

4 One-Way Cryptographic Hash Functions 51

4.1 Core Functions . 51

4.2 Hash Descriptors . 53

4.2.1 Hash Registration 56

4.3 Cipher Hash Construction 58

4.4 Notice . 59

5 Message Authentication Codes 61

5.1 HMAC Protocol . 61

5.2 OMAC Support . 64

5.3 PMAC Support . 68

5.4 Pelican MAC . 69

5.4.1 Example . 70

5.5 XCBC-MAC . 71

5.6 F9–MAC . 73

5.6.1 Usage Notice . 73

5.6.2 F9–MAC Functions 74

6 Pseudo-Random Number Generators 77

6.1 Core Functions . 77

6.1.1 Remarks . 79

6.1.2 Example . 79

6.2 PRNG Descriptors . 80

6.2.1 PRNGs Provided 82

6.3 The Secure RNG . 84

6.3.1 The Secure PRNG Interface 86

7 RSA Public Key Cryptography 89

7.1 Introduction . 89

7.2 PKCS #1 Padding . 89

7.2.1 PKCS #1 v1.5 Encoding 89

7.2.2 PKCS #1 v1.5 Decoding 90

7.3 PKCS #1 v2.1 Encryption 91

7.3.1 OAEP Encoding 91

7.3.2 OAEP Decoding 92

7.4 PKCS #1 Digital Signatures 92

7.4.1 PSS Encoding 92

7.4.2 PSS Decoding . 93

7.5 RSA Key Operations . 94

7.5.1 Background . 94

7.5.2 RSA Key Generation 95

7.5.3 RSA Exponentiation 96

7.6 RSA Key Encryption . 96

7.6.1 Extended Encryption 97

7.7 RSA Key Decryption . 97

7.7.1 Extended Decryption 98

7.8 RSA Signature Generation 99

7.8.1 Extended Signatures 99

7.9 RSA Signature Verification 100

7.9.1 Extended Verification 101

7.10 RSA Encryption Example 101

7.11 RSA Key Format . 103

7.11.1 RSA Key Export 103

7.11.2 RSA Key Import 104

8 Elliptic Curve Cryptography 105
8.1 Background . 105
8.2 Fixed Point Optimizations 106
8.3 Key Format . 107
8.4 ECC Curve Parameters 108
8.5 Core Functions . 108

8.5.1 ECC Key Generation 108
8.5.2 Extended Key Generation 109
8.5.3 ECC Key Free 109
8.5.4 ECC Key Export 109
8.5.5 ECC Key Import 110
8.5.6 Extended Key Import 110
8.5.7 ANSI X9.63 Export 110
8.5.8 ANSI X9.63 Import 111
8.5.9 Extended ANSI X9.63 Import 111
8.5.10 ECC Shared Secret 111

8.6 ECC Diffie-Hellman Encryption 112
8.6.1 ECC-DH Encryption 112
8.6.2 ECC-DH Decryption 113
8.6.3 ECC Encryption Format 113

8.7 EC DSA Signatures . 113
8.7.1 EC-DSA Signature Generation 114
8.7.2 EC-DSA Signature Verification 114
8.7.3 Signature Format 114

8.8 ECC Keysizes . 115

9 Digital Signature Algorithm 117
9.1 Introduction . 117
9.2 Key Format . 117
9.3 Key Generation . 118
9.4 Key Verification . 119
9.5 Signatures . 120

9.5.1 Signature Generation 120
9.5.2 Signature Verification 121

9.6 DSA Encrypt and Decrypt 121
9.6.1 DSA Encryption 122
9.6.2 DSA Decryption 122

9.7 DSA Key Import and Export 122

9.7.1 DSA Key Export 122

9.7.2 DSA Key Import 123

10 Standards Support 125

10.1 ASN.1 Formats . 125

10.1.1 SEQUENCE Type 126

10.1.2 SET and SET OF 130

10.1.3 ASN.1 INTEGER 132

10.1.4 ASN.1 BIT STRING 132

10.1.5 ASN.1 OCTET STRING 133

10.1.6 ASN.1 OBJECT IDENTIFIER 133

10.1.7 ASN.1 IA5 STRING 134

10.1.8 ASN.1 PRINTABLE STRING 135

10.1.9 ASN.1 UTF8 STRING 135

10.1.10ASN.1 UTCTIME 136

10.1.11ASN.1 CHOICE 137

10.1.12ASN.1 Flexi Decoder 138

10.2 Password Based Cryptography 140

10.2.1 PKCS #5 . 140

10.2.2 Algorithm One 140

10.2.3 Algorithm Two 141

11 Miscellaneous 143

11.1 Base64 Encoding and Decoding 143

11.2 Primality Testing . 144

12 Programming Guidelines 147

12.1 Secure Pseudo Random Number Generators 147

12.2 Preventing Trivial Errors 148

12.3 Registering Your Algorithms 148

12.4 Key Sizes . 148

12.4.1 Symmetric Ciphers 148

12.4.2 Asymmetric Ciphers 148

12.5 Thread Safety . 150

13 Configuring and Building the Library 151
13.1 Introduction . 151
13.2 Makefile variables . 152

13.2.1 MAKE, CC and AR 152
13.2.2 IGNORE SPEED 152
13.2.3 LIBNAME and LIBNAME S 152
13.2.4 Installation Directories 153

13.3 Extra libraries . 154
13.4 Building a Static Library 154
13.5 Building a Shared Library 155
13.6 Header Configuration 155
13.7 The Configure Script . 156

13.7.1 X memory routines 157
13.7.2 X clock routines 157
13.7.3 LTC NO FILE 157
13.7.4 LTC CLEAN STACK 157
13.7.5 LTC TEST . 157
13.7.6 LTC NO FAST 158
13.7.7 LTC FAST . 158
13.7.8 LTC NO ASM 159
13.7.9 Symmetric Ciphers, One-way Hashes, PRNGS

and Public Key Functions 159
13.7.10LTC EASY . 159
13.7.11TWOFISH SMALL and TWOFISH TABLES . . 159
13.7.12GCM TABLES 160
13.7.13GCM TABLES SSE2 160
13.7.14LTC SMALL CODE 160
13.7.15LTC PTHREAD 160
13.7.16LTC ECC TIMING RESISTANT 161
13.7.17Math Descriptors 161

14 Optimizations 163
14.1 Introduction . 163
14.2 Ciphers . 164

14.2.1 Name . 170
14.2.2 Internal ID . 170
14.2.3 Key Lengths . 171
14.2.4 Block Length . 171

14.2.5 Rounds . 171
14.2.6 Setup . 171
14.2.7 Single block ECB 171
14.2.8 Testing . 172
14.2.9 Key Sizing . 172
14.2.10Acceleration . 172

14.3 One–Way Hashes . 175
14.3.1 Name . 176
14.3.2 Internal ID . 177
14.3.3 Digest Size . 177
14.3.4 Block Size . 177
14.3.5 OID Identifier . 177
14.3.6 Initialization . 177
14.3.7 Process . 177
14.3.8 Done . 177
14.3.9 Acceleration . 177
14.3.10HMAC Acceleration 178

14.4 Pseudo–Random Number Generators 178
14.4.1 Name . 180
14.4.2 Export Size . 180
14.4.3 Start . 180
14.4.4 Entropy Addition 180
14.4.5 Ready . 180
14.4.6 Read . 180
14.4.7 Done . 180
14.4.8 Exporting and Importing 181

14.5 BigNum Math Descriptors 181
14.5.1 Conventions . 191
14.5.2 ECC Functions 192
14.5.3 RSA Functions 193

List of Figures

2.1 Load And Store Macros 9
2.2 Rotate Macros . 9

3.1 Built–In Software Ciphers 19
3.2 Twofish Build Options 21

4.1 Built–In Software Hashes 57

6.1 List of Provided PRNGs 82

9.1 DSA Key Sizes . 119

10.1 List of ASN.1 Supported Types 127

12.1 RSA/DH Key Strength 149
12.2 ECC Key Strength . 149

xi

xii

Chapter 1

Introduction

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ISO C cryptographic library meant to be
a tool set for cryptographers who are designing cryptosystems. It
supports symmetric ciphers, one-way hashes, pseudo-random number
generators, public key cryptography (via PKCS #1 RSA, DH or EC-
CDH), and a plethora of support routines.

The library was designed such that new ciphers/hashes/PRNGs
can be added at run-time and the existing API (and helper API func-
tions) are able to use the new designs automatically. There exists
self-check functions for each block cipher and hash function to ensure
that they compile and execute to the published design specifications.
The library also performs extensive parameter error checking to pre-
vent any number of run-time exploits or errors.

1.1.1 What the library IS for?

The library serves as a toolkit for developers who have to solve cryp-
tographic problems. Out of the box LibTomCrypt does not process
SSL or OpenPGP messages, it doesn’t read X.509 certificates, or write
PEM encoded data. It does, however, provide all of the tools required
to build such functionality. LibTomCrypt was designed to be a flexible
library that was not tied to any particular cryptographic problem.

1

2 www.libtom.org

1.2 Why did I write it?

You may be wondering, Tom, why did you write a crypto library. I
already have one. Well the reason falls into two categories:

1. I am too lazy to figure out someone else’s API. I’d rather invent
my own simpler API and use that.

2. It was (still is) good coding practice.

The idea is that I am not striving to replace OpenSSL or Crypto++
or Cryptlib or etc. I’m trying to write my own crypto library and
hopefully along the way others will appreciate the work.

With this library all core functions (ciphers, hashes, prngs, and
bignum) have the same prototype definition. They all load and store
data in a format independent of the platform. This means if you
encrypt with Blowfish on a PPC it should decrypt on an x86 with zero
problems. The consistent API also means that if you learn how to use
Blowfish with the library you know how to use Safer+, RC6, or Serpent
as well. With all of the core functions there are central descriptor
tables that can be used to make a program automatically pick between
ciphers, hashes and PRNGs at run-time. That means your application
can support all ciphers/hashes/prngs/bignum without changing the
source code.

Not only did I strive to make a consistent and simple API to work
with but I also attempted to make the library configurable in terms
of its build options. Out of the box the library will build with any
modern version of GCC without having to use configure scripts. This
means that the library will work with platforms where development
tools may be limited (e.g. no autoconf).

On top of making the build simple and the API approachable I’ve
also attempted for a reasonably high level of robustness and efficiency.
LibTomCrypt traps and returns a series of errors ranging from invalid
arguments to buffer overflows/overruns. It is mostly thread safe and
has been clocked on various platforms with cycles per byte timings
that are comparable (and often favourable) to other libraries such as
OpenSSL and Crypto++.

1.3 License 3

1.2.1 Modular

The LibTomCrypt package has also been written to be very modular.
The block ciphers, one–way hashes, pseudo–random number genera-
tors (PRNG), and bignum math routines are all used within the API
through descriptor tables which are essentially structures with point-
ers to functions. While you can still call particular functions directly
(e.g. sha256 process()) this descriptor interface allows the developer
to customize their usage of the library.

For example, consider a hardware platform with a specialized RNG
device. Obviously one would like to tap that for the PRNG needs
within the library (e.g. making a RSA key). All the developer has
to do is write a descriptor and the few support routines required for
the device. After that the rest of the API can make use of it without
change. Similarly imagine a few years down the road when AES2
(or whatever they call it) has been invented. It can be added to the
library and used within applications with zero modifications to the
end applications provided they are written properly.

This flexibility within the library means it can be used with any
combination of primitive algorithms and unlike libraries like OpenSSL
is not tied to direct routines. For instance, in OpenSSL there are CBC
block mode routines for every single cipher. That means every time
you add or remove a cipher from the library you have to update the
associated support code as well. In LibTomCrypt the associated code
(chaining modes in this case) are not directly tied to the ciphers. That
is a new cipher can be added to the library by simply providing the
key setup, ECB decrypt and encrypt and test vector routines. After
that all five chaining mode routines can make use of the cipher right
away.

1.3 License

The project is hereby released as public domain.

4 www.libtom.org

1.4 Patent Disclosure

The author (Tom St Denis) is not a patent lawyer so this section is
not to be treated as legal advice. To the best of the authors knowledge
the only patent related issues within the library are the RC5 and RC6
symmetric block ciphers. They can be removed from a build by simply
commenting out the two appropriate lines in tomcrypt custom.h. The
rest of the ciphers and hashes are patent free or under patents that
have since expired.

The RC2 and RC4 symmetric ciphers are not under patents but
are under trademark regulations. This means you can use the ciphers
you just can’t advertise that you are doing so.

1.5 Thanks

I would like to give thanks to the following people (in no particular
order) for helping me develop this project from early on:

1. Richard van de Laarschot

2. Richard Heathfield

3. Ajay K. Agrawal

4. Brian Gladman

5. Svante Seleborg

6. Clay Culver

7. Jason Klapste

8. Dobes Vandermeer

9. Daniel Richards

10. Wayne Scott

11. Andrew Tyler

12. Sky Schulz

1.5 Thanks 5

13. Christopher Imes

There have been quite a few other people as well. Please check the
change log to see who else has contributed from time to time.

6 www.libtom.org

Chapter 2

The Application
Programming Interface
(API)

2.1 Introduction

In general the API is very simple to memorize and use. Most of the
functions return either void or int. Functions that return int will
return CRYPT OK if the function was successful, or one of the many
error codes if it failed. Certain functions that return int will return
−1 to indicate an error. These functions will be explicitly commented
upon. When a function does return a CRYPT error code it can be
translated into a string with

const char *error_to_string(int err);

An example of handling an error is:

void somefunc(void)

{

int err;

/* call a cryptographic function */

7

8 www.libtom.org

if ((err = some_crypto_function(...)) != CRYPT_OK) {

printf("A crypto error occurred, %s\n", error_to_string(err));

/* perform error handling */

}

/* continue on if no error occurred */

}

There is no initialization routine for the library and for the most
part the code is thread safe. The only thread related issue is if you use
the same symmetric cipher, hash or public key state data in multiple
threads. Normally that is not an issue.

To include the prototypes for LibTomCrypt.a into your own pro-
gram simply include tomcrypt.h like so:

#include <tomcrypt.h>

int main(void) {

return 0;

}

The header file tomcrypt.h also includes stdio.h, string.h, stdlib.h,
time.h and ctype.h.

2.2 Macros

There are a few helper macros to make the coding process a bit easier.
The first set are related to loading and storing 32/64-bit words in
little/big endian format. The macros are:

2.3 Functions with Variable Length Output 9

STORE32L(x, y) unsigned long x, unsigned char *y x → y[0 . . . 3]

STORE64L(x, y) unsigned long long x, unsigned char *y x → y[0 . . . 7]

LOAD32L(x, y) unsigned long x, unsigned char *y y[0 . . . 3] → x

LOAD64L(x, y) unsigned long long x, unsigned char *y y[0 . . . 7] → x

STORE32H(x, y) unsigned long x, unsigned char *y x → y[3 . . . 0]

STORE64H(x, y) unsigned long long x, unsigned char *y x → y[7 . . . 0]

LOAD32H(x, y) unsigned long x, unsigned char *y y[3 . . . 0] → x

LOAD64H(x, y) unsigned long long x, unsigned char *y y[7 . . . 0] → x

BSWAP(x) unsigned long x Swap bytes

Figure 2.1: Load And Store Macros

There are 32 and 64-bit cyclic rotations as well:

ROL(x, y) unsigned long x, unsigned long y x << y, 0 ≤ y ≤ 31

ROLc(x, y) unsigned long x, const unsigned long y x << y, 0 ≤ y ≤ 31

ROR(x, y) unsigned long x, unsigned long y x >> y, 0 ≤ y ≤ 31

RORc(x, y) unsigned long x, const unsigned long y x >> y, 0 ≤ y ≤ 31

ROL64(x, y) unsigned long x, unsigned long y x << y, 0 ≤ y ≤ 63

ROL64c(x, y) unsigned long x, const unsigned long y x << y, 0 ≤ y ≤ 63

ROR64(x, y) unsigned long x, unsigned long y x >> y, 0 ≤ y ≤ 63

ROR64c(x, y) unsigned long x, const unsigned long y x >> y, 0 ≤ y ≤ 63

Figure 2.2: Rotate Macros

2.3 Functions with Variable Length Out-

put

Certain functions such as (for example) rsa export() give an output
that is variable length. To prevent buffer overflows you must pass it
the length of the buffer where the output will be stored. For example:

#include <tomcrypt.h>

int main(void) {

rsa_key key;

10 www.libtom.org

unsigned char buffer[1024];

unsigned long x;

int err;

/* ... Make up the RSA key somehow ... */

/* lets export the key, set x to the size of the

* output buffer */

x = sizeof(buffer);

if ((err = rsa_export(buffer, &x, PK_PUBLIC, &key)) != CRYPT_OK) {

printf("Export error: %s\n", error_to_string(err));

return -1;

}

/* if rsa_export() was successful then x will have

* the size of the output */

printf("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return 0;

}

In the above example if the size of the RSA public key was more than
1024 bytes this function would return an error code indicating a buffer
overflow would have occurred. If the function succeeds, it stores the
length of the output back into x so that the calling application will
know how many bytes were used.

As of v1.13, most functions will update your length on failure to
indicate the size required by the function. Not all functions support
this so please check the source before you rely on it doing that.

2.4 Functions that need a PRNG

Certain functions such as rsa make key() require a Pseudo Random
Number Generator (PRNG). These functions do not setup the PRNG
themselves so it is the responsibility of the calling function to initialize
the PRNG before calling them.

Certain PRNG algorithms do not require a prng state argument

2.5 Functions that use Arrays of Octets 11

(sprng for example). The prng state argument may be passed as
NULL in such situations.

#include <tomcrypt.h>

int main(void) {

rsa_key key;

int err;

/* register the system RNG */

register_prng(&sprng_desc)

/* make a 1024-bit RSA key with the system RNG */

if ((err = rsa_make_key(NULL, find_prng("sprng"), 1024/8, 65537, &key))

!= CRYPT_OK) {

printf("make_key error: %s\n", error_to_string(err));

return -1;

}

/* use the key ... */

return 0;

}

2.5 Functions that use Arrays of Octets

Most functions require inputs that are arrays of the data type unsigned
char. Whether it is a symmetric key, IV for a chaining mode or public
key packet it is assumed that regardless of the actual size of unsigned
char only the lower eight bits contain data. For example, if you want
to pass a 256 bit key to a symmetric ciphers setup routine, you must
pass in (a pointer to) an array of 32 unsigned char variables. Certain
routines (such as SAFER+) take special care to work properly on
platforms where an unsigned char is not eight bits.

For the purposes of this library, the term byte will refer to an octet
or eight bit word. Typically an array of type byte will be synonymous
with an array of type unsigned char.

12 www.libtom.org

Chapter 3

Symmetric Block
Ciphers

3.1 Core Functions

LibTomCrypt provides several block ciphers with an ECB block mode
interface. It is important to first note that you should never use the
ECB modes directly to encrypt data. Instead you should use the ECB
functions to make a chaining mode, or use one of the provided chaining
modes. All of the ciphers are written as ECB interfaces since it allows
the rest of the API to grow in a modular fashion.

3.1.1 Key Scheduling

All ciphers store their scheduled keys in a single data type called sym-
metric key. This allows all ciphers to have the same prototype and
store their keys as naturally as possible. This also removes the need
for dynamic memory allocation, and allows you to allocate a fixed
sized buffer for storing scheduled keys. All ciphers must provide six
visible functions which are (given that XXX is the name of the cipher)
the following:

int XXX_setup(const unsigned char *key,

int keylen,

13

14 www.libtom.org

int rounds,

symmetric_key *skey);

The XXX setup() routine will setup the cipher to be used with a
given number of rounds and a given key length (in bytes). The number
of rounds can be set to zero to use the default, which is generally a
good idea.

If the function returns successfully the variable skey will have a
scheduled key stored in it. It’s important to note that you should
only used this scheduled key with the intended cipher. For exam-
ple, if you call blowfish setup() do not pass the scheduled key onto
rc5 ecb encrypt(). All built–in setup functions do not allocate memory
off the heap so when you are done with a key you can simply discard it
(e.g. they can be on the stack). However, to maintain proper coding
practices you should always call the respective XXX done() function.
This allows for quicker porting to applications with externally supplied
plugins.

3.1.2 ECB Encryption and Decryption

To encrypt or decrypt a block in ECB mode there are these two func-
tions per cipher:

int XXX_ecb_encrypt(const unsigned char *pt,

unsigned char *ct,

symmetric_key *skey);

int XXX_ecb_decrypt(const unsigned char *ct,

unsigned char *pt,

symmetric_key *skey);

These two functions will encrypt or decrypt (respectively) a single
block of text1, storing the result in the ct buffer (pt resp.). It is
possible that the input and output buffer are the same buffer. For
the encrypt function pt2 is the input and ct3 is the output. For the
decryption function it’s the opposite. They both return CRYPT OK

1The size of which depends on which cipher you are using.
2pt stands for plaintext.
3ct stands for ciphertext.

3.1 Core Functions 15

on success. To test a particular cipher against test vectors4 call the
following self-test function.

3.1.3 Self–Testing

int XXX_test(void);

This function will return CRYPT OK if the cipher matches the test
vectors from the design publication it is based upon.

3.1.4 Key Sizing

For each cipher there is a function which will help find a desired key
size. It is specified as follows:

int XXX_keysize(int *keysize);

Essentially, it will round the input keysize in keysize down to the next
appropriate key size. This function will return CRYPT OK if the
key size specified is acceptable. For example:

#include <tomcrypt.h>

int main(void)

{

int keysize, err;

/* now given a 20 byte key what keysize does Twofish want to use? */

keysize = 20;

if ((err = twofish_keysize(&keysize)) != CRYPT_OK) {

printf("Error getting key size: %s\n", error_to_string(err));

return -1;

}

printf("Twofish suggested a key size of %d\n", keysize);

return 0;

}

This should indicate a keysize of sixteen bytes is suggested by storing
16 in keysize.

4As published in their design papers.

16 www.libtom.org

3.1.5 Cipher Termination

When you are finished with a cipher you can de–initialize it with the
done function.

void XXX_done(symmetric_key *skey);

For the software based ciphers within LibTomCrypt, these functions
will not do anything. However, user supplied cipher descriptors may
require to be called for resource management purposes. To be compli-
ant, all functions which call a cipher setup function must also call the
respective cipher done function when finished.

3.1.6 Simple Encryption Demonstration

An example snippet that encodes a block with Blowfish in ECB mode.

#include <tomcrypt.h>

int main(void)

{

unsigned char pt[8], ct[8], key[8];

symmetric_key skey;

int err;

/* ... key is loaded appropriately in key ... */

/* ... load a block of plaintext in pt ... */

/* schedule the key */

if ((err = blowfish_setup(key, /* the key we will use */

8, /* key is 8 bytes (64-bits) long */

0, /* 0 == use default # of rounds */

&skey) /* where to put the scheduled key */

) != CRYPT_OK) {

printf("Setup error: %s\n", error_to_string(err));

return -1;

}

/* encrypt the block */

blowfish_ecb_encrypt(pt, /* encrypt this 8-byte array */

ct, /* store encrypted data here */

&skey); /* our previously scheduled key */

3.2 Key Sizes and Number of Rounds 17

/* now ct holds the encrypted version of pt */

/* decrypt the block */

blowfish_ecb_decrypt(ct, /* decrypt this 8-byte array */

pt, /* store decrypted data here */

&skey); /* our previously scheduled key */

/* now we have decrypted ct to the original plaintext in pt */

/* Terminate the cipher context */

blowfish_done(&skey);

return 0;

}

3.2 Key Sizes and Number of Rounds

As a general rule of thumb, do not use symmetric keys under 80 bits if
you can help it. Only a few of the ciphers support smaller keys (mainly
for test vectors anyways). Ideally, your application should be making
at least 256 bit keys. This is not because you are to be paranoid.
It is because if your PRNG has a bias of any sort the more bits the
better. For example, if you have Pr [X = 1] = 1

2 ± γ where |γ| > 0
then the total amount of entropy in N bits is N ·−log2

(

1
2 + |γ|

)

. So if
γ were 0.25 (a severe bias) a 256-bit string would have about 106 bits
of entropy whereas a 128-bit string would have only 53 bits of entropy.

The number of rounds of most ciphers is not an option you can
change. Only RC5 allows you to change the number of rounds. By
passing zero as the number of rounds all ciphers will use their default
number of rounds. Generally the ciphers are configured such that the
default number of rounds provide adequate security for the given block
and key size.

3.3 The Cipher Descriptors

To facilitate automatic routines an array of cipher descriptors is pro-
vided in the array cipher descriptor. An element of this array has the

18 www.libtom.org

following (partial) format (See Section 14.2):

struct _cipher_descriptor {

/** name of cipher */

char *name;

/** internal ID */

unsigned char ID;

/** min keysize (octets) */

int min_key_length,

/** max keysize (octets) */

max_key_length,

/** block size (octets) */

block_length,

/** default number of rounds */

default_rounds;

...<snip>...

};

Where name is the lower case ASCII version of the name. The
fields min key length and max key length are the minimum and max-
imum key sizes in bytes. The block length member is the block size of
the cipher in bytes. As a good rule of thumb it is assumed that the ci-
pher supports the min and max key lengths but not always everything
in between. The default rounds field is the default number of rounds
that will be used.

For a plugin to be compliant it must provide at least each function
listed before the accelerators begin. Accelerators are optional, and if
missing will be emulated in software.

The remaining fields are all pointers to the core functions for each
cipher. The end of the cipher descriptor array is marked when name
equals NULL.

As of this release the current cipher descriptors elements are the
following:

3.3 The Cipher Descriptors 19

Name Descriptor Name Block Size Key Range Rounds

Blowfish blowfish desc 8 8 . . . 56 16

X-Tea xtea desc 8 16 32

RC2 rc2 desc 8 8 . . . 128 16

RC5-32/12/b rc5 desc 8 8 . . . 128 12 . . . 24

RC6-32/20/b rc6 desc 16 8 . . . 128 20

SAFER+ saferp desc 16 16, 24, 32 8, 12, 16

AES aes desc 16 16, 24, 32 10, 12, 14
aes enc desc 16 16, 24, 32 10, 12, 14

Twofish twofish desc 16 16, 24, 32 16

DES des desc 8 7 16

3DES (EDE mode) des3 desc 8 21 16

CAST5 (CAST-128) cast5 desc 8 5 . . . 16 12, 16

Noekeon noekeon desc 16 16 16

Skipjack skipjack desc 8 10 32

Anubis anubis desc 16 16 . . . 40 12 . . . 18

Khazad khazad desc 8 16 8

SEED kseed desc 16 16 16

KASUMI kasumi desc 8 16 8

Figure 3.1: Built–In Software Ciphers

20 www.libtom.org

3.3.1 Notes

1. For AES, (also known as Rijndael) there are four descriptors which
complicate issues a little. The descriptors rijndael desc and rijn-
dael enc desc provide the cipher named rijndael. The descriptors
aes desc and aes enc desc provide the cipher name aes. Function-
ally both rijndael and aes are the same cipher. The only difference is
when you call find cipher() you have to pass the correct name. The
cipher descriptors with enc in the middle (e.g. rijndael enc desc) are
related to an implementation of Rijndael with only the encryption
routine and tables. The decryption and self–test function pointers of
both encrypt only descriptors are set to NULL and should not be
called.

The encrypt only descriptors are useful for applications that only
use the encryption function of the cipher. Algorithms such as EAX,
PMAC and OMAC only require the encryption function. So far this
encrypt only functionality has only been implemented for Rijndael as
it makes the most sense for this cipher.

2. Note that for DES and 3DES they use 8 and 24 byte keys but only 7
and 21 [respectively] bytes of the keys are in fact used for the purposes
of encryption. My suggestion is just to use random 8/24 byte keys
instead of trying to make a 8/24 byte string from the real 7/21 byte
key.

3. Note that Twofish has additional configuration options (Figure 3.2)
that take place at build time. These options are found in the file
tomcrypt cfg.h. The first option is TWOFISH SMALL which when
defined will force the Twofish code to not pre-compute the Twofish
g(X) function as a set of four 8×32 s-boxes. This means that a sched-
uled key will require less ram but the resulting cipher will be slower.
The second option is TWOFISH TABLES which when defined will
force the Twofish code to use pre-computed tables for the two s-boxes
q0, q1 as well as the multiplication by the polynomials 5B and EF
used in the MDS multiplication. As a result the code is faster and
slightly larger. The speed increase is useful when TWOFISH SMALL

is defined since the s-boxes and MDS multiply form the heart of the
Twofish round function.

To work with the cipher descriptor array there is a function:

int find_cipher(char *name)

Which will search for a given name in the array. It returns −1 if the
cipher is not found, otherwise it returns the location in the array where

3.3 The Cipher Descriptors 21

TWOFISH SMALL TWOFISH TABLES Speed and Memory (per key)

undefined undefined Very fast, 4.2KB of ram.

undefined defined Faster key setup, larger code.

defined undefined Very slow, 0.2KB of ram.

defined defined Faster, 0.2KB of ram, larger code.

Figure 3.2: Twofish Build Options

the cipher was found. For example, to indirectly setup Blowfish you
can also use:

#include <tomcrypt.h>

int main(void)

{

unsigned char key[8];

symmetric_key skey;

int err;

/* you must register a cipher before you use it */

if (register_cipher(&blowfish_desc)) == -1) {

printf("Unable to register Blowfish cipher.");

return -1;

}

/* generic call to function (assuming the key

* in key[] was already setup) */

if ((err =

cipher_descriptor[find_cipher("blowfish")].

setup(key, 8, 0, &skey)) != CRYPT_OK) {

printf("Error setting up Blowfish: %s\n", error_to_string(err));

return -1;

}

/* ... use cipher ... */

}

A good safety would be to check the return value of find cipher()
before accessing the desired function. In order to use a cipher with
the descriptor table you must register it first using:

int register_cipher(const struct _cipher_descriptor *cipher);

22 www.libtom.org

Which accepts a pointer to a descriptor and returns the index into the
global descriptor table. If an error occurs such as there is no more
room (it can have 32 ciphers at most) it will return -1. If you try to
add the same cipher more than once it will just return the index of
the first copy. To remove a cipher call:

int unregister_cipher(const struct _cipher_descriptor *cipher);

Which returns CRYPT OK if it removes the cipher, otherwise it
returns CRYPT ERROR.

#include <tomcrypt.h>

int main(void)

{

int err;

/* register the cipher */

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael\n");

return -1;

}

/* use Rijndael */

/* remove it */

if ((err = unregister_cipher(&rijndael_desc)) != CRYPT_OK) {

printf("Error removing Rijndael: %s\n", error_to_string(err));

return -1;

}

return 0;

}

This snippet is a small program that registers Rijndael.

3.4 Symmetric Modes of Operations

3.4.1 Background

A typical symmetric block cipher can be used in chaining modes to
effectively encrypt messages larger than the block size of the cipher.

3.4 Symmetric Modes of Operations 23

Given a key k, a plaintext P and a cipher E we shall denote the
encryption of the block P under the key k as Ek(P). In some modes
there exists an initial vector denoted as C

−1.

ECB Mode

ECB or Electronic Codebook Mode is the simplest method to use. It
is given as:

Ci = Ek(Pi) (3.1)

This mode is very weak since it allows people to swap blocks and
perform replay attacks if the same key is used more than once.

CBC Mode

CBC or Cipher Block Chaining mode is a simple mode designed to
prevent trivial forms of replay and swap attacks on ciphers. It is given
as:

Ci = Ek(Pi ⊕ Ci−1) (3.2)

It is important that the initial vector be unique and preferably random
for each message encrypted under the same key.

CTR Mode

CTR or Counter Mode is a mode which only uses the encryption func-
tion of the cipher. Given a initial vector which is treated as a large
binary counter the CTR mode is given as:

C
−1 = C

−1 + 1 (mod 2W)

Ci = Pi ⊕ Ek(C
−1) (3.3)

Where W is the size of a block in bits (e.g. 64 for Blowfish). As
long as the initial vector is random for each message encrypted under
the same key replay and swap attacks are infeasible. CTR mode may
look simple but it is as secure as the block cipher is under a chosen
plaintext attack (provided the initial vector is unique).

24 www.libtom.org

CFB Mode

CFB or Ciphertext Feedback Mode is a mode akin to CBC. It is given
as:

Ci = Pi ⊕ C
−1

C
−1 = Ek(Ci) (3.4)

Note that in this library the output feedback width is equal to the size
of the block cipher. That is this mode is used to encrypt whole blocks
at a time. However, the library will buffer data allowing the user to
encrypt or decrypt partial blocks without a delay. When this mode is
first setup it will initially encrypt the initial vector as required.

OFB Mode

OFB or Output Feedback Mode is a mode akin to CBC as well. It is
given as:

C
−1 = Ek(C

−1)

Ci = Pi ⊕ C
−1 (3.5)

Like the CFB mode the output width in CFB mode is the same as the
width of the block cipher. OFB mode will also buffer the output which
will allow you to encrypt or decrypt partial blocks without delay.

3.4.2 Choice of Mode

My personal preference is for the CTR mode since it has several key
benefits:

1. No short cycles which is possible in the OFB and CFB modes.

2. Provably as secure as the block cipher being used under a chosen
plaintext attack.

3. Technically does not require the decryption routine of the cipher.

4. Allows random access to the plaintext.

5. Allows the encryption of block sizes that are not equal to the
size of the block cipher.

3.4 Symmetric Modes of Operations 25

The CTR, CFB and OFB routines provided allow you to encrypt block
sizes that differ from the ciphers block size. They accomplish this by
buffering the data required to complete a block. This allows you to
encrypt or decrypt any size block of memory with either of the three
modes.

The ECB and CBC modes process blocks of the same size as the
cipher at a time. Therefore, they are less flexible than the other modes.

3.4.3 Ciphertext Stealing

Ciphertext stealing is a method of dealing with messages in CBC mode
which are not a multiple of the block length. This is accomplished by
encrypting the last ciphertext block in ECB mode, and XOR’ing the
output against the last partial block of plaintext. LibTomCrypt does
not support this mode directly but it is fairly easy to emulate with a
call to the cipher’s ecb encrypt() callback function.

The more sane way to deal with partial blocks is to pad them with
zeroes, and then use CBC normally.

3.4.4 Initialization

The library provides simple support routines for handling CBC, CTR,
CFB, OFB and ECB encoded messages. Assuming the mode you want
is XXX there is a structure called symmetric XXX that will contain
the information required to use that mode. They have identical setup
routines (except CTR and ECB mode):

int XXX_start(int cipher,

const unsigned char *IV,

const unsigned char *key,

int keylen,

int num_rounds,

symmetric_XXX *XXX);

int ctr_start(int cipher,

const unsigned char *IV,

const unsigned char *key,

int keylen,

26 www.libtom.org

int num_rounds,

int ctr_mode,

symmetric_CTR *ctr);

int ecb_start(int cipher,

const unsigned char *key,

int keylen,

int num_rounds,

symmetric_ECB *ecb);

In each case, cipher is the index into the cipher descriptor array of
the cipher you want to use. The IV value is the initialization vector
to be used with the cipher. You must fill the IV yourself and it is
assumed they are the same length as the block size5 of the cipher you
choose. It is important that the IV be random for each unique message
you want to encrypt. The parameters key, keylen and num rounds are
the same as in the XXX setup() function call. The final parameter is
a pointer to the structure you want to hold the information for the
mode of operation.

In the case of CTR mode there is an additional parameter ctr mode
which specifies the mode that the counter is to be used in. If CTR COUNTER
LITTLE ENDIAN was specified then the counter will be treated as
a little endian value. Otherwise, if CTR COUNTER BIG ENDIAN
was specified the counter will be treated as a big endian value. As
of v1.15 the RFC 3686 style of increment then encrypt is also sup-
ported. By OR’ing LTC CTR RFC3686 with the CTR mode value,
ctr start() will increment the counter before encrypting it for the first
time.

The routines return CRYPT OK if the cipher initialized cor-
rectly, otherwise, they return an error code.

3.4.5 Encryption and Decryption

To actually encrypt or decrypt the following routines are provided:

int XXX_encrypt(const unsigned char *pt,

5In other words the size of a block of plaintext for the cipher, e.g. 8 for DES,
16 for AES, etc.

3.4 Symmetric Modes of Operations 27

unsigned char *ct,

unsigned long len,

symmetric_YYY *YYY);

int XXX_decrypt(const unsigned char *ct,

unsigned char *pt,

unsigned long len,

symmetric_YYY *YYY);

Where XXX is one of {ecb, cbc, ctr, cfb, ofb}.
In all cases, len is the size of the buffer (as number of octets)

to encrypt or decrypt. The CTR, OFB and CFB modes are order
sensitive but not chunk sensitive. That is you can encrypt ABCDEF
in three calls like AB, CD, EF or two like ABCDE and F and end
up with the same ciphertext. However, encrypting ABC and DABC
will result in different ciphertexts. All five of the modes will return
CRYPT OK on success from the encrypt or decrypt functions.

In the ECB and CBC cases, len must be a multiple of the ciphers
block size. In the CBC case, you must manually pad the end of your
message (either with zeroes or with whatever your protocol requires).

To decrypt in either mode, perform the setup like before (recall
you have to fetch the IV value you used), and use the decrypt routine
on all of the blocks.

3.4.6 IV Manipulation

To change or read the IV of a previously initialized chaining mode use
the following two functions.

int XXX_getiv(unsigned char *IV,

unsigned long *len,

symmetric_XXX *XXX);

int XXX_setiv(const unsigned char *IV,

unsigned long len,

symmetric_XXX *XXX);

The XXX getiv() functions will read the IV out of the chaining
mode and store it into IV along with the length of the IV stored in

28 www.libtom.org

len. The XXX setiv will initialize the chaining mode state as if the
original IV were the new IV specified. The length of the IV passed in
must be the size of the ciphers block size.

The XXX setiv() functions are handy if you wish to change the IV
without re–keying the cipher.

What the setiv function will do depends on the mode being changed.
In CBC mode, the new IV replaces the existing IV as if it were the
last ciphertext block. In CFB mode, the IV is encrypted as if it were
the prior encrypted pad. In CTR mode, the IV is encrypted without
first incrementing it (regardless of the LTC RFC 3686 flag presence).
In F8 mode, the IV is encrypted and becomes the new pad. It does
not change the salted IV, and is only meant to allow seeking within a
session. In LRW, it changes the tweak, forcing a computation of the
tweak pad, allowing for seeking within the session. In OFB mode, the
IV is encrypted and becomes the new pad.

3.4.7 Stream Termination

To terminate an open stream call the done function.

int XXX_done(symmetric_XXX *XXX);

This will terminate the stream (by terminating the cipher) and
return CRYPT OK if successful.

3.4 Symmetric Modes of Operations 29

3.4.8 Examples

#include <tomcrypt.h>

int main(void)

{

unsigned char key[16], IV[16], buffer[512];

symmetric_CTR ctr;

int x, err;

/* register twofish first */

if (register_cipher(&twofish_desc) == -1) {

printf("Error registering cipher.\n");

return -1;

}

/* somehow fill out key and IV */

/* start up CTR mode */

if ((err = ctr_start(

find_cipher("twofish"), /* index of desired cipher */

IV, /* the initial vector */

key, /* the secret key */

16, /* length of secret key (16 bytes) */

0, /* 0 == default # of rounds */

CTR_COUNTER_LITTLE_ENDIAN, /* Little endian counter */

&ctr) /* where to store the CTR state */

) != CRYPT_OK) {

printf("ctr_start error: %s\n", error_to_string(err));

return -1;

}

/* somehow fill buffer than encrypt it */

if ((err = ctr_encrypt(buffer, /* plaintext */

buffer, /* ciphertext */

sizeof(buffer), /* length of plaintext pt */

&ctr) /* CTR state */

) != CRYPT_OK) {

printf("ctr_encrypt error: %s\n", error_to_string(err));

return -1;

}

30 www.libtom.org

/* make use of ciphertext... */

/* now we want to decrypt so let’s use ctr_setiv */

if ((err = ctr_setiv(IV, /* the initial IV we gave to ctr_start */

16, /* the IV is 16 bytes long */

&ctr) /* the ctr state we wish to modify */

) != CRYPT_OK) {

printf("ctr_setiv error: %s\n", error_to_string(err));

return -1;

}

if ((err = ctr_decrypt(buffer, /* ciphertext */

buffer, /* plaintext */

sizeof(buffer), /* length of plaintext */

&ctr) /* CTR state */

) != CRYPT_OK) {

printf("ctr_decrypt error: %s\n", error_to_string(err));

return -1;

}

/* terminate the stream */

if ((err = ctr_done(&ctr)) != CRYPT_OK) {

printf("ctr_done error: %s\n", error_to_string(err));

return -1;

}

/* clear up and return */

zeromem(key, sizeof(key));

zeromem(&ctr, sizeof(ctr));

return 0;

}

3.4.9 LRW Mode

LRW mode is a cipher mode which is meant for indexed encryption
like used to handle storage media. It is meant to have efficient seeking
and overcome the security problems of ECB mode while not increasing
the storage requirements. It is used much like any other chaining mode
except with two key differences.

3.4 Symmetric Modes of Operations 31

The key is specified as two strings the first key K1 is the (normally
AES) key and can be any length (typically 16, 24 or 32 octets long).
The second key K2 is the tweak key and is always 16 octets long. The
tweak value is NOT a nonce or IV value it must be random and secret.

To initialize LRW mode use:

int lrw_start(int cipher,

const unsigned char *IV,

const unsigned char *key,

int keylen,

const unsigned char *tweak,

int num_rounds,

symmetric_LRW *lrw);

This will initialize the LRW context with the given (16 octet) IV,
cipher K1 key of length keylen octets and the (16 octet) K2 tweak.
While LRW was specified to be used only with AES, LibTomCrypt will
allow any 128–bit block cipher to be specified as indexed by cipher.
The number of rounds for the block cipher num rounds can be 0 to
use the default number of rounds for the given cipher.

To process data use the following functions:

int lrw_encrypt(const unsigned char *pt,

unsigned char *ct,

unsigned long len,

symmetric_LRW *lrw);

int lrw_decrypt(const unsigned char *ct,

unsigned char *pt,

unsigned long len,

symmetric_LRW *lrw);

These will encrypt (or decrypt) the plaintext to the ciphertext
buffer (or vice versa). The length is specified by len in octets but must
be a multiple of 16. The LRW code uses a fast tweak update such that
consecutive blocks are encrypted faster than if random seeking where
used.

To manipulate the IV use the following functions:

32 www.libtom.org

int lrw_getiv(unsigned char *IV,

unsigned long *len,

symmetric_LRW *lrw);

int lrw_setiv(const unsigned char *IV,

unsigned long len,

symmetric_LRW *lrw);

These will get or set the 16–octet IV. Note that setting the IV is
the same as seeking and unlike other modes is not a free operation.
It requires updating the entire tweak which is slower than sequential
use. Avoid seeking excessively in performance constrained code.

To terminate the LRW state use the following:

int lrw_done(symmetric_LRW *lrw);

3.4.10 F8 Mode

The F8 Chaining mode (see RFC 3711 for instance) is yet another
chaining mode for block ciphers. It behaves much like CTR mode
in that it XORs a keystream against the plaintext to encrypt. F8
mode comes with the additional twist that the counter value is secret,
encrypted by a salt key. We initialize F8 mode with the following
function call:

int f8_start(int cipher,

const unsigned char *IV,

const unsigned char *key,

int keylen,

const unsigned char *salt_key,

int skeylen,

int num_rounds,

symmetric_F8 *f8);

This will start the F8 mode state using key as the secret key, IV as
the counter. It uses the salt key as IV encryption key (m in the RFC
3711). The salt key can be shorter than the secret key but it should
not be longer.

To encrypt or decrypt data we use the following two functions:

3.4 Symmetric Modes of Operations 33

int f8_encrypt(const unsigned char *pt,

unsigned char *ct,

unsigned long len,

symmetric_F8 *f8);

int f8_decrypt(const unsigned char *ct,

unsigned char *pt,

unsigned long len,

symmetric_F8 *f8);

These will encrypt or decrypt a variable length array of bytes using
the F8 mode state specified. The length is specified in bytes and does
not have to be a multiple of the ciphers block size.

To change or retrieve the current counter IV value use the following
functions:

int f8_getiv(unsigned char *IV,

unsigned long *len,

symmetric_F8 *f8);

int f8_setiv(const unsigned char *IV,

unsigned long len,

symmetric_F8 *f8);

These work with the current IV value only and not the encrypted IV
value specified during the call to f8 start(). The purpose of these two
functions is to be able to seek within a current session only. If you
want to change the session IV you will have to call f8 done() and then
start a new state with f8 start().

To terminate an F8 state call the following function:

int f8_done(symmetric_F8 *f8);

34 www.libtom.org

3.5 Encrypt and Authenticate Modes

3.5.1 EAX Mode

LibTomCrypt provides support for a mode called EAX6 in a manner
similar to the way it was intended to be used by the designers. First,
a short description of what EAX mode is before we explain how to use
it. EAX is a mode that requires a cipher, CTR and OMAC support
and provides encryption and authentication7. It is initialized with a
random nonce that can be shared publicly, a header which can be
fixed and public, and a random secret symmetric key.

The header data is meant to be meta–data associated with a stream
that isn’t private (e.g., protocol messages). It can be added at anytime
during an EAX stream, and is part of the authentication tag. That
is, changes in the meta-data can be detected by changes in the output
tag.

The mode can then process plaintext producing ciphertext as well
as compute a partial checksum. The actual checksum called a tag is
only emitted when the message is finished. In the interim, the user can
process any arbitrary sized message block to send to the recipient as
ciphertext. This makes the EAX mode especially suited for streaming
modes of operation.

The mode is initialized with the following function.

int eax_init(eax_state *eax,

int cipher,

const unsigned char *key,

unsigned long keylen,

const unsigned char *nonce,

unsigned long noncelen,

const unsigned char *header,

unsigned long headerlen);

Where eax is the EAX state. The cipher parameter is the index
of the desired cipher in the descriptor table. The key parameter is

6See M. Bellare, P. Rogaway, D. Wagner, A Conventional Authenticated-
Encryption Mode.

7Note that since EAX only requires OMAC and CTR you may use encrypt only
cipher descriptors with this mode.

3.5 Encrypt and Authenticate Modes 35

the shared secret symmetric key of length keylen octets. The nonce
parameter is the random public string of length noncelen octets. The
header parameter is the random (or fixed or NULL) header for the
message of length headerlen octets.

When this function completes, the eax state will be initialized such
that you can now either have data decrypted or encrypted in EAX
mode. Note: if headerlen is zero you may pass header as NULL to
indicate there is no initial header data.

To encrypt or decrypt data in a streaming mode use the following.

int eax_encrypt(eax_state *eax,

const unsigned char *pt,

unsigned char *ct,

unsigned long length);

int eax_decrypt(eax_state *eax,

const unsigned char *ct,

unsigned char *pt,

unsigned long length);

The function eax encrypt will encrypt the bytes in pt of length octets,
and store the ciphertext in ct. Note: ct and pt may be the same region
in memory. This function will also send the ciphertext through the
OMAC function. The function eax decrypt decrypts ct, and stores it
in pt. This also allows pt and ct to be the same region in memory.

You cannot both encrypt or decrypt with the same eax context.
For bi–directional communication you will need to initialize two EAX
contexts (preferably with different headers and nonces).

Note: both of these functions allow you to send the data in any
granularity but the order is important. While the eax init() function
allows you to add initial header data to the stream you can also add
header data during the EAX stream with the following.

int eax_addheader(eax_state *eax,

const unsigned char *header,

unsigned long length);

This will add the length octet from header to the given eax header.

36 www.libtom.org

Once the message is finished, the tag (checksum) may be computed
with the following function:

int eax_done(eax_state *eax,

unsigned char *tag,

unsigned long *taglen);

This will terminate the EAX state eax, and store up to taglen bytes
of the message tag in tag. The function then stores how many bytes
of the tag were written out back in to taglen.

The EAX mode code can be tested to ensure it matches the test
vectors by calling the following function:

int eax_test(void);

This requires that the AES (or Rijndael) block cipher be registered
with the cipher descriptor table first.

#include <tomcrypt.h>

int main(void)

{

int err;

eax_state eax;

unsigned char pt[64], ct[64], nonce[16], key[16], tag[16];

unsigned long taglen;

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael");

return EXIT_FAILURE;

}

/* ... make up random nonce and key ... */

/* initialize context */

if ((err = eax_init(&eax, /* context */

find_cipher("rijndael"), /* cipher id */

nonce, /* the nonce */

16, /* nonce is 16 bytes */

"TestApp", /* example header */

3.5 Encrypt and Authenticate Modes 37

7) /* header length */

) != CRYPT_OK) {

printf("Error eax_init: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now encrypt data, say in a loop or whatever */

if ((err = eax_encrypt(&eax, /* eax context */

pt, /* plaintext (source) */

ct, /* ciphertext (destination) */

sizeof(pt) /* size of plaintext */

) != CRYPT_OK) {

printf("Error eax_encrypt: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* finish message and get authentication tag */

taglen = sizeof(tag);

if ((err = eax_done(&eax, /* eax context */

tag, /* where to put tag */

&taglen /* length of tag space */

) != CRYPT_OK) {

printf("Error eax_done: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now we have the authentication tag in "tag" and

* it’s taglen bytes long */

}

You can also perform an entire EAX state on a block of memory
in a single function call with the following functions.

int eax_encrypt_authenticate_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

38 www.libtom.org

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen);

int eax_decrypt_verify_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

const unsigned char *ct, unsigned long ctlen,

unsigned char *pt,

unsigned char *tag, unsigned long taglen,

int *res);

Both essentially just call eax init() followed by eax encrypt() (or
eax decrypt() respectively) and eax done(). The parameters have the
same meaning as with those respective functions.

The only difference is eax decrypt verify memory() does not emit
a tag. Instead you pass it a tag as input and it compares it against
the tag it computed while decrypting the message. If the tags match
then it stores a 1 in res, otherwise it stores a 0.

3.5.2 OCB Mode

LibTomCrypt provides support for a mode called OCB8 . OCB is an
encryption protocol that simultaneously provides authentication. It is
slightly faster to use than EAX mode but is less flexible. Let’s review
how to initialize an OCB context.

int ocb_init(ocb_state *ocb,

int cipher,

const unsigned char *key,

unsigned long keylen,

const unsigned char *nonce);

This will initialize the ocb context using cipher descriptor cipher.
It will use a key of length keylen and the random nonce. Note that

8See P. Rogaway, M. Bellare, J. Black, T. Krovetz, OCB: A Block Cipher Mode
of Operation for Efficient Authenticated Encryption.

3.5 Encrypt and Authenticate Modes 39

nonce must be a random (public) string the same length as the block
ciphers block size (e.g. 16 bytes for AES).

This mode has no Associated Data like EAX mode does which
means you cannot authenticate metadata along with the stream. To
encrypt or decrypt data use the following.

int ocb_encrypt(ocb_state *ocb,

const unsigned char *pt,

unsigned char *ct);

int ocb_decrypt(ocb_state *ocb,

const unsigned char *ct,

unsigned char *pt);

This will encrypt (or decrypt for the latter) a fixed length of data
from pt to ct (vice versa for the latter). They assume that pt and
ct are the same size as the block cipher’s block size. Note that you
cannot call both functions given a single ocb state. For bi-directional
communication you will have to initialize two ocb states (with different
nonces). Also pt and ct may point to the same location in memory.

State Termination

When you are finished encrypting the message you call the following
function to compute the tag.

int ocb_done_encrypt(ocb_state *ocb,

const unsigned char *pt,

unsigned long ptlen,

unsigned char *ct,

unsigned char *tag,

unsigned long *taglen);

This will terminate an encrypt stream ocb. If you have trailing
bytes of plaintext that will not complete a block you can pass them
here. This will also encrypt the ptlen bytes in pt and store them in ct.
It will also store up to taglen bytes of the tag into tag.

Note that ptlen must be less than or equal to the block size of
block cipher chosen. Also note that if you have an input message

40 www.libtom.org

equal to the length of the block size then you pass the data here (not
to ocb encrypt()) only.

To terminate a decrypt stream and compared the tag you call the
following.

int ocb_done_decrypt(ocb_state *ocb,

const unsigned char *ct,

unsigned long ctlen,

unsigned char *pt,

const unsigned char *tag,

unsigned long taglen,

int *res);

Similarly to the previous function you can pass trailing message bytes
into this function. This will compute the tag of the message (inter-
nally) and then compare it against the taglen bytes of tag provided.
By default res is set to zero. If all taglen bytes of tag can be verified
then res is set to one (authenticated message).

Packet Functions

To make life simpler the following two functions are provided for mem-
ory bound OCB.

int ocb_encrypt_authenticate_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce,

const unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen);

This will OCB encrypt the message pt of length ptlen, and store
the ciphertext in ct. The length ptlen can be any arbitrary length.

int ocb_decrypt_verify_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *nonce,

3.5 Encrypt and Authenticate Modes 41

const unsigned char *ct, unsigned long ctlen,

unsigned char *pt,

const unsigned char *tag, unsigned long taglen,

int *res);

Similarly, this will OCB decrypt, and compare the internally com-
puted tag against the tag provided. res is set appropriately.

3.5.3 CCM Mode

CCM is a NIST proposal for encrypt + authenticate that is centered
around using AES (or any 16–byte cipher) as a primitive. Unlike EAX
and OCB mode, it is only meant for packet mode where the length
of the input is known in advance. Since it is a packet mode function,
CCM only has one function that performs the protocol.

int ccm_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

symmetric_key *uskey,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

This performs the CCM operation on the data. The cipher variable
indicates which cipher in the descriptor table to use. It must have a
16–byte block size for CCM.

The key can be specified in one of two fashions. First, it can be
passed as an array of octets in key of length keylen. Alternatively, it
can be passed in as a previously scheduled key in uskey. The latter
fashion saves time when the same key is used for multiple packets. If
uskey is not NULL, then key may be NULL (and vice-versa).

The nonce or salt is nonce of length noncelen octets. The header is
meta–data you want to send with the message but not have encrypted,
it is stored in header of length headerlen octets. The header can be zero
octets long (if headerlen = 0 then you can pass header as NULL).

42 www.libtom.org

The plaintext is stored in pt, and the ciphertext in ct. The length
of both are expected to be equal and is passed in as ptlen. It is al-
lowable that pt = ct. The direction variable indicates whether en-
cryption (direction = CCM ENCRYPT) or decryption (direction
= CCM DECRYPT) is to be performed.

As implemented, this version of CCM cannot handle header or
plaintext data longer than 232 − 1 octets long.

You can test the implementation of CCM with the following func-
tion.

int ccm_test(void);

This will return CRYPT OK if the CCM routine passes known
test vectors. It requires AES or Rijndael to be registered previously,
otherwise it will return CRYPT NOP.

CCM Example

The following is a sample of how to call CCM.

#include <tomcrypt.h>

int main(void)

{

unsigned char key[16], nonce[12], pt[32], ct[32],

tag[16], tagcp[16];

unsigned long taglen;

int err;

/* register cipher */

register_cipher(&aes_desc);

/* somehow fill key, nonce, pt */

/* encrypt it */

taglen = sizeof(tag);

if ((err =

ccm_memory(find_cipher("aes"),

key, 16, /* 128-bit key */

NULL, /* not prescheduled */

nonce, 12, /* 96-bit nonce */

NULL, 0, /* no header */

3.5 Encrypt and Authenticate Modes 43

pt, 32, /* 32-byte plaintext */

ct, /* ciphertext */

tag, &taglen,

CCM_ENCRYPT)) != CRYPT_OK) {

printf("ccm_memory error %s\n", error_to_string(err));

return -1;

}

/* ct[0..31] and tag[0..15] now hold the output */

/* decrypt it */

taglen = sizeof(tagcp);

if ((err =

ccm_memory(find_cipher("aes"),

key, 16, /* 128-bit key */

NULL, /* not prescheduled */

nonce, 12, /* 96-bit nonce */

NULL, 0, /* no header */

ct, 32, /* 32-byte ciphertext */

pt, /* plaintext */

tagcp, &taglen,

CCM_DECRYPT)) != CRYPT_OK) {

printf("ccm_memory error %s\n", error_to_string(err));

return -1;

}

/* now pt[0..31] should hold the original plaintext,

tagcp[0..15] and tag[0..15] should have the same contents */

}

3.5.4 GCM Mode

Galois counter mode is an IEEE proposal for authenticated encryption
(also it is a planned NIST standard). Like EAX and OCB mode, it
can be used in a streaming capacity however, unlike EAX it cannot
accept additional authentication data (meta–data) after plaintext has
been processed. This mode also only works with block ciphers with a
16–byte block.

A GCM stream is meant to be processed in three modes, one af-
ter another. First, the initial vector (per session) data is processed.
This should be unique to every session. Next, the the optional addi-

44 www.libtom.org

tional authentication data is processed, and finally the plaintext (or
ciphertext depending on the direction).

Initialization

To initialize the GCM context with a secret key call the following
function.

int gcm_init(gcm_state *gcm,

int cipher,

const unsigned char *key,

int keylen);

This initializes the GCM state gcm for the given cipher indexed by
cipher, with a secret key key of length keylen octets. The cipher
chosen must have a 16–byte block size (e.g., AES).

Initial Vector

After the state has been initialized (or reset) the next step is to add
the session (or packet) initial vector. It should be unique per packet
encrypted.

int gcm_add_iv(gcm_state *gcm,

const unsigned char *IV,

unsigned long IVlen);

This adds the initial vector octets from IV of length IVlen to the
GCM state gcm. You can call this function as many times as required
to process the entire IV.

Note: the GCM protocols provides a shortcut for 12–byte IVs
where no pre-processing is to be done. If you want to minimize per
packet latency it is ideal to only use 12–byte IVs. You can just incre-
ment it like a counter for each packet.

Additional Authentication Data

After the entire IV has been processed, the additional authentication
data can be processed. Unlike the IV, a packet/session does not require
additional authentication data (AAD) for security. The AAD is meant

3.5 Encrypt and Authenticate Modes 45

to be used as side–channel data you want to be authenticated with
the packet. Note: once you begin adding AAD to the GCM state you
cannot return to adding IV data until the state has been reset.

int gcm_add_aad(gcm_state *gcm,

const unsigned char *adata,

unsigned long adatalen);

This adds the additional authentication data adata of length adatalen
to the GCM state gcm.

Plaintext Processing

After the AAD has been processed, the plaintext (or ciphertext de-
pending on the direction) can be processed.

int gcm_process(gcm_state *gcm,

unsigned char *pt,

unsigned long ptlen,

unsigned char *ct,

int direction);

This processes message data where pt is the plaintext and ct is the
ciphertext. The length of both are equal and stored in ptlen. Depend-
ing on the mode pt is the input and ct is the output (or vice versa).
When direction equals GCM ENCRYPT the plaintext is read, en-
crypted and stored in the ciphertext buffer. When direction equals
GCM DECRYPT the opposite occurs.

State Termination

To terminate a GCM state and retrieve the message authentication
tag call the following function.

int gcm_done(gcm_state *gcm,

unsigned char *tag,

unsigned long *taglen);

This terminates the GCM state gcm and stores the tag in tag of length
taglen octets.

46 www.libtom.org

State Reset

The call to gcm init() will perform considerable pre–computation (when
GCM TABLES is defined) and if you’re going to be dealing with a
lot of packets it is very costly to have to call it repeatedly. To aid in
this endeavour, the reset function has been provided.

int gcm_reset(gcm_state *gcm);

This will reset the GCM state gcm to the state that gcm init() left
it. The user would then call gcm add iv(), gcm add aad(), etc.

One–Shot Packet

To process a single packet under any given key the following helper
function can be used.

int gcm_memory(

int cipher,

const unsigned char *key,

unsigned long keylen,

const unsigned char *IV, unsigned long IVlen,

const unsigned char *adata, unsigned long adatalen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

This will initialize the GCM state with the given key, IV and AAD
value then proceed to encrypt or decrypt the message text and store
the final message tag. The definition of the variables is the same as it
is for all the manual functions.

If you are processing many packets under the same key you shouldn’t
use this function as it invokes the pre–computation with each call.

Example Usage

The following is an example usage of how to use GCM over multiple
packets with a shared secret key.

3.5 Encrypt and Authenticate Modes 47

#include <tomcrypt.h>

int send_packet(const unsigned char *pt, unsigned long ptlen,

const unsigned char *iv, unsigned long ivlen,

const unsigned char *aad, unsigned long aadlen,

gcm_state *gcm)

{

int err;

unsigned long taglen;

unsigned char tag[16];

/* reset the state */

if ((err = gcm_reset(gcm)) != CRYPT_OK) {

return err;

}

/* Add the IV */

if ((err = gcm_add_iv(gcm, iv, ivlen)) != CRYPT_OK) {

return err;

}

/* Add the AAD (note: aad can be NULL if aadlen == 0) */

if ((err = gcm_add_aad(gcm, aad, aadlen)) != CRYPT_OK) {

return err;

}

/* process the plaintext */

if ((err =

gcm_process(gcm, pt, ptlen, pt, GCM_ENCRYPT)) != CRYPT_OK) {

return err;

}

/* Finish up and get the MAC tag */

taglen = sizeof(tag);

if ((err = gcm_done(gcm, tag, &taglen)) != CRYPT_OK) {

return err;

}

/* ... send a header describing the lengths ... */

/* depending on the protocol and how IV is

48 www.libtom.org

* generated you may have to send it too... */

send(socket, iv, ivlen, 0);

/* send the aad */

send(socket, aad, aadlen, 0);

/* send the ciphertext */

send(socket, pt, ptlen, 0);

/* send the tag */

send(socket, tag, taglen, 0);

return CRYPT_OK;

}

int main(void)

{

gcm_state gcm;

unsigned char key[16], IV[12], pt[PACKET_SIZE];

int err, x;

unsigned long ptlen;

/* somehow fill key/IV with random values */

/* register AES */

register_cipher(&aes_desc);

/* init the GCM state */

if ((err =

gcm_init(&gcm, find_cipher("aes"), key, 16)) != CRYPT_OK) {

whine_and_pout(err);

}

/* handle us some packets */

for (;;) {

ptlen = make_packet_we_want_to_send(pt);

/* use IV as counter (12 byte counter) */

for (x = 11; x >= 0; x--) {

if (++IV[x]) {

break;

3.5 Encrypt and Authenticate Modes 49

}

}

if ((err = send_packet(pt, ptlen, iv, 12, NULL, 0, &gcm))

!= CRYPT_OK) {

whine_and_pout(err);

}

}

return EXIT_SUCCESS;

}

50 www.libtom.org

Chapter 4

One-Way Cryptographic
Hash Functions

4.1 Core Functions

Like the ciphers, there are hash core functions and a universal data
type to hold the hash state called hash state. To initialize hash XXX
(where XXX is the name) call:

void XXX_init(hash_state *md);

This simply sets up the hash to the default state governed by the
specifications of the hash. To add data to the message being hashed
call:

int XXX_process(hash_state *md,

const unsigned char *in,

unsigned long inlen);

Essentially all hash messages are virtually infinitely1 long message
which are buffered. The data can be passed in any sized chunks as
long as the order of the bytes are the same the message digest (hash
output) will be the same. For example, this means that:

1Most hashes are limited to 264 bits or 2,305,843,009,213,693,952 bytes.

51

52 www.libtom.org

md5_process(&md, "hello ", 6);

md5_process(&md, "world", 5);

Will produce the same message digest as the single call:

md5_process(&md, "hello world", 11);

To finally get the message digest (the hash) call:

int XXX_done(hash_state *md,

unsigned char *out);

This function will finish up the hash and store the result in the
out array. You must ensure that out is long enough for the hash in
question. Often hashes are used to get keys for symmetric ciphers so
the XXX done() functions will wipe the md variable before returning
automatically.

To test a hash function call:

int XXX_test(void);

This will return CRYPT OK if the hash matches the test vectors,
otherwise it returns an error code. An example snippet that hashes a
message with md5 is given below.

#include <tomcrypt.h>

int main(void)

{

hash_state md;

unsigned char *in = "hello world", out[16];

/* setup the hash */

md5_init(&md);

/* add the message */

md5_process(&md, in, strlen(in));

/* get the hash in out[0..15] */

md5_done(&md, out);

return 0;

}

4.2 Hash Descriptors 53

4.2 Hash Descriptors

Like the set of ciphers, the set of hashes have descriptors as well. They
are stored in an array called hash descriptor and are defined by:

struct _hash_descriptor {

char *name;

unsigned long hashsize; /* digest output size in bytes */

unsigned long blocksize; /* the block size the hash uses */

void (*init) (hash_state *hash);

int (*process)(hash_state *hash,

const unsigned char *in,

unsigned long inlen);

int (*done) (hash_state *hash, unsigned char *out);

int (*test) (void);

};

The name member is the name of the hash function (all lowercase).
The hashsize member is the size of the digest output in bytes, while
blocksize is the size of blocks the hash expects to the compression func-
tion. Technically, this detail is not important for high level developers
but is useful to know for performance reasons.

The init member initializes the hash, process passes data through
the hash, done terminates the hash and retrieves the digest. The test
member tests the hash against the specified test vectors.

There is a function to search the array as well called int find hash(char
*name). It returns -1 if the hash is not found, otherwise, the position
in the descriptor table of the hash.

In addition, there is also find hash oid() which finds a hash by the
ASN.1 OBJECT IDENTIFIER string.

int find_hash_oid(const unsigned long *ID, unsigned long IDlen);

You can use the table to indirectly call a hash function that is
chosen at run-time. For example:

54 www.libtom.org

#include <tomcrypt.h>

int main(void)

{

unsigned char buffer[100], hash[MAXBLOCKSIZE];

int idx, x;

hash_state md;

/* register hashes */

if (register_hash(&md5_desc) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* register other hashes ... */

/* prompt for name and strip newline */

printf("Enter hash name: \n");

fgets(buffer, sizeof(buffer), stdin);

buffer[strlen(buffer) - 1] = 0;

/* get hash index */

idx = find_hash(buffer);

if (idx == -1) {

printf("Invalid hash name!\n");

return -1;

}

/* hash input until blank line */

hash_descriptor[idx].init(&md);

while (fgets(buffer, sizeof(buffer), stdin) != NULL)

hash_descriptor[idx].process(&md, buffer, strlen(buffer));

hash_descriptor[idx].done(&md, hash);

/* dump to screen */

for (x = 0; x < hash_descriptor[idx].hashsize; x++)

printf("%02x ", hash[x]);

printf("\n");

return 0;

}

4.2 Hash Descriptors 55

Note the usage of MAXBLOCKSIZE. In LibTomCrypt, no sym-
metric block, key or hash digest is larger than MAXBLOCKSIZE in
length. This provides a simple size you can set your automatic arrays
to that will not get overrun.

There are three helper functions to make working with hashes eas-
ier. The first is a function to hash a buffer, and produce the digest in
a single function call.

int hash_memory(int hash,

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

This will hash the data pointed to by in of length inlen. The hash
used is indexed by the hash parameter. The message digest is stored
in out, and the outlen parameter is updated to hold the message digest
size.

The next helper function allows for the hashing of a file based on
a file name.

int hash_file(int hash,

const char *fname,

unsigned char *out,

unsigned long *outlen);

This will hash the file named by fname using the hash indexed by
hash. The file named in this function call must be readable by the
user owning the process performing the request. This function can
be omitted by the LTC NO FILE define, which forces it to return
CRYPT NOP when it is called. The message digest is stored in out,
and the outlen parameter is updated to hold the message digest size.

int hash_filehandle(int hash,

FILE *in,

unsigned char *out,

unsigned long *outlen);

This will hash the file identified by the handle in using the hash
indexed by hash. This will begin hashing from the current file pointer

56 www.libtom.org

position, and will not rewind the file pointer when finished. This
function can be omitted by the LTC NO FILE define, which forces
it to return CRYPT NOP when it is called. The message digest is
stored in out, and the outlen parameter is updated to hold the message
digest size.

To perform the above hash with md5 the following code could be
used:

#include <tomcrypt.h>

int main(void)

{

int idx, err;

unsigned long len;

unsigned char out[MAXBLOCKSIZE];

/* register the hash */

if (register_hash(&md5_desc) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* get the index of the hash */

idx = find_hash("md5");

/* call the hash */

len = sizeof(out);

if ((err =

hash_memory(idx, "hello world", 11, out, &len)) != CRYPT_OK) {

printf("Error hashing data: %s\n", error_to_string(err));

return -1;

}

return 0;

}

4.2.1 Hash Registration

Similar to the cipher descriptor table you must register your hash
algorithms before you can use them. These functions work exactly
like those of the cipher registration code. The functions are:

int register_hash(const struct _hash_descriptor *hash);

4.2 Hash Descriptors 57

int unregister_hash(const struct _hash_descriptor *hash);

The following hashes are provided as of this release within the
LibTomCrypt library:

Name Descriptor Name Size of Message Digest (bytes)
WHIRLPOOL whirlpool desc 64

SHA-512 sha512 desc 64
SHA-384 sha384 desc 48

RIPEMD-320 rmd160 desc 40
SHA-256 sha256 desc 32

RIPEMD-256 rmd160 desc 32
SHA-224 sha224 desc 28

TIGER-192 tiger desc 24
SHA-1 sha1 desc 20

RIPEMD-160 rmd160 desc 20
RIPEMD-128 rmd128 desc 16

MD5 md5 desc 16
MD4 md4 desc 16
MD2 md2 desc 16

Figure 4.1: Built–In Software Hashes

58 www.libtom.org

4.3 Cipher Hash Construction

An addition to the suite of hash functions is the Cipher Hash Con-
struction or CHC mode. In this mode applicable block ciphers (such
as AES) can be turned into hash functions that other LTC functions
can use. In particular this allows a cryptosystem to be designed using
very few moving parts.

In order to use the CHC system the developer will have to take a
few extra steps. First the chc desc hash descriptor must be registered
with register hash(). At this point the CHC hash cannot be used to
hash data. While it is in the hash system you still have to tell the CHC
code which cipher to use. This is accomplished via the chc register()
function.

int chc_register(int cipher);

A cipher has to be registered with CHC (and also in the cipher
descriptor tables with register cipher()). The chc register() function
will bind a cipher to the CHC system. Only one cipher can be bound
to the CHC hash at a time. There are additional requirements for the
system to work.

1. The cipher must have a block size greater than 64–bits.

2. The cipher must allow an input key the size of the block size.

Example of using CHC with the AES block cipher.

#include <tomcrypt.h>

int main(void)

{

int err;

/* register cipher and hash */

if (register_cipher(&aes_enc_desc) == -1) {

printf("Could not register cipher\n");

return EXIT_FAILURE;

}

if (register_hash(&chc_desc) == -1) {

printf("Could not register hash\n");

4.4 Notice 59

return EXIT_FAILURE;

}

/* start chc with AES */

if ((err = chc_register(find_cipher("aes"))) != CRYPT_OK) {

printf("Error binding AES to CHC: %s\n",

error_to_string(err));

}

/* now you can use chc_hash in any LTC function

* [aside from pkcs...] */

}

4.4 Notice

It is highly recommended that you not use the MD4 or MD5 hashes
for the purposes of digital signatures or authentication codes. These
hashes are provided for completeness and they still can be used for the
purposes of password hashing or one-way accumulators (e.g. Yarrow).

The other hashes such as the SHA-1, SHA-2 (that includes SHA-
512, SHA-384 and SHA-256) and TIGER-192 are still considered se-
cure for all purposes you would normally use a hash for.

60 www.libtom.org

Chapter 5

Message Authentication
Codes

5.1 HMAC Protocol

Thanks to Dobes Vandermeer, the library now includes support for
hash based message authentication codes, or HMAC for short. An
HMAC of a message is a keyed authentication code that only the owner
of a private symmetric key will be able to verify. The purpose is to
allow an owner of a private symmetric key to produce an HMAC on a
message then later verify if it is correct. Any impostor or eavesdropper
will not be able to verify the authenticity of a message.

The HMAC support works much like the normal hash functions
except that the initialization routine requires you to pass a key and its
length. The key is much like a key you would pass to a cipher. That
is, it is simply an array of octets stored in unsigned characters. The
initialization routine is:

int hmac_init(hmac_state *hmac,

int hash,

const unsigned char *key,

unsigned long keylen);

The hmac parameter is the state for the HMAC code. The hash pa-

61

62 www.libtom.org

rameter is the index into the descriptor table of the hash you want
to use to authenticate the message. The key parameter is the pointer
to the array of chars that make up the key. The keylen parameter is
the length (in octets) of the key you want to use to authenticate the
message. To send octets of a message through the HMAC system you
must use the following function:

int hmac_process(hmac_state *hmac,

const unsigned char *in,

unsigned long inlen);

hmac is the HMAC state you are working with. buf is the array of
octets to send into the HMAC process. len is the number of octets
to process. Like the hash process routines you can send the data
in arbitrarily sized chunks. When you are finished with the HMAC
process you must call the following function to get the HMAC code:

int hmac_done(hmac_state *hmac,

unsigned char *out,

unsigned long *outlen);

The hmac parameter is the HMAC state you are working with. The
out parameter is the array of octets where the HMAC code should be
stored. You must set outlen to the size of the destination buffer before
calling this function. It is updated with the length of the HMAC code
produced (depending on which hash was picked). If outlen is less than
the size of the message digest (and ultimately the HMAC code) then
the HMAC code is truncated as per FIPS-198 specifications (e.g. take
the first outlen bytes).

There are two utility functions provided to make using HMACs
easier to do. They accept the key and information about the message
(file pointer, address in memory), and produce the HMAC result in
one shot. These are useful if you want to avoid calling the three step
process yourself.

int hmac_memory(

int hash,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

5.1 HMAC Protocol 63

This will produce an HMAC code for the array of octets in in of length
inlen. The index into the hash descriptor table must be provided in
hash. It uses the key from key with a key length of keylen. The result
is stored in the array of octets out and the length in outlen. The value
of outlen must be set to the size of the destination buffer before calling
this function. Similarly for files there is the following function:

int hmac_file(

int hash,

const char *fname,

const unsigned char *key, unsigned long keylen,

unsigned char *out, unsigned long *outlen);

hash is the index into the hash descriptor table of the hash you want
to use. fname is the filename to process. key is the array of octets to
use as the key of length keylen. out is the array of octets where the
result should be stored.

To test if the HMAC code is working there is the following function:

int hmac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an
error code. Some example code for using the HMAC system is given
below.

#include <tomcrypt.h>

int main(void)

{

int idx, err;

hmac_state hmac;

unsigned char key[16], dst[MAXBLOCKSIZE];

unsigned long dstlen;

/* register SHA-1 */

if (register_hash(&sha1_desc) == -1) {

printf("Error registering SHA1\n");

return -1;

}

/* get index of SHA1 in hash descriptor table */

64 www.libtom.org

idx = find_hash("sha1");

/* we would make up our symmetric key in "key[]" here */

/* start the HMAC */

if ((err = hmac_init(&hmac, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up hmac: %s\n", error_to_string(err));

return -1;

}

/* process a few octets */

if((err = hmac_process(&hmac, "hello", 5) != CRYPT_OK) {

printf("Error processing hmac: %s\n", error_to_string(err));

return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = hmac_done(&hmac, dst, &dstlen)) != CRYPT_OK) {

printf("Error finishing hmac: %s\n", error_to_string(err));

return -1;

}

printf("The hmac is %lu bytes long\n", dstlen);

/* return */

return 0;

}

5.2 OMAC Support

OMAC1, which stands for One-Key CBC MAC is an algorithm which
produces a Message Authentication Code (MAC) using only a block
cipher such as AES. Note: OMAC has been standardized as CMAC
within NIST, for the purposes of this library OMAC and CMAC are
synonymous. From an API standpoint, the OMAC routines work
much like the HMAC routines. Instead, in this case a cipher is used
instead of a hash.

To start an OMAC state you call

1http://crypt.cis.ibaraki.ac.jp/omac/omac.html

5.2 OMAC Support 65

int omac_init(omac_state *omac,

int cipher,

const unsigned char *key,

unsigned long keylen);

The omac parameter is the state for the OMAC algorithm. The cipher
parameter is the index into the cipher descriptor table of the cipher2

you wish to use. The key and keylen parameters are the keys used to
authenticate the data.

To send data through the algorithm call

int omac_process(omac_state *state,

const unsigned char *in,

unsigned long inlen);

This will send inlen bytes from in through the active OMAC state
state. Returns CRYPT OK if the function succeeds. The function
is not sensitive to the granularity of the data. For example,

omac_process(&mystate, "hello", 5);

omac_process(&mystate, " world", 6);

Would produce the same result as,

omac_process(&mystate, "hello world", 11);

When you are done processing the message you can call the follow-
ing to compute the message tag.

int omac_done(omac_state *state,

unsigned char *out,

unsigned long *outlen);

Which will terminate the OMAC and output the tag (MAC) to out.
Note that unlike the HMAC and other code outlen can be smaller
than the default MAC size (for instance AES would make a 16-byte
tag). Part of the OMAC specification states that the output may be
truncated. So if you pass in outlen = 5 and use AES as your cipher

2The cipher must have a 64 or 128 bit block size. Such as CAST5, Blowfish,
DES, AES, Twofish, etc.

66 www.libtom.org

than the output MAC code will only be five bytes long. If outlen is
larger than the default size it is set to the default size to show how
many bytes were actually used.

Similar to the HMAC code the file and memory functions are also
provided. To OMAC a buffer of memory in one shot use the following
function.

int omac_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will compute the OMAC of inlen bytes of in using the key key
of length keylen bytes and the cipher specified by the cipher ’th entry
in the cipher descriptor table. It will store the MAC in out with the
same rules as omac done.

To OMAC a file use

int omac_file(

int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will OMAC the entire contents of the file specified by file-
name using the key key of length keylen bytes and the cipher specified
by the cipher ’th entry in the cipher descriptor table. It will store the
MAC in out with the same rules as omac done.

To test if the OMAC code is working there is the following function:

int omac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an
error code. Some example code for using the OMAC system is given
below.

#include <tomcrypt.h>

int main(void)

5.2 OMAC Support 67

{

int idx, err;

omac_state omac;

unsigned char key[16], dst[MAXBLOCKSIZE];

unsigned long dstlen;

/* register Rijndael */

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael\n");

return -1;

}

/* get index of Rijndael in cipher descriptor table */

idx = find_cipher("rijndael");

/* we would make up our symmetric key in "key[]" here */

/* start the OMAC */

if ((err = omac_init(&omac, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up omac: %s\n", error_to_string(err));

return -1;

}

/* process a few octets */

if((err = omac_process(&omac, "hello", 5) != CRYPT_OK) {

printf("Error processing omac: %s\n", error_to_string(err));

return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = omac_done(&omac, dst, &dstlen)) != CRYPT_OK) {

printf("Error finishing omac: %s\n", error_to_string(err));

return -1;

}

printf("The omac is %lu bytes long\n", dstlen);

/* return */

return 0;

}

68 www.libtom.org

5.3 PMAC Support

The PMAC3 protocol is another MAC algorithm that relies solely on
a symmetric-key block cipher. It uses essentially the same API as the
provided OMAC code.

A PMAC state is initialized with the following.

int pmac_init(pmac_state *pmac,

int cipher,

const unsigned char *key,

unsigned long keylen);

Which initializes the pmac state with the given cipher and key of
length keylen bytes. The chosen cipher must have a 64 or 128 bit
block size (e.x. AES).

To MAC data simply send it through the process function.

int pmac_process(pmac_state *state,

const unsigned char *in,

unsigned long inlen);

This will process inlen bytes of in in the given state. The function is
not sensitive to the granularity of the data. For example,

pmac_process(&mystate, "hello", 5);

pmac_process(&mystate, " world", 6);

Would produce the same result as,

pmac_process(&mystate, "hello world", 11);

When a complete message has been processed the following func-
tion can be called to compute the message tag.

int pmac_done(pmac_state *state,

unsigned char *out,

unsigned long *outlen);

3J.Black, P.Rogaway, A Block–Cipher Mode of Operation for Parallelizable
Message Authentication

5.4 Pelican MAC 69

This will store up to outlen bytes of the tag for the given state into
out. Note that if outlen is larger than the size of the tag it is set to
the amount of bytes stored in out.

Similar to the OMAC code the file and memory functions are also
provided. To PMAC a buffer of memory in one shot use the following
function.

int pmac_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will compute the PMAC of msglen bytes of msg using the key
key of length keylen bytes, and the cipher specified by the cipher ’th
entry in the cipher descriptor table. It will store the MAC in out with
the same rules as pmac done().

To PMAC a file use

int pmac_file(

int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will PMAC the entire contents of the file specified by file-
name using the key key of length keylen bytes, and the cipher specified
by the cipher ’th entry in the cipher descriptor table. It will store the
MAC in out with the same rules as pmac done().

To test if the PMAC code is working there is the following function:

int pmac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns
an error code.

5.4 Pelican MAC

Pelican MAC is a new (experimental) MAC by the AES team that
uses four rounds of AES as a mixing function. It achieves a very high

70 www.libtom.org

rate of processing and is potentially very secure. It requires AES to
be enabled to function. You do not have to register cipher() AES first
though as it calls AES directly.

int pelican_init(pelican_state *pelmac,

const unsigned char *key,

unsigned long keylen);

This will initialize the Pelican state with the given AES key. Once
this has been done you can begin processing data.

int pelican_process(pelican_state *pelmac,

const unsigned char *in,

unsigned long inlen);

This will process inlen bytes of in through the Pelican MAC. It’s best
that you pass in multiples of 16 bytes as it makes the routine more
efficient but you may pass in any length of text. You can call this
function as many times as required to process an entire message.

int pelican_done(pelican_state *pelmac, unsigned char *out);

This terminates a Pelican MAC and writes the 16–octet tag to out.

5.4.1 Example

#include <tomcrypt.h>

int main(void)

{

pelican_state pelstate;

unsigned char key[32], tag[16];

int err;

/* somehow initialize a key */

/* initialize pelican mac */

if ((err = pelican_init(&pelstate, /* the state */

key, /* user key */

32 /* key length in octets */

5.5 XCBC-MAC 71

)) != CRYPT_OK) {

printf("Error initializing Pelican: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* MAC some data */

if ((err = pelican_process(&pelstate, /* the state */

"hello world", /* data to mac */

11 /* length of data */

)) != CRYPT_OK) {

printf("Error processing Pelican: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* Terminate the MAC */

if ((err = pelican_done(&pelstate,/* the state */

tag /* where to store the tag */

)) != CRYPT_OK) {

printf("Error terminating Pelican: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* tag[0..15] has the MAC output now */

return EXIT_SUCCESS;

}

5.5 XCBC-MAC

As of LibTomCrypt v1.15, XCBC-MAC (RFC 3566) has been provided
to support TLS encryption suites. Like OMAC, it computes a message
authentication code by using a cipher in CBC mode. It also uses
a single key which it expands into the requisite three keys for the
MAC function. A XCBC–MAC state is initialized with the following

72 www.libtom.org

function:

int xcbc_init(xcbc_state *xcbc,

int cipher,

const unsigned char *key,

unsigned long keylen);

This will initialize the XCBC–MAC state xcbc, with the key speci-
fied in key of length keylen octets. The cipher indicated by the cipher
index can be either a 64 or 128–bit block cipher. This will return
CRYPT OK on success.

To process data through XCBC–MAC use the following function:

int xcbc_process(xcbc_state *state,

const unsigned char *in,

unsigned long inlen);

This will add the message octets pointed to by in of length inlen
to the XCBC–MAC state pointed to by state. Like the other MAC
functions, the granularity of the input is not important but the order
is. This will return CRYPT OK on success.

To compute the MAC tag value use the following function:

int xcbc_done(xcbc_state *state,

unsigned char *out,

unsigned long *outlen);

This will retrieve the XCBC–MAC tag from the state pointed to by
state, and store it in the array pointed to by out. The outlen parameter
specifies the maximum size of the destination buffer, and is updated
to hold the final size of the tag when the function returns. This will
return CRYPT OK on success.

Helper functions are provided to make parsing memory buffers and
files easier. The following functions are provided:

int xcbc_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

5.6 F9–MAC 73

This will compute the XCBC–MAC of msglen bytes of msg, using
the key key of length keylen bytes, and the cipher specified by the
cipher ’th entry in the cipher descriptor table. It will store the MAC
in out with the same rules as xcbc done().

To xcbc a file use

int xcbc_file(

int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will XCBC–MAC the entire contents of the file specified
by filename using the key key of length keylen bytes, and the cipher
specified by the cipher ’th entry in the cipher descriptor table. It will
store the MAC in out with the same rules as xcbc done().

To test XCBC–MAC for RFC 3566 compliance use the following
function:

int xcbc_test(void);

This will return CRYPT OK on success. This requires the AES
or Rijndael descriptor be previously registered, otherwise, it will return
CRYPT NOP.

5.6 F9–MAC

The F9–MAC is yet another CBC–MAC variant proposed for the
3GPP standard. Originally specified to be used with the KASUMI
block cipher, it can also be used with other ciphers. For LibTom-
Crypt, the F9–MAC code can use any cipher.

5.6.1 Usage Notice

F9–MAC differs slightly from the other MAC functions in that it re-
quires the caller to perform the final message padding. The padding
quite simply is a direction bit followed by a 1 bit and enough zeros
to make the message a multiple of the cipher block size. If the mes-
sage is byte aligned, the padding takes on the form of a single 0x40 or

74 www.libtom.org

0xC0 byte followed by enough 0x00 bytes to make the message proper
multiple.

If the user simply wants a MAC function (hint: use OMAC) padding
with a single 0x40 byte should be sufficient for security purposes and
still be reasonably compatible with F9–MAC.

5.6.2 F9–MAC Functions

A F9–MAC state is initialized with the following function:

int f9_init(f9_state *f9,

int cipher,

const unsigned char *key,

unsigned long keylen);

This will initialize the F9–MAC state f9, with the key specified
in key of length keylen octets. The cipher indicated by the cipher
index can be either a 64 or 128–bit block cipher. This will return
CRYPT OK on success.

To process data through F9–MAC use the following function:

int f9_process(f9_state *state,

const unsigned char *in,

unsigned long inlen);

This will add the message octets pointed to by in of length inlen to
the F9–MAC state pointed to by state. Like the other MAC functions,
the granularity of the input is not important but the order is. This
will return CRYPT OK on success.

To compute the MAC tag value use the following function:

int f9_done(f9_state *state,

unsigned char *out,

unsigned long *outlen);

This will retrieve the F9–MAC tag from the state pointed to by
state, and store it in the array pointed to by out. The outlen parameter
specifies the maximum size of the destination buffer, and is updated
to hold the final size of the tag when the function returns. This will
return CRYPT OK on success.

5.6 F9–MAC 75

Helper functions are provided to make parsing memory buffers and
files easier. The following functions are provided:

int f9_memory(

int cipher,

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

This will compute the F9–MAC of msglen bytes of msg, using the key
key of length keylen bytes, and the cipher specified by the cipher ’th
entry in the cipher descriptor table. It will store the MAC in out with
the same rules as f9 done().

To F9–MAC a file use

int f9_file(

int cipher,

const unsigned char *key, unsigned long keylen,

const char *filename,

unsigned char *out, unsigned long *outlen);

Which will F9–MAC the entire contents of the file specified by
filename using the key key of length keylen bytes, and the cipher
specified by the cipher ’th entry in the cipher descriptor table. It will
store the MAC in out with the same rules as f9 done().

To test f9–MAC for RFC 3566 compliance use the following func-
tion:

int f9_test(void);

This will return CRYPT OK on success. This requires the AES
or Rijndael descriptor be previously registered, otherwise, it will return
CRYPT NOP.

76 www.libtom.org

Chapter 6

Pseudo-Random
Number Generators

6.1 Core Functions

The library provides an array of core functions for Pseudo-Random
Number Generators (PRNGs) as well. A cryptographic PRNG is used
to expand a shorter bit string into a longer bit string. PRNGs are used
wherever random data is required such as Public Key (PK) key gen-
eration. There is a universal structure called prng state. To initialize
a PRNG call:

int XXX_start(prng_state *prng);

This will setup the PRNG for future use and not seed it. In order
for the PRNG to be cryptographically useful you must give it entropy.
Ideally you’d have some OS level source to tap like in UNIX. To add
entropy to the PRNG call:

int XXX_add_entropy(const unsigned char *in,

unsigned long inlen,

prng_state *prng);

Which returns CRYPT OK if the entropy was accepted. Once you
think you have enough entropy you call another function to put the
entropy into action.

77

78 www.libtom.org

int XXX_ready(prng_state *prng);

Which returns CRYPT OK if it is ready. Finally to actually read
bytes call:

unsigned long XXX_read(unsigned char *out,

unsigned long outlen,

prng_state *prng);

Which returns the number of bytes read from the PRNG. When
you are finished with a PRNG state you call the following.

void XXX_done(prng_state *prng);

This will terminate a PRNG state and free any memory (if any)
allocated. To export a PRNG state so that you can later resume the
PRNG call the following.

int XXX_export(unsigned char *out,

unsigned long *outlen,

prng_state *prng);

This will write a PRNG state to the buffer out of length outlen
bytes. The idea of the export is meant to be used as a seed file. That
is, when the program starts up there will not likely be that much
entropy available. To import a state to seed a PRNG call the following
function.

int XXX_import(const unsigned char *in,

unsigned long inlen,

prng_state *prng);

This will call the start and add entropy functions of the given
PRNG. It will use the state in in of length inlen as the initial seed. You
must pass the same seed length as was exported by the corresponding
export function.

Note that importing a state will not resume the PRNG from where
it left off. That is, if you export a state, emit (say) 8 bytes and
then import the previously exported state the next 8 bytes will not
specifically equal the 8 bytes you generated previously.

When a program is first executed the normal course of operation
is:

6.1 Core Functions 79

1. Gather entropy from your sources for a given period of time or
number of events.

2. Start, use your entropy via add entropy and ready the PRNG
yourself.

When your program is finished you simply call the export function
and save the state to a medium (disk, flash memory, etc). The next
time your application starts up you can detect the state, feed it to
the import function and go on your way. It is ideal that (as soon as
possible) after start up you export a fresh state. This helps in the
case that the program aborts or the machine is powered down without
being given a chance to exit properly.

Note that even if you have a state to import it is important to add
new entropy to the state. However, there is less pressure to do so.

To test a PRNG for operational conformity call the following func-
tions.

int XXX_test(void);

This will return CRYPT OK if PRNG is operating properly.

6.1.1 Remarks

It is possible to be adding entropy and reading from a PRNG at the
same time. For example, if you first seed the PRNG and call ready()
you can now read from it. You can also keep adding new entropy to
it. The new entropy will not be used in the PRNG until ready() is
called again. This allows the PRNG to be used and re-seeded at the
same time. No real error checking is guaranteed to see if the entropy
is sufficient, or if the PRNG is even in a ready state before reading.

6.1.2 Example

Below is a simple snippet to read 10 bytes from Yarrow. It is important
to note that this snippet is NOT secure since the entropy added is
not random.

80 www.libtom.org

#include <tomcrypt.h>

int main(void)

{

prng_state prng;

unsigned char buf[10];

int err;

/* start it */

if ((err = yarrow_start(&prng)) != CRYPT_OK) {

printf("Start error: %s\n", error_to_string(err));

}

/* add entropy */

if ((err = yarrow_add_entropy("hello world", 11, &prng))

!= CRYPT_OK) {

printf("Add_entropy error: %s\n", error_to_string(err));

}

/* ready and read */

if ((err = yarrow_ready(&prng)) != CRYPT_OK) {

printf("Ready error: %s\n", error_to_string(err));

}

printf("Read %lu bytes from yarrow\n",

yarrow_read(buf, sizeof(buf), &prng));

return 0;

}

6.2 PRNG Descriptors

PRNGs have descriptors that allow plugin driven functions to be cre-
ated using PRNGs. The plugin descriptors are stored in the structure
prng descriptor. The format of an element is:

struct _prng_descriptor {

char *name;

int export_size; /* size in bytes of exported state */

int (*start) (prng_state *);

int (*add_entropy)(const unsigned char *, unsigned long,

6.2 PRNG Descriptors 81

prng_state *);

int (*ready) (prng_state *);

unsigned long (*read)(unsigned char *, unsigned long len,

prng_state *);

void (*done)(prng_state *);

int (*export)(unsigned char *, unsigned long *, prng_state *);

int (*import)(const unsigned char *, unsigned long, prng_state *);

int (*test)(void);

};

To find a PRNG in the descriptor table the following function can
be used:

int find_prng(const char *name);

This will search the PRNG descriptor table for the PRNG named
name. It will return -1 if the PRNG is not found, otherwise, it returns
the index into the descriptor table.

Just like the ciphers and hashes, you must register your prng before
you can use it. The two functions provided work exactly as those for
the cipher registry functions. They are the following:

int register_prng(const struct _prng_descriptor *prng);

int unregister_prng(const struct _prng_descriptor *prng);

The register function will register the PRNG, and return the in-
dex into the table where it was placed (or -1 for error). It will avoid
registering the same descriptor twice, and will return the index of the
current placement in the table if the caller attempts to register it more
than once. The unregister function will return CRYPT OK if the
PRNG was found and removed. Otherwise, it returns CRYPT ERROR.

82 www.libtom.org

Name Descriptor Usage

Yarrow yarrow desc Fast short-term PRNG

Fortuna fortuna desc Fast long-term PRNG (recommended)

RC4 rc4 desc Stream Cipher

SOBER-128 sober128 desc Stream Cipher (also very fast PRNG)

Figure 6.1: List of Provided PRNGs

6.2.1 PRNGs Provided

Yarrow

Yarrow is fast PRNG meant to collect an unspecified amount of en-
tropy from sources (keyboard, mouse, interrupts, etc), and produce an
unbounded string of random bytes.

Note: This PRNG is still secure for most tasks but is no longer
recommended. Users should use Fortuna instead.

Fortuna

Fortuna is a fast attack tolerant and more thoroughly designed PRNG
suitable for long term usage. It is faster than the default implementa-
tion of Yarrow1 while providing more security.

Fortuna is slightly less flexible than Yarrow in the sense that it
only works with the AES block cipher and SHA–256 hash function.
Technically, Fortuna will work with any block cipher that accepts a
256–bit key, and any hash that produces at least a 256–bit output.
However, to make the implementation simpler it has been fixed to
those choices.

Fortuna is more secure than Yarrow in the sense that attackers
who learn parts of the entropy being added to the PRNG learn far less
about the state than that of Yarrow. Without getting into to many
details Fortuna has the ability to recover from state determination
attacks where the attacker starts to learn information from the PRNGs
output about the internal state. Yarrow on the other hand, cannot

1Yarrow has been implemented to work with most cipher and hash combos
based on which you have chosen to build into the library.

6.2 PRNG Descriptors 83

recover from that problem until new entropy is added to the pool and
put to use through the ready() function.

RC4

RC4 is an old stream cipher that can also double duty as a PRNG in
a pinch. You key RC4 by calling add entropy(), and setup the key by
calling ready(). You can only add up to 256 bytes via add entropy().

When you read from RC4, the output is XOR’ed against your buffer
you provide. In this manner, you can use rc4 read() as an encrypt (and
decrypt) function.

You really should not use RC4. This is not because RC4 is weak,
(though biases are known to exist) but simply due to the fact that
faster alternatives exist.

SOBER-128

SOBER–128 is a stream cipher designed by the QUALCOMM Aus-
tralia team. Like RC4, you key it by calling add entropy(). There is
no need to call ready() for this PRNG as it does not do anything.

Note: this cipher has several oddities about how it operates. The
first call to add entropy() sets the cipher’s key. Every other time call
to the add entropy() function sets the cipher’s IV variable. The IV
mechanism allows you to encrypt several messages with the same key,
and not re–use the same key material.

Unlike Yarrow and Fortuna, all of the entropy (and hence security)
of this algorithm rests in the data you pass it on the first call to
add entropy(). All buffers sent to add entropy() must have a length
that is a multiple of four bytes.

Like RC4, the output of SOBER–128 is XOR’ed against the buffer
you provide it. In this manner, you can use sober128 read() as an
encrypt (and decrypt) function.

Since SOBER-128 has a fixed keying scheme, and is very fast (faster
than RC4) the ideal usage of SOBER-128 is to key it from the output
of Fortuna (or Yarrow), and use it to encrypt messages. It is also ideal
for simulations which need a high quality (and fast) stream of bytes.

84 www.libtom.org

Example Usage

#include <tomcrypt.h>

int main(void)

{

prng_state prng;

unsigned char buf[32];

int err;

if ((err = rc4_start(&prng)) != CRYPT_OK) {

printf("RC4 init error: %s\n", error_to_string(err));

exit(-1);

}

/* use "key" as the key */

if ((err = rc4_add_entropy("key", 3, &prng)) != CRYPT_OK) {

printf("RC4 add entropy error: %s\n", error_to_string(err));

exit(-1);

}

/* setup RC4 for use */

if ((err = rc4_ready(&prng)) != CRYPT_OK) {

printf("RC4 ready error: %s\n", error_to_string(err));

exit(-1);

}

/* encrypt buffer */

strcpy(buf,"hello world");

if (rc4_read(buf, 11, &prng) != 11) {

printf("RC4 read error\n");

exit(-1);

}

return 0;

}

To decrypt you have to do the exact same steps.

6.3 The Secure RNG

An RNG is related to a PRNG in many ways, except that it does not
expand a smaller seed to get the data. They generate their random

6.3 The Secure RNG 85

bits by performing some computation on fresh input bits. Possibly
the hardest thing to get correctly in a cryptosystem is the PRNG.
Computers are deterministic that try hard not to stray from pre–
determined paths. This makes gathering entropy needed to seed a
PRNG a hard task.

There is one small function that may help on certain platforms:

unsigned long rng_get_bytes(

unsigned char *buf,

unsigned long len,

void (*callback)(void));

Which will try one of three methods of getting random data. The
first is to open the popular /dev/random device which on most *NIX
platforms provides cryptographic random bits2. The second method
is to try the Microsoft Cryptographic Service Provider, and read the
RNG. The third method is an ANSI C clock drift method that is
also somewhat popular but gives bits of lower entropy. The callback
parameter is a pointer to a function that returns void. It is used when
the slower ANSI C RNG must be used so the calling application can
still work. This is useful since the ANSI C RNG has a throughput
of roughly three bytes a second. The callback pointer may be set to
NULL to avoid using it if you do not want to. The function returns
the number of bytes actually read from any RNG source. There is a
function to help setup a PRNG as well:

int rng_make_prng(int bits,

int wprng,

prng_state *prng,

void (*callback)(void));

This will try to initialize the prng with a state of at least bits of entropy.
The callback parameter works much like the callback in rng get bytes().
It is highly recommended that you use this function to setup your
PRNGs unless you have a platform where the RNG does not work
well. Example usage of this function is given below:

2This device is available in Windows through the Cygwin compiler suite. It
emulates /dev/random via the Microsoft CSP.

86 www.libtom.org

#include <tomcrypt.h>

int main(void)

{

ecc_key mykey;

prng_state prng;

int err;

/* register yarrow */

if (register_prng(&yarrow_desc) == -1) {

printf("Error registering Yarrow\n");

return -1;

}

/* setup the PRNG */

if ((err = rng_make_prng(128, find_prng("yarrow"), &prng, NULL))

!= CRYPT_OK) {

printf("Error setting up PRNG, %s\n", error_to_string(err));

return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(&prng, find_prng("yarrow"), 24, &mykey))

!= CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(err));

return -1;

}

return 0;

}

6.3.1 The Secure PRNG Interface

It is possible to access the secure RNG through the PRNG interface,
and in turn use it within dependent functions such as the PK API.
This simplifies the cryptosystem on platforms where the secure RNG
is fast. The secure PRNG never requires to be started, that is you
need not call the start, add entropy, or ready functions. For example,
consider the previous example using this PRNG.

#include <tomcrypt.h>

int main(void)

{

6.3 The Secure RNG 87

ecc_key mykey;

int err;

/* register SPRNG */

if (register_prng(&sprng_desc) == -1) {

printf("Error registering SPRNG\n");

return -1;

}

/* make a 192-bit ECC key */

if ((err = ecc_make_key(NULL, find_prng("sprng"), 24, &mykey))

!= CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(err));

return -1;

}

return 0;

}

88 www.libtom.org

Chapter 7

RSA Public Key
Cryptography

7.1 Introduction

RSA wrote the PKCS #1 specifications which detail RSA Public Key
Cryptography. In the specifications are padding algorithms for en-
cryption and signatures. The standard includes the v1.5 and v2.1
algorithms. To simplify matters a little the v2.1 encryption and sig-
nature padding algorithms are called OAEP and PSS respectively.

7.2 PKCS #1 Padding

PKCS #1 v1.5 padding is so simple that both signature and encryp-
tion padding are performed by the same function. Note: the signature
padding does not include the ASN.1 padding required. That is per-
formed by the rsa sign hash ex() function documented later on in this
chapter.

7.2.1 PKCS #1 v1.5 Encoding

The following function performs PKCS #1 v1.5 padding:

89

90 www.libtom.org

int pkcs_1_v1_5_encode(

const unsigned char *msg,

unsigned long msglen,

int block_type,

unsigned long modulus_bitlen,

prng_state *prng,

int prng_idx,

unsigned char *out,

unsigned long *outlen);

This will encode the message pointed to by msg of length msglen
octets. The block type parameter must be set to LTC PKCS 1 EME
to perform encryption padding. It must be set to LTC PKCS 1 EMSA
to perform signature padding. The modulus bitlen parameter indicates
the length of the modulus in bits. The padded data is stored in out
with a length of outlen octets. The output will not be longer than the
modulus which helps allocate the correct output buffer size.

Only encryption padding requires a PRNG. When performing sig-
nature padding the prng idx parameter may be left to zero as it is not
checked for validity.

7.2.2 PKCS #1 v1.5 Decoding

The following function performs PKCS #1 v1.5 de–padding:

int pkcs_1_v1_5_decode(

const unsigned char *msg,

unsigned long msglen,

int block_type,

unsigned long modulus_bitlen,

unsigned char *out,

unsigned long *outlen,

int *is_valid);

This will remove the PKCS padding data pointed to by msg of length
msglen. The decoded data is stored in out of length outlen. If the
padding is valid, a 1 is stored in is valid, otherwise, a 0 is stored. The
block type parameter must be set to either LTC PKCS 1 EME or
LTC PKCS 1 EMSA depending on whether encryption or signa-
ture padding is being removed.

7.3 PKCS #1 v2.1 Encryption 91

7.3 PKCS #1 v2.1 Encryption

PKCS #1 RSA Encryption amounts to OAEP padding of the input
message followed by the modular exponentiation. As far as this portion
of the library is concerned we are only dealing with th OAEP padding
of the message.

7.3.1 OAEP Encoding

The following function performs PKCS #1 v2.1 encryption padding:

int pkcs_1_oaep_encode(

const unsigned char *msg,

unsigned long msglen,

const unsigned char *lparam,

unsigned long lparamlen,

unsigned long modulus_bitlen,

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned char *out,

unsigned long *outlen);

This accepts msg as input of length msglen which will be OAEP
padded. The lparam variable is an additional system specific tag that
can be applied to the encoding. This is useful to identify which system
encoded the message. If no variance is desired then lparam can be set
to NULL.

OAEP encoding requires the length of the modulus in bits in order
to calculate the size of the output. This is passed as the parameter
modulus bitlen. hash idx is the index into the hash descriptor table
of the hash desired. PKCS #1 allows any hash to be used but both
the encoder and decoder must use the same hash in order for this to
succeed. The size of hash output affects the maximum sized input mes-
sage. prng idx and prng are the random number generator arguments
required to randomize the padding process. The padded message is
stored in out along with the length in outlen.

If h is the length of the hash and m the length of the modulus
(both in octets) then the maximum payload for msg is m − 2h − 2.

92 www.libtom.org

For example, with a 1024–bit RSA key and SHA–1 as the hash the
maximum payload is 86 bytes.

Note that when the message is padded it still has not been RSA
encrypted. You must pass the output of this function to rsa exptmod()
to encrypt it.

7.3.2 OAEP Decoding

int pkcs_1_oaep_decode(

const unsigned char *msg,

unsigned long msglen,

const unsigned char *lparam,

unsigned long lparamlen,

unsigned long modulus_bitlen,

int hash_idx,

unsigned char *out,

unsigned long *outlen,

int *res);

This function decodes an OAEP encoded message and outputs the
original message that was passed to the OAEP encoder. msg is the out-
put of pkcs 1 oaep encode() of length msglen. lparam is the same sys-
tem variable passed to the OAEP encoder. If it does not match what
was used during encoding this function will not decode the packet.
modulus bitlen is the size of the RSA modulus in bits and must match
what was used during encoding. Similarly the hash idx index into the
hash descriptor table must match what was used during encoding.

If the function succeeds it decodes the OAEP encoded message into
out of length outlen and stores a 1 in res. If the packet is invalid it
stores 0 in res and if the function fails for another reason it returns an
error code.

7.4 PKCS #1 Digital Signatures

7.4.1 PSS Encoding

PSS encoding is the second half of the PKCS #1 standard which is
padding to be applied to messages that are signed.

7.4 PKCS #1 Digital Signatures 93

int pkcs_1_pss_encode(

const unsigned char *msghash,

unsigned long msghashlen,

unsigned long saltlen,

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long modulus_bitlen,

unsigned char *out,

unsigned long *outlen);

This function assumes the message to be PSS encoded has previ-
ously been hashed. The input hash msghash is of length msghashlen.
PSS allows a variable length random salt (it can be zero length) to
be introduced in the signature process. hash idx is the index into the
hash descriptor table of the hash to use. prng idx and prng are the
random number generator information required for the salt.

Similar to OAEP encoding modulus bitlen is the size of the RSA
modulus (in bits). It limits the size of the salt. If m is the length of
the modulus h the length of the hash output (in octets) then there can
be m− h− 2 bytes of salt.

This function does not actually sign the data it merely pads the
hash of a message so that it can be processed by rsa exptmod().

7.4.2 PSS Decoding

To decode a PSS encoded signature block you have to use the following.

int pkcs_1_pss_decode(

const unsigned char *msghash,

unsigned long msghashlen,

const unsigned char *sig,

unsigned long siglen,

unsigned long saltlen,

int hash_idx,

unsigned long modulus_bitlen,

int *res);

94 www.libtom.org

This will decode the PSS encoded message in sig of length siglen and
compare it to values in msghash of length msghashlen. If the block
is a valid PSS block and the decoded hash equals the hash supplied
res is set to non–zero. Otherwise, it is set to zero. The rest of the
parameters are as in the PSS encode call.

It’s important to use the same saltlen and hash for both encoding
and decoding as otherwise the procedure will not work.

7.5 RSA Key Operations

7.5.1 Background

RSA is a public key algorithm that is based on the inability to find
the e-th root modulo a composite of unknown factorization. Normally
the difficulty of breaking RSA is associated with the integer factoring
problem but they are not strictly equivalent.

The system begins with with two primes p and q and their product
N = pq. The order or Euler totient of the multiplicative sub-group
formed modulo N is given as ϕ(N) = (p − 1)(q − 1) which can be
reduced to lcm(p− 1, q− 1). The public key consists of the composite
N and some integer e such that gcd(e, ϕ(N)) = 1. The private key
consists of the composite N and the inverse of e modulo ϕ(N) often
simply denoted as de ≡ 1 (mod ϕ(N)).

A person who wants to encrypt with your public key simply forms
an integer (the plaintext) M such that 1 < M < N − 2 and computes
the ciphertext C = M e (mod N). Since finding the inverse exponent
d given only N and e appears to be intractable only the owner of the
private key can decrypt the ciphertext and compute Cd ≡ (M e)

d ≡
M1 ≡M (mod N). Similarly the owner of the private key can sign a
message by decrypting it. Others can verify it by encrypting it.

Currently RSA is a difficult system to cryptanalyze provided that
both primes are large and not close to each other. Ideally e should
be larger than 100 to prevent direct analysis. For example, if e is
three and you do not pad the plaintext to be encrypted than it is
possible that M3 < N in which case finding the cube-root would be
trivial. The most often suggested value for e is 65537 since it is large
enough to make such attacks impossible and also well designed for fast

7.5 RSA Key Operations 95

exponentiation (requires 16 squarings and one multiplication).
It is important to pad the input to RSA since it has particular

mathematical structure. For instance Md
1 Md

2 = (M1M2)
d which can

be used to forge a signature. Suppose M3 = M1M2 is a message you
want to have a forged signature for. Simply get the signatures for M1

and M2 on their own and multiply the result together. Similar tricks
can be used to deduce plaintexts from ciphertexts. It is important not
only to sign the hash of documents only but also to pad the inputs
with data to remove such structure.

7.5.2 RSA Key Generation

For RSA routines a single rsa key structure is used. To make a new
RSA key call:

int rsa_make_key(prng_state *prng,

int wprng,

int size,

long e,

rsa_key *key);

Where wprng is the index into the PRNG descriptor array. The
size parameter is the size in bytes of the RSA modulus desired. The
e parameter is the encryption exponent desired, typical values are 3,
17, 257 and 65537. Stick with 65537 since it is big enough to prevent
trivial math attacks, and not super slow. The key parameter is where
the constructed key is placed. All keys must be at least 128 bytes, and
no more than 512 bytes in size (that is from 1024 to 4096 bits).

Note: the rsa make key() function allocates memory at run–time
when you make the key. Make sure to call rsa free() (see below) when
you are finished with the key. If rsa make key() fails it will automati-
cally free the memory allocated.

There are two types of RSA keys. The types are PK PRIVATE
and PK PUBLIC. The first type is a private RSA key which includes
the CRT parameters1 in the form of a RSAPrivateKey (PKCS #1 com-
pliant). The second type, is a public RSA key which only includes the

1As of v0.99 the PK PRIVATE OPTIMIZED type has been deprecated, and
has been replaced by the PK PRIVATE type.

96 www.libtom.org

modulus and public exponent. It takes the form of a RSAPublicKey
(PKCS #1 compliant).

7.5.3 RSA Exponentiation

To do raw work with the RSA function, that is without padding, use
the following function:

int rsa_exptmod(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

int which,

rsa_key *key);

This will load the bignum from in as a big endian integer in the format
PKCS #1 specifies, raises it to either e or d and stores the result in
out and the size of the result in outlen. which is set to PK PUBLIC
to use e (i.e. for encryption/verifying) and set to PK PRIVATE to
use d as the exponent (i.e. for decrypting/signing).

Note: the output of this function is zero–padded as per PKCS #1
specification. This allows this routine to work with PKCS #1 padding
functions properly.

7.6 RSA Key Encryption

Normally RSA is used to encrypt short symmetric keys which are then
used in block ciphers to encrypt a message. To facilitate encrypting
short keys the following functions have been provided.

int rsa_encrypt_key(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

const unsigned char *lparam,

unsigned long lparamlen,

prng_state *prng,

7.7 RSA Key Decryption 97

int prng_idx,

int hash_idx,

rsa_key *key);

This function will OAEP pad in of length inlen bytes, RSA encrypt it,
and store the ciphertext in out of length outlen octets. The lparam and
lparamlen are the same parameters you would pass to pkcs 1 oaep encode().

7.6.1 Extended Encryption

As of v1.15, the library supports both v1.5 and v2.1 PKCS #1 style
paddings in these higher level functions. The following is the extended
encryption function:

int rsa_encrypt_key_ex(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

const unsigned char *lparam,

unsigned long lparamlen,

prng_state *prng,

int prng_idx,

int hash_idx,

int padding,

rsa_key *key);

The parameters are all the same as for rsa encrypt key() except for
the addition of the padding parameter. It must be set to LTC PKCS 1 V1 5
to perform v1.5 encryption, or set to LTC PKCS 1 OAEP to per-
form v2.1 encryption.

When performing v1.5 encryption, the hash and lparam parameters
are totally ignored and can be set to NULL or zero (respectively).

7.7 RSA Key Decryption

int rsa_decrypt_key(

const unsigned char *in,

98 www.libtom.org

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

const unsigned char *lparam,

unsigned long lparamlen,

int hash_idx,

int *stat,

rsa_key *key);

This function will RSA decrypt in of length inlen then OAEP de-
pad the resulting data and store it in out of length outlen. The
lparam and lparamlen are the same parameters you would pass to
pkcs 1 oaep decode().

If the RSA decrypted data is not a valid OAEP packet then stat
is set to 0. Otherwise, it is set to 1.

7.7.1 Extended Decryption

As of v1.15, the library supports both v1.5 and v2.1 PKCS #1 style
paddings in these higher level functions. The following is the extended
decryption function:

int rsa_decrypt_key_ex(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

const unsigned char *lparam,

unsigned long lparamlen,

int hash_idx,

int padding,

int *stat,

rsa_key *key);

Similar to the extended encryption, the new parameter padding
indicates which version of the PKCS #1 standard to use. It must
be set to LTC PKCS 1 V1 5 to perform v1.5 decryption, or set to
LTC PKCS 1 OAEP to perform v2.1 decryption.

When performing v1.5 decryption, the hash and lparam parameters
are totally ignored and can be set to NULL or zero (respectively).

7.8 RSA Signature Generation 99

7.8 RSA Signature Generation

Similar to RSA key encryption RSA is also used to digitally sign mes-
sage digests (hashes). To facilitate this process the following functions
have been provided.

int rsa_sign_hash(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long saltlen,

rsa_key *key);

This will PSS encode the message digest pointed to by in of length
inlen octets. Next, the PSS encoded hash will be RSA signed and the
output stored in the buffer pointed to by out of length outlen octets.

The hash idx parameter indicates which hash will be used to create
the PSS encoding. It should be the same as the hash used to hash
the message being signed. The saltlen parameter indicates the length
of the desired salt, and should typically be small. A good default
value is between 8 and 16 octets. Strictly, it must be small than
modulus len − hLen − 2 where modulus len is the size of the RSA
modulus (in octets), and hLen is the length of the message digest
produced by the chosen hash.

7.8.1 Extended Signatures

As of v1.15, the library supports both v1.5 and v2.1 signatures. The
extended signature generation function has the following prototype:

int rsa_sign_hash_ex(

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

int padding,

100 www.libtom.org

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long saltlen,

rsa_key *key);

This will PKCS encode the message digest pointed to by in of
length inlen octets. Next, the PKCS encoded hash will be RSA signed
and the output stored in the buffer pointed to by out of length outlen
octets. The padding parameter must be set to LTC PKCS 1 V1 5
to produce a v1.5 signature, otherwise, it must be set to LTC PKCS 1 PSS
to produce a v2.1 signature.

When performing a v1.5 signature the prng, prng idx, and hash idx
parameters are not checked and can be left to any values such as
{NULL, 0, 0}.

7.9 RSA Signature Verification

int rsa_verify_hash(const unsigned char *sig,

unsigned long siglen,

const unsigned char *msghash,

unsigned long msghashlen,

int hash_idx,

unsigned long saltlen,

int *stat,

rsa_key *key);

This will RSA verify the signature pointed to by sig of length siglen
octets. Next, the RSA decoded data is PSS decoded and the extracted
hash is compared against the message digest pointed to by msghash
of length msghashlen octets.

If the RSA decoded data is not a valid PSS message, or if the
PSS decoded hash does not match the msghash value, res is set to 0.
Otherwise, if the function succeeds, and signature is valid res is set to
1.

7.10 RSA Encryption Example 101

7.9.1 Extended Verification

As of v1.15, the library supports both v1.5 and v2.1 signature verifi-
cation. The extended signature verification function has the following
prototype:

int rsa_verify_hash_ex(

const unsigned char *sig,

unsigned long siglen,

const unsigned char *hash,

unsigned long hashlen,

int padding,

int hash_idx,

unsigned long saltlen,

int *stat,

rsa_key *key);

This will RSA verify the signature pointed to by sig of length
siglen octets. Next, the RSA decoded data is PKCS decoded and the
extracted hash is compared against the message digest pointed to by
msghash of length msghashlen octets.

If the RSA decoded data is not a valid PSS message, or if the
PKCS decoded hash does not match the msghash value, res is set to
0. Otherwise, if the function succeeds, and signature is valid res is set
to 1.

The padding parameter must be set to LTC PKCS 1 V1 5 to
perform a v1.5 verification. Otherwise, it must be set to LTC PKCS 1 PSS
to perform a v2.1 verification. When performing a v1.5 verification the
hash idx parameter is ignored.

7.10 RSA Encryption Example

#include <tomcrypt.h>

int main(void)

{

int err, hash_idx, prng_idx, res;

unsigned long l1, l2;

unsigned char pt[16], pt2[16], out[1024];

rsa_key key;

102 www.libtom.org

/* register prng/hash */

if (register_prng(&sprng_desc) == -1) {

printf("Error registering sprng");

return EXIT_FAILURE;

}

/* register a math library (in this case TomsFastMath)

ltc_mp = tfm_desc;

if (register_hash(&sha1_desc) == -1) {

printf("Error registering sha1");

return EXIT_FAILURE;

}

hash_idx = find_hash("sha1");

prng_idx = find_prng("sprng");

/* make an RSA-1024 key */

if ((err = rsa_make_key(NULL, /* PRNG state */

prng_idx, /* PRNG idx */

1024/8, /* 1024-bit key */

65537, /* we like e=65537 */

&key) /* where to store the key */

) != CRYPT_OK) {

printf("rsa_make_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* fill in pt[] with a key we want to send ... */

l1 = sizeof(out);

if ((err = rsa_encrypt_key(pt, /* data we wish to encrypt */

16, /* data is 16 bytes long */

out, /* where to store ciphertext */

&l1, /* length of ciphertext */

"TestApp", /* our lparam for this program */

7, /* lparam is 7 bytes long */

NULL, /* PRNG state */

prng_idx, /* prng idx */

hash_idx, /* hash idx */

&key) /* our RSA key */

) != CRYPT_OK) {

7.11 RSA Key Format 103

printf("rsa_encrypt_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now let’s decrypt the encrypted key */

l2 = sizeof(pt2);

if ((err = rsa_decrypt_key(out, /* encrypted data */

l1, /* length of ciphertext */

pt2, /* where to put plaintext */

&l2, /* plaintext length */

"TestApp", /* lparam for this program */

7, /* lparam is 7 bytes long */

hash_idx, /* hash idx */

&res, /* validity of data */

&key) /* our RSA key */

) != CRYPT_OK) {

printf("rsa_decrypt_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* if all went well pt == pt2, l2 == 16, res == 1 */

}

7.11 RSA Key Format

The RSA key format adopted for exporting and importing keys is the
PKCS #1 format defined by the ASN.1 constructs known as RSAPub-
licKey and RSAPrivateKey. Additionally, the OpenSSL key format is
supported by the import function only.

7.11.1 RSA Key Export

To export a RSA key use the following function.

int rsa_export(unsigned char *out,

unsigned long *outlen,

int type,

rsa_key *key);

This will export the RSA key in either a RSAPublicKey or RSAPri-
vateKey (PKCS #1 types) depending on the value of type. When it is

104 www.libtom.org

set to PK PRIVATE the export format will be RSAPrivateKey and
otherwise it will be RSAPublicKey.

7.11.2 RSA Key Import

To import a RSA key use the following function.

int rsa_import(const unsigned char *in,

unsigned long inlen,

rsa_key *key);

This will import the key stored in inlen and import it to key.
If the function fails it will automatically free any allocated memory.
This function can import both RSAPublicKey and RSAPrivateKey
formats.

As of v1.06 this function can also import OpenSSL DER formatted
public RSA keys. They are essentially encapsulated RSAPublicKeys.
LibTomCrypt will import the key, strip off the additional data (it’s the
preferred hash) and fill in the rsa key structure as if it were a native
RSAPublicKey. Note that there is no function provided to export in
this format.

Chapter 8

Elliptic Curve
Cryptography

8.1 Background

The library provides a set of core ECC functions as well that are
designed to be the Elliptic Curve analogy of all of the Diffie-Hellman
routines in the previous chapter. Elliptic curves (of certain forms) have
the benefit that they are harder to attack (no sub-exponential attacks
exist unlike normal DH crypto) in fact the fastest attack requires the
square root of the order of the base point in time. That means if you
use a base point of order 2192 (which would represent a 192-bit key)
then the work factor is 296 in order to find the secret key.

The curves in this library are taken from the following website:

http://csrc.nist.gov/cryptval/dss.htm

As of v1.15 three new curves from the SECG standards are also in-
cluded they are the secp112r1, secp128r1, and secp160r1 curves. These
curves were added to support smaller devices which do not need as
large keys for security.

They are all curves over the integers modulo a prime. The curves
have the basic equation that is:

y2 = x3 − 3x + b (mod p) (8.1)

105

106 www.libtom.org

The variable b is chosen such that the number of points is nearly
maximal. In fact the order of the base points β provided are very close
to p that is ||ϕ(β)||∼||p||. The curves range in order from ∼2112 points
to ∼2521. According to the source document any key size greater than
or equal to 256-bits is sufficient for long term security.

8.2 Fixed Point Optimizations

As of v1.12 of LibTomCrypt, support for Fixed Point ECC point multi-
plication has been added. It is a generic optimization that is supported
by any conforming math plugin. It is enabled by defining MECC FP
during the build, such as

CFLAGS="-DTFM_DESC -DMECC_FP" make

which will build LTC using the TFM math library and enabling
this new feature. The feature is not enabled by default as it is NOT
thread safe (by default). It supports the LTC locking macros (such as
by enabling LTC PTHREAD), but by default is not locked.

The optimization works by using a Fixed Point multiplier on any
base point you use twice or more in a short period of time. It has
a limited size cache (of FP ENTRIES entries) which it uses to hold
recent bases passed to ltc ecc mulmod(). Any base detected to be used
twice is sent through the pre–computation phase, and then the fixed
point algorithm can be used. For example, if you use a NIST base
point twice in a row, the 2nd and all subsequent point multiplications
with that point will use the faster algorithm.

The optimization uses a window on the multiplicand of FP LUT
bits (default: 8, min: 2, max: 12), and this controls the memory/time
trade-off. The larger the value the faster the algorithm will be but
the more memory it will take. The memory usage is 3 · 2FP LUT inte-
gers which by default with TFM amounts to about 400kB of memory.
Tuning TFM (by changing FP SIZE) can decrease the usage by a fair
amount. Memory is only used by a cache entry if it is active. Both
FP ENTRIES and FP LUT are definable on the command line if you
wish to override them. For instance,

CFLAGS="-DTFM_DESC -DMECC_FP -DFP_ENTRIES=8 -DFP_LUT=6" make

8.3 Key Format 107

would define a window of 6 bits and limit the cache to 8 entries.
Generally, it is better to first tune TFM by adjusting FP SIZE (from
tfm.h). It defaults to 4096 bits (512 bytes) which is way more than
what is required by ECC. At most, you need 1152 bits to
accommodate ECC–521. If you’re only using (say) ECC–256 you will
only need 576 bits, which would reduce the memory usage by 700%.

8.3 Key Format

LibTomCrypt uses a unique format for ECC public and private keys.
While ANSI X9.63 partially specifies key formats, it does it in a less
than ideally simple manner. In the case of LibTomCrypt, it is meant
solely for NIST and SECG GF (p) curves. The format of the keys is
as follows:

ECCPublicKey ::= SEQUENCE {

flags BIT STRING(0), -- public/private flag (always zero),

keySize INTEGER, -- Curve size (in bits) divided by eight

-- and rounded down, e.g. 521 => 65

pubkey.x INTEGER, -- The X co-ordinate of the public key point

pubkey.y INTEGER, -- The Y co-ordinate of the public key point

}

ECCPrivateKey ::= SEQUENCE {

flags BIT STRING(1), -- public/private flag (always one),

keySize INTEGER, -- Curve size (in bits) divided by eight

-- and rounded down, e.g. 521 => 65

pubkey.x INTEGER, -- The X co-ordinate of the public key point

pubkey.y INTEGER, -- The Y co-ordinate of the public key point

secret.k INTEGER, -- The secret key scalar

}

The first flags bit denotes whether the key is public (zero) or private
(one).

108 www.libtom.org

8.4 ECC Curve Parameters

The library uses the following structure to describe an elliptic curve.
This is used internally, as well as by the new extended ECC functions
which allow the user to specify their own curves.

/** Structure defines a NIST GF(p) curve */

typedef struct {

/** The size of the curve in octets */

int size;

/** name of curve */

char *name;

/** The prime that defines the field (encoded in hex) */

char *prime;

/** The fields B param (hex) */

char *B;

/** The order of the curve (hex) */

char *order;

/** The x co-ordinate of the base point on the curve (hex) */

char *Gx;

/** The y co-ordinate of the base point on the curve (hex) */

char *Gy;

} ltc_ecc_set_type;

The curve must be of the form y2 = x3 − 3x + b, and all of the
integer parameters are encoded in hexadecimal format.

8.5 Core Functions

8.5.1 ECC Key Generation

There is a key structure called ecc key used by the ECC functions.
There is a function to make a key:

8.5 Core Functions 109

int ecc_make_key(prng_state *prng,

int wprng,

int keysize,

ecc_key *key);

The keysize is the size of the modulus in bytes desired. Currently
directly supported values are 12, 16, 20, 24, 28, 32, 48, and 65 bytes
which correspond to key sizes of 112, 128, 160, 192, 224, 256, 384, and
521 bits respectively. If you pass a key size that is between any key
size it will round the keysize up to the next available one.

The function will free any internally allocated resources if there is
an error.

8.5.2 Extended Key Generation

As of v1.16, the library supports an extended key generation routine
which allows the user to specify their own curve. It is specified as
follows:

int ecc_make_key_ex(

prng_state *prng,

int wprng,

ecc_key *key,

const ltc_ecc_set_type *dp);

This function generates a random ECC key over the curve specified
by the parameters by dp. The rest of the parameters are equivalent to
those from the original key generation function.

8.5.3 ECC Key Free

To free the memory allocated by a ecc make key(), ecc make key ex(),
ecc import(), or ecc import ex() call use the following function:

void ecc_free(ecc_key *key);

8.5.4 ECC Key Export

To export an ECC key using the LibTomCrypt format call the follow-
ing function:

110 www.libtom.org

int ecc_export(unsigned char *out,

unsigned long *outlen,

int type,

ecc_key *key);

This will export the key with the given type (PK PUBLIC or PK PRIVATE),
and store it to out.

8.5.5 ECC Key Import

The following function imports a LibTomCrypt format ECC key:

int ecc_import(const unsigned char *in,

unsigned long inlen,

ecc_key *key);

This will import the ECC key from in, and store it in the ecc key
structure pointed to by key. If the operation fails it will free any
allocated memory automatically.

8.5.6 Extended Key Import

The following function imports a LibTomCrypt format ECC key using
a specified set of curve parameters:

int ecc_import_ex(const unsigned char *in,

unsigned long inlen,

ecc_key *key,

const ltc_ecc_set_type *dp);

This will import the key from the array pointed to by in of length
inlen octets. The key is stored in the ECC structure pointed to by
key. The curve is specified by the parameters pointed to by dp. The
function will free all internally allocated memory upon error.

8.5.7 ANSI X9.63 Export

The following function exports an ECC public key in the ANSI X9.63
format:

8.5 Core Functions 111

int ecc_ansi_x963_export(ecc_key *key,

unsigned char *out,

unsigned long *outlen);

The ECC key pointed to by key is exported in public fashion to the
array pointed to by out. The ANSI X9.63 format used is from section
4.3.6 of the standard. It does not allow for the export of private keys.

8.5.8 ANSI X9.63 Import

The following function imports an ANSI X9.63 section 4.3.6 format
public ECC key:

int ecc_ansi_x963_import(const unsigned char *in,

unsigned long inlen,

ecc_key *key);

This will import the key stored in the array pointed to by in of length
inlen octets. The imported key is stored in the ECC key pointed to
by key. The function will free any allocated memory upon error.

8.5.9 Extended ANSI X9.63 Import

The following function allows the importing of an ANSI x9.63 section
4.3.6 format public ECC key using user specified domain parameters:

int ecc_ansi_x963_import_ex(const unsigned char *in,

unsigned long inlen,

ecc_key *key,

ltc_ecc_set_type *dp);

This will import the key stored in the array pointed to by in of length
inlen octets using the domain parameters pointed to by dp. The im-
ported key is stored in the ECC key pointed to by key. The function
will free any allocated memory upon error.

8.5.10 ECC Shared Secret

To construct a Diffie-Hellman shared secret with a private and public
ECC key, use the following function:

112 www.libtom.org

int ecc_shared_secret(ecc_key *private_key,

ecc_key *public_key,

unsigned char *out,

unsigned long *outlen);

The private key is typically the local private key, and public key is the
key the remote party has shared. Note: this function stores only the
x co-ordinate of the shared elliptic point as described in ANSI X9.63
ECC–DH.

8.6 ECC Diffie-Hellman Encryption

ECC–DH Encryption is performed by producing a random key, hash-
ing it, and XOR’ing the digest against the plaintext. It is not strictly
ANSI X9.63 compliant but it is very similar. It has been extended by
using an ASN.1 sequence and hash object identifiers to allow portable
usage. The following function encrypts a short string (no longer than
the message digest) using this technique:

8.6.1 ECC-DH Encryption

int ecc_encrypt_key(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

int hash,

ecc_key *key);

As the name implies this function encrypts a (symmetric) key, and
is not intended for encrypting long messages directly. It will encrypt
the plaintext in the array pointed to by in of length inlen octets. It
uses the public ECC key pointed to by key, and hash algorithm indexed
by hash to construct a shared secret which may be XOR’ed against
the plaintext. The ciphertext is stored in the output buffer pointed to
by out of length outlen octets.

8.7 EC DSA Signatures 113

The data is encrypted to the public ECC key such that only the
holder of the private key can decrypt the payload. To have multiple
recipients multiple call to this function for each public ECC key is
required.

8.6.2 ECC-DH Decryption

int ecc_decrypt_key(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

ecc_key *key);

This function will decrypt an encrypted payload. The key pro-
vided must be the private key corresponding to the public key used
during encryption. If the wrong key is provided the function will not
specifically return an error code. It is important to use some form
of challenge response in that case (e.g. compute a MAC of a known
string).

8.6.3 ECC Encryption Format

The packet format for the encrypted keys is the following ASN.1 SE-
QUENCE:

ECCEncrypt ::= SEQUENCE {

hashID OBJECT IDENTIFIER, -- OID of hash used

pubkey OCTET STRING , -- Encapsulated ECCPublicKey

skey OCTET STRING -- xor of plaintext and

--"hash of shared secret"

}

8.7 EC DSA Signatures

There are also functions to sign and verify messages. They use the
ANSI X9.62 EC-DSA algorithm to generate and verify signatures in
the ANSI X9.62 format.

114 www.libtom.org

8.7.1 EC-DSA Signature Generation

To sign a message digest (hash) use the following function:

int ecc_sign_hash(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

ecc_key *key);

This function will EC–DSA sign the message digest stored in the
array pointed to by in of length inlen octets. The signature will be
stored in the array pointed to by out of length outlen octets. The
function requires a properly seeded PRNG, and the ECC key provided
must be a private key.

8.7.2 EC-DSA Signature Verification

int ecc_verify_hash(const unsigned char *sig,

unsigned long siglen,

const unsigned char *hash,

unsigned long hashlen,

int *stat,

ecc_key *key);

This function will verify the EC-DSA signature in the array pointed
to by sig of length siglen octets, against the message digest pointed
to by the array hash of length hashlen. It will store a non–zero value
in stat if the signature is valid. Note: the function will not return an
error if the signature is invalid. It will return an error, if the actual
signature payload is an invalid format. The ECC key must be the
public (or private) ECC key corresponding to the key that performed
the signature.

8.7.3 Signature Format

The signature code is an implementation of X9.62 EC–DSA, and the
output is compliant for GF(p) curves.

8.8 ECC Keysizes 115

8.8 ECC Keysizes

With ECC if you try to sign a hash that is bigger than your ECC key
you can run into problems. The math will still work, and in effect the
signature will still work. With ECC keys the strength of the signature
is limited by the size of the hash, or the size of they key, whichever is
smaller. For example, if you sign with SHA256 and an ECC-192 key,
you in effect have 96–bits of security.

The library will not warn you if you make this mistake, so it is
important to check yourself before using the signatures.

116 www.libtom.org

Chapter 9

Digital Signature
Algorithm

9.1 Introduction

The Digital Signature Algorithm (or DSA) is a variant of the ElGamal
Signature scheme which has been modified to reduce the bandwidth of
the signatures. For example, to have 80-bits of security with ElGamal,
you need a group with an order of at least 1024–bits. With DSA, you
need a group of order at least 160–bits. By comparison, the ElGamal
signature would require at least 256 bytes of storage, whereas the DSA
signature would require only at least 40 bytes.

9.2 Key Format

Since no useful public standard for DSA key storage was presented
to me during the course of this development I made my own ASN.1
SEQUENCE which I document now so that others can interoperate
with this library.

DSAPublicKey ::= SEQUENCE {

publicFlags BIT STRING(0), -- must be 0

g INTEGER , -- base generator

117

118 www.libtom.org

-- check that g^q mod p == 1

-- and that 1 < g < p - 1

p INTEGER , -- prime modulus

q INTEGER , -- order of sub-group

-- (must be prime)

y INTEGER , -- public key, specifically,

-- g^x mod p,

-- check that y^q mod p == 1

-- and that 1 < y < p - 1

}

DSAPrivateKey ::= SEQUENCE {

publicFlags BIT STRING(1), -- must be 1

g INTEGER , -- base generator

-- check that g^q mod p == 1

-- and that 1 < g < p - 1

p INTEGER , -- prime modulus

q INTEGER , -- order of sub-group

-- (must be prime)

y INTEGER , -- public key, specifically,

-- g^x mod p,

-- check that y^q mod p == 1

-- and that 1 < y < p - 1

x INTEGER -- private key

}

The leading BIT STRING has a single bit in it which is zero for
public keys and one for private keys. This makes the structure uniquely
decodable, and easy to work with.

9.3 Key Generation

To make a DSA key you must call the following function

int dsa_make_key(prng_state *prng,

int wprng,

int group_size,

int modulus_size,

9.4 Key Verification 119

dsa_key *key);

The variable prng is an active PRNG state and wprng the index to
the descriptor. group size and modulus size control the difficulty of
forging a signature. Both parameters are in bytes. The larger the
group size the more difficult a forgery becomes upto a limit. The value
of group size is limited by 15 < group size < 1024 and modulus size−
group size < 512. Suggested values for the pairs are as follows.

Bits of Security group size modulus size
80 20 128
120 30 256
140 35 384
160 40 512

Figure 9.1: DSA Key Sizes

When you are finished with a DSA key you can call the following
function to free the memory used.

void dsa_free(dsa_key *key);

9.4 Key Verification

Each DSA key is composed of the following variables.

1. q a small prime of magnitude 256group size.

2. p = qr + 1 a large prime of magnitude 256modulus size where r is
a random even integer.

3. g = hr (mod p) a generator of order q modulo p. h can be any
non-trivial random value. For this library they start at h = 2
and step until g is not 1.

4. x a random secret (the secret key) in the range 1 < x < q

5. y = gx (mod p) the public key.

A DSA key is considered valid if it passes all of the following tests.

120 www.libtom.org

1. q must be prime.

2. p must be prime.

3. g cannot be one of {−1, 0, 1} (modulo p).

4. g must be less than p.

5. (p− 1) ≡ 0 (mod q).

6. gq ≡ 1 (mod p).

7. 1 < y < p− 1

8. yq ≡ 1 (mod p).

Tests one and two ensure that the values will at least form a field
which is required for the signatures to function. Tests three and four
ensure that the generator g is not set to a trivial value which would
make signature forgery easier. Test five ensures that q divides the
order of multiplicative sub-group of Z/pZ. Test six ensures that the
generator actually generates a prime order group. Tests seven and
eight ensure that the public key is within range and belongs to a group
of prime order. Note that test eight does not prove that g generated
y only that y belongs to a multiplicative sub-group of order q.

The following function will perform these tests.

int dsa_verify_key(dsa_key *key, int *stat);

This will test key and store the result in stat. If the result is
stat = 0 the DSA key failed one of the tests and should not be used
at all. If the result is stat = 1 the DSA key is valid (as far as valid
mathematics are concerned).

9.5 Signatures

9.5.1 Signature Generation

To generate a DSA signature call the following function:

9.6 DSA Encrypt and Decrypt 121

int dsa_sign_hash(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

dsa_key *key);

Which will sign the data in in of length inlen bytes. The signature
is stored in out and the size of the signature in outlen. If the signature
is longer than the size you initially specify in outlen nothing is stored
and the function returns an error code. The DSA key must be of the
PK PRIVATE persuasion.

9.5.2 Signature Verification

To verify a hash created with that function use the following function:

int dsa_verify_hash(const unsigned char *sig,

unsigned long siglen,

const unsigned char *hash,

unsigned long inlen,

int *stat,

dsa_key *key);

Which will verify the data in hash of length inlen against the signature
stored in sig of length siglen. It will set stat to 1 if the signature is
valid, otherwise it sets stat to 0.

9.6 DSA Encrypt and Decrypt

As of version 1.07, the DSA keys can be used to encrypt and decrypt
small payloads. It works similar to the ECC encryption where a shared
key is computed, and the hash of the shared key XOR’ed against the
plaintext forms the ciphertext. The format used is functional port of
the ECC encryption format to the DSA algorithm.

122 www.libtom.org

9.6.1 DSA Encryption

This function will encrypt a small payload with a recipients public
DSA key.

int dsa_encrypt_key(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

int hash,

dsa_key *key);

This will encrypt the payload in in of length inlen and store the
ciphertext in the output buffer out. The length of the ciphertext outlen
must be originally set to the length of the output buffer. The DSA
key can be a public key.

9.6.2 DSA Decryption

int dsa_decrypt_key(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen,

dsa_key *key);

This will decrypt the ciphertext in of length inlen, and store the orig-
inal payload in out of length outlen. The DSA key must be a private
key.

9.7 DSA Key Import and Export

9.7.1 DSA Key Export

To export a DSA key so that it can be transported use the following
function:

9.7 DSA Key Import and Export 123

int dsa_export(unsigned char *out,

unsigned long *outlen,

int type,

dsa_key *key);

This will export the DSA key to the buffer out and set the length
in outlen (which must have been previously initialized to the maxi-
mum buffer size). The type variable may be either PK PRIVATE
or PK PUBLIC depending on whether you want to export a private
or public copy of the DSA key.

9.7.2 DSA Key Import

To import an exported DSA key use the following function :

int dsa_import(const unsigned char *in,

unsigned long inlen,

dsa_key *key);

This will import the DSA key from the buffer in of length inlen to
the key. If the process fails the function will automatically free all of
the heap allocated in the process (you don’t have to call dsa free()).

124 www.libtom.org

Chapter 10

Standards Support

10.1 ASN.1 Formats

LibTomCrypt supports a variety of ASN.1 data types encoded with
the Distinguished Encoding Rules (DER) suitable for various crypto-
graphic protocols. The data types are all provided with three basic
functions with similar prototypes. One function has been dedicated
to calculate the length in octets of a given format, and two functions
have been dedicated to encoding and decoding the format.

On top of the basic data types are the SEQUENCE and SET data
types which are collections of other ASN.1 types. They are provided in
the same manner as the other data types except they use list of objects
known as the ltc asn1 list structure. It is defined as the following:

typedef struct {

int type;

void *data;

unsigned long size;

int used;

struct ltc_asn1_list_ *prev, *next,

*child, *parent;

} ltc_asn1_list;

125

126 www.libtom.org

The type field is one of the following ASN.1 field definitions. The
data pointer is a void pointer to the data to be encoded (or the des-
tination) and the size field is specific to what you are encoding (e.g.
number of bits in the BIT STRING data type). The used field is pri-
marily for the CHOICE decoder and reflects if the particular member
of a list was the decoded data type. To help build the lists in an or-
derly fashion the macro LTC SET ASN1(list, index, Type, Data, Size)
has been provided.

It will assign to the index th position in the list the triplet (Type,
Data, Size). An example usage would be:

...

ltc_asn1_list sequence[3];

unsigned long three=3;

LTC_SET_ASN1(sequence, 0, LTC_ASN1_IA5_STRING, "hello", 5);

LTC_SET_ASN1(sequence, 1, LTC_ASN1_SHORT_INTEGER, &three, 1);

LTC_SET_ASN1(sequence, 2, LTC_ASN1_NULL, NULL, 0);

The macro is relatively safe with respect to modifying variables,
for instance the following code is equivalent.

...

ltc_asn1_list sequence[3];

unsigned long three=3;

int x=0;

LTC_SET_ASN1(sequence, x++, LTC_ASN1_IA5_STRING, "hello", 5);

LTC_SET_ASN1(sequence, x++, LTC_ASN1_SHORT_INTEGER, &three, 1);

LTC_SET_ASN1(sequence, x++, LTC_ASN1_NULL, NULL, 0);

10.1.1 SEQUENCE Type

The SEQUENCE data type is a collection of other ASN.1 data types
encapsulated with a small header which is a useful way of sending
multiple data types in one packet.

SEQUENCE Encoding

To encode a sequence a ltc asn1 list array must be initialized with the
members of the sequence and their respective pointers. The encoding
is performed with the following function.

10.1 ASN.1 Formats 127

Definition ASN.1 Type

LTC ASN1 EOL End of a ASN.1 list structure.

LTC ASN1 BOOLEAN BOOLEAN type

LTC ASN1 INTEGER INTEGER (uses mp int)

LTC ASN1 SHORT INTEGER INTEGER (32–bit using unsigned long)

LTC ASN1 BIT STRING BIT STRING (one bit per char)

LTC ASN1 OCTET STRING OCTET STRING (one octet per char)

LTC ASN1 NULL NULL

LTC ASN1 OBJECT IDENTIFIER OBJECT IDENTIFIER

LTC ASN1 IA5 STRING IA5 STRING (one octet per char)

LTC ASN1 UTF8 STRING UTF8 STRING (one wchar t per char)

LTC ASN1 PRINTABLE STRING PRINTABLE STRING (one octet per char)

LTC ASN1 UTCTIME UTCTIME (see ltc utctime structure)

LTC ASN1 SEQUENCE SEQUENCE (and SEQUENCE OF)

LTC ASN1 SET SET

LTC ASN1 SETOF SET OF

LTC ASN1 CHOICE CHOICE

Figure 10.1: List of ASN.1 Supported Types

int der_encode_sequence(ltc_asn1_list *list,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

This encodes a sequence of items pointed to by list where the list has
inlen items in it. The SEQUENCE will be encoded to out and of
length outlen. The function will terminate when it reads all the items
out of the list (upto inlen) or it encounters an item in the list with a
type of LTC ASN1 EOL.

The data pointer in the list would be the same pointer you would
pass to the respective ASN.1 encoder (e.g. der encode bit string())
and it is simply passed on verbatim to the dependent encoder. The
list can contain other SEQUENCE or SET types which enables you
to have nested SEQUENCE and SET definitions. In these cases the
data pointer is simply a pointer to another ltc asn1 list.

128 www.libtom.org

SEQUENCE Decoding

Decoding a SEQUENCE is similar to encoding. You set up an array
of ltc asn1 list where in this case the size member is the maximum
size (in certain cases). For types such as IA5 STRING, BIT STRING,
OCTET STRING (etc) the size field is updated after successful decod-
ing to reflect how many units of the respective type has been loaded.

int der_decode_sequence(const unsigned char *in,

unsigned long inlen,

ltc_asn1_list *list,

unsigned long outlen);

This will decode upto outlen items from the input buffer in of
length inlen octets. The function will stop (gracefully) when it runs
out of items to decode. It will fail (for among other reasons) when it
runs out of input bytes to read, a data type is invalid or a heap failure
occurred.

For the following types the size field will be updated to reflect the
number of units read of the given type.

1. BIT STRING

2. OCTET STRING

3. OBJECT IDENTIFIER

4. IA5 STRING

5. PRINTABLE STRING

SEQUENCE Length

The length of a SEQUENCE can be determined with the following
function.

int der_length_sequence(ltc_asn1_list *list,

unsigned long inlen,

unsigned long *outlen);

This will get the encoding size for the given list of length inlen and
store it in outlen.

10.1 ASN.1 Formats 129

SEQUENCE Multiple Argument Lists

For small or simple sequences an encoding or decoding can be per-
formed with one of the following two functions.

int der_encode_sequence_multi(unsigned char *out,

unsigned long *outlen, ...);

int der_decode_sequence_multi(const unsigned char *in,

unsigned long inlen, ...);

These either encode or decode (respectively) a SEQUENCE data
type where the items in the sequence are specified after the length
parameter.

The list of items are specified as a triple of the form (type, size,
data) where type is an int, size is a unsigned long and data is void
pointer. The list of items must be terminated with an item with the
type LTC ASN1 EOL.

It is ideal that you cast the size values to unsigned long to ensure
that the proper data type is passed to the function. Constants such as
1 without a cast or prototype are of type int by default. Appending
UL or pre-pending (unsigned long) is enough to cast it to the correct
type.

unsigned char buf[MAXBUFSIZE];

unsigned long buflen;

int err;

buflen = sizeof(buf);

if ((err =

der_encode_sequence_multi(buf, &buflen,

LTC_ASN1_IA5_STRING, 5UL, "Hello",

LTC_ASN1_IA5_STRING, 7UL, " World!",

LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {

// error handling

}

This example encodes a SEQUENCE with two IA5 STRING types
containing “Hello” and “ World!” respectively. Note the usage of the
UL modifier on the size parameters. This forces the compiler to pass

130 www.libtom.org

the numbers as the required unsigned long type that the function
expects.

10.1.2 SET and SET OF

SET and SET OF are related to the SEQUENCE type in that they
can be pretty much be decoded with the same code. However, they
are different, and they should be carefully noted. The SET type is an
unordered array of ASN.1 types sorted by the TAG (type identifier),
whereas the SET OF type is an ordered array of a single ASN.1 object
sorted in ascending order by the DER their respective encodings.

SET Encoding

SETs use the same array structure of ltc asn1 list that the SEQUENCE
functions use. They are encoded with the following function:

int der_encode_set(ltc_asn1_list *list,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

This will encode the list of ASN.1 objects in list of length inlen
objects, and store the output in out of length outlen bytes. The func-
tion will make a copy of the list provided, and sort it by the TAG.
Objects with identical TAGs are additionally sorted on their original
placement in the array (to make the process deterministic).

This function will NOT recognize DEFAULT objects, and it is the
responsibility of the caller to remove them as required.

SET Decoding

The SET type can be decoded with the following function.

int der_decode_set(const unsigned char *in,

unsigned long inlen,

ltc_asn1_list *list,

unsigned long outlen);

10.1 ASN.1 Formats 131

This will decode the SET specified by list of length outlen objects
from the input buffer in of length inlen octets.

It handles the fact that SETs are not strictly ordered and will make
multiple passes (as required) through the list to decode all the objects.

SET Length

The length of a SET can be determined by calling der length sequence()
since they have the same encoding length.

SET OF Encoding

A SET OF object is an array of identical objects (e.g. OCTET
STRING) sorted in ascending order by the DER encoding of the ob-
ject. They are used to store objects deterministically based solely on
their encoding. It uses the same array structure of ltc asn1 list that
the SEQUENCE functions use. They are encoded with the following
function.

int der_encode_setof(ltc_asn1_list *list,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

This will encode a SET OF containing the list of inlen ASN.1 ob-
jects and store the encoding in the output buffer out of length outlen.

The routine will first encode the SET OF in an unordered fash-
ion (in a temporary buffer) then sort using the XQSORT macro and
copy back to the output buffer. This means you need at least enough
memory to keep an additional copy of the output on the heap.

SET OF Decoding

Since the decoding of a SET OF object is unambiguous it can be
decoded with der decode sequence().

SET OF Length

Like the SET type the der length sequence() function can be used to
determine the length of a SET OF object.

132 www.libtom.org

10.1.3 ASN.1 INTEGER

To encode or decode INTEGER data types use the following functions.

int der_encode_integer(void *num,

unsigned char *out,

unsigned long *outlen);

int der_decode_integer(const unsigned char *in,

unsigned long inlen,

void *num);

int der_length_integer(void *num,

unsigned long *len);

These will encode or decode a signed INTEGER data type using
the bignum data type to store the large INTEGER. To encode smaller
values without allocating a bignum to store the value, the short IN-
TEGER functions were made available.

int der_encode_short_integer(unsigned long num,

unsigned char *out,

unsigned long *outlen);

int der_decode_short_integer(const unsigned char *in,

unsigned long inlen,

unsigned long *num);

int der_length_short_integer(unsigned long num,

unsigned long *outlen);

These will encode or decode an unsigned unsigned long type
(only reads upto 32–bits). For values in the range 0 . . . 232 − 1 the
integer and short integer functions can encode and decode each others
outputs.

10.1.4 ASN.1 BIT STRING

int der_encode_bit_string(const unsigned char *in,

10.1 ASN.1 Formats 133

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_bit_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_bit_string(unsigned long nbits,

unsigned long *outlen);

These will encode or decode a BIT STRING data type. The bits
are passed in (or read out) using one char per bit. A non–zero value
will be interpreted as a one bit, and a zero value a zero bit.

10.1.5 ASN.1 OCTET STRING

int der_encode_octet_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_octet_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_octet_string(unsigned long noctets,

unsigned long *outlen);

These will encode or decode an OCTET STRING data type. The
octets are stored using one unsigned char each.

10.1.6 ASN.1 OBJECT IDENTIFIER

int der_encode_object_identifier(unsigned long *words,

unsigned long nwords,

unsigned char *out,

134 www.libtom.org

unsigned long *outlen);

int der_decode_object_identifier(const unsigned char *in,

unsigned long inlen,

unsigned long *words,

unsigned long *outlen);

int der_length_object_identifier(unsigned long *words,

unsigned long nwords,

unsigned long *outlen);

These will encode or decode an OBJECT IDENTIFIER object.
The words of the OID are stored in individual unsigned long ele-
ments, and must be in the range 0 . . . 232 − 1.

10.1.7 ASN.1 IA5 STRING

int der_encode_ia5_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_ia5_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_ia5_string(const unsigned char *octets,

unsigned long noctets,

unsigned long *outlen);

These will encode or decode an IA5 STRING. The characters are
read or stored in individual char elements. These functions performs
internal character to numerical conversions based on the conventions
of the compiler being used. For instance, on an x86 32 machine ’A’ ==
65 but the same may not be true on say a SPARC machine. Internally,
these functions have a table of literal characters and their numerical
ASCII values. This provides a stable conversion provided that the
build platform honours the run–time platforms character conventions.

10.1 ASN.1 Formats 135

10.1.8 ASN.1 PRINTABLE STRING

int der_encode_printable_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_printable_string(const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_length_printable_string(const unsigned char *octets,

unsigned long noctets,

unsigned long *outlen);

These will encode or decode an PRINTABLE STRING. The char-
acters are read or stored in individual char elements. These functions
performs internal character to numerical conversions based on the con-
ventions of the compiler being used. For instance, on an x86 32 ma-
chine ’A’ == 65 but the same may not be true on say a SPARC
machine. Internally, these functions have a table of literal characters
and their numerical ASCII values. This provides a stable conversion
provided that the build platform honours the run-time platforms char-
acter conventions.

10.1.9 ASN.1 UTF8 STRING

int der_encode_utf8_string(const wchar_t *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

int der_decode_utf8_string(const unsigned char *in,

unsigned long inlen,

wchar_t *out,

unsigned long *outlen);

int der_length_utf8_string(const wchar_t *octets,

136 www.libtom.org

unsigned long noctets,

unsigned long *outlen);

These will encode or decode an UTF8 STRING. The characters
are read or stored in individual wchar t elements. These function
performs no internal mapping and treat the characters as literals.

These functions use the wchar t type which is not universally
available. In those cases, the library will typedef it to unsigned long.
If you intend to use the ISO C functions for working with wide–char
arrays, you should make sure that wchar t has been defined previously.

10.1.10 ASN.1 UTCTIME

The UTCTIME type is to store a date and time in ASN.1 format. It
uses the following structure to organize the time.

typedef struct {

unsigned YY, /* year 00--99 */

MM, /* month 01--12 */

DD, /* day 01--31 */

hh, /* hour 00--23 */

mm, /* minute 00--59 */

ss, /* second 00--59 */

off_dir, /* timezone offset direction 0 == +, 1 == - */

off_hh, /* timezone offset hours */

off_mm; /* timezone offset minutes */

} ltc_utctime;

The time can be offset plus or minus a set amount of hours (off hh)
and minutes (off mm). When off dir is zero, the time will be added
otherwise it will be subtracted. For instance, the array {5, 6, 20, 22, 4, 00, 0, 5, 0}
represents the current time of 2005, June 20th, 22:04:00 with a time
offset of +05h00.

int der_encode_utctime(ltc_utctime *utctime,

unsigned char *out,

unsigned long *outlen);

int der_decode_utctime(const unsigned char *in,

10.1 ASN.1 Formats 137

unsigned long *inlen,

ltc_utctime *out);

int der_length_utctime(ltc_utctime *utctime,

unsigned long *outlen);

The encoder will store time in one of the two ASN.1 formats, either
YYMMDDhhmmssZ or YYMMDDhhmmss±hhmm, and perform min-
imal error checking on the input. The decoder will read all valid ASN.1
formats and perform range checking on the values (not complete but
rational) useful for catching packet errors.

It is suggested that decoded data be further scrutinized (e.g. days
of month in particular).

10.1.11 ASN.1 CHOICE

The CHOICE ASN.1 type represents a union of ASN.1 types all of
which are stored in a ltc asn1 list. There is no encoder for the CHOICE
type, only a decoder. The decoder will scan through the provided list
attempting to use the appropriate decoder on the input packet. The
list can contain any ASN.1 data type1 except for other CHOICE types.

There is no encoder for the CHOICE type as the actual DER en-
coding is the encoding of the chosen type.

int der_decode_choice(const unsigned char *in,

unsigned long *inlen,

ltc_asn1_list *list,

unsigned long outlen);

This will decode the input in the in field of length inlen. It uses the
provided ASN.1 list specified in the list field which has outlen elements.
The inlen field will be updated with the length of the decoded data
type, as well as the respective entry in the list field will have the used
flag set to non–zero to reflect it was the data type decoded.

1Except it cannot have LTC ASN1 INTEGER and
LTC ASN1 SHORT INTEGER simultaneously.

138 www.libtom.org

10.1.12 ASN.1 Flexi Decoder

The ASN.1 flexi decoder allows the developer to decode arbitrary
ASN.1 DER packets (provided they use data types LibTomCrypt sup-
ports) without first knowing the structure of the data. Where der decode
sequence() requires the developer to specify the data types to decode
in advance the flexi decoder is entirely free form.

The flexi decoder uses the same ltc asn1 list but instead of being
stored in an array it uses the linked list pointers prev, next, parent and
child. The list works as a doubly-linked list structure where decoded
items at the same level are siblings (using next and prev) and items
encoded in a SEQUENCE are stored as a child element.

When a SEQUENCE or SET has been encountered a SEQUENCE
(or SET resp.) item will be added as a sibling (e.g. list.type ==
LTC ASN1 SEQUENCE) and the child pointer points to a new list of
items contained within the object.

int der_decode_sequence_flexi(const unsigned char *in,

unsigned long *inlen,

ltc_asn1_list **out);

This will decode items in the in buffer of max input length inlen
and store the newly created pointer to the list in out. This function
allocates all required memory for the decoding. It stores the number
of octets read back into inlen.

The function will terminate when either it hits an invalid ASN.1
tag, or it reads inlen octets. An early termination is a soft error,
and returns normally. The decoded list out will point to the very first
element of the list (e.g. both parent and prev pointers will be NULL).

An invalid decoding will terminate the process, and free the allo-
cated memory automatically.

Note: the list decoded by this function is NOT in the correct
form for der encode sequence() to use directly. You will have to first
have to convert the list by first storing all of the siblings in an array
then storing all the children as sub-lists of a sequence using the .data
pointer. Currently no function in LibTomCrypt provides this ability.

Sample Decoding

Suppose we decode the following structure:

10.1 ASN.1 Formats 139

User ::= SEQUENCE {

Name IA5 STRING

LoginToken SEQUENCE {

passwdHash OCTET STRING

pubkey ECCPublicKey

}

LastOn UTCTIME

}

and we decoded it with the following code:

unsigned char inbuf[MAXSIZE];

unsigned long inbuflen;

ltc_asn1_list *list;

int err;

/* somehow fill inbuf/inbuflen */

if ((err = der_decode_sequence_flexi(inbuf, inbuflen, &list)) != CRYPT_OK) {

printf("Error decoding: %s\n", error_to_string(err));

exit(EXIT_FAILURE);

}

At this point list would point to the SEQUENCE identified by
User. It would have no sibblings (prev or next), and only a child
node. Walking to the child node with the following code will bring us
to the Name portion of the SEQUENCE:

list = list->child;

Now list points to the Name member (with the tag IA5 STRING).
The data, size, and type members of list should reflect that of an IA5
STRING. The sibbling will now be the LoginToken SEQUENCE. The
sibbling has a child node which points to the passwdHash OCTET
STRING. We can walk to this node with the following code:

/* list already pointing to ’Name’ */

list = list->next->child;

At this point, list will point to the passwdHash member of the inner-
most SEQUENCE. This node has a sibbling, the pubkey member of
the SEQUENCE. The LastOn member of the SEQUENCE is a sib-
bling of the LoginToken node, if we wanted to walk there we would
have to go up and over via:

140 www.libtom.org

list = list->parent->next;

At this point, we are pointing to the last node of the list. Lists are
terminated in all directions by a NULL pointer. All nodes are doubly
linked so that you can walk up and down the nodes without keeping
pointers lying around.

Free’ing a Flexi List

To free the list use the following function.

void der_sequence_free(ltc_asn1_list *in);

This will free all of the memory allocated by der decode sequence flexi().

10.2 Password Based Cryptography

10.2.1 PKCS #5

In order to securely handle user passwords for the purposes of creating
session keys and chaining IVs the PKCS #5 was drafted. PKCS #5
is made up of two algorithms, Algorithm One and Algorithm Two.
Algorithm One is the older fairly limited algorithm which has been
implemented for completeness. Algorithm Two is a bit more modern
and more flexible to work with.

10.2.2 Algorithm One

Algorithm One accepts as input a password, an 8–byte salt, and an
iteration counter. The iteration counter is meant to act as delay for
people trying to brute force guess the password. The higher the itera-
tion counter the longer the delay. This algorithm also requires a hash
algorithm and produces an output no longer than the output of the
hash.

int pkcs_5_alg1(const unsigned char *password,

unsigned long password_len,

const unsigned char *salt,

int iteration_count,

10.2 Password Based Cryptography 141

int hash_idx,

unsigned char *out,

unsigned long *outlen)

Where password is the user’s password. Since the algorithm allows bi-
nary passwords you must also specify the length in password len. The
salt is a fixed size 8–byte array which should be random for each user
and session. The iteration count is the delay desired on the password.
The hash idx is the index of the hash you wish to use in the descriptor
table.

The output of length up to outlen is stored in out. If outlen is
initially larger than the size of the hash functions output it is set to
the number of bytes stored. If it is smaller than not all of the hash
output is stored in out.

10.2.3 Algorithm Two

Algorithm Two is the recommended algorithm for this task. It allows
variable length salts, and can produce outputs larger than the hash
functions output. As such, it can easily be used to derive session keys
for ciphers and MACs as well initial vectors as required from a single
password and invocation of this algorithm.

int pkcs_5_alg2(const unsigned char *password,

unsigned long password_len,

const unsigned char *salt,

unsigned long salt_len,

int iteration_count,

int hash_idx,

unsigned char *out,

unsigned long *outlen)

Where password is the users password. Since the algorithm allows
binary passwords you must also specify the length in password len.
The salt is an array of size salt len. It should be random for each user
and session. The iteration count is the delay desired on the password.
The hash idx is the index of the hash you wish to use in the descriptor
table. The output of length up to outlen is stored in out.

142 www.libtom.org

/* demo to show how to make session state material

* from a password */

#include <tomcrypt.h>

int main(void)

{

unsigned char password[100], salt[100],

cipher_key[16], cipher_iv[16],

mac_key[16], outbuf[48];

int err, hash_idx;

unsigned long outlen, password_len, salt_len;

/* register hash and get it’s idx */

/* get users password and make up a salt ... */

/* create the material (100 iterations in algorithm) */

outlen = sizeof(outbuf);

if ((err = pkcs_5_alg2(password, password_len, salt,

salt_len, 100, hash_idx, outbuf,

&outlen))

!= CRYPT_OK) {

/* error handle */

}

/* now extract it */

memcpy(cipher_key, outbuf, 16);

memcpy(cipher_iv, outbuf+16, 16);

memcpy(mac_key, outbuf+32, 16);

/* use material (recall to store the salt in the output) */

}

Chapter 11

Miscellaneous

11.1 Base64 Encoding and Decoding

The library provides functions to encode and decode a RFC 1521 base–
64 coding scheme. The characters used in the mappings are:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Those characters are supported in the 7-bit ASCII map, which means
they can be used for transport over common e-mail, usenet and HTTP
mediums. The format of an encoded stream is just a literal sequence
of ASCII characters where a group of four represent 24-bits of input.
The first four chars of the encoders output is the length of the original
input. After the first four characters is the rest of the message.

Often, it is desirable to line wrap the output to fit nicely in an
e-mail or usenet posting. The decoder allows you to put any charac-
ter (that is not in the above sequence) in between any character of
the encoders output. You may not however, break up the first four
characters.

To encode a binary string in base64 call:

int base64_encode(const unsigned char *in,

unsigned long len,

unsigned char *out,

unsigned long *outlen);

143

144 www.libtom.org

Where in is the binary string and out is where the ASCII output is
placed. You must set the value of outlen prior to calling this function
and it sets the length of the base64 output in outlen when it is done.
To decode a base64 string call:

int base64_decode(const unsigned char *in,

unsigned long len,

unsigned char *out,

unsigned long *outlen);

11.2 Primality Testing

The library includes primality testing and random prime functions as
well. The primality tester will perform the test in two phases. First
it will perform trial division by the first few primes. Second it will
perform eight rounds of the Rabin-Miller primality testing algorithm.
If the candidate passes both phases it is declared prime otherwise it
is declared composite. No prime number will fail the two phases but
composites can. Each round of the Rabin-Miller algorithm reduces the
probability of a pseudo-prime by 1

4 therefore after sixteen rounds the

probability is no more than
(

1
4

)8
= 2−16. In practice the probability

of error is in fact much lower than that.
When making random primes the trial division step is in fact an

optimized implementation of Implementation of Fast RSA Key Gen-
eration on Smart Cards1. In essence a table of machine-word sized
residues are kept of a candidate modulo a set of primes. When the
candidate is rejected and ultimately incremented to test the next num-
ber the residues are updated without using multi-word precision math
operations. As a result the routine can scan ahead to the next number
required for testing with very little work involved.

In the event that a composite did make it through it would most
likely cause the the algorithm trying to use it to fail. For instance, in
RSA two primes p and q are required. The order of the multiplicative
sub-group (modulo pq) is given as ϕ(pq) or (p − 1)(q − 1). The de-
cryption exponent d is found as de ≡ 1 (mod ϕ(pq)). If either p or q
is composite the value of d will be incorrect and the user will not be

1Chenghuai Lu, Andre L. M. dos Santos and Francisco R. Pimentel

11.2 Primality Testing 145

able to sign or decrypt messages at all. Suppose p was prime and q
was composite this is just a variation of the multi-prime RSA. Suppose
q = rs for two primes r and s then ϕ(pq) = (p−1)(r−1)(s−1) which
clearly is not equal to (p− 1)(rs− 1).

These are not technically part of the LibTomMath library but this
is the best place to document them. To test if a mp int is prime call:

int is_prime(mp_int *N, int *result);

This puts a one in result if the number is probably prime, otherwise
it places a zero in it. It is assumed that if it returns an error that the
value in result is undefined. To make a random prime call:

int rand_prime(mp_int *N,

unsigned long len,

prng_state *prng,

int wprng);

Where len is the size of the prime in bytes (2 ≤ len ≤ 256). You
can set len to the negative size you want to get a prime of the form
p ≡ 3 (mod 4). So if you want a 1024-bit prime of this sort pass len =
-128 to the function. Upon success it will return CRYPT OK and
N will contain an integer which is very likely prime.

146 www.libtom.org

Chapter 12

Programming
Guidelines

12.1 Secure Pseudo Random Number Gen-
erators

Probably the single most vulnerable point of any cryptosystem is the
PRNG. Without one, generating and protecting secrets would be im-
possible. The requirement that one be setup correctly is vitally im-
portant, and to address this point the library does provide two RNG
sources that will address the largest amount of end users as possible.
The sprng PRNG provides an easy to access source of entropy for any
application on a UNIX (and the like) or Windows computer.

However, when the end user is not on one of these platforms, the
application developer must address the issue of finding entropy. This
manual is not designed to be a text on cryptography. I would just like
to highlight that when you design a cryptosystem make sure the first
problem you solve is getting a fresh source of entropy.

147

148 www.libtom.org

12.2 Preventing Trivial Errors

Two simple ways to prevent trivial errors is to prevent overflows, and
to check the return values. All of the functions which output variable
length strings will require you to pass the length of the destination. If
the size of your output buffer is smaller than the output it will report
an error. Therefore, make sure the size you pass is correct!

Also, virtually all of the functions return an error code or CRYPT OK.
You should detect all errors, as simple typos can cause algorithms to
fail to work as desired.

12.3 Registering Your Algorithms

To avoid linking and other run–time errors it is important to register
the ciphers, hashes and PRNGs you intend to use before you try to
use them. This includes any function which would use an algorithm
indirectly through a descriptor table.

A neat bonus to the registry system is that you can add external
algorithms that are not part of the library without having to hack the
library. For example, suppose you have a hardware specific PRNG on
your system. You could easily write the few functions required plus a
descriptor. After registering your PRNG, all of the library functions
that need a PRNG can instantly take advantage of it. The same
applies for ciphers, hashes, and bignum math routines.

12.4 Key Sizes

12.4.1 Symmetric Ciphers

For symmetric ciphers, use as large as of a key as possible. For the
most part bits are cheap so using a 256–bit key is not a hard thing to
do. As a good rule of thumb do not use a key smaller than 128 bits.

12.4.2 Asymmetric Ciphers

The following chart gives the work factor for solving a DH/RSA public
key using the NFS. The work factor for a key of order n is estimated

12.4 Key Sizes 149

to be

e1.923·ln(n)
1

3 ·ln(ln(n))
2

3 (12.1)

Note that n is not the bit-length but the magnitude. For example,
for a 1024-bit key n = 21024. The work required is:

RSA/DH Key Size (bits) Work Factor (log2)
512 63.92
768 76.50
1024 86.76
1536 103.37
2048 116.88
2560 128.47
3072 138.73
4096 156.49

Figure 12.1: RSA/DH Key Strength

The work factor for ECC keys is much higher since the best attack
is still fully exponential. Given a key of magnitude n it requires

√
n

work. The following table summarizes the work required:

ECC Key Size (bits) Work Factor (log2)
112 56
128 64
160 80
192 96
224 112
256 128
384 192
521 260.5

Figure 12.2: ECC Key Strength

Using the above tables the following suggestions for key sizes seems
appropriate:

150 www.libtom.org

Security Goal RSA/DH Key Size (bits) ECC Key Size (bits)
Near term 1024 160
Short term 1536 192
Long Term 2560 384

12.5 Thread Safety

The library is not fully thread safe but several simple precautions
can be taken to avoid any problems. The registry functions such as
register cipher() are not thread safe no matter what you do. It is best
to call them from your programs initialization code before threads are
initiated.

The rest of the code uses state variables you must pass it such as
hash state, hmac state, etc. This means that if each thread has its
own state variables then they will not affect each other, and are fully
thread safe. This is fairly simple with symmetric ciphers and hashes.

The only sticky issue is a shared PRNG which can be alleviated
with the careful use of mutex devices. Defining LTC PTHREAD for
instance, enables pthreads based mutex locking in various routines
such as the Yarrow and Fortuna PRNGs, the fixed point ECC multi-
plier, and other routines.

Chapter 13

Configuring and
Building the Library

13.1 Introduction

The library is fairly flexible about how it can be built, used, and
generally distributed. Additions are being made with each new release
that will make the library even more flexible. Each of the classes of
functions can be disabled during the build process to make a smaller
library. This is particularly useful for shared libraries.

As of v1.06 of the library, the build process has been moved to
two steps for the typical LibTomCrypt application. This is because
LibTomCrypt no longer provides a math API on its own and relies
on third party libraries (such as LibTomMath, GnuMP, or TomsFast-
Math).

The build process now consists of installing a math library first,
and then building and installing LibTomCrypt with a math library
configured. Note that LibTomCrypt can be built with no internal
math descriptors. This means that one must be provided at either
build, or run time for the application. LibTomCrypt comes with three
math descriptors that provide a standard interface to math libraries.

151

152 www.libtom.org

13.2 Makefile variables

All GNU driven makefiles (including the makefile for ICC) use a set
of common variables to control the build and install process. Most of
the settings can be overwritten from the command line which makes
custom installation a breeze.

13.2.1 MAKE, CC and AR

The MAKE, CC and AR flags can all be overwritten. They default
to make, $CC and $AR respectively. Changing MAKE allows you to
change what program will be invoked to handle sub–directories. For
example, this

MAKE=gmake gmake install

will build and install the libraries with the gmake tool. Similarly,

CC=arm-gcc AR=arm-ar make

will build the library using arm–gcc as the compiler and arm–ar as
the archiver.

13.2.2 IGNORE SPEED

When IGNORE SPEED has been defined the default optimization
flags for CFLAGS will be disabled which allows the developer to spec-
ify new CFLAGS on the command line. E.g. to add debugging

CFLAGS="-g3" make IGNORE_SPEED=1

This will turn off optimizations and add -g3 to the CFLAGS which
enables debugging.

13.2.3 LIBNAME and LIBNAME S

LIBNAME is the name of the output library (archive) to create.
It defaults to libtomcrypt.a for static builds and libtomcrypt.la for
shared. The LIBNAME S variable is the static name while doing

13.2 Makefile variables 153

shared builds. Ideally they should have the same prefix but don’t have
to.

Similarly LIBTEST and LIBTEST S are the names for the pro-
filing and testing library. The default is libtomcrypt prof.a for static
and libtomcrypt prof.la for shared.

13.2.4 Installation Directories

DESTDIR is the prefix for the installation directories. It defaults
to an empty string. LIBPATH is the prefix for the library direc-
tory which defaults to /usr/lib. INCPATH is the prefix for the
header file directory which defaults to /usr/include. DATADIR is
the prefix for the data (documentation) directory which defaults to
/usr/share/doc/libtomcrypt/pdf.

All four can be used to create custom install locations depending
on the nature of the OS and file system in use.

make LIBPATH=/home/tom/project/lib INCPATH=/home/tom/project/include \

DATAPATH=/home/tom/project/docs install

This will build the library and install it to the directories under
/home/tom/project/. e.g.

/home/tom/project/:

total 1

drwxr-xr-x 2 tom users 80 Jul 30 16:02 docs

drwxr-xr-x 2 tom users 528 Jul 30 16:02 include

drwxr-xr-x 2 tom users 80 Jul 30 16:02 lib

/home/tom/project/docs:

total 452

-rwxr-xr-x 1 tom users 459009 Jul 30 16:02 crypt.pdf

/home/tom/project/include:

total 132

-rwxr-xr-x 1 tom users 2482 Jul 30 16:02 tomcrypt.h

-rwxr-xr-x 1 tom users 702 Jul 30 16:02 tomcrypt_argchk.h

-rwxr-xr-x 1 tom users 2945 Jul 30 16:02 tomcrypt_cfg.h

-rwxr-xr-x 1 tom users 22763 Jul 30 16:02 tomcrypt_cipher.h

-rwxr-xr-x 1 tom users 5174 Jul 30 16:02 tomcrypt_custom.h

154 www.libtom.org

-rwxr-xr-x 1 tom users 11314 Jul 30 16:02 tomcrypt_hash.h

-rwxr-xr-x 1 tom users 11571 Jul 30 16:02 tomcrypt_mac.h

-rwxr-xr-x 1 tom users 13614 Jul 30 16:02 tomcrypt_macros.h

-rwxr-xr-x 1 tom users 14714 Jul 30 16:02 tomcrypt_math.h

-rwxr-xr-x 1 tom users 632 Jul 30 16:02 tomcrypt_misc.h

-rwxr-xr-x 1 tom users 10934 Jul 30 16:02 tomcrypt_pk.h

-rwxr-xr-x 1 tom users 2634 Jul 30 16:02 tomcrypt_pkcs.h

-rwxr-xr-x 1 tom users 7067 Jul 30 16:02 tomcrypt_prng.h

-rwxr-xr-x 1 tom users 1467 Jul 30 16:02 tomcrypt_test.h

/home/tom/project/lib:

total 1073

-rwxr-xr-x 1 tom users 1096284 Jul 30 16:02 libtomcrypt.a

13.3 Extra libraries

EXTRALIBS specifies any extra libraries required to link the test
programs and shared libraries. They are specified in the notation that
GCC expects for global archives.

CFLAGS="-DTFM_DESC -DUSE_TFM" EXTRALIBS=-ltfm make install \

test timing

This will install the library using the TomsFastMath library and
link the libtfm.a library out of the default library search path. The
two defines are explained below. You can specify multiple archives
(say if you want to support two math libraries, or add on additional
code) to the EXTRALIBS variable by separating them by a space.

Note that EXTRALIBS is not required if you are only making
and installing the static library but none of the test programs.

13.4 Building a Static Library

Building a static library is fairly trivial as it only requires one invoca-
tion of the GNU make command.

CFLAGS="-DTFM_DESC" make install

13.5 Building a Shared Library 155

That will build LibTomCrypt (including the TomsFastMath de-
scriptor), and install it in the default locations indicated previously.
You can enable the built–in LibTomMath descriptor as well (or in
place of the TomsFastMath descriptor). Similarly, you can build the
library with no built–in math descriptors.

make install

In this case, no math descriptors are present in the library and
they will have to be made available at build or run time before you
can use any of the public key functions.

Note that even if you include the built–in descriptors you must link
against the source library as well.

gcc -DTFM_DESC myprogram.c -ltomcrypt -ltfm -o myprogram

This will compile myprogram and link it against the LibTomCrypt
library as well as TomsFastMath (which must have been previously
installed). Note that we define TFM DESC for compilation. This
is so that the TFM descriptor symbol will be defined for the client
application to make use of without giving warnings.

13.5 Building a Shared Library

LibTomCrypt can also be built as a shared library through the make-
file.shared make script. It is similar to use as the static script except
that you must specify the EXTRALIBS variable at install time.

CFLAGS="-DTFM_DESC" EXTRALIBS=-ltfm make -f makefile.shared install

This will build and install the library and link the shared object
against the TomsFastMath library (which must be installed as a shared
object as well). The shared build process requires libtool to be in-
stalled.

13.6 Header Configuration

The file tomcrypt cfg.h is what lets you control various high level
macros which control the behaviour of the library. Build options are

156 www.libtom.org

also stored in tomcrypt custom.h which allow the enabling and dis-
abling of various algorithms.

ARGTYPE

This lets you control how the LTC ARGCHK macro will behave. The
macro is used to check pointers inside the functions against NULL.
There are four settings for ARGTYPE. When set to 0, it will have the
default behaviour of printing a message to stderr and raising a SIGA-
BRT signal. This is provided so all platforms that use LibTomCrypt
can have an error that functions similarly. When set to 1, it will simply
pass on to the assert() macro. When set to 2, the macro will display
the error to stderr then return execution to the caller. This could lead
to a segmentation fault (e.g. when a pointer is NULL) but is useful
if you handle signals on your own. When set to 3, it will resolve to a
empty macro and no error checking will be performed. Finally, when
set to 4, it will return CRYPT INVALID ARG to the caller.

Endianess

There are five macros related to endianess issues. For little endian
platforms define, ENDIAN LITTLE. For big endian platforms de-
fine ENDIAN BIG. Similarly when the default word size of an un-
signed long is 32-bits define ENDIAN 32BITWORD or define EN-
DIAN 64BITWORD when its 64-bits. If you do not define any
of them the library will automatically use ENDIAN NEUTRAL
which will work on all platforms.

Currently LibTomCrypt will detect x86-32, x86-64, MIPS R5900,
SPARC and SPARC64 running GCC as well as x86-32 running MSVC.

13.7 The Configure Script

There are also options you can specify from the tomcrypt custom.h
header file.

13.7 The Configure Script 157

13.7.1 X memory routines

At the top of tomcrypt custom.h are a series of macros denoted as
XMALLOC, XCALLOC, XREALLOC, XFREE, and so on. They re-
solve to the name of the respective functions from the standard C
library by default. This lets you substitute in your own memory rou-
tines. If you substitute in your own functions they must behave like
the standard C library functions in terms of what they expect as input
and output.

These macros are handy for working with platforms which do not
have a standard C library. For instance, the OLPC1 bios code uses
these macros to redirect to very compact heap and string operations.

13.7.2 X clock routines

The rng get bytes() function can call a function that requires the
clock() function. These macros let you override the default clock()
used with a replacement. By default the standard C library clock()
function is used.

13.7.3 LTC NO FILE

During the build if LTC NO FILE is defined then any function in the
library that uses file I/O will not call the file I/O functions and instead
simply return CRYPT NOP. This should help resolve any linker errors
stemming from a lack of file I/O on embedded platforms.

13.7.4 LTC CLEAN STACK

When this functions is defined the functions that store key material on
the stack will clean up afterwards. Assumes that you have no memory
paging with the stack.

13.7.5 LTC TEST

When this has been defined the various self–test functions (for ciphers,
hashes, prngs, etc) are included in the build. This is the default con-

1See http://dev.laptop.org/git?p=bios-crypto;a=summary

158 www.libtom.org

figuration. If LTC NO TEST has been defined, the testing routines
will be compacted and only return CRYPT NOP.

13.7.6 LTC NO FAST

When this has been defined the library will not use faster word oriented
operations. By default, they are only enabled for platforms which can
be auto-detected. This macro ensures that they are never enabled.

13.7.7 LTC FAST

This mode (auto-detected with x86 32,x86 64 platforms with GCC or
MSVC) configures various routines such as ctr encrypt() or cbc encrypt()
that it can safely XOR multiple octets in one step by using a larger
data type. This has the benefit of cutting down the overhead of the
respective functions.

This mode does have one downside. It can cause unaligned reads
from memory if you are not careful with the functions. This is why it
has been enabled by default only for the x86 class of processors where
unaligned accesses are allowed. Technically LTC FAST is not portable
since unaligned accesses are not covered by the ISO C specifications.

In practice however, you can use it on pretty much any platform
(even MIPS) with care.

By design the fast mode functions won’t get unaligned on their
own. For instance, if you call ctr encrypt() right after calling ctr start()
and all the inputs you gave are aligned than ctr encrypt() will perform
aligned memory operations only. However, if you call ctr encrypt()
with an odd amount of plaintext then call it again the CTR pad (the
IV) will be partially used. This will cause the ctr routine to first use
up the remaining pad bytes. Then if there are enough plaintext bytes
left it will use whole word XOR operations. These operations will be
unaligned.

The simplest precaution is to make sure you process all data in
power of two blocks and handle remainder at the end. e.g. If you are
CTR’ing a long stream process it in blocks of (say) four kilobytes and
handle any remaining incomplete blocks at the end of the stream.

If you do plan on using the LTC FAST mode you have to also
define a LTC FAST TYPE macro which resolves to an optimal sized

13.7 The Configure Script 159

data type you can perform integer operations with. Ideally it should
be four or eight bytes since it must properly divide the size of your
block cipher (e.g. 16 bytes for AES). This means sadly if you’re on a
platform with 57–bit words (or something) you can’t use this mode.
So sad.

13.7.8 LTC NO ASM

When this has been defined the library will not use any inline as-
sembler. Only a few platforms support assembler inlines but various
versions of ICC and GCC cannot handle all of the assembler functions.

13.7.9 Symmetric Ciphers, One-way Hashes, PRNGS
and Public Key Functions

There are a plethora of macros for the ciphers, hashes, PRNGs and
public key functions which are fairly self-explanatory. When they are
defined the functionality is included otherwise it is not. There are some
dependency issues which are noted in the file. For instance, Yarrow
requires CTR chaining mode, a block cipher and a hash function.

Also see technical note number five for more details.

13.7.10 LTC EASY

When defined the library is configured to build fewer algorithms and
modes. Mostly it sticks to NIST and ANSI approved algorithms. See
the header file tomcrypt custom.h for more details. It is meant to
provide literally an easy method of trimming the library build to the
most minimum of useful functionality.

13.7.11 TWOFISH SMALL and TWOFISH TABLES

Twofish is a 128-bit symmetric block cipher that is provided within the
library. The cipher itself is flexible enough to allow some trade-offs in
the implementation. When TWOFISH SMALL is defined the sched-
uled symmetric key for Twofish requires only 200 bytes of memory.
This is achieved by not pre-computing the substitution boxes. Having
this defined will also greatly slow down the cipher. When this macro

160 www.libtom.org

is not defined Twofish will pre-compute the tables at a cost of 4KB of
memory. The cipher will be much faster as a result.

When TWOFISH TABLES is defined the cipher will use pre-computed
(and fixed in code) tables required to work. This is useful when
TWOFISH SMALL is defined as the table values are computed on
the fly. When this is defined the code size will increase by approx-
imately 500 bytes. If this is defined but TWOFISH SMALL is not
the cipher will still work but it will not speed up the encryption or
decryption functions.

13.7.12 GCM TABLES

When defined GCM will use a 64KB table (per GCM state) which
will greatly speed up the per–packet latency. It also increases the
initialization time and is not suitable when you are going to use a key
a few times only.

13.7.13 GCM TABLES SSE2

When defined GCM will use the SSE2 instructions to perform the
GF (2x) multiply using 16 128–bit XOR operations. It shaves a few
cycles per byte of GCM output on both the AMD64 and Intel Pentium
4 platforms. Requires GCC and an SSE2 equipped platform.

13.7.14 LTC SMALL CODE

When this is defined some of the code such as the Rijndael and SAFER+
ciphers are replaced with smaller code variants. These variants are
slower but can save quite a bit of code space.

13.7.15 LTC PTHREAD

When this is activated all of the descriptor table functions will use
pthread locking to ensure thread safe updates to the tables. Note that
it doesn’t prevent a thread that is passively using a table from being
messed up by another thread that updates the table.

13.7 The Configure Script 161

Generally the rule of thumb is to setup the tables once at startup
and then leave them be. This added build flag simply makes updating
the tables safer.

13.7.16 LTC ECC TIMING RESISTANT

When this has been defined the ECC point multiplier (built–in to
the library) will use a timing resistant point multiplication algorithm
which prevents leaking key bits of the private key (scalar). It is a
slower algorithm but useful for situations where timing side channels
pose a significant threat.

13.7.17 Math Descriptors

The library comes with three math descriptors that allow you to inter-
face the public key cryptography API to freely available math libraries.
When GMP DESC, LTM DESC, or TFM DESC are defined de-
scriptors for the respective library are built and included in the library
as gmp desc, ltm desc, or tfm desc respectively.

In the test demos that use the libraries the additional flags USE GMP,
USE LTM, and USE TFM can be defined to tell the program which
library to use. Only one of the USE flags can be defined at once.

CFLAGS="-DGMP_DESC -DLTM_DESC -DTFM_DESC -DUSE_TFM" \

EXTRALIBS="-lgmp -ltommath -ltfm" make -f makefile.shared install timing

That will build and install the library with all descriptors (and link
against all), but only use TomsFastMath in the timing demo.

162 www.libtom.org

Chapter 14

Optimizations

14.1 Introduction

The entire API was designed with plug and play in mind at the low
level. That is you can swap out any cipher, hash, PRNG or bignum
library and the dependent API will not require updating. This has
the nice benefit that one can add ciphers (etc.) not have to re–write
portions of the API. For the most part, LibTomCrypt has also been
written to be highly portable and easy to build out of the box on pretty
much any platform. As such there are no assembler inlines throughout
the code, I make no assumptions about the platform, etc...

That works well for most cases but there are times where perfor-
mance is of the essence. This API allows optimized routines to be
dropped in–place of the existing portable routines. For instance, hand
optimized assembler versions of AES could be provided. Any existing
function that uses the cipher could automatically use the optimized
code without re–writing. This also paves the way for hardware drivers
that can access hardware accelerated cryptographic devices.

At the heart of this flexibility is the descriptor system. A descrip-
tor is essentially just a C struct which describes the algorithm and
provides pointers to functions that do the required work. For a given
class of operation (e.g. cipher, hash, prng, bignum) the functions of
a descriptor have identical prototypes which makes development sim-
ple. In most dependent routines all an end developer has to do is

163

164 www.libtom.org

register XXX() the descriptor and they are set.

14.2 Ciphers

The ciphers in LibTomCrypt are accessed through the ltc cipher descriptor
structure.

struct ltc_cipher_descriptor {

/** name of cipher */

char *name;

/** internal ID */

unsigned char ID;

/** min keysize (octets) */

int min_key_length,

/** max keysize (octets) */

max_key_length,

/** block size (octets) */

block_length,

/** default number of rounds */

default_rounds;

/** Setup the cipher

@param key The input symmetric key

@param keylen The length of the input key (octets)

@param num_rounds The requested number of rounds (0==default)

@param skey [out] The destination of the scheduled key

@return CRYPT_OK if successful

*/

int (*setup)(const unsigned char *key,

int keylen,

int num_rounds,

symmetric_key *skey);

/** Encrypt a block

@param pt The plaintext

14.2 Ciphers 165

@param ct [out] The ciphertext

@param skey The scheduled key

@return CRYPT_OK if successful

*/

int (*ecb_encrypt)(const unsigned char *pt,

unsigned char *ct,

symmetric_key *skey);

/** Decrypt a block

@param ct The ciphertext

@param pt [out] The plaintext

@param skey The scheduled key

@return CRYPT_OK if successful

*/

int (*ecb_decrypt)(const unsigned char *ct,

unsigned char *pt,

symmetric_key *skey);

/** Test the block cipher

@return CRYPT_OK if successful,

CRYPT_NOP if self-testing has been disabled

*/

int (*test)(void);

/** Terminate the context

@param skey The scheduled key

*/

void (*done)(symmetric_key *skey);

/** Determine a key size

@param keysize [in/out] The size of the key desired

The suggested size

@return CRYPT_OK if successful

*/

int (*keysize)(int *keysize);

/** Accelerators **/

/** Accelerated ECB encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

166 www.libtom.org

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_ecb_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks,

symmetric_key *skey);

/** Accelerated ECB decryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_ecb_decrypt)(const unsigned char *ct,

unsigned char *pt,

unsigned long blocks,

symmetric_key *skey);

/** Accelerated CBC encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_cbc_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks,

unsigned char *IV,

symmetric_key *skey);

/** Accelerated CBC decryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param skey The scheduled key context

@return CRYPT_OK if successful

14.2 Ciphers 167

*/

int (*accel_cbc_decrypt)(const unsigned char *ct,

unsigned char *pt,

unsigned long blocks,

unsigned char *IV,

symmetric_key *skey);

/** Accelerated CTR encryption

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param mode little or big endian counter (mode=0 or mode=1)

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_ctr_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks,

unsigned char *IV,

int mode,

symmetric_key *skey);

/** Accelerated LRW

@param pt Plaintext

@param ct Ciphertext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param tweak The LRW tweak

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_lrw_encrypt)(const unsigned char *pt,

unsigned char *ct,

unsigned long blocks,

unsigned char *IV,

const unsigned char *tweak,

symmetric_key *skey);

/** Accelerated LRW

@param ct Ciphertext

168 www.libtom.org

@param pt Plaintext

@param blocks The number of complete blocks to process

@param IV The initial value (input/output)

@param tweak The LRW tweak

@param skey The scheduled key context

@return CRYPT_OK if successful

*/

int (*accel_lrw_decrypt)(const unsigned char *ct,

unsigned char *pt,

unsigned long blocks,

unsigned char *IV,

const unsigned char *tweak,

symmetric_key *skey);

/** Accelerated CCM packet (one-shot)

@param key The secret key to use

@param keylen The length of the secret key (octets)

@param uskey A previously scheduled key [can be NULL]

@param nonce The session nonce [use once]

@param noncelen The length of the nonce

@param header The header for the session

@param headerlen The length of the header (octets)

@param pt [out] The plaintext

@param ptlen The length of the plaintext (octets)

@param ct [out] The ciphertext

@param tag [out] The destination tag

@param taglen [in/out] The max size and resulting size

of the authentication tag

@param direction Encrypt or Decrypt direction (0 or 1)

@return CRYPT_OK if successful

*/

int (*accel_ccm_memory)(

const unsigned char *key, unsigned long keylen,

symmetric_key *uskey,

const unsigned char *nonce, unsigned long noncelen,

const unsigned char *header, unsigned long headerlen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

14.2 Ciphers 169

/** Accelerated GCM packet (one shot)

@param key The secret key

@param keylen The length of the secret key

@param IV The initial vector

@param IVlen The length of the initial vector

@param adata The additional authentication data (header)

@param adatalen The length of the adata

@param pt The plaintext

@param ptlen The length of the plaintext/ciphertext

@param ct The ciphertext

@param tag [out] The MAC tag

@param taglen [in/out] The MAC tag length

@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)

@return CRYPT_OK on success

*/

int (*accel_gcm_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *IV, unsigned long IVlen,

const unsigned char *adata, unsigned long adatalen,

unsigned char *pt, unsigned long ptlen,

unsigned char *ct,

unsigned char *tag, unsigned long *taglen,

int direction);

/** Accelerated one shot OMAC

@param key The secret key

@param keylen The key length (octets)

@param in The message

@param inlen Length of message (octets)

@param out [out] Destination for tag

@param outlen [in/out] Initial and final size of out

@return CRYPT_OK on success

*/

int (*omac_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

/** Accelerated one shot XCBC

@param key The secret key

@param keylen The key length (octets)

170 www.libtom.org

@param in The message

@param inlen Length of message (octets)

@param out [out] Destination for tag

@param outlen [in/out] Initial and final size of out

@return CRYPT_OK on success

*/

int (*xcbc_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

/** Accelerated one shot F9

@param key The secret key

@param keylen The key length (octets)

@param in The message

@param inlen Length of message (octets)

@param out [out] Destination for tag

@param outlen [in/out] Initial and final size of out

@return CRYPT_OK on success

@remark Requires manual padding

*/

int (*f9_memory)(

const unsigned char *key, unsigned long keylen,

const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen);

};

14.2.1 Name

The name parameter specifies the name of the cipher. This is what a
developer would pass to find cipher() to find the cipher in the descrip-
tor tables.

14.2.2 Internal ID

This is a single byte Internal ID you can use to distinguish ciphers
from each other.

14.2 Ciphers 171

14.2.3 Key Lengths

The minimum key length is min key length and is measured in octets.
Similarly the maximum key length is max key length. They can be
equal and both must valid key sizes for the cipher. Values in between
are not assumed to be valid though they may be.

14.2.4 Block Length

The size of the ciphers plaintext or ciphertext is block length and is
measured in octets.

14.2.5 Rounds

Some ciphers allow different number of rounds to be used. Usually
you just use the default. The default round count is default rounds.

14.2.6 Setup

To initialize a cipher (for ECB mode) the function setup() was pro-
vided. It accepts an array of key octets key of length keylen octets.
The user can specify the number of rounds they want through num rounds
where num rounds = 0 means use the default. The destination of a
scheduled key is stored in skey.

Inside the symmetric key union there is a void *data which you can
use to allocate data if you need a data structure that does not fit with
the existing ones provided. Just make sure in your done() function
that you free the allocated memory.

14.2.7 Single block ECB

To process a single block in ECB mode the ecb encrypt() and ecb decrypt()
functions were provided. The plaintext and ciphertext buffers are al-
lowed to overlap so you must make sure you do not overwrite the
output before you are finished with the input.

172 www.libtom.org

14.2.8 Testing

The test() function is used to self–test the device. It takes no argu-
ments and returns CRYPT OK if all is working properly. You may
return CRYPT NOP to indicate that no testing was performed.

14.2.9 Key Sizing

Occasionally, a function will want to find a suitable key size to use
since the input is oddly sized. The keysize() function is for this case.
It accepts a pointer to an integer which represents the desired size.
The function then has to match it to the exact or a lower key size that
is valid for the cipher. For example, if the input is 25 and 24 is valid
then it stores 24 back in the pointed to integer. It must not round up
and must return an error if the keysize cannot be mapped to a valid
key size for the cipher.

14.2.10 Acceleration

The next set of functions cover the accelerated functionality of the
cipher descriptor. Any combination of these functions may be set to
NULL to indicate it is not supported. In those cases the software
defaults are used (using the single ECB block routines).

Accelerated ECB

These two functions are meant for cases where a user wants to encrypt
(in ECB mode no less) an array of blocks. These functions are accessed
through the accel ecb encrypt and accel ecb decrypt pointers. The
blocks count is the number of complete blocks to process.

Accelerated CBC

These two functions are meant for accelerated CBC encryption. These
functions are accessed through the accel cbc encrypt and accel cbc decrypt
pointers. The blocks value is the number of complete blocks to pro-
cess. The IV is the CBC initial vector. It is an input upon calling
this function and must be updated by the function before returning.

14.2 Ciphers 173

Accelerated CTR

This function is meant for accelerated CTR encryption. It is acces-
sible through the accel ctr encrypt pointer. The blocks value is the
number of complete blocks to process. The IV is the CTR counter
vector. It is an input upon calling this function and must be updated
by the function before returning. The mode value indicates whether
the counter is big (mode = CTR COUNTER BIG ENDIAN) or little
(mode = CTR COUNTER LITTLE ENDIAN) endian.

This function (and the way it’s called) differs from the other two
since ctr encrypt() allows any size input plaintext. The accelerator
will only be called if the following conditions are met.

1. The accelerator is present

2. The CTR pad is empty

3. The remaining length of the input to process is greater than or
equal to the block size.

The CTR pad is empty when a multiple (including zero) blocks of
text have been processed. That is, if you pass in seven bytes to AES–
CTR mode you would have to pass in a minimum of nine extra bytes
before the accelerator could be called. The CTR accelerator must
increment the counter (and store it back into the buffer provided)
before encrypting it to create the pad.

The accelerator will only be used to encrypt whole blocks. Partial
blocks are always handled in software.

Accelerated LRW

These functions are meant for accelerated LRW. They process blocks
of input in lengths of multiples of 16 octets. They must accept the IV
and tweak state variables and updated them prior to returning. Note
that you may want to disable LRW TABLES in tomcrypt custom.h
if you intend to use accelerators for LRW.

While both encrypt and decrypt accelerators are not required it is
suggested as it makes lrw setiv() more efficient.

Note that calling lrw done() will only invoke the cipher descriptor[].done()
function on the symmetric key parameter of the LRW state. That

174 www.libtom.org

means if your device requires any (LRW specific) resources you should
free them in your ciphers() done function. The simplest way to think
of it is to write the plugin solely to do LRW with the cipher. That
way cipher descriptor[].setup() means to init LRW resources and ci-
pher descriptor[].done() means to free them.

Accelerated CCM

This function is meant for accelerated CCM encryption or decryption.
It processes the entire packet in one call. You can optimize the work
flow somewhat by allowing the caller to call the setup() function first
to schedule the key if your accelerator cannot do the key schedule on
the fly (for instance). This function MUST support both key passing
methods.

key uskey Source of key

NULL NULL Error, not supported

non-NULL NULL Use key, do a key schedule

NULL non-NULL Use uskey, key schedule not required

non-NULL non-NULL Use uskey, key schedule not required

This function is called when the user calls ccm memory().

Accelerated GCM

This function is meant for accelerated GCM encryption or decryp-
tion. It processes the entire packet in one call. Note that the setup()
function will not be called prior to this. This function must handle
scheduling the key provided on its own. It is called when the user calls
gcm memory().

Accelerated OMAC

This function is meant to perform an optimized OMAC1 (CMAC) mes-
sage authentication code computation when the user calls omac memory().

Accelerated XCBC-MAC

This function is meant to perform an optimized XCBC-MAC message
authentication code computation when the user calls xcbc memory().

14.3 One–Way Hashes 175

Accelerated F9

This function is meant to perform an optimized F9 message authen-
tication code computation when the user calls f9 memory(). Like
f9 memory(), it requires the caller to perform any 3GPP related padding
before calling in order to ensure proper compliance with F9.

14.3 One–Way Hashes

The hash functions are accessed through the ltc hash descriptor struc-
ture.

struct ltc_hash_descriptor {

/** name of hash */

char *name;

/** internal ID */

unsigned char ID;

/** Size of digest in octets */

unsigned long hashsize;

/** Input block size in octets */

unsigned long blocksize;

/** ASN.1 OID */

unsigned long OID[16];

/** Length of DER encoding */

unsigned long OIDlen;

/** Init a hash state

@param hash The hash to initialize

@return CRYPT_OK if successful

*/

int (*init)(hash_state *hash);

/** Process a block of data

@param hash The hash state

@param in The data to hash

176 www.libtom.org

@param inlen The length of the data (octets)

@return CRYPT_OK if successful

*/

int (*process)(hash_state *hash,

const unsigned char *in,

unsigned long inlen);

/** Produce the digest and store it

@param hash The hash state

@param out [out] The destination of the digest

@return CRYPT_OK if successful

*/

int (*done)(hash_state *hash,

unsigned char *out);

/** Self-test

@return CRYPT_OK if successful,

CRYPT_NOP if self-tests have been disabled

*/

int (*test)(void);

/* accelerated hmac callback: if you need to-do

multiple packets just use the generic hmac_memory

and provide a hash callback

*/

int (*hmac_block)(const unsigned char *key,

unsigned long keylen,

const unsigned char *in,

unsigned long inlen,

unsigned char *out,

unsigned long *outlen);

};

14.3.1 Name

This is the name the hash is known by and what find hash() will look
for.

14.3 One–Way Hashes 177

14.3.2 Internal ID

This is the internal ID byte used to distinguish the hash from other
hashes.

14.3.3 Digest Size

The hashsize variable indicates the length of the output in octets.

14.3.4 Block Size

The blocksize variable indicates the length of input (in octets) that the
hash processes in a given invocation.

14.3.5 OID Identifier

This is the universal ASN.1 Object Identifier for the hash.

14.3.6 Initialization

The init function initializes the hash and prepares it to process message
bytes.

14.3.7 Process

This processes message bytes. The algorithm must accept any length
of input that the hash would allow. The input is not guaranteed to be
a multiple of the block size in length.

14.3.8 Done

The done function terminates the hash and returns the message digest.

14.3.9 Acceleration

A compatible accelerator must allow processing data in any granularity
which may require internal padding on the driver side.

178 www.libtom.org

14.3.10 HMAC Acceleration

The hmac block() callback is meant for single–shot optimized HMAC
implementations. It is called directly by hmac memory() if present. If
you need to be able to process multiple blocks per MAC then you will
have to simply provide a process() callback and use hmac memory()
as provided in LibTomCrypt.

14.4 Pseudo–Random Number Generators

The pseudo–random number generators are accessible through the
ltc prng descriptor structure.

struct ltc_prng_descriptor {

/** Name of the PRNG */

char *name;

/** size in bytes of exported state */

int export_size;

/** Start a PRNG state

@param prng [out] The state to initialize

@return CRYPT_OK if successful

*/

int (*start)(prng_state *prng);

/** Add entropy to the PRNG

@param in The entropy

@param inlen Length of the entropy (octets)

@param prng The PRNG state

@return CRYPT_OK if successful

*/

int (*add_entropy)(const unsigned char *in,

unsigned long inlen,

prng_state *prng);

/** Ready a PRNG state to read from

@param prng The PRNG state to ready

@return CRYPT_OK if successful

*/

14.4 Pseudo–Random Number Generators 179

int (*ready)(prng_state *prng);

/** Read from the PRNG

@param out [out] Where to store the data

@param outlen Length of data desired (octets)

@param prng The PRNG state to read from

@return Number of octets read

*/

unsigned long (*read)(unsigned char *out,

unsigned long outlen,

prng_state *prng);

/** Terminate a PRNG state

@param prng The PRNG state to terminate

@return CRYPT_OK if successful

*/

int (*done)(prng_state *prng);

/** Export a PRNG state

@param out [out] The destination for the state

@param outlen [in/out] The max size and resulting size

@param prng The PRNG to export

@return CRYPT_OK if successful

*/

int (*pexport)(unsigned char *out,

unsigned long *outlen,

prng_state *prng);

/** Import a PRNG state

@param in The data to import

@param inlen The length of the data to import (octets)

@param prng The PRNG to initialize/import

@return CRYPT_OK if successful

*/

int (*pimport)(const unsigned char *in,

unsigned long inlen,

prng_state *prng);

/** Self-test the PRNG

@return CRYPT_OK if successful,

CRYPT_NOP if self-testing has been disabled

180 www.libtom.org

*/

int (*test)(void);

};

14.4.1 Name

The name by which find prng() will find the PRNG.

14.4.2 Export Size

When an PRNG state is to be exported for future use you specify the
space required in this variable.

14.4.3 Start

Initialize the PRNG and make it ready to accept entropy.

14.4.4 Entropy Addition

Add entropy to the PRNG state. The exact behaviour of this function
depends on the particulars of the PRNG.

14.4.5 Ready

This function makes the PRNG ready to read from by processing the
entropy added. The behaviour of this function depends on the specific
PRNG used.

14.4.6 Read

Read from the PRNG and return the number of bytes read. This
function does not have to fill the buffer but it is best if it does as
many protocols do not retry reads and will fail on the first try.

14.4.7 Done

Terminate a PRNG state. The behaviour of this function depends on
the particular PRNG used.

14.5 BigNum Math Descriptors 181

14.4.8 Exporting and Importing

An exported PRNG state is data that the PRNG can later import to
resume activity. They’re not meant to resume the same session but
should at least maintain the same level of state entropy.

14.5 BigNum Math Descriptors

The library also makes use of the math descriptors to access math
functions. While bignum math libraries usually differ in implementa-
tion it hasn’t proven hard to write glue to use math libraries so far.
The basic descriptor looks like.

/** math descriptor */

typedef struct {

/** Name of the math provider */

char *name;

/** Bits per digit, amount of bits must fit in an unsigned long */

int bits_per_digit;

/* ---- init/deinit functions ---- */

/** initialize a bignum

@param a The number to initialize

@return CRYPT_OK on success

*/

int (*init)(void **a);

/** init copy

@param dst The number to initialize and write to

@param src The number to copy from

@return CRYPT_OK on success

*/

int (*init_copy)(void **dst, void *src);

/** deinit

@param a The number to free

@return CRYPT_OK on success

*/

182 www.libtom.org

void (*deinit)(void *a);

/* ---- data movement ---- */

/** copy

@param src The number to copy from

@param dst The number to write to

@return CRYPT_OK on success

*/

int (*copy)(void *src, void *dst);

/* ---- trivial low level functions ---- */

/** set small constant

@param a Number to write to

@param n Source upto bits_per_digit (meant for small constants)

@return CRYPT_OK on success

*/

int (*set_int)(void *a, unsigned long n);

/** get small constant

@param a Small number to read

@return The lower bits_per_digit of the integer (unsigned)

*/

unsigned long (*get_int)(void *a);

/** get digit n

@param a The number to read from

@param n The number of the digit to fetch

@return The bits_per_digit sized n’th digit of a

*/

unsigned long (*get_digit)(void *a, int n);

/** Get the number of digits that represent the number

@param a The number to count

@return The number of digits used to represent the number

*/

int (*get_digit_count)(void *a);

/** compare two integers

@param a The left side integer

14.5 BigNum Math Descriptors 183

@param b The right side integer

@return LTC_MP_LT if a < b,

LTC_MP_GT if a > b and

LTC_MP_EQ otherwise. (signed comparison)

*/

int (*compare)(void *a, void *b);

/** compare against int

@param a The left side integer

@param b The right side integer (upto bits_per_digit)

@return LTC_MP_LT if a < b,

LTC_MP_GT if a > b and

LTC_MP_EQ otherwise. (signed comparison)

*/

int (*compare_d)(void *a, unsigned long n);

/** Count the number of bits used to represent the integer

@param a The integer to count

@return The number of bits required to represent the integer

*/

int (*count_bits)(void * a);

/** Count the number of LSB bits which are zero

@param a The integer to count

@return The number of contiguous zero LSB bits

*/

int (*count_lsb_bits)(void *a);

/** Compute a power of two

@param a The integer to store the power in

@param n The power of two you want to store (a = 2^n)

@return CRYPT_OK on success

*/

int (*twoexpt)(void *a , int n);

/* ---- radix conversions ---- */

/** read ascii string

@param a The integer to store into

@param str The string to read

@param radix The radix the integer has been represented in (2-64)

184 www.libtom.org

@return CRYPT_OK on success

*/

int (*read_radix)(void *a, const char *str, int radix);

/** write number to string

@param a The integer to store

@param str The destination for the string

@param radix The radix the integer is to be represented in (2-64)

@return CRYPT_OK on success

*/

int (*write_radix)(void *a, char *str, int radix);

/** get size as unsigned char string

@param a The integer to get the size

@return The length of the integer in octets

*/

unsigned long (*unsigned_size)(void *a);

/** store an integer as an array of octets

@param src The integer to store

@param dst The buffer to store the integer in

@return CRYPT_OK on success

*/

int (*unsigned_write)(void *src, unsigned char *dst);

/** read an array of octets and store as integer

@param dst The integer to load

@param src The array of octets

@param len The number of octets

@return CRYPT_OK on success

*/

int (*unsigned_read)(void *dst,

unsigned char *src,

unsigned long len);

/* ---- basic math ---- */

/** add two integers

@param a The first source integer

@param b The second source integer

@param c The destination of "a + b"

14.5 BigNum Math Descriptors 185

@return CRYPT_OK on success

*/

int (*add)(void *a, void *b, void *c);

/** add two integers

@param a The first source integer

@param b The second source integer

(single digit of upto bits_per_digit in length)

@param c The destination of "a + b"

@return CRYPT_OK on success

*/

int (*addi)(void *a, unsigned long b, void *c);

/** subtract two integers

@param a The first source integer

@param b The second source integer

@param c The destination of "a - b"

@return CRYPT_OK on success

*/

int (*sub)(void *a, void *b, void *c);

/** subtract two integers

@param a The first source integer

@param b The second source integer

(single digit of upto bits_per_digit in length)

@param c The destination of "a - b"

@return CRYPT_OK on success

*/

int (*subi)(void *a, unsigned long b, void *c);

/** multiply two integers

@param a The first source integer

@param b The second source integer

(single digit of upto bits_per_digit in length)

@param c The destination of "a * b"

@return CRYPT_OK on success

*/

int (*mul)(void *a, void *b, void *c);

/** multiply two integers

@param a The first source integer

186 www.libtom.org

@param b The second source integer

(single digit of upto bits_per_digit in length)

@param c The destination of "a * b"

@return CRYPT_OK on success

*/

int (*muli)(void *a, unsigned long b, void *c);

/** Square an integer

@param a The integer to square

@param b The destination

@return CRYPT_OK on success

*/

int (*sqr)(void *a, void *b);

/** Divide an integer

@param a The dividend

@param b The divisor

@param c The quotient (can be NULL to signify don’t care)

@param d The remainder (can be NULL to signify don’t care)

@return CRYPT_OK on success

*/

int (*div)(void *a, void *b, void *c, void *d);

/** divide by two

@param a The integer to divide (shift right)

@param b The destination

@return CRYPT_OK on success

*/

int (*div_2)(void *a, void *b);

/** Get remainder (small value)

@param a The integer to reduce

@param b The modulus (upto bits_per_digit in length)

@param c The destination for the residue

@return CRYPT_OK on success

*/

int (*modi)(void *a, unsigned long b, unsigned long *c);

/** gcd

@param a The first integer

@param b The second integer

14.5 BigNum Math Descriptors 187

@param c The destination for (a, b)

@return CRYPT_OK on success

*/

int (*gcd)(void *a, void *b, void *c);

/** lcm

@param a The first integer

@param b The second integer

@param c The destination for [a, b]

@return CRYPT_OK on success

*/

int (*lcm)(void *a, void *b, void *c);

/** Modular multiplication

@param a The first source

@param b The second source

@param c The modulus

@param d The destination (a*b mod c)

@return CRYPT_OK on success

*/

int (*mulmod)(void *a, void *b, void *c, void *d);

/** Modular squaring

@param a The first source

@param b The modulus

@param c The destination (a*a mod b)

@return CRYPT_OK on success

*/

int (*sqrmod)(void *a, void *b, void *c);

/** Modular inversion

@param a The value to invert

@param b The modulus

@param c The destination (1/a mod b)

@return CRYPT_OK on success

*/

int (*invmod)(void *, void *, void *);

/* ---- reduction ---- */

/** setup Montgomery

188 www.libtom.org

@param a The modulus

@param b The destination for the reduction digit

@return CRYPT_OK on success

*/

int (*montgomery_setup)(void *a, void **b);

/** get normalization value

@param a The destination for the normalization value

@param b The modulus

@return CRYPT_OK on success

*/

int (*montgomery_normalization)(void *a, void *b);

/** reduce a number

@param a The number [and dest] to reduce

@param b The modulus

@param c The value "b" from montgomery_setup()

@return CRYPT_OK on success

*/

int (*montgomery_reduce)(void *a, void *b, void *c);

/** clean up (frees memory)

@param a The value "b" from montgomery_setup()

@return CRYPT_OK on success

*/

void (*montgomery_deinit)(void *a);

/* ---- exponentiation ---- */

/** Modular exponentiation

@param a The base integer

@param b The power (can be negative) integer

@param c The modulus integer

@param d The destination

@return CRYPT_OK on success

*/

int (*exptmod)(void *a, void *b, void *c, void *d);

/** Primality testing

@param a The integer to test

@param b The destination of the result (FP_YES if prime)

14.5 BigNum Math Descriptors 189

@return CRYPT_OK on success

*/

int (*isprime)(void *a, int *b);

/* ---- (optional) ecc point math ---- */

/** ECC GF(p) point multiplication (from the NIST curves)

@param k The integer to multiply the point by

@param G The point to multiply

@param R The destination for kG

@param modulus The modulus for the field

@param map Boolean indicated whether to map back to affine or not

(can be ignored if you work in affine only)

@return CRYPT_OK on success

*/

int (*ecc_ptmul)(void *k,

ecc_point *G,

ecc_point *R,

void *modulus,

int map);

/** ECC GF(p) point addition

@param P The first point

@param Q The second point

@param R The destination of P + Q

@param modulus The modulus

@param mp The "b" value from montgomery_setup()

@return CRYPT_OK on success

*/

int (*ecc_ptadd)(ecc_point *P,

ecc_point *Q,

ecc_point *R,

void *modulus,

void *mp);

/** ECC GF(p) point double

@param P The first point

@param R The destination of 2P

@param modulus The modulus

@param mp The "b" value from montgomery_setup()

@return CRYPT_OK on success

190 www.libtom.org

*/

int (*ecc_ptdbl)(ecc_point *P,

ecc_point *R,

void *modulus,

void *mp);

/** ECC mapping from projective to affine,

currently uses (x,y,z) => (x/z^2, y/z^3, 1)

@param P The point to map

@param modulus The modulus

@param mp The "b" value from montgomery_setup()

@return CRYPT_OK on success

@remark The mapping can be different but keep in mind a

ecc_point only has three integers (x,y,z) so if

you use a different mapping you have to make it fit.

*/

int (*ecc_map)(ecc_point *P, void *modulus, void *mp);

/** Computes kA*A + kB*B = C using Shamir’s Trick

@param A First point to multiply

@param kA What to multiple A by

@param B Second point to multiply

@param kB What to multiple B by

@param C [out] Destination point (can overlap with A or B)

@param modulus Modulus for curve

@return CRYPT_OK on success

*/

int (*ecc_mul2add)(ecc_point *A, void *kA,

ecc_point *B, void *kB,

ecc_point *C,

void *modulus);

/* ---- (optional) rsa optimized math (for internal CRT) ---- */

/** RSA Key Generation

@param prng An active PRNG state

@param wprng The index of the PRNG desired

@param size The size of the key in octets

@param e The "e" value (public key).

e==65537 is a good choice

14.5 BigNum Math Descriptors 191

@param key [out] Destination of a newly created private key pair

@return CRYPT_OK if successful, upon error all allocated ram is freed

*/

int (*rsa_keygen)(prng_state *prng,

int wprng,

int size,

long e,

rsa_key *key);

/** RSA exponentiation

@param in The octet array representing the base

@param inlen The length of the input

@param out The destination (to be stored in an octet array format)

@param outlen The length of the output buffer and the resulting size

(zero padded to the size of the modulus)

@param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA

@param key The RSA key to use

@return CRYPT_OK on success

*/

int (*rsa_me)(const unsigned char *in, unsigned long inlen,

unsigned char *out, unsigned long *outlen, int which,

rsa_key *key);

} ltc_math_descriptor;

Most of the functions are fairly straightforward and do not need
documentation. We’ll cover the basic conventions of the API and then
explain the accelerated functions.

14.5.1 Conventions

All bignums are accessed through an opaque void * data type. You
must internally cast the pointer if you need to access members of
your bignum structure. During the init calls a void ** will be passed
where you allocate your structure and set the pointer then initialize
the number to zero. During the deinit calls you must free the bignum
as well as the structure you allocated to place it in.

All functions except the Montgomery reductions work from left to
right with the arguments. For example, mul(a, b, c) computes c← ab.

All functions (except where noted otherwise) return CRYPT OK
to signify a successful operation. All error codes must be valid LibTom-

192 www.libtom.org

Crypt error codes.
The digit routines (including functions with the i suffix) use a

unsigned long to represent the digit. If your internal digit is larger
than this you must then partition your digits. Normally this does not
matter as unsigned long will be the same size as your register size.
Note that if your digit is smaller than an unsigned long that is also
acceptable as the bits per digit parameter will specify this.

14.5.2 ECC Functions

The ECC system in LibTomCrypt is based off of the NIST recom-
mended curves over GF (p) and is used to implement EC-DSA and
EC-DH. The ECC functions work with the ecc point structure and
assume the points are stored in Jacobian projective format.

/** A point on a ECC curve, stored in Jacobian format such

that (x,y,z) => (x/z^2, y/z^3, 1) when interpreted as affine */

typedef struct {

/** The x co-ordinate */

void *x;

/** The y co-ordinate */

void *y;

/** The z co-ordinate */

void *z;

} ecc_point;

All ECC functions must use this mapping system. The only ex-
ception is when you remap all ECC callbacks which will allow you to
have more control over how the ECC math will be implemented. Out
of the box you only have three parameters per point to use (x, y, z)
however, these are just void pointers. They could point to anything
you want. The only further exception is the export functions which
expects the values to be in affine format.

Point Multiply

This will multiply the point G by the scalar k and store the result in
the point R. The value should be mapped to affine only if map is set
to one.

14.5 BigNum Math Descriptors 193

Point Addition

This will add the point P to the point Q and store it in the point R.
The mp parameter is the b value from the montgomery setup() call.
The input points may be in either affine (with z = 1) or projective
format and the output point is always projective.

Point Mapping

This will map the point P back from projective to affine. The output
point P must be of the form (x, y, 1).

Shamir’s Trick

To accelerate EC–DSA verification the library provides a built–in
function called ltc ecc mul2add(). This performs two point multi-
plications and an addition in roughly the time of one point multi-
plication. It is called from ecc verify hash() if an accelerator is not
present. The acclerator function must allow the points to overlap (e.g.,
A← k1A + k2B) and must return the final point in affine format.

14.5.3 RSA Functions

The RSA Modular Exponentiation (ME) function is used by the RSA
API to perform exponentiations for private and public key operations.
In particular for private key operations it uses the CRT approach to
lower the time required. It is passed an RSA key with the following
format.

/** RSA PKCS style key */

typedef struct Rsa_key {

/** Type of key, PK_PRIVATE or PK_PUBLIC */

int type;

/** The public exponent */

void *e;

/** The private exponent */

void *d;

/** The modulus */

void *N;

194 www.libtom.org

/** The p factor of N */

void *p;

/** The q factor of N */

void *q;

/** The 1/q mod p CRT param */

void *qP;

/** The d mod (p - 1) CRT param */

void *dP;

/** The d mod (q - 1) CRT param */

void *dQ;

} rsa_key;

The call reads the in buffer as an unsigned char array in big endian
format. Then it performs the exponentiation and stores the output in
big endian format to the out buffer. The output must be zero padded
(leading bytes) so that the length of the output matches the length
of the modulus (in bytes). For example, for RSA–1024 the output is
always 128 bytes regardless of how small the numerical value of the
exponentiation is.

Since the function is given the entire RSA key (for private keys
only) CRT is possible as prescribed in the PKCS #1 v2.1 specification.

Index

aes desc, 18
anubis desc, 18
AR, 152

base64 decode(), 143
base64 encode(), 143
blowfish desc, 18
blowfish done(), 16
blowfish ecb decrypt(), 16
blowfish ecb encrypt(), 16
blowfish setup(), 16
BSWAP, 8

CBC Mode, 25
CBC mode, 23
cbc decrypt(), 26
cbc done(), 28
cbc encrypt(), 26
cbc getiv(), 27
cbc setiv(), 27
cbc start(), 25
CC, 152
ccm memory(), 41, 174
ccm test(), 42
CFB Mode, 25
CFB mode, 24
cfb decrypt(), 26
cfb done(), 28
cfb encrypt(), 26

cfb getiv(), 27
cfb setiv(), 27
cfb start(), 25
chc register(), 58
Cipher Decrypt, 14
Cipher Descriptor, 17
Cipher descriptor table, 18
Cipher Encrypt, 14
Cipher Hash Construction, 58
Cipher Setup, 13
Cipher Testing, 15
Ciphertext stealing, 25
CMAC, 64
CRYPT ERROR, 7
CRYPT OK, 7
CTR Mode, 25
CTR mode, 23
ctr decrypt(), 26
ctr done(), 28
ctr encrypt(), 26
ctr getiv(), 27
ctr setiv(), 27
ctr start(), 25

DATADIR, 153
der decode bit string(), 132
der decode choice(), 137
der decode ia5 string(), 134
der decode integer(), 132

195

196 Index

der decode object identifier(), 133
der decode octet string(), 133
der decode printable string(), 135
der decode sequence(), 128
der decode sequence flexi(), 138
der decode sequence multi(), 129
der decode set(), 130
der decode short integer(), 132
der decode utctime(), 136
der decode utf8 string(), 135
der encode bit string(), 132
der encode ia5 string(), 134
der encode integer(), 132
der encode object identifier(), 133
der encode octet string(), 133
der encode printable string(), 135
der encode sequence(), 126
der encode sequence multi(), 129
der encode set(), 130
der encode setof(), 131
der encode short integer(), 132
der encode utctime(), 136
der encode utf8 string(), 135
der length bit string(), 132
der length ia5 string(), 134
der length integer(), 132
der length object identifier(), 133
der length octet string(), 133
der length printable string(), 135
der length sequence(), 128
der length short integer(), 132
der length utctime(), 136
der length utf8 string(), 135
der sequence free(), 140
des3 desc, 18
des desc, 18
DESTDIR, 153
dsa decrypt key(), 122

dsa encrypt key(), 122
dsa export(), 122
dsa free(), 119
dsa import(), 123
dsa sign hash(), 120
dsa verify hash(), 121
dsa verify key(), 120

eax addheader(), 35
eax decrypt(), 35
eax decrypt verify memory, 37
eax done(), 36
eax encrypt(), 35
eax encrypt authenticate memory,

37
eax init(), 34
eax test(), 36
ECB mode, 23
ecb decrypt(), 26
ecb done(), 28
ecb encrypt(), 26
ecb start(), 25
ECC Key Format, 107
ecc ansi x963 export(), 110
ecc ansi x963 import(), 111
ecc ansi x963 import ex(), 111
ecc decrypt key(), 113
ecc encrypt key(), 112
ecc export(), 109
ecc free(), 109
ecc import(), 110
ecc import ex(), 110
ecc make key(), 108
ecc make key ex(), 109
ecc shared secret(), 111
ecc sign hash(), 114
ecc verify hash(), 114
error to string(), 7, 9, 21

Index 197

EXTRALIBS, 154

F8 Mode, 32
f8 decrypt(), 32
f8 done(), 33
f8 encrypt(), 32
f8 getiv(), 33
f8 setiv(), 33
f8 start(), 32
f9 done(), 74
f9 file(), 75
f9 init(), 74
f9 memory(), 75, 175
f9 process(), 74
f9 test(), 75
find cipher(), 20, 21, 170
find hash(), 53
find hash oid(), 53
find prng(), 81
Fixed Point ECC, 106
FP ENTRIES, 106
FP LUT, 106
FP SIZE, 107

gcm add aad(), 45
gcm add iv(), 44
gcm done(), 45
gcm init(), 44
gcm memory(), 46, 174
gcm process(), 45
gcm reset(), 46
GMP DESC, 161

Hash descriptor table, 57
Hash Functions, 51
hash file(), 55
hash filehandle(), 55
hash memory(), 55

hmac done(), 62
hmac file(), 63
hmac init(), 61
hmac memory(), 62
hmac process(), 62
hmac test(), 63

IGNORE SPEED, 152
INCPATH, 153

kasumi desc, 18
Key Sizing, 15
khazad desc, 18
kseed desc, 18

LIBNAME, 152
LIBNAME S, 152
LIBPATH, 153
LIBTEST, 153
LIBTEST S, 153
LOAD32H, 8
LOAD32L, 8
LOAD64H, 8
LOAD64L, 8
lrw decrypt(), 31
lrw done(), 32
lrw encrypt(), 31
lrw getiv(), 31
lrw setiv(), 31
lrw start(), 31
ltc asn1 list structure, 125
ltc ecc mul2add(), 193
ltc ecc set type, 108
LTC FAST TYPE, 158
LTC PKCS 1 EME, 90
LTC PKCS 1 EMSA, 90
LTC PKCS 1 OAEP, 97
LTC PKCS 1 V1 5, 97

198 Index

LTC PTHREAD, 150
LTC SET ASN1 macro, 125
ltc utctime structure, 136
LTM DESC, 161

MAKE, 152
MECC FP, 106
Message Digest, 52

noekeon desc, 18

ocb decrypt(), 39
ocb decrypt verify memory(), 40
ocb done decrypt(), 40
ocb done encrypt(), 39
ocb encrypt(), 39
ocb init(), 38
OFB Mode, 25
OFB mode, 24
ofb decrypt(), 26
ofb done(), 28
ofb encrypt(), 26
ofb getiv(), 27
ofb setiv(), 27
ofb start(), 25
OMAC, 64
omac done(), 65
omac file(), 66
omac init(), 64
omac memory(), 66, 174
omac process(), 65
omac test(), 66

pelican done(), 70
pelican init(), 70
pelican process(), 70
PK PRIVATE, 95
PK PUBLIC, 95
PKCS #5, 140

pkcs 1 oaep decode(), 92
pkcs 1 oaep encode(), 91, 97
pkcs 1 pss decode(), 93
pkcs 1 pss encode(), 92
pkcs 1 v1 5 decode(), 90
pkcs 1 v1 5 encode(), 89
pkcs 5 alg1(), 140
pkcs 5 alg2(), 141
pmac done(), 68
pmac file(), 69
pmac init(), 68
pmac memory(), 69
pmac process(), 68
pmac test(), 69
Primality Testing, 144
PRNG, 10
PRNG add entropy, 77
PRNG Descriptor, 80
PRNG done, 78
PRNG export, 78
PRNG import, 78
PRNG read, 78
PRNG ready, 77
PRNG start, 77
PRNG test, 79
Pseudo Random Number Genera-

tor, 10

rc2 desc, 18
rc5 desc, 18
rc6 desc, 18
register cipher(), 21
register hash(), 56
register prng(), 11, 81
rng get bytes(), 85
rng make prng(), 85
ROL, 9
ROL64, 9

Index 199

ROL64c, 9
ROLc, 9
ROR, 9
ROR64, 9
ROR64c, 9
RORc, 9
rsa decrypt key(), 97
rsa decrypt key ex(), 98
rsa encrypt key(), 96
rsa encrypt key ex(), 97
rsa export(), 9, 103
rsa exptmod(), 96
rsa free(), 95
rsa import(), 104
rsa make key(), 11, 95
rsa sign hash(), 99
rsa sign hash ex(), 99
rsa verify hash(), 100
rsa verify hash ex(), 101

saferp desc, 18
Secure RNG, 84
SET, 130
SET OF, 130
Shamir’s Trick, 193
skipjack desc, 18
SSE2, 160
STORE32H, 8
STORE32L, 8
STORE64H, 8
STORE64L, 8
Symmetric Keys, 17

TFM, 107
tfm.h, 107
TFM DESC, 161
Twofish build options, 21
twofish desc, 18

TWOFISH SMALL, 21
TWOFISH TABLES, 21

unregister cipher(), 22
unregister hash(), 56
unregister prng(), 81
USE GMP, 161
USE LTM, 161
USE TFM, 161

variable length output, 9

XCALLOC, 157
xcbc done(), 72
xcbc file(), 73
xcbc init(), 72
xcbc memory(), 72, 174
xcbc process(), 72
xcbc test(), 73
XFREE, 157
XMALLOC, 157
XREALLOC, 157
xtea desc, 18

