Ansify function declarations and fix some minor style issues.
[dragonfly/vkernel-mp.git] / sys / kern / vfs_bio.c
blob666f9ceb2645fdebd0dcb0b443e6b1cc4b481ebc
1 /*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.83 2006/12/24 00:47:54 swildner Exp $
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
28 * see man buf(9) for more info.
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/eventhandler.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mount.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/proc.h>
42 #include <sys/reboot.h>
43 #include <sys/resourcevar.h>
44 #include <sys/sysctl.h>
45 #include <sys/vmmeter.h>
46 #include <sys/vnode.h>
47 #include <sys/proc.h>
48 #include <vm/vm.h>
49 #include <vm/vm_param.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_pageout.h>
52 #include <vm/vm_page.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_map.h>
57 #include <sys/buf2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <vm/vm_page2.h>
62 #include "opt_ddb.h"
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
68 * Buffer queues.
70 #define BUFFER_QUEUES 6
71 enum bufq_type {
72 BQUEUE_NONE, /* not on any queue */
73 BQUEUE_LOCKED, /* locked buffers */
74 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
75 BQUEUE_DIRTY, /* B_DELWRI buffers */
76 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
77 BQUEUE_EMPTY /* empty buffer headers */
79 TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
81 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
83 struct bio_ops bioops; /* I/O operation notification */
85 struct buf *buf; /* buffer header pool */
87 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
88 vm_offset_t to);
89 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
90 vm_offset_t to);
91 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
92 int pageno, vm_page_t m);
93 static void vfs_clean_pages(struct buf *bp);
94 static void vfs_setdirty(struct buf *bp);
95 static void vfs_vmio_release(struct buf *bp);
96 static int flushbufqueues(void);
98 static void buf_daemon (void);
100 * bogus page -- for I/O to/from partially complete buffers
101 * this is a temporary solution to the problem, but it is not
102 * really that bad. it would be better to split the buffer
103 * for input in the case of buffers partially already in memory,
104 * but the code is intricate enough already.
106 vm_page_t bogus_page;
107 int runningbufspace;
109 static int bufspace, maxbufspace,
110 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
111 static int bufreusecnt, bufdefragcnt, buffreekvacnt;
112 static int lorunningspace, hirunningspace, runningbufreq;
113 static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
114 static int numfreebuffers, lofreebuffers, hifreebuffers;
115 static int getnewbufcalls;
116 static int getnewbufrestarts;
118 static int needsbuffer; /* locked by needsbuffer_spin */
119 static int bd_request; /* locked by needsbuffer_spin */
120 static struct spinlock needsbuffer_spin;
123 * Sysctls for operational control of the buffer cache.
125 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
126 "Number of dirty buffers to flush before bufdaemon becomes inactive");
127 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
128 "High watermark used to trigger explicit flushing of dirty buffers");
129 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
130 "Low watermark for special reserve in low-memory situations");
131 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
132 "High watermark for special reserve in low-memory situations");
133 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
134 "Minimum amount of buffer space required for active I/O");
135 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
136 "Maximum amount of buffer space to usable for active I/O");
138 * Sysctls determining current state of the buffer cache.
140 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
141 "Pending number of dirty buffers");
142 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
143 "Number of free buffers on the buffer cache free list");
144 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
145 "I/O bytes currently in progress due to asynchronous writes");
146 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
147 "Hard limit on maximum amount of memory usable for buffer space");
148 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
149 "Soft limit on maximum amount of memory usable for buffer space");
150 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
151 "Minimum amount of memory to reserve for system buffer space");
152 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
153 "Amount of memory available for buffers");
154 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
155 0, "Maximum amount of memory reserved for buffers using malloc");
156 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
157 "Amount of memory left for buffers using malloc-scheme");
158 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
159 "New buffer header acquisition requests");
160 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
161 0, "New buffer header acquisition restarts");
162 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
163 "Buffer acquisition restarts due to fragmented buffer map");
164 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
165 "Amount of time KVA space was deallocated in an arbitrary buffer");
166 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
167 "Amount of time buffer re-use operations were successful");
168 SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
169 "sizeof(struct buf)");
171 char *buf_wmesg = BUF_WMESG;
173 extern int vm_swap_size;
175 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
176 #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */
177 #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */
178 #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
181 * numdirtywakeup:
183 * If someone is blocked due to there being too many dirty buffers,
184 * and numdirtybuffers is now reasonable, wake them up.
187 static __inline void
188 numdirtywakeup(int level)
190 if (numdirtybuffers <= level) {
191 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
192 spin_lock_wr(&needsbuffer_spin);
193 needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
194 spin_unlock_wr(&needsbuffer_spin);
195 wakeup(&needsbuffer);
201 * bufspacewakeup:
203 * Called when buffer space is potentially available for recovery.
204 * getnewbuf() will block on this flag when it is unable to free
205 * sufficient buffer space. Buffer space becomes recoverable when
206 * bp's get placed back in the queues.
209 static __inline void
210 bufspacewakeup(void)
213 * If someone is waiting for BUF space, wake them up. Even
214 * though we haven't freed the kva space yet, the waiting
215 * process will be able to now.
217 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
218 spin_lock_wr(&needsbuffer_spin);
219 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
220 spin_unlock_wr(&needsbuffer_spin);
221 wakeup(&needsbuffer);
226 * runningbufwakeup:
228 * Accounting for I/O in progress.
231 static __inline void
232 runningbufwakeup(struct buf *bp)
234 if (bp->b_runningbufspace) {
235 runningbufspace -= bp->b_runningbufspace;
236 bp->b_runningbufspace = 0;
237 if (runningbufreq && runningbufspace <= lorunningspace) {
238 runningbufreq = 0;
239 wakeup(&runningbufreq);
245 * bufcountwakeup:
247 * Called when a buffer has been added to one of the free queues to
248 * account for the buffer and to wakeup anyone waiting for free buffers.
249 * This typically occurs when large amounts of metadata are being handled
250 * by the buffer cache ( else buffer space runs out first, usually ).
253 static __inline void
254 bufcountwakeup(void)
256 ++numfreebuffers;
257 if (needsbuffer) {
258 spin_lock_wr(&needsbuffer_spin);
259 needsbuffer &= ~VFS_BIO_NEED_ANY;
260 if (numfreebuffers >= hifreebuffers)
261 needsbuffer &= ~VFS_BIO_NEED_FREE;
262 spin_unlock_wr(&needsbuffer_spin);
263 wakeup(&needsbuffer);
268 * waitrunningbufspace()
270 * runningbufspace is a measure of the amount of I/O currently
271 * running. This routine is used in async-write situations to
272 * prevent creating huge backups of pending writes to a device.
273 * Only asynchronous writes are governed by this function.
275 * Reads will adjust runningbufspace, but will not block based on it.
276 * The read load has a side effect of reducing the allowed write load.
278 * This does NOT turn an async write into a sync write. It waits
279 * for earlier writes to complete and generally returns before the
280 * caller's write has reached the device.
282 static __inline void
283 waitrunningbufspace(void)
285 if (runningbufspace > hirunningspace) {
286 crit_enter();
287 while (runningbufspace > hirunningspace) {
288 ++runningbufreq;
289 tsleep(&runningbufreq, 0, "wdrain", 0);
291 crit_exit();
296 * vfs_buf_test_cache:
298 * Called when a buffer is extended. This function clears the B_CACHE
299 * bit if the newly extended portion of the buffer does not contain
300 * valid data.
302 static __inline__
303 void
304 vfs_buf_test_cache(struct buf *bp,
305 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
306 vm_page_t m)
308 if (bp->b_flags & B_CACHE) {
309 int base = (foff + off) & PAGE_MASK;
310 if (vm_page_is_valid(m, base, size) == 0)
311 bp->b_flags &= ~B_CACHE;
316 * bd_wakeup:
318 * Wake up the buffer daemon if the number of outstanding dirty buffers
319 * is above specified threshold 'dirtybuflevel'.
321 * The buffer daemon is explicitly woken up when (a) the pending number
322 * of dirty buffers exceeds the recovery and stall mid-point value,
323 * (b) during bwillwrite() or (c) buf freelist was exhausted.
325 static __inline__
326 void
327 bd_wakeup(int dirtybuflevel)
329 if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
330 spin_lock_wr(&needsbuffer_spin);
331 bd_request = 1;
332 spin_unlock_wr(&needsbuffer_spin);
333 wakeup(&bd_request);
338 * bd_speedup:
340 * Speed up the buffer cache flushing process.
343 static __inline__
344 void
345 bd_speedup(void)
347 bd_wakeup(1);
351 * bufinit:
353 * Load time initialisation of the buffer cache, called from machine
354 * dependant initialization code.
356 void
357 bufinit(void)
359 struct buf *bp;
360 vm_offset_t bogus_offset;
361 int i;
363 spin_init(&needsbuffer_spin);
365 /* next, make a null set of free lists */
366 for (i = 0; i < BUFFER_QUEUES; i++)
367 TAILQ_INIT(&bufqueues[i]);
369 /* finally, initialize each buffer header and stick on empty q */
370 for (i = 0; i < nbuf; i++) {
371 bp = &buf[i];
372 bzero(bp, sizeof *bp);
373 bp->b_flags = B_INVAL; /* we're just an empty header */
374 bp->b_cmd = BUF_CMD_DONE;
375 bp->b_qindex = BQUEUE_EMPTY;
376 initbufbio(bp);
377 xio_init(&bp->b_xio);
378 LIST_INIT(&bp->b_dep);
379 BUF_LOCKINIT(bp);
380 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
384 * maxbufspace is the absolute maximum amount of buffer space we are
385 * allowed to reserve in KVM and in real terms. The absolute maximum
386 * is nominally used by buf_daemon. hibufspace is the nominal maximum
387 * used by most other processes. The differential is required to
388 * ensure that buf_daemon is able to run when other processes might
389 * be blocked waiting for buffer space.
391 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
392 * this may result in KVM fragmentation which is not handled optimally
393 * by the system.
395 maxbufspace = nbuf * BKVASIZE;
396 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
397 lobufspace = hibufspace - MAXBSIZE;
399 lorunningspace = 512 * 1024;
400 hirunningspace = 1024 * 1024;
403 * Limit the amount of malloc memory since it is wired permanently into
404 * the kernel space. Even though this is accounted for in the buffer
405 * allocation, we don't want the malloced region to grow uncontrolled.
406 * The malloc scheme improves memory utilization significantly on average
407 * (small) directories.
409 maxbufmallocspace = hibufspace / 20;
412 * Reduce the chance of a deadlock occuring by limiting the number
413 * of delayed-write dirty buffers we allow to stack up.
415 hidirtybuffers = nbuf / 4 + 20;
416 numdirtybuffers = 0;
418 * To support extreme low-memory systems, make sure hidirtybuffers cannot
419 * eat up all available buffer space. This occurs when our minimum cannot
420 * be met. We try to size hidirtybuffers to 3/4 our buffer space assuming
421 * BKVASIZE'd (8K) buffers.
423 while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
424 hidirtybuffers >>= 1;
426 lodirtybuffers = hidirtybuffers / 2;
429 * Try to keep the number of free buffers in the specified range,
430 * and give special processes (e.g. like buf_daemon) access to an
431 * emergency reserve.
433 lofreebuffers = nbuf / 18 + 5;
434 hifreebuffers = 2 * lofreebuffers;
435 numfreebuffers = nbuf;
438 * Maximum number of async ops initiated per buf_daemon loop. This is
439 * somewhat of a hack at the moment, we really need to limit ourselves
440 * based on the number of bytes of I/O in-transit that were initiated
441 * from buf_daemon.
444 bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
445 bogus_page = vm_page_alloc(kernel_object,
446 ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
447 VM_ALLOC_NORMAL);
448 vmstats.v_wire_count++;
453 * Initialize the embedded bio structures
455 void
456 initbufbio(struct buf *bp)
458 bp->b_bio1.bio_buf = bp;
459 bp->b_bio1.bio_prev = NULL;
460 bp->b_bio1.bio_offset = NOOFFSET;
461 bp->b_bio1.bio_next = &bp->b_bio2;
462 bp->b_bio1.bio_done = NULL;
464 bp->b_bio2.bio_buf = bp;
465 bp->b_bio2.bio_prev = &bp->b_bio1;
466 bp->b_bio2.bio_offset = NOOFFSET;
467 bp->b_bio2.bio_next = NULL;
468 bp->b_bio2.bio_done = NULL;
472 * Reinitialize the embedded bio structures as well as any additional
473 * translation cache layers.
475 void
476 reinitbufbio(struct buf *bp)
478 struct bio *bio;
480 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
481 bio->bio_done = NULL;
482 bio->bio_offset = NOOFFSET;
487 * Push another BIO layer onto an existing BIO and return it. The new
488 * BIO layer may already exist, holding cached translation data.
490 struct bio *
491 push_bio(struct bio *bio)
493 struct bio *nbio;
495 if ((nbio = bio->bio_next) == NULL) {
496 int index = bio - &bio->bio_buf->b_bio_array[0];
497 if (index >= NBUF_BIO) {
498 panic("push_bio: too many layers bp %p\n",
499 bio->bio_buf);
501 nbio = &bio->bio_buf->b_bio_array[index + 1];
502 bio->bio_next = nbio;
503 nbio->bio_prev = bio;
504 nbio->bio_buf = bio->bio_buf;
505 nbio->bio_offset = NOOFFSET;
506 nbio->bio_done = NULL;
507 nbio->bio_next = NULL;
509 KKASSERT(nbio->bio_done == NULL);
510 return(nbio);
513 void
514 pop_bio(struct bio *bio)
516 /* NOP */
519 void
520 clearbiocache(struct bio *bio)
522 while (bio) {
523 bio->bio_offset = NOOFFSET;
524 bio = bio->bio_next;
529 * bfreekva:
531 * Free the KVA allocation for buffer 'bp'.
533 * Must be called from a critical section as this is the only locking for
534 * buffer_map.
536 * Since this call frees up buffer space, we call bufspacewakeup().
538 static void
539 bfreekva(struct buf *bp)
541 int count;
543 if (bp->b_kvasize) {
544 ++buffreekvacnt;
545 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
546 vm_map_lock(buffer_map);
547 bufspace -= bp->b_kvasize;
548 vm_map_delete(buffer_map,
549 (vm_offset_t) bp->b_kvabase,
550 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
551 &count
553 vm_map_unlock(buffer_map);
554 vm_map_entry_release(count);
555 bp->b_kvasize = 0;
556 bufspacewakeup();
561 * bremfree:
563 * Remove the buffer from the appropriate free list.
565 void
566 bremfree(struct buf *bp)
568 int old_qindex;
570 crit_enter();
571 old_qindex = bp->b_qindex;
573 if (bp->b_qindex != BQUEUE_NONE) {
574 KASSERT(BUF_REFCNTNB(bp) == 1,
575 ("bremfree: bp %p not locked",bp));
576 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
577 bp->b_qindex = BQUEUE_NONE;
578 } else {
579 if (BUF_REFCNTNB(bp) <= 1)
580 panic("bremfree: removing a buffer not on a queue");
584 * Fixup numfreebuffers count. If the buffer is invalid or not
585 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
586 * the buffer was free and we must decrement numfreebuffers.
588 if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
589 switch(old_qindex) {
590 case BQUEUE_DIRTY:
591 case BQUEUE_CLEAN:
592 case BQUEUE_EMPTY:
593 case BQUEUE_EMPTYKVA:
594 --numfreebuffers;
595 break;
596 default:
597 break;
600 crit_exit();
605 * bread:
607 * Get a buffer with the specified data. Look in the cache first. We
608 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
609 * is set, the buffer is valid and we do not have to do anything ( see
610 * getblk() ).
613 bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
615 struct buf *bp;
617 bp = getblk(vp, loffset, size, 0, 0);
618 *bpp = bp;
620 /* if not found in cache, do some I/O */
621 if ((bp->b_flags & B_CACHE) == 0) {
622 KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
623 bp->b_flags &= ~(B_ERROR | B_INVAL);
624 bp->b_cmd = BUF_CMD_READ;
625 vfs_busy_pages(vp, bp);
626 vn_strategy(vp, &bp->b_bio1);
627 return (biowait(bp));
629 return (0);
633 * breadn:
635 * Operates like bread, but also starts asynchronous I/O on
636 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
637 * to initiating I/O . If B_CACHE is set, the buffer is valid
638 * and we do not have to do anything.
641 breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
642 int *rabsize, int cnt, struct buf **bpp)
644 struct buf *bp, *rabp;
645 int i;
646 int rv = 0, readwait = 0;
648 *bpp = bp = getblk(vp, loffset, size, 0, 0);
650 /* if not found in cache, do some I/O */
651 if ((bp->b_flags & B_CACHE) == 0) {
652 bp->b_flags &= ~(B_ERROR | B_INVAL);
653 bp->b_cmd = BUF_CMD_READ;
654 vfs_busy_pages(vp, bp);
655 vn_strategy(vp, &bp->b_bio1);
656 ++readwait;
659 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
660 if (inmem(vp, *raoffset))
661 continue;
662 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
664 if ((rabp->b_flags & B_CACHE) == 0) {
665 rabp->b_flags |= B_ASYNC;
666 rabp->b_flags &= ~(B_ERROR | B_INVAL);
667 rabp->b_cmd = BUF_CMD_READ;
668 vfs_busy_pages(vp, rabp);
669 BUF_KERNPROC(rabp);
670 vn_strategy(vp, &rabp->b_bio1);
671 } else {
672 brelse(rabp);
676 if (readwait) {
677 rv = biowait(bp);
679 return (rv);
683 * bwrite:
685 * Write, release buffer on completion. (Done by iodone
686 * if async). Do not bother writing anything if the buffer
687 * is invalid.
689 * Note that we set B_CACHE here, indicating that buffer is
690 * fully valid and thus cacheable. This is true even of NFS
691 * now so we set it generally. This could be set either here
692 * or in biodone() since the I/O is synchronous. We put it
693 * here.
696 bwrite(struct buf *bp)
698 int oldflags;
700 if (bp->b_flags & B_INVAL) {
701 brelse(bp);
702 return (0);
705 oldflags = bp->b_flags;
707 if (BUF_REFCNTNB(bp) == 0)
708 panic("bwrite: buffer is not busy???");
709 crit_enter();
711 /* Mark the buffer clean */
712 bundirty(bp);
714 bp->b_flags &= ~B_ERROR;
715 bp->b_flags |= B_CACHE;
716 bp->b_cmd = BUF_CMD_WRITE;
717 vfs_busy_pages(bp->b_vp, bp);
720 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
721 * valid for vnode-backed buffers.
723 bp->b_runningbufspace = bp->b_bufsize;
724 runningbufspace += bp->b_runningbufspace;
726 crit_exit();
727 if (oldflags & B_ASYNC)
728 BUF_KERNPROC(bp);
729 vn_strategy(bp->b_vp, &bp->b_bio1);
731 if ((oldflags & B_ASYNC) == 0) {
732 int rtval = biowait(bp);
733 brelse(bp);
734 return (rtval);
735 } else if ((oldflags & B_NOWDRAIN) == 0) {
737 * don't allow the async write to saturate the I/O
738 * system. Deadlocks can occur only if a device strategy
739 * routine (like in VN) turns around and issues another
740 * high-level write, in which case B_NOWDRAIN is expected
741 * to be set. Otherwise we will not deadlock here because
742 * we are blocking waiting for I/O that is already in-progress
743 * to complete.
745 waitrunningbufspace();
748 return (0);
752 * bdwrite:
754 * Delayed write. (Buffer is marked dirty). Do not bother writing
755 * anything if the buffer is marked invalid.
757 * Note that since the buffer must be completely valid, we can safely
758 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
759 * biodone() in order to prevent getblk from writing the buffer
760 * out synchronously.
762 void
763 bdwrite(struct buf *bp)
765 if (BUF_REFCNTNB(bp) == 0)
766 panic("bdwrite: buffer is not busy");
768 if (bp->b_flags & B_INVAL) {
769 brelse(bp);
770 return;
772 bdirty(bp);
775 * Set B_CACHE, indicating that the buffer is fully valid. This is
776 * true even of NFS now.
778 bp->b_flags |= B_CACHE;
781 * This bmap keeps the system from needing to do the bmap later,
782 * perhaps when the system is attempting to do a sync. Since it
783 * is likely that the indirect block -- or whatever other datastructure
784 * that the filesystem needs is still in memory now, it is a good
785 * thing to do this. Note also, that if the pageout daemon is
786 * requesting a sync -- there might not be enough memory to do
787 * the bmap then... So, this is important to do.
789 if (bp->b_bio2.bio_offset == NOOFFSET) {
790 VOP_BMAP(bp->b_vp, bp->b_loffset, NULL, &bp->b_bio2.bio_offset,
791 NULL, NULL);
795 * Set the *dirty* buffer range based upon the VM system dirty pages.
797 vfs_setdirty(bp);
800 * We need to do this here to satisfy the vnode_pager and the
801 * pageout daemon, so that it thinks that the pages have been
802 * "cleaned". Note that since the pages are in a delayed write
803 * buffer -- the VFS layer "will" see that the pages get written
804 * out on the next sync, or perhaps the cluster will be completed.
806 vfs_clean_pages(bp);
807 bqrelse(bp);
810 * Wakeup the buffer flushing daemon if we have a lot of dirty
811 * buffers (midpoint between our recovery point and our stall
812 * point).
814 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
817 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
818 * due to the softdep code.
823 * bdirty:
825 * Turn buffer into delayed write request by marking it B_DELWRI.
826 * B_RELBUF and B_NOCACHE must be cleared.
828 * We reassign the buffer to itself to properly update it in the
829 * dirty/clean lists.
831 * Since the buffer is not on a queue, we do not update the
832 * numfreebuffers count.
834 * Must be called from a critical section.
835 * The buffer must be on BQUEUE_NONE.
837 void
838 bdirty(struct buf *bp)
840 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
841 if (bp->b_flags & B_NOCACHE) {
842 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
843 bp->b_flags &= ~B_NOCACHE;
845 if (bp->b_flags & B_INVAL) {
846 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
848 bp->b_flags &= ~B_RELBUF;
850 if ((bp->b_flags & B_DELWRI) == 0) {
851 bp->b_flags |= B_DELWRI;
852 reassignbuf(bp);
853 ++numdirtybuffers;
854 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
859 * bundirty:
861 * Clear B_DELWRI for buffer.
863 * Since the buffer is not on a queue, we do not update the numfreebuffers
864 * count.
866 * Must be called from a critical section.
868 * The buffer is typically on BQUEUE_NONE but there is one case in
869 * brelse() that calls this function after placing the buffer on
870 * a different queue.
873 void
874 bundirty(struct buf *bp)
876 if (bp->b_flags & B_DELWRI) {
877 bp->b_flags &= ~B_DELWRI;
878 reassignbuf(bp);
879 --numdirtybuffers;
880 numdirtywakeup(lodirtybuffers);
883 * Since it is now being written, we can clear its deferred write flag.
885 bp->b_flags &= ~B_DEFERRED;
889 * bawrite:
891 * Asynchronous write. Start output on a buffer, but do not wait for
892 * it to complete. The buffer is released when the output completes.
894 * bwrite() ( or the VOP routine anyway ) is responsible for handling
895 * B_INVAL buffers. Not us.
897 void
898 bawrite(struct buf *bp)
900 bp->b_flags |= B_ASYNC;
901 bwrite(bp);
905 * bowrite:
907 * Ordered write. Start output on a buffer, and flag it so that the
908 * device will write it in the order it was queued. The buffer is
909 * released when the output completes. bwrite() ( or the VOP routine
910 * anyway ) is responsible for handling B_INVAL buffers.
913 bowrite(struct buf *bp)
915 bp->b_flags |= B_ORDERED | B_ASYNC;
916 return (bwrite(bp));
920 * bwillwrite:
922 * Called prior to the locking of any vnodes when we are expecting to
923 * write. We do not want to starve the buffer cache with too many
924 * dirty buffers so we block here. By blocking prior to the locking
925 * of any vnodes we attempt to avoid the situation where a locked vnode
926 * prevents the various system daemons from flushing related buffers.
929 void
930 bwillwrite(void)
932 if (numdirtybuffers >= hidirtybuffers) {
933 while (numdirtybuffers >= hidirtybuffers) {
934 bd_wakeup(1);
935 spin_lock_wr(&needsbuffer_spin);
936 if (numdirtybuffers >= hidirtybuffers) {
937 needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
938 msleep(&needsbuffer, &needsbuffer_spin, 0,
939 "flswai", 0);
941 spin_unlock_wr(&needsbuffer_spin);
947 * buf_dirty_count_severe:
949 * Return true if we have too many dirty buffers.
952 buf_dirty_count_severe(void)
954 return(numdirtybuffers >= hidirtybuffers);
958 * brelse:
960 * Release a busy buffer and, if requested, free its resources. The
961 * buffer will be stashed in the appropriate bufqueue[] allowing it
962 * to be accessed later as a cache entity or reused for other purposes.
964 void
965 brelse(struct buf *bp)
967 #ifdef INVARIANTS
968 int saved_flags = bp->b_flags;
969 #endif
971 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
973 crit_enter();
976 * If B_NOCACHE is set we are being asked to destroy the buffer and
977 * its backing store. Clear B_DELWRI.
979 * B_NOCACHE is set in two cases: (1) when the caller really wants
980 * to destroy the buffer and backing store and (2) when the caller
981 * wants to destroy the buffer and backing store after a write
982 * completes.
984 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
985 bundirty(bp);
988 if (bp->b_flags & B_LOCKED)
989 bp->b_flags &= ~B_ERROR;
992 * If a write error occurs and the caller does not want to throw
993 * away the buffer, redirty the buffer. This will also clear
994 * B_NOCACHE.
996 if (bp->b_cmd == BUF_CMD_WRITE &&
997 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
999 * Failed write, redirty. Must clear B_ERROR to prevent
1000 * pages from being scrapped. If B_INVAL is set then
1001 * this case is not run and the next case is run to
1002 * destroy the buffer. B_INVAL can occur if the buffer
1003 * is outside the range supported by the underlying device.
1005 bp->b_flags &= ~B_ERROR;
1006 bdirty(bp);
1007 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1008 (bp->b_bufsize <= 0) || bp->b_cmd == BUF_CMD_FREEBLKS) {
1010 * Either a failed I/O or we were asked to free or not
1011 * cache the buffer.
1013 bp->b_flags |= B_INVAL;
1014 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1015 (*bioops.io_deallocate)(bp);
1016 if (bp->b_flags & B_DELWRI) {
1017 --numdirtybuffers;
1018 numdirtywakeup(lodirtybuffers);
1020 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1024 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release()
1025 * is called with B_DELWRI set, the underlying pages may wind up
1026 * getting freed causing a previous write (bdwrite()) to get 'lost'
1027 * because pages associated with a B_DELWRI bp are marked clean.
1029 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1030 * if B_DELWRI is set.
1032 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1033 * on pages to return pages to the VM page queues.
1035 if (bp->b_flags & B_DELWRI)
1036 bp->b_flags &= ~B_RELBUF;
1037 else if (vm_page_count_severe())
1038 bp->b_flags |= B_RELBUF;
1041 * At this point destroying the buffer is governed by the B_INVAL
1042 * or B_RELBUF flags.
1044 bp->b_cmd = BUF_CMD_DONE;
1047 * VMIO buffer rundown. Make sure the VM page array is restored
1048 * after an I/O may have replaces some of the pages with bogus pages
1049 * in order to not destroy dirty pages in a fill-in read.
1051 * Note that due to the code above, if a buffer is marked B_DELWRI
1052 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1053 * B_INVAL may still be set, however.
1055 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1056 * but not the backing store. B_NOCACHE will destroy the backing
1057 * store.
1059 * Note that dirty NFS buffers contain byte-granular write ranges
1060 * and should not be destroyed w/ B_INVAL even if the backing store
1061 * is left intact.
1063 if (bp->b_flags & B_VMIO) {
1065 * Rundown for VMIO buffers which are not dirty NFS buffers.
1067 int i, j, resid;
1068 vm_page_t m;
1069 off_t foff;
1070 vm_pindex_t poff;
1071 vm_object_t obj;
1072 struct vnode *vp;
1074 vp = bp->b_vp;
1077 * Get the base offset and length of the buffer. Note that
1078 * in the VMIO case if the buffer block size is not
1079 * page-aligned then b_data pointer may not be page-aligned.
1080 * But our b_xio.xio_pages array *IS* page aligned.
1082 * block sizes less then DEV_BSIZE (usually 512) are not
1083 * supported due to the page granularity bits (m->valid,
1084 * m->dirty, etc...).
1086 * See man buf(9) for more information
1089 resid = bp->b_bufsize;
1090 foff = bp->b_loffset;
1092 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1093 m = bp->b_xio.xio_pages[i];
1094 vm_page_flag_clear(m, PG_ZERO);
1096 * If we hit a bogus page, fixup *all* of them
1097 * now. Note that we left these pages wired
1098 * when we removed them so they had better exist,
1099 * and they cannot be ripped out from under us so
1100 * no critical section protection is necessary.
1102 if (m == bogus_page) {
1103 obj = vp->v_object;
1104 poff = OFF_TO_IDX(bp->b_loffset);
1106 for (j = i; j < bp->b_xio.xio_npages; j++) {
1107 vm_page_t mtmp;
1109 mtmp = bp->b_xio.xio_pages[j];
1110 if (mtmp == bogus_page) {
1111 mtmp = vm_page_lookup(obj, poff + j);
1112 if (!mtmp) {
1113 panic("brelse: page missing");
1115 bp->b_xio.xio_pages[j] = mtmp;
1119 if ((bp->b_flags & B_INVAL) == 0) {
1120 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1121 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1123 m = bp->b_xio.xio_pages[i];
1127 * Invalidate the backing store if B_NOCACHE is set
1128 * (e.g. used with vinvalbuf()). If this is NFS
1129 * we impose a requirement that the block size be
1130 * a multiple of PAGE_SIZE and create a temporary
1131 * hack to basically invalidate the whole page. The
1132 * problem is that NFS uses really odd buffer sizes
1133 * especially when tracking piecemeal writes and
1134 * it also vinvalbuf()'s a lot, which would result
1135 * in only partial page validation and invalidation
1136 * here. If the file page is mmap()'d, however,
1137 * all the valid bits get set so after we invalidate
1138 * here we would end up with weird m->valid values
1139 * like 0xfc. nfs_getpages() can't handle this so
1140 * we clear all the valid bits for the NFS case
1141 * instead of just some of them.
1143 * The real bug is the VM system having to set m->valid
1144 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1145 * itself is an artifact of the whole 512-byte
1146 * granular mess that exists to support odd block
1147 * sizes and UFS meta-data block sizes (e.g. 6144).
1148 * A complete rewrite is required.
1150 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1151 int poffset = foff & PAGE_MASK;
1152 int presid;
1154 presid = PAGE_SIZE - poffset;
1155 if (bp->b_vp->v_tag == VT_NFS &&
1156 bp->b_vp->v_type == VREG) {
1157 ; /* entire page */
1158 } else if (presid > resid) {
1159 presid = resid;
1161 KASSERT(presid >= 0, ("brelse: extra page"));
1162 vm_page_set_invalid(m, poffset, presid);
1164 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1165 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1167 if (bp->b_flags & (B_INVAL | B_RELBUF))
1168 vfs_vmio_release(bp);
1169 } else {
1171 * Rundown for non-VMIO buffers.
1173 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1174 #if 0
1175 if (bp->b_vp)
1176 kprintf("brelse bp %p %08x/%08x: Warning, caught and fixed brelvp bug\n", bp, saved_flags, bp->b_flags);
1177 #endif
1178 if (bp->b_bufsize)
1179 allocbuf(bp, 0);
1180 if (bp->b_vp)
1181 brelvp(bp);
1185 if (bp->b_qindex != BQUEUE_NONE)
1186 panic("brelse: free buffer onto another queue???");
1187 if (BUF_REFCNTNB(bp) > 1) {
1188 /* Temporary panic to verify exclusive locking */
1189 /* This panic goes away when we allow shared refs */
1190 panic("brelse: multiple refs");
1191 /* do not release to free list */
1192 BUF_UNLOCK(bp);
1193 crit_exit();
1194 return;
1198 * Figure out the correct queue to place the cleaned up buffer on.
1199 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1200 * disassociated from their vnode.
1203 if (bp->b_bufsize == 0) {
1205 * Buffers with no memory. Due to conditionals near the top
1206 * of brelse() such buffers should probably already be
1207 * marked B_INVAL and disassociated from their vnode.
1209 bp->b_flags |= B_INVAL;
1210 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1211 KKASSERT((bp->b_flags & B_HASHED) == 0);
1212 if (bp->b_kvasize) {
1213 bp->b_qindex = BQUEUE_EMPTYKVA;
1214 } else {
1215 bp->b_qindex = BQUEUE_EMPTY;
1217 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1218 } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1220 * Buffers with junk contents. Again these buffers had better
1221 * already be disassociated from their vnode.
1223 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1224 KKASSERT((bp->b_flags & B_HASHED) == 0);
1225 bp->b_flags |= B_INVAL;
1226 bp->b_qindex = BQUEUE_CLEAN;
1227 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1228 } else if (bp->b_flags & B_LOCKED) {
1230 * Buffers that are locked.
1232 bp->b_qindex = BQUEUE_LOCKED;
1233 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1234 } else {
1236 * Remaining buffers. These buffers are still associated with
1237 * their vnode.
1239 switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1240 case B_DELWRI | B_AGE:
1241 bp->b_qindex = BQUEUE_DIRTY;
1242 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1243 break;
1244 case B_DELWRI:
1245 bp->b_qindex = BQUEUE_DIRTY;
1246 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1247 break;
1248 case B_AGE:
1249 bp->b_qindex = BQUEUE_CLEAN;
1250 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1251 break;
1252 default:
1253 bp->b_qindex = BQUEUE_CLEAN;
1254 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1255 break;
1260 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1261 * on the correct queue.
1263 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1264 bundirty(bp);
1267 * Fixup numfreebuffers count. The bp is on an appropriate queue
1268 * unless locked. We then bump numfreebuffers if it is not B_DELWRI.
1269 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1270 * if B_INVAL is set ).
1272 if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1273 bufcountwakeup();
1276 * Something we can maybe free or reuse
1278 if (bp->b_bufsize || bp->b_kvasize)
1279 bufspacewakeup();
1282 * Clean up temporary flags and unlock the buffer.
1284 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF |
1285 B_DIRECT | B_NOWDRAIN);
1286 BUF_UNLOCK(bp);
1287 crit_exit();
1291 * bqrelse:
1293 * Release a buffer back to the appropriate queue but do not try to free
1294 * it. The buffer is expected to be used again soon.
1296 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1297 * biodone() to requeue an async I/O on completion. It is also used when
1298 * known good buffers need to be requeued but we think we may need the data
1299 * again soon.
1301 * XXX we should be able to leave the B_RELBUF hint set on completion.
1303 void
1304 bqrelse(struct buf *bp)
1306 crit_enter();
1308 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1310 if (bp->b_qindex != BQUEUE_NONE)
1311 panic("bqrelse: free buffer onto another queue???");
1312 if (BUF_REFCNTNB(bp) > 1) {
1313 /* do not release to free list */
1314 panic("bqrelse: multiple refs");
1315 BUF_UNLOCK(bp);
1316 crit_exit();
1317 return;
1319 if (bp->b_flags & B_LOCKED) {
1320 bp->b_flags &= ~B_ERROR;
1321 bp->b_qindex = BQUEUE_LOCKED;
1322 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1323 /* buffers with stale but valid contents */
1324 } else if (bp->b_flags & B_DELWRI) {
1325 bp->b_qindex = BQUEUE_DIRTY;
1326 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1327 } else if (vm_page_count_severe()) {
1329 * We are too low on memory, we have to try to free the
1330 * buffer (most importantly: the wired pages making up its
1331 * backing store) *now*.
1333 crit_exit();
1334 brelse(bp);
1335 return;
1336 } else {
1337 bp->b_qindex = BQUEUE_CLEAN;
1338 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1341 if ((bp->b_flags & B_LOCKED) == 0 &&
1342 ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1343 bufcountwakeup();
1347 * Something we can maybe free or reuse.
1349 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1350 bufspacewakeup();
1353 * Final cleanup and unlock. Clear bits that are only used while a
1354 * buffer is actively locked.
1356 bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1357 BUF_UNLOCK(bp);
1358 crit_exit();
1362 * vfs_vmio_release:
1364 * Return backing pages held by the buffer 'bp' back to the VM system
1365 * if possible. The pages are freed if they are no longer valid or
1366 * attempt to free if it was used for direct I/O otherwise they are
1367 * sent to the page cache.
1369 * Pages that were marked busy are left alone and skipped.
1371 * The KVA mapping (b_data) for the underlying pages is removed by
1372 * this function.
1374 static void
1375 vfs_vmio_release(struct buf *bp)
1377 int i;
1378 vm_page_t m;
1380 crit_enter();
1381 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1382 m = bp->b_xio.xio_pages[i];
1383 bp->b_xio.xio_pages[i] = NULL;
1385 * In order to keep page LRU ordering consistent, put
1386 * everything on the inactive queue.
1388 vm_page_unwire(m, 0);
1390 * We don't mess with busy pages, it is
1391 * the responsibility of the process that
1392 * busied the pages to deal with them.
1394 if ((m->flags & PG_BUSY) || (m->busy != 0))
1395 continue;
1397 if (m->wire_count == 0) {
1398 vm_page_flag_clear(m, PG_ZERO);
1400 * Might as well free the page if we can and it has
1401 * no valid data. We also free the page if the
1402 * buffer was used for direct I/O.
1404 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1405 m->hold_count == 0) {
1406 vm_page_busy(m);
1407 vm_page_protect(m, VM_PROT_NONE);
1408 vm_page_free(m);
1409 } else if (bp->b_flags & B_DIRECT) {
1410 vm_page_try_to_free(m);
1411 } else if (vm_page_count_severe()) {
1412 vm_page_try_to_cache(m);
1416 crit_exit();
1417 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1418 if (bp->b_bufsize) {
1419 bufspacewakeup();
1420 bp->b_bufsize = 0;
1422 bp->b_xio.xio_npages = 0;
1423 bp->b_flags &= ~B_VMIO;
1424 if (bp->b_vp)
1425 brelvp(bp);
1429 * vfs_bio_awrite:
1431 * Implement clustered async writes for clearing out B_DELWRI buffers.
1432 * This is much better then the old way of writing only one buffer at
1433 * a time. Note that we may not be presented with the buffers in the
1434 * correct order, so we search for the cluster in both directions.
1436 * The buffer is locked on call.
1439 vfs_bio_awrite(struct buf *bp)
1441 int i;
1442 int j;
1443 off_t loffset = bp->b_loffset;
1444 struct vnode *vp = bp->b_vp;
1445 int nbytes;
1446 struct buf *bpa;
1447 int nwritten;
1448 int size;
1450 crit_enter();
1452 * right now we support clustered writing only to regular files. If
1453 * we find a clusterable block we could be in the middle of a cluster
1454 * rather then at the beginning.
1456 * NOTE: b_bio1 contains the logical loffset and is aliased
1457 * to b_loffset. b_bio2 contains the translated block number.
1459 if ((vp->v_type == VREG) &&
1460 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1461 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1463 size = vp->v_mount->mnt_stat.f_iosize;
1465 for (i = size; i < MAXPHYS; i += size) {
1466 if ((bpa = findblk(vp, loffset + i)) &&
1467 BUF_REFCNT(bpa) == 0 &&
1468 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1469 (B_DELWRI | B_CLUSTEROK)) &&
1470 (bpa->b_bufsize == size)) {
1471 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1472 (bpa->b_bio2.bio_offset !=
1473 bp->b_bio2.bio_offset + i))
1474 break;
1475 } else {
1476 break;
1479 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1480 if ((bpa = findblk(vp, loffset - j)) &&
1481 BUF_REFCNT(bpa) == 0 &&
1482 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1483 (B_DELWRI | B_CLUSTEROK)) &&
1484 (bpa->b_bufsize == size)) {
1485 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1486 (bpa->b_bio2.bio_offset !=
1487 bp->b_bio2.bio_offset - j))
1488 break;
1489 } else {
1490 break;
1493 j -= size;
1494 nbytes = (i + j);
1496 * this is a possible cluster write
1498 if (nbytes != size) {
1499 BUF_UNLOCK(bp);
1500 nwritten = cluster_wbuild(vp, size,
1501 loffset - j, nbytes);
1502 crit_exit();
1503 return nwritten;
1507 bremfree(bp);
1508 bp->b_flags |= B_ASYNC;
1510 crit_exit();
1512 * default (old) behavior, writing out only one block
1514 * XXX returns b_bufsize instead of b_bcount for nwritten?
1516 nwritten = bp->b_bufsize;
1517 bwrite(bp);
1519 return nwritten;
1523 * getnewbuf:
1525 * Find and initialize a new buffer header, freeing up existing buffers
1526 * in the bufqueues as necessary. The new buffer is returned locked.
1528 * Important: B_INVAL is not set. If the caller wishes to throw the
1529 * buffer away, the caller must set B_INVAL prior to calling brelse().
1531 * We block if:
1532 * We have insufficient buffer headers
1533 * We have insufficient buffer space
1534 * buffer_map is too fragmented ( space reservation fails )
1535 * If we have to flush dirty buffers ( but we try to avoid this )
1537 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1538 * Instead we ask the buf daemon to do it for us. We attempt to
1539 * avoid piecemeal wakeups of the pageout daemon.
1542 static struct buf *
1543 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1545 struct buf *bp;
1546 struct buf *nbp;
1547 int defrag = 0;
1548 int nqindex;
1549 static int flushingbufs;
1552 * We can't afford to block since we might be holding a vnode lock,
1553 * which may prevent system daemons from running. We deal with
1554 * low-memory situations by proactively returning memory and running
1555 * async I/O rather then sync I/O.
1558 ++getnewbufcalls;
1559 --getnewbufrestarts;
1560 restart:
1561 ++getnewbufrestarts;
1564 * Setup for scan. If we do not have enough free buffers,
1565 * we setup a degenerate case that immediately fails. Note
1566 * that if we are specially marked process, we are allowed to
1567 * dip into our reserves.
1569 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1571 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1572 * However, there are a number of cases (defragging, reusing, ...)
1573 * where we cannot backup.
1575 nqindex = BQUEUE_EMPTYKVA;
1576 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1578 if (nbp == NULL) {
1580 * If no EMPTYKVA buffers and we are either
1581 * defragging or reusing, locate a CLEAN buffer
1582 * to free or reuse. If bufspace useage is low
1583 * skip this step so we can allocate a new buffer.
1585 if (defrag || bufspace >= lobufspace) {
1586 nqindex = BQUEUE_CLEAN;
1587 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1591 * If we could not find or were not allowed to reuse a
1592 * CLEAN buffer, check to see if it is ok to use an EMPTY
1593 * buffer. We can only use an EMPTY buffer if allocating
1594 * its KVA would not otherwise run us out of buffer space.
1596 if (nbp == NULL && defrag == 0 &&
1597 bufspace + maxsize < hibufspace) {
1598 nqindex = BQUEUE_EMPTY;
1599 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1604 * Run scan, possibly freeing data and/or kva mappings on the fly
1605 * depending.
1608 while ((bp = nbp) != NULL) {
1609 int qindex = nqindex;
1612 * Calculate next bp ( we can only use it if we do not block
1613 * or do other fancy things ).
1615 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1616 switch(qindex) {
1617 case BQUEUE_EMPTY:
1618 nqindex = BQUEUE_EMPTYKVA;
1619 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1620 break;
1621 /* fall through */
1622 case BQUEUE_EMPTYKVA:
1623 nqindex = BQUEUE_CLEAN;
1624 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1625 break;
1626 /* fall through */
1627 case BQUEUE_CLEAN:
1629 * nbp is NULL.
1631 break;
1636 * Sanity Checks
1638 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1641 * Note: we no longer distinguish between VMIO and non-VMIO
1642 * buffers.
1645 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1648 * If we are defragging then we need a buffer with
1649 * b_kvasize != 0. XXX this situation should no longer
1650 * occur, if defrag is non-zero the buffer's b_kvasize
1651 * should also be non-zero at this point. XXX
1653 if (defrag && bp->b_kvasize == 0) {
1654 kprintf("Warning: defrag empty buffer %p\n", bp);
1655 continue;
1659 * Start freeing the bp. This is somewhat involved. nbp
1660 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1661 * on the clean list must be disassociated from their
1662 * current vnode. Buffers on the empty[kva] lists have
1663 * already been disassociated.
1666 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1667 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1668 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1669 goto restart;
1671 if (bp->b_qindex != qindex) {
1672 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1673 BUF_UNLOCK(bp);
1674 goto restart;
1676 bremfree(bp);
1678 if (qindex == BQUEUE_CLEAN) {
1679 if (bp->b_flags & B_VMIO) {
1680 bp->b_flags &= ~B_ASYNC;
1681 vfs_vmio_release(bp);
1683 if (bp->b_vp)
1684 brelvp(bp);
1688 * NOTE: nbp is now entirely invalid. We can only restart
1689 * the scan from this point on.
1691 * Get the rest of the buffer freed up. b_kva* is still
1692 * valid after this operation.
1695 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
1696 KKASSERT((bp->b_flags & B_HASHED) == 0);
1697 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1698 (*bioops.io_deallocate)(bp);
1701 * critical section protection is not required when
1702 * scrapping a buffer's contents because it is already
1703 * wired.
1705 if (bp->b_bufsize)
1706 allocbuf(bp, 0);
1708 bp->b_flags = B_BNOCLIP;
1709 bp->b_cmd = BUF_CMD_DONE;
1710 bp->b_vp = NULL;
1711 bp->b_error = 0;
1712 bp->b_resid = 0;
1713 bp->b_bcount = 0;
1714 bp->b_xio.xio_npages = 0;
1715 bp->b_dirtyoff = bp->b_dirtyend = 0;
1716 reinitbufbio(bp);
1718 LIST_INIT(&bp->b_dep);
1721 * If we are defragging then free the buffer.
1723 if (defrag) {
1724 bp->b_flags |= B_INVAL;
1725 bfreekva(bp);
1726 brelse(bp);
1727 defrag = 0;
1728 goto restart;
1732 * If we are overcomitted then recover the buffer and its
1733 * KVM space. This occurs in rare situations when multiple
1734 * processes are blocked in getnewbuf() or allocbuf().
1736 if (bufspace >= hibufspace)
1737 flushingbufs = 1;
1738 if (flushingbufs && bp->b_kvasize != 0) {
1739 bp->b_flags |= B_INVAL;
1740 bfreekva(bp);
1741 brelse(bp);
1742 goto restart;
1744 if (bufspace < lobufspace)
1745 flushingbufs = 0;
1746 break;
1750 * If we exhausted our list, sleep as appropriate. We may have to
1751 * wakeup various daemons and write out some dirty buffers.
1753 * Generally we are sleeping due to insufficient buffer space.
1756 if (bp == NULL) {
1757 int flags;
1758 char *waitmsg;
1760 if (defrag) {
1761 flags = VFS_BIO_NEED_BUFSPACE;
1762 waitmsg = "nbufkv";
1763 } else if (bufspace >= hibufspace) {
1764 waitmsg = "nbufbs";
1765 flags = VFS_BIO_NEED_BUFSPACE;
1766 } else {
1767 waitmsg = "newbuf";
1768 flags = VFS_BIO_NEED_ANY;
1771 bd_speedup(); /* heeeelp */
1773 needsbuffer |= flags;
1774 while (needsbuffer & flags) {
1775 if (tsleep(&needsbuffer, slpflag, waitmsg, slptimeo))
1776 return (NULL);
1778 } else {
1780 * We finally have a valid bp. We aren't quite out of the
1781 * woods, we still have to reserve kva space. In order
1782 * to keep fragmentation sane we only allocate kva in
1783 * BKVASIZE chunks.
1785 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1787 if (maxsize != bp->b_kvasize) {
1788 vm_offset_t addr = 0;
1789 int count;
1791 bfreekva(bp);
1793 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1794 vm_map_lock(buffer_map);
1796 if (vm_map_findspace(buffer_map,
1797 vm_map_min(buffer_map), maxsize,
1798 maxsize, &addr)) {
1800 * Uh oh. Buffer map is too fragmented. We
1801 * must defragment the map.
1803 vm_map_unlock(buffer_map);
1804 vm_map_entry_release(count);
1805 ++bufdefragcnt;
1806 defrag = 1;
1807 bp->b_flags |= B_INVAL;
1808 brelse(bp);
1809 goto restart;
1811 if (addr) {
1812 vm_map_insert(buffer_map, &count,
1813 NULL, 0,
1814 addr, addr + maxsize,
1815 VM_MAPTYPE_NORMAL,
1816 VM_PROT_ALL, VM_PROT_ALL,
1817 MAP_NOFAULT);
1819 bp->b_kvabase = (caddr_t) addr;
1820 bp->b_kvasize = maxsize;
1821 bufspace += bp->b_kvasize;
1822 ++bufreusecnt;
1824 vm_map_unlock(buffer_map);
1825 vm_map_entry_release(count);
1827 bp->b_data = bp->b_kvabase;
1829 return(bp);
1833 * buf_daemon:
1835 * Buffer flushing daemon. Buffers are normally flushed by the
1836 * update daemon but if it cannot keep up this process starts to
1837 * take the load in an attempt to prevent getnewbuf() from blocking.
1840 static struct thread *bufdaemonthread;
1842 static struct kproc_desc buf_kp = {
1843 "bufdaemon",
1844 buf_daemon,
1845 &bufdaemonthread
1847 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1849 static void
1850 buf_daemon(void)
1853 * This process needs to be suspended prior to shutdown sync.
1855 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
1856 bufdaemonthread, SHUTDOWN_PRI_LAST);
1859 * This process is allowed to take the buffer cache to the limit
1861 crit_enter();
1863 for (;;) {
1864 kproc_suspend_loop();
1867 * Do the flush. Limit the amount of in-transit I/O we
1868 * allow to build up, otherwise we would completely saturate
1869 * the I/O system. Wakeup any waiting processes before we
1870 * normally would so they can run in parallel with our drain.
1872 while (numdirtybuffers > lodirtybuffers) {
1873 if (flushbufqueues() == 0)
1874 break;
1875 waitrunningbufspace();
1876 numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
1880 * Only clear bd_request if we have reached our low water
1881 * mark. The buf_daemon normally waits 5 seconds and
1882 * then incrementally flushes any dirty buffers that have
1883 * built up, within reason.
1885 * If we were unable to hit our low water mark and couldn't
1886 * find any flushable buffers, we sleep half a second.
1887 * Otherwise we loop immediately.
1889 if (numdirtybuffers <= lodirtybuffers) {
1891 * We reached our low water mark, reset the
1892 * request and sleep until we are needed again.
1893 * The sleep is just so the suspend code works.
1895 spin_lock_wr(&needsbuffer_spin);
1896 bd_request = 0;
1897 msleep(&bd_request, &needsbuffer_spin, 0, "psleep", hz);
1898 spin_unlock_wr(&needsbuffer_spin);
1899 } else {
1901 * We couldn't find any flushable dirty buffers but
1902 * still have too many dirty buffers, we
1903 * have to sleep and try again. (rare)
1905 tsleep(&bd_request, 0, "qsleep", hz / 2);
1911 * flushbufqueues:
1913 * Try to flush a buffer in the dirty queue. We must be careful to
1914 * free up B_INVAL buffers instead of write them, which NFS is
1915 * particularly sensitive to.
1918 static int
1919 flushbufqueues(void)
1921 struct buf *bp;
1922 int r = 0;
1924 bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1926 while (bp) {
1927 KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1928 if (bp->b_flags & B_DELWRI) {
1929 if (bp->b_flags & B_INVAL) {
1930 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1931 panic("flushbufqueues: locked buf");
1932 bremfree(bp);
1933 brelse(bp);
1934 ++r;
1935 break;
1937 if (LIST_FIRST(&bp->b_dep) != NULL &&
1938 bioops.io_countdeps &&
1939 (bp->b_flags & B_DEFERRED) == 0 &&
1940 (*bioops.io_countdeps)(bp, 0)) {
1941 TAILQ_REMOVE(&bufqueues[BQUEUE_DIRTY],
1942 bp, b_freelist);
1943 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY],
1944 bp, b_freelist);
1945 bp->b_flags |= B_DEFERRED;
1946 bp = TAILQ_FIRST(&bufqueues[BQUEUE_DIRTY]);
1947 continue;
1951 * Only write it out if we can successfully lock
1952 * it.
1954 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1955 vfs_bio_awrite(bp);
1956 ++r;
1957 break;
1960 bp = TAILQ_NEXT(bp, b_freelist);
1962 return (r);
1966 * inmem:
1968 * Returns true if no I/O is needed to access the associated VM object.
1969 * This is like findblk except it also hunts around in the VM system for
1970 * the data.
1972 * Note that we ignore vm_page_free() races from interrupts against our
1973 * lookup, since if the caller is not protected our return value will not
1974 * be any more valid then otherwise once we exit the critical section.
1977 inmem(struct vnode *vp, off_t loffset)
1979 vm_object_t obj;
1980 vm_offset_t toff, tinc, size;
1981 vm_page_t m;
1983 if (findblk(vp, loffset))
1984 return 1;
1985 if (vp->v_mount == NULL)
1986 return 0;
1987 if ((obj = vp->v_object) == NULL)
1988 return 0;
1990 size = PAGE_SIZE;
1991 if (size > vp->v_mount->mnt_stat.f_iosize)
1992 size = vp->v_mount->mnt_stat.f_iosize;
1994 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1995 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
1996 if (m == NULL)
1997 return 0;
1998 tinc = size;
1999 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2000 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2001 if (vm_page_is_valid(m,
2002 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2003 return 0;
2005 return 1;
2009 * vfs_setdirty:
2011 * Sets the dirty range for a buffer based on the status of the dirty
2012 * bits in the pages comprising the buffer.
2014 * The range is limited to the size of the buffer.
2016 * This routine is primarily used by NFS, but is generalized for the
2017 * B_VMIO case.
2019 static void
2020 vfs_setdirty(struct buf *bp)
2022 int i;
2023 vm_object_t object;
2026 * Degenerate case - empty buffer
2029 if (bp->b_bufsize == 0)
2030 return;
2033 * We qualify the scan for modified pages on whether the
2034 * object has been flushed yet. The OBJ_WRITEABLE flag
2035 * is not cleared simply by protecting pages off.
2038 if ((bp->b_flags & B_VMIO) == 0)
2039 return;
2041 object = bp->b_xio.xio_pages[0]->object;
2043 if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2044 kprintf("Warning: object %p writeable but not mightbedirty\n", object);
2045 if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2046 kprintf("Warning: object %p mightbedirty but not writeable\n", object);
2048 if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2049 vm_offset_t boffset;
2050 vm_offset_t eoffset;
2053 * test the pages to see if they have been modified directly
2054 * by users through the VM system.
2056 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2057 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
2058 vm_page_test_dirty(bp->b_xio.xio_pages[i]);
2062 * Calculate the encompassing dirty range, boffset and eoffset,
2063 * (eoffset - boffset) bytes.
2066 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2067 if (bp->b_xio.xio_pages[i]->dirty)
2068 break;
2070 boffset = (i << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2072 for (i = bp->b_xio.xio_npages - 1; i >= 0; --i) {
2073 if (bp->b_xio.xio_pages[i]->dirty) {
2074 break;
2077 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_loffset & PAGE_MASK);
2080 * Fit it to the buffer.
2083 if (eoffset > bp->b_bcount)
2084 eoffset = bp->b_bcount;
2087 * If we have a good dirty range, merge with the existing
2088 * dirty range.
2091 if (boffset < eoffset) {
2092 if (bp->b_dirtyoff > boffset)
2093 bp->b_dirtyoff = boffset;
2094 if (bp->b_dirtyend < eoffset)
2095 bp->b_dirtyend = eoffset;
2101 * findblk:
2103 * Locate and return the specified buffer, or NULL if the buffer does
2104 * not exist. Do not attempt to lock the buffer or manipulate it in
2105 * any way. The caller must validate that the correct buffer has been
2106 * obtain after locking it.
2108 struct buf *
2109 findblk(struct vnode *vp, off_t loffset)
2111 struct buf *bp;
2113 crit_enter();
2114 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2115 crit_exit();
2116 return(bp);
2120 * getblk:
2122 * Get a block given a specified block and offset into a file/device.
2123 * B_INVAL may or may not be set on return. The caller should clear
2124 * B_INVAL prior to initiating a READ.
2126 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2127 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2128 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2129 * without doing any of those things the system will likely believe
2130 * the buffer to be valid (especially if it is not B_VMIO), and the
2131 * next getblk() will return the buffer with B_CACHE set.
2133 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2134 * an existing buffer.
2136 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2137 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2138 * and then cleared based on the backing VM. If the previous buffer is
2139 * non-0-sized but invalid, B_CACHE will be cleared.
2141 * If getblk() must create a new buffer, the new buffer is returned with
2142 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2143 * case it is returned with B_INVAL clear and B_CACHE set based on the
2144 * backing VM.
2146 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2147 * B_CACHE bit is clear.
2149 * What this means, basically, is that the caller should use B_CACHE to
2150 * determine whether the buffer is fully valid or not and should clear
2151 * B_INVAL prior to issuing a read. If the caller intends to validate
2152 * the buffer by loading its data area with something, the caller needs
2153 * to clear B_INVAL. If the caller does this without issuing an I/O,
2154 * the caller should set B_CACHE ( as an optimization ), else the caller
2155 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2156 * a write attempt or if it was a successfull read. If the caller
2157 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2158 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2160 struct buf *
2161 getblk(struct vnode *vp, off_t loffset, int size, int slpflag, int slptimeo)
2163 struct buf *bp;
2165 if (size > MAXBSIZE)
2166 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2167 if (vp->v_object == NULL)
2168 panic("getblk: vnode %p has no object!", vp);
2170 crit_enter();
2171 loop:
2173 * Block if we are low on buffers. Certain processes are allowed
2174 * to completely exhaust the buffer cache.
2176 * If this check ever becomes a bottleneck it may be better to
2177 * move it into the else, when findblk() fails. At the moment
2178 * it isn't a problem.
2180 * XXX remove, we cannot afford to block anywhere if holding a vnode
2181 * lock in low-memory situation, so take it to the max.
2183 if (numfreebuffers == 0) {
2184 if (!curproc)
2185 return NULL;
2186 needsbuffer |= VFS_BIO_NEED_ANY;
2187 tsleep(&needsbuffer, slpflag, "newbuf", slptimeo);
2190 if ((bp = findblk(vp, loffset))) {
2192 * The buffer was found in the cache, but we need to lock it.
2193 * Even with LK_NOWAIT the lockmgr may break our critical
2194 * section, so double-check the validity of the buffer
2195 * once the lock has been obtained.
2197 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2198 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2199 if (slpflag & PCATCH)
2200 lkflags |= LK_PCATCH;
2201 if (BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo) ==
2202 ENOLCK) {
2203 goto loop;
2205 crit_exit();
2206 return (NULL);
2210 * Once the buffer has been locked, make sure we didn't race
2211 * a buffer recyclement. Buffers that are no longer hashed
2212 * will have b_vp == NULL, so this takes care of that check
2213 * as well.
2215 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2216 kprintf("Warning buffer %p (vp %p loffset %lld) was recycled\n", bp, vp, loffset);
2217 BUF_UNLOCK(bp);
2218 goto loop;
2222 * All vnode-based buffers must be backed by a VM object.
2224 KKASSERT(bp->b_flags & B_VMIO);
2225 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2228 * Make sure that B_INVAL buffers do not have a cached
2229 * block number translation.
2231 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2232 kprintf("Warning invalid buffer %p (vp %p loffset %lld) did not have cleared bio_offset cache\n", bp, vp, loffset);
2233 clearbiocache(&bp->b_bio2);
2237 * The buffer is locked. B_CACHE is cleared if the buffer is
2238 * invalid.
2240 if (bp->b_flags & B_INVAL)
2241 bp->b_flags &= ~B_CACHE;
2242 bremfree(bp);
2245 * Any size inconsistancy with a dirty buffer or a buffer
2246 * with a softupdates dependancy must be resolved. Resizing
2247 * the buffer in such circumstances can lead to problems.
2249 if (size != bp->b_bcount) {
2250 if (bp->b_flags & B_DELWRI) {
2251 bp->b_flags |= B_NOCACHE;
2252 bwrite(bp);
2253 } else if (LIST_FIRST(&bp->b_dep)) {
2254 bp->b_flags |= B_NOCACHE;
2255 bwrite(bp);
2256 } else {
2257 bp->b_flags |= B_RELBUF;
2258 brelse(bp);
2260 goto loop;
2262 KKASSERT(size <= bp->b_kvasize);
2263 KASSERT(bp->b_loffset != NOOFFSET,
2264 ("getblk: no buffer offset"));
2267 * A buffer with B_DELWRI set and B_CACHE clear must
2268 * be committed before we can return the buffer in
2269 * order to prevent the caller from issuing a read
2270 * ( due to B_CACHE not being set ) and overwriting
2271 * it.
2273 * Most callers, including NFS and FFS, need this to
2274 * operate properly either because they assume they
2275 * can issue a read if B_CACHE is not set, or because
2276 * ( for example ) an uncached B_DELWRI might loop due
2277 * to softupdates re-dirtying the buffer. In the latter
2278 * case, B_CACHE is set after the first write completes,
2279 * preventing further loops.
2281 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2282 * above while extending the buffer, we cannot allow the
2283 * buffer to remain with B_CACHE set after the write
2284 * completes or it will represent a corrupt state. To
2285 * deal with this we set B_NOCACHE to scrap the buffer
2286 * after the write.
2288 * We might be able to do something fancy, like setting
2289 * B_CACHE in bwrite() except if B_DELWRI is already set,
2290 * so the below call doesn't set B_CACHE, but that gets real
2291 * confusing. This is much easier.
2294 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2295 bp->b_flags |= B_NOCACHE;
2296 bwrite(bp);
2297 goto loop;
2299 crit_exit();
2300 } else {
2302 * Buffer is not in-core, create new buffer. The buffer
2303 * returned by getnewbuf() is locked. Note that the returned
2304 * buffer is also considered valid (not marked B_INVAL).
2306 * Calculating the offset for the I/O requires figuring out
2307 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2308 * the mount's f_iosize otherwise. If the vnode does not
2309 * have an associated mount we assume that the passed size is
2310 * the block size.
2312 * Note that vn_isdisk() cannot be used here since it may
2313 * return a failure for numerous reasons. Note that the
2314 * buffer size may be larger then the block size (the caller
2315 * will use block numbers with the proper multiple). Beware
2316 * of using any v_* fields which are part of unions. In
2317 * particular, in DragonFly the mount point overloading
2318 * mechanism uses the namecache only and the underlying
2319 * directory vnode is not a special case.
2321 int bsize, maxsize;
2323 if (vp->v_type == VBLK || vp->v_type == VCHR)
2324 bsize = DEV_BSIZE;
2325 else if (vp->v_mount)
2326 bsize = vp->v_mount->mnt_stat.f_iosize;
2327 else
2328 bsize = size;
2330 maxsize = size + (loffset & PAGE_MASK);
2331 maxsize = imax(maxsize, bsize);
2333 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2334 if (slpflag || slptimeo) {
2335 crit_exit();
2336 return NULL;
2338 goto loop;
2342 * This code is used to make sure that a buffer is not
2343 * created while the getnewbuf routine is blocked.
2344 * This can be a problem whether the vnode is locked or not.
2345 * If the buffer is created out from under us, we have to
2346 * throw away the one we just created. There is no window
2347 * race because we are safely running in a critical section
2348 * from the point of the duplicate buffer creation through
2349 * to here, and we've locked the buffer.
2351 if (findblk(vp, loffset)) {
2352 bp->b_flags |= B_INVAL;
2353 brelse(bp);
2354 goto loop;
2358 * Insert the buffer into the hash, so that it can
2359 * be found by findblk().
2361 * Make sure the translation layer has been cleared.
2363 bp->b_loffset = loffset;
2364 bp->b_bio2.bio_offset = NOOFFSET;
2365 /* bp->b_bio2.bio_next = NULL; */
2367 bgetvp(vp, bp);
2370 * All vnode-based buffers must be backed by a VM object.
2372 KKASSERT(vp->v_object != NULL);
2373 bp->b_flags |= B_VMIO;
2374 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2376 allocbuf(bp, size);
2378 crit_exit();
2380 return (bp);
2384 * geteblk:
2386 * Get an empty, disassociated buffer of given size. The buffer is
2387 * initially set to B_INVAL.
2389 * critical section protection is not required for the allocbuf()
2390 * call because races are impossible here.
2392 struct buf *
2393 geteblk(int size)
2395 struct buf *bp;
2396 int maxsize;
2398 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2400 crit_enter();
2401 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2403 crit_exit();
2404 allocbuf(bp, size);
2405 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2406 return (bp);
2411 * allocbuf:
2413 * This code constitutes the buffer memory from either anonymous system
2414 * memory (in the case of non-VMIO operations) or from an associated
2415 * VM object (in the case of VMIO operations). This code is able to
2416 * resize a buffer up or down.
2418 * Note that this code is tricky, and has many complications to resolve
2419 * deadlock or inconsistant data situations. Tread lightly!!!
2420 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2421 * the caller. Calling this code willy nilly can result in the loss of data.
2423 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2424 * B_CACHE for the non-VMIO case.
2426 * This routine does not need to be called from a critical section but you
2427 * must own the buffer.
2430 allocbuf(struct buf *bp, int size)
2432 int newbsize, mbsize;
2433 int i;
2435 if (BUF_REFCNT(bp) == 0)
2436 panic("allocbuf: buffer not busy");
2438 if (bp->b_kvasize < size)
2439 panic("allocbuf: buffer too small");
2441 if ((bp->b_flags & B_VMIO) == 0) {
2442 caddr_t origbuf;
2443 int origbufsize;
2445 * Just get anonymous memory from the kernel. Don't
2446 * mess with B_CACHE.
2448 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2449 if (bp->b_flags & B_MALLOC)
2450 newbsize = mbsize;
2451 else
2452 newbsize = round_page(size);
2454 if (newbsize < bp->b_bufsize) {
2456 * Malloced buffers are not shrunk
2458 if (bp->b_flags & B_MALLOC) {
2459 if (newbsize) {
2460 bp->b_bcount = size;
2461 } else {
2462 kfree(bp->b_data, M_BIOBUF);
2463 if (bp->b_bufsize) {
2464 bufmallocspace -= bp->b_bufsize;
2465 bufspacewakeup();
2466 bp->b_bufsize = 0;
2468 bp->b_data = bp->b_kvabase;
2469 bp->b_bcount = 0;
2470 bp->b_flags &= ~B_MALLOC;
2472 return 1;
2474 vm_hold_free_pages(
2476 (vm_offset_t) bp->b_data + newbsize,
2477 (vm_offset_t) bp->b_data + bp->b_bufsize);
2478 } else if (newbsize > bp->b_bufsize) {
2480 * We only use malloced memory on the first allocation.
2481 * and revert to page-allocated memory when the buffer
2482 * grows.
2484 if ((bufmallocspace < maxbufmallocspace) &&
2485 (bp->b_bufsize == 0) &&
2486 (mbsize <= PAGE_SIZE/2)) {
2488 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
2489 bp->b_bufsize = mbsize;
2490 bp->b_bcount = size;
2491 bp->b_flags |= B_MALLOC;
2492 bufmallocspace += mbsize;
2493 return 1;
2495 origbuf = NULL;
2496 origbufsize = 0;
2498 * If the buffer is growing on its other-than-first
2499 * allocation, then we revert to the page-allocation
2500 * scheme.
2502 if (bp->b_flags & B_MALLOC) {
2503 origbuf = bp->b_data;
2504 origbufsize = bp->b_bufsize;
2505 bp->b_data = bp->b_kvabase;
2506 if (bp->b_bufsize) {
2507 bufmallocspace -= bp->b_bufsize;
2508 bufspacewakeup();
2509 bp->b_bufsize = 0;
2511 bp->b_flags &= ~B_MALLOC;
2512 newbsize = round_page(newbsize);
2514 vm_hold_load_pages(
2516 (vm_offset_t) bp->b_data + bp->b_bufsize,
2517 (vm_offset_t) bp->b_data + newbsize);
2518 if (origbuf) {
2519 bcopy(origbuf, bp->b_data, origbufsize);
2520 kfree(origbuf, M_BIOBUF);
2523 } else {
2524 vm_page_t m;
2525 int desiredpages;
2527 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2528 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
2529 newbsize + PAGE_MASK) >> PAGE_SHIFT;
2530 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
2532 if (bp->b_flags & B_MALLOC)
2533 panic("allocbuf: VMIO buffer can't be malloced");
2535 * Set B_CACHE initially if buffer is 0 length or will become
2536 * 0-length.
2538 if (size == 0 || bp->b_bufsize == 0)
2539 bp->b_flags |= B_CACHE;
2541 if (newbsize < bp->b_bufsize) {
2543 * DEV_BSIZE aligned new buffer size is less then the
2544 * DEV_BSIZE aligned existing buffer size. Figure out
2545 * if we have to remove any pages.
2547 if (desiredpages < bp->b_xio.xio_npages) {
2548 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
2550 * the page is not freed here -- it
2551 * is the responsibility of
2552 * vnode_pager_setsize
2554 m = bp->b_xio.xio_pages[i];
2555 KASSERT(m != bogus_page,
2556 ("allocbuf: bogus page found"));
2557 while (vm_page_sleep_busy(m, TRUE, "biodep"))
2560 bp->b_xio.xio_pages[i] = NULL;
2561 vm_page_unwire(m, 0);
2563 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2564 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
2565 bp->b_xio.xio_npages = desiredpages;
2567 } else if (size > bp->b_bcount) {
2569 * We are growing the buffer, possibly in a
2570 * byte-granular fashion.
2572 struct vnode *vp;
2573 vm_object_t obj;
2574 vm_offset_t toff;
2575 vm_offset_t tinc;
2578 * Step 1, bring in the VM pages from the object,
2579 * allocating them if necessary. We must clear
2580 * B_CACHE if these pages are not valid for the
2581 * range covered by the buffer.
2583 * critical section protection is required to protect
2584 * against interrupts unbusying and freeing pages
2585 * between our vm_page_lookup() and our
2586 * busycheck/wiring call.
2588 vp = bp->b_vp;
2589 obj = vp->v_object;
2591 crit_enter();
2592 while (bp->b_xio.xio_npages < desiredpages) {
2593 vm_page_t m;
2594 vm_pindex_t pi;
2596 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
2597 if ((m = vm_page_lookup(obj, pi)) == NULL) {
2599 * note: must allocate system pages
2600 * since blocking here could intefere
2601 * with paging I/O, no matter which
2602 * process we are.
2604 m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
2605 if (m == NULL) {
2606 vm_wait();
2607 vm_pageout_deficit += desiredpages -
2608 bp->b_xio.xio_npages;
2609 } else {
2610 vm_page_wire(m);
2611 vm_page_wakeup(m);
2612 bp->b_flags &= ~B_CACHE;
2613 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2614 ++bp->b_xio.xio_npages;
2616 continue;
2620 * We found a page. If we have to sleep on it,
2621 * retry because it might have gotten freed out
2622 * from under us.
2624 * We can only test PG_BUSY here. Blocking on
2625 * m->busy might lead to a deadlock:
2627 * vm_fault->getpages->cluster_read->allocbuf
2631 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2632 continue;
2635 * We have a good page. Should we wakeup the
2636 * page daemon?
2638 if ((curthread != pagethread) &&
2639 ((m->queue - m->pc) == PQ_CACHE) &&
2640 ((vmstats.v_free_count + vmstats.v_cache_count) <
2641 (vmstats.v_free_min + vmstats.v_cache_min))) {
2642 pagedaemon_wakeup();
2644 vm_page_flag_clear(m, PG_ZERO);
2645 vm_page_wire(m);
2646 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
2647 ++bp->b_xio.xio_npages;
2649 crit_exit();
2652 * Step 2. We've loaded the pages into the buffer,
2653 * we have to figure out if we can still have B_CACHE
2654 * set. Note that B_CACHE is set according to the
2655 * byte-granular range ( bcount and size ), not the
2656 * aligned range ( newbsize ).
2658 * The VM test is against m->valid, which is DEV_BSIZE
2659 * aligned. Needless to say, the validity of the data
2660 * needs to also be DEV_BSIZE aligned. Note that this
2661 * fails with NFS if the server or some other client
2662 * extends the file's EOF. If our buffer is resized,
2663 * B_CACHE may remain set! XXX
2666 toff = bp->b_bcount;
2667 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
2669 while ((bp->b_flags & B_CACHE) && toff < size) {
2670 vm_pindex_t pi;
2672 if (tinc > (size - toff))
2673 tinc = size - toff;
2675 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
2676 PAGE_SHIFT;
2678 vfs_buf_test_cache(
2679 bp,
2680 bp->b_loffset,
2681 toff,
2682 tinc,
2683 bp->b_xio.xio_pages[pi]
2685 toff += tinc;
2686 tinc = PAGE_SIZE;
2690 * Step 3, fixup the KVM pmap. Remember that
2691 * bp->b_data is relative to bp->b_loffset, but
2692 * bp->b_loffset may be offset into the first page.
2695 bp->b_data = (caddr_t)
2696 trunc_page((vm_offset_t)bp->b_data);
2697 pmap_qenter(
2698 (vm_offset_t)bp->b_data,
2699 bp->b_xio.xio_pages,
2700 bp->b_xio.xio_npages
2702 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2703 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
2706 if (newbsize < bp->b_bufsize)
2707 bufspacewakeup();
2708 bp->b_bufsize = newbsize; /* actual buffer allocation */
2709 bp->b_bcount = size; /* requested buffer size */
2710 return 1;
2714 * biowait:
2716 * Wait for buffer I/O completion, returning error status. The buffer
2717 * is left locked on return. B_EINTR is converted into an EINTR error
2718 * and cleared.
2720 * NOTE! The original b_cmd is lost on return, since b_cmd will be
2721 * set to BUF_CMD_DONE.
2724 biowait(struct buf *bp)
2726 crit_enter();
2727 while (bp->b_cmd != BUF_CMD_DONE) {
2728 if (bp->b_cmd == BUF_CMD_READ)
2729 tsleep(bp, 0, "biord", 0);
2730 else
2731 tsleep(bp, 0, "biowr", 0);
2733 crit_exit();
2734 if (bp->b_flags & B_EINTR) {
2735 bp->b_flags &= ~B_EINTR;
2736 return (EINTR);
2738 if (bp->b_flags & B_ERROR) {
2739 return (bp->b_error ? bp->b_error : EIO);
2740 } else {
2741 return (0);
2746 * This associates a tracking count with an I/O. vn_strategy() and
2747 * dev_dstrategy() do this automatically but there are a few cases
2748 * where a vnode or device layer is bypassed when a block translation
2749 * is cached. In such cases bio_start_transaction() may be called on
2750 * the bypassed layers so the system gets an I/O in progress indication
2751 * for those higher layers.
2753 void
2754 bio_start_transaction(struct bio *bio, struct bio_track *track)
2756 bio->bio_track = track;
2757 atomic_add_int(&track->bk_active, 1);
2761 * Initiate I/O on a vnode.
2763 void
2764 vn_strategy(struct vnode *vp, struct bio *bio)
2766 struct bio_track *track;
2768 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
2769 if (bio->bio_buf->b_cmd == BUF_CMD_READ)
2770 track = &vp->v_track_read;
2771 else
2772 track = &vp->v_track_write;
2773 bio->bio_track = track;
2774 atomic_add_int(&track->bk_active, 1);
2775 vop_strategy(*vp->v_ops, vp, bio);
2780 * biodone:
2782 * Finish I/O on a buffer, optionally calling a completion function.
2783 * This is usually called from an interrupt so process blocking is
2784 * not allowed.
2786 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2787 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
2788 * assuming B_INVAL is clear.
2790 * For the VMIO case, we set B_CACHE if the op was a read and no
2791 * read error occured, or if the op was a write. B_CACHE is never
2792 * set if the buffer is invalid or otherwise uncacheable.
2794 * biodone does not mess with B_INVAL, allowing the I/O routine or the
2795 * initiator to leave B_INVAL set to brelse the buffer out of existance
2796 * in the biodone routine.
2798 void
2799 biodone(struct bio *bio)
2801 struct buf *bp = bio->bio_buf;
2802 buf_cmd_t cmd;
2804 crit_enter();
2806 KASSERT(BUF_REFCNTNB(bp) > 0,
2807 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
2808 KASSERT(bp->b_cmd != BUF_CMD_DONE,
2809 ("biodone: bp %p already done!", bp));
2811 runningbufwakeup(bp);
2814 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
2816 while (bio) {
2817 biodone_t *done_func;
2818 struct bio_track *track;
2821 * BIO tracking. Most but not all BIOs are tracked.
2823 if ((track = bio->bio_track) != NULL) {
2824 atomic_subtract_int(&track->bk_active, 1);
2825 if (track->bk_active < 0) {
2826 panic("biodone: bad active count bio %p\n",
2827 bio);
2829 if (track->bk_waitflag) {
2830 track->bk_waitflag = 0;
2831 wakeup(track);
2833 bio->bio_track = NULL;
2837 * A bio_done function terminates the loop. The function
2838 * will be responsible for any further chaining and/or
2839 * buffer management.
2841 * WARNING! The done function can deallocate the buffer!
2843 if ((done_func = bio->bio_done) != NULL) {
2844 bio->bio_done = NULL;
2845 done_func(bio);
2846 crit_exit();
2847 return;
2849 bio = bio->bio_prev;
2852 cmd = bp->b_cmd;
2853 bp->b_cmd = BUF_CMD_DONE;
2856 * Only reads and writes are processed past this point.
2858 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
2859 brelse(bp);
2860 crit_exit();
2861 return;
2865 * Warning: softupdates may re-dirty the buffer.
2867 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2868 (*bioops.io_complete)(bp);
2870 if (bp->b_flags & B_VMIO) {
2871 int i;
2872 vm_ooffset_t foff;
2873 vm_page_t m;
2874 vm_object_t obj;
2875 int iosize;
2876 struct vnode *vp = bp->b_vp;
2878 obj = vp->v_object;
2880 #if defined(VFS_BIO_DEBUG)
2881 if (vp->v_holdcnt == 0)
2882 panic("biodone: zero vnode hold count");
2883 if ((vp->v_flag & VOBJBUF) == 0)
2884 panic("biodone: vnode is not setup for merged cache");
2885 #endif
2887 foff = bp->b_loffset;
2888 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
2889 KASSERT(obj != NULL, ("biodone: missing VM object"));
2891 #if defined(VFS_BIO_DEBUG)
2892 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
2893 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
2894 obj->paging_in_progress, bp->b_xio.xio_npages);
2896 #endif
2899 * Set B_CACHE if the op was a normal read and no error
2900 * occured. B_CACHE is set for writes in the b*write()
2901 * routines.
2903 iosize = bp->b_bcount - bp->b_resid;
2904 if (cmd == BUF_CMD_READ && (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
2905 bp->b_flags |= B_CACHE;
2908 for (i = 0; i < bp->b_xio.xio_npages; i++) {
2909 int bogusflag = 0;
2910 int resid;
2912 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2913 if (resid > iosize)
2914 resid = iosize;
2917 * cleanup bogus pages, restoring the originals. Since
2918 * the originals should still be wired, we don't have
2919 * to worry about interrupt/freeing races destroying
2920 * the VM object association.
2922 m = bp->b_xio.xio_pages[i];
2923 if (m == bogus_page) {
2924 bogusflag = 1;
2925 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2926 if (m == NULL)
2927 panic("biodone: page disappeared");
2928 bp->b_xio.xio_pages[i] = m;
2929 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2930 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
2932 #if defined(VFS_BIO_DEBUG)
2933 if (OFF_TO_IDX(foff) != m->pindex) {
2934 kprintf(
2935 "biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2936 (unsigned long)foff, m->pindex);
2938 #endif
2941 * In the write case, the valid and clean bits are
2942 * already changed correctly ( see bdwrite() ), so we
2943 * only need to do this here in the read case.
2945 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
2946 vfs_page_set_valid(bp, foff, i, m);
2948 vm_page_flag_clear(m, PG_ZERO);
2951 * when debugging new filesystems or buffer I/O methods, this
2952 * is the most common error that pops up. if you see this, you
2953 * have not set the page busy flag correctly!!!
2955 if (m->busy == 0) {
2956 kprintf("biodone: page busy < 0, "
2957 "pindex: %d, foff: 0x(%x,%x), "
2958 "resid: %d, index: %d\n",
2959 (int) m->pindex, (int)(foff >> 32),
2960 (int) foff & 0xffffffff, resid, i);
2961 if (!vn_isdisk(vp, NULL))
2962 kprintf(" iosize: %ld, loffset: %lld, flags: 0x%08x, npages: %d\n",
2963 bp->b_vp->v_mount->mnt_stat.f_iosize,
2964 bp->b_loffset,
2965 bp->b_flags, bp->b_xio.xio_npages);
2966 else
2967 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
2968 bp->b_loffset,
2969 bp->b_flags, bp->b_xio.xio_npages);
2970 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2971 m->valid, m->dirty, m->wire_count);
2972 panic("biodone: page busy < 0");
2974 vm_page_io_finish(m);
2975 vm_object_pip_subtract(obj, 1);
2976 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2977 iosize -= resid;
2979 if (obj)
2980 vm_object_pip_wakeupn(obj, 0);
2984 * For asynchronous completions, release the buffer now. The brelse
2985 * will do a wakeup there if necessary - so no need to do a wakeup
2986 * here in the async case. The sync case always needs to do a wakeup.
2989 if (bp->b_flags & B_ASYNC) {
2990 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2991 brelse(bp);
2992 else
2993 bqrelse(bp);
2994 } else {
2995 wakeup(bp);
2997 crit_exit();
3001 * vfs_unbusy_pages:
3003 * This routine is called in lieu of iodone in the case of
3004 * incomplete I/O. This keeps the busy status for pages
3005 * consistant.
3007 void
3008 vfs_unbusy_pages(struct buf *bp)
3010 int i;
3012 runningbufwakeup(bp);
3013 if (bp->b_flags & B_VMIO) {
3014 struct vnode *vp = bp->b_vp;
3015 vm_object_t obj;
3017 obj = vp->v_object;
3019 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3020 vm_page_t m = bp->b_xio.xio_pages[i];
3023 * When restoring bogus changes the original pages
3024 * should still be wired, so we are in no danger of
3025 * losing the object association and do not need
3026 * critical section protection particularly.
3028 if (m == bogus_page) {
3029 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3030 if (!m) {
3031 panic("vfs_unbusy_pages: page missing");
3033 bp->b_xio.xio_pages[i] = m;
3034 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3035 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3037 vm_object_pip_subtract(obj, 1);
3038 vm_page_flag_clear(m, PG_ZERO);
3039 vm_page_io_finish(m);
3041 vm_object_pip_wakeupn(obj, 0);
3046 * vfs_page_set_valid:
3048 * Set the valid bits in a page based on the supplied offset. The
3049 * range is restricted to the buffer's size.
3051 * This routine is typically called after a read completes.
3053 static void
3054 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3056 vm_ooffset_t soff, eoff;
3059 * Start and end offsets in buffer. eoff - soff may not cross a
3060 * page boundry or cross the end of the buffer. The end of the
3061 * buffer, in this case, is our file EOF, not the allocation size
3062 * of the buffer.
3064 soff = off;
3065 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3066 if (eoff > bp->b_loffset + bp->b_bcount)
3067 eoff = bp->b_loffset + bp->b_bcount;
3070 * Set valid range. This is typically the entire buffer and thus the
3071 * entire page.
3073 if (eoff > soff) {
3074 vm_page_set_validclean(
3076 (vm_offset_t) (soff & PAGE_MASK),
3077 (vm_offset_t) (eoff - soff)
3083 * vfs_busy_pages:
3085 * This routine is called before a device strategy routine.
3086 * It is used to tell the VM system that paging I/O is in
3087 * progress, and treat the pages associated with the buffer
3088 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3089 * flag is handled to make sure that the object doesn't become
3090 * inconsistant.
3092 * Since I/O has not been initiated yet, certain buffer flags
3093 * such as B_ERROR or B_INVAL may be in an inconsistant state
3094 * and should be ignored.
3096 void
3097 vfs_busy_pages(struct vnode *vp, struct buf *bp)
3099 int i, bogus;
3100 struct proc *p = curthread->td_proc;
3103 * The buffer's I/O command must already be set. If reading,
3104 * B_CACHE must be 0 (double check against callers only doing
3105 * I/O when B_CACHE is 0).
3107 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3108 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3110 if (bp->b_flags & B_VMIO) {
3111 vm_object_t obj;
3112 vm_ooffset_t foff;
3114 obj = vp->v_object;
3115 foff = bp->b_loffset;
3116 KASSERT(bp->b_loffset != NOOFFSET,
3117 ("vfs_busy_pages: no buffer offset"));
3118 vfs_setdirty(bp);
3120 retry:
3121 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3122 vm_page_t m = bp->b_xio.xio_pages[i];
3123 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3124 goto retry;
3127 bogus = 0;
3128 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3129 vm_page_t m = bp->b_xio.xio_pages[i];
3131 vm_page_flag_clear(m, PG_ZERO);
3132 if ((bp->b_flags & B_CLUSTER) == 0) {
3133 vm_object_pip_add(obj, 1);
3134 vm_page_io_start(m);
3138 * When readying a vnode-backed buffer for a write
3139 * we must zero-fill any invalid portions of the
3140 * backing VM pages.
3142 * When readying a vnode-backed buffer for a read
3143 * we must replace any dirty pages with a bogus
3144 * page so we do not destroy dirty data when
3145 * filling in gaps. Dirty pages might not
3146 * necessarily be marked dirty yet, so use m->valid
3147 * as a reasonable test.
3149 * Bogus page replacement is, uh, bogus. We need
3150 * to find a better way.
3152 vm_page_protect(m, VM_PROT_NONE);
3153 if (bp->b_cmd == BUF_CMD_WRITE) {
3154 vfs_page_set_valid(bp, foff, i, m);
3155 } else if (m->valid == VM_PAGE_BITS_ALL) {
3156 bp->b_xio.xio_pages[i] = bogus_page;
3157 bogus++;
3159 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3161 if (bogus)
3162 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3163 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3167 * This is the easiest place to put the process accounting for the I/O
3168 * for now.
3170 if (p != NULL) {
3171 if (bp->b_cmd == BUF_CMD_READ)
3172 p->p_stats->p_ru.ru_inblock++;
3173 else
3174 p->p_stats->p_ru.ru_oublock++;
3179 * vfs_clean_pages:
3181 * Tell the VM system that the pages associated with this buffer
3182 * are clean. This is used for delayed writes where the data is
3183 * going to go to disk eventually without additional VM intevention.
3185 * Note that while we only really need to clean through to b_bcount, we
3186 * just go ahead and clean through to b_bufsize.
3188 static void
3189 vfs_clean_pages(struct buf *bp)
3191 int i;
3193 if (bp->b_flags & B_VMIO) {
3194 vm_ooffset_t foff;
3196 foff = bp->b_loffset;
3197 KASSERT(foff != NOOFFSET, ("vfs_clean_pages: no buffer offset"));
3198 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3199 vm_page_t m = bp->b_xio.xio_pages[i];
3200 vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3201 vm_ooffset_t eoff = noff;
3203 if (eoff > bp->b_loffset + bp->b_bufsize)
3204 eoff = bp->b_loffset + bp->b_bufsize;
3205 vfs_page_set_valid(bp, foff, i, m);
3206 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3207 foff = noff;
3213 * vfs_bio_set_validclean:
3215 * Set the range within the buffer to valid and clean. The range is
3216 * relative to the beginning of the buffer, b_loffset. Note that
3217 * b_loffset itself may be offset from the beginning of the first page.
3220 void
3221 vfs_bio_set_validclean(struct buf *bp, int base, int size)
3223 if (bp->b_flags & B_VMIO) {
3224 int i;
3225 int n;
3228 * Fixup base to be relative to beginning of first page.
3229 * Set initial n to be the maximum number of bytes in the
3230 * first page that can be validated.
3233 base += (bp->b_loffset & PAGE_MASK);
3234 n = PAGE_SIZE - (base & PAGE_MASK);
3236 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_xio.xio_npages; ++i) {
3237 vm_page_t m = bp->b_xio.xio_pages[i];
3239 if (n > size)
3240 n = size;
3242 vm_page_set_validclean(m, base & PAGE_MASK, n);
3243 base += n;
3244 size -= n;
3245 n = PAGE_SIZE;
3251 * vfs_bio_clrbuf:
3253 * Clear a buffer. This routine essentially fakes an I/O, so we need
3254 * to clear B_ERROR and B_INVAL.
3256 * Note that while we only theoretically need to clear through b_bcount,
3257 * we go ahead and clear through b_bufsize.
3260 void
3261 vfs_bio_clrbuf(struct buf *bp)
3263 int i, mask = 0;
3264 caddr_t sa, ea;
3265 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3266 bp->b_flags &= ~(B_INVAL|B_ERROR);
3267 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3268 (bp->b_loffset & PAGE_MASK) == 0) {
3269 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3270 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3271 bp->b_resid = 0;
3272 return;
3274 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3275 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3276 bzero(bp->b_data, bp->b_bufsize);
3277 bp->b_xio.xio_pages[0]->valid |= mask;
3278 bp->b_resid = 0;
3279 return;
3282 ea = sa = bp->b_data;
3283 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
3284 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3285 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3286 ea = (caddr_t)(vm_offset_t)ulmin(
3287 (u_long)(vm_offset_t)ea,
3288 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3289 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3290 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
3291 continue;
3292 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
3293 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
3294 bzero(sa, ea - sa);
3296 } else {
3297 for (; sa < ea; sa += DEV_BSIZE, j++) {
3298 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
3299 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
3300 bzero(sa, DEV_BSIZE);
3303 bp->b_xio.xio_pages[i]->valid |= mask;
3304 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
3306 bp->b_resid = 0;
3307 } else {
3308 clrbuf(bp);
3313 * vm_hold_load_pages:
3315 * Load pages into the buffer's address space. The pages are
3316 * allocated from the kernel object in order to reduce interference
3317 * with the any VM paging I/O activity. The range of loaded
3318 * pages will be wired.
3320 * If a page cannot be allocated, the 'pagedaemon' is woken up to
3321 * retrieve the full range (to - from) of pages.
3324 void
3325 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3327 vm_offset_t pg;
3328 vm_page_t p;
3329 int index;
3331 to = round_page(to);
3332 from = round_page(from);
3333 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3335 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3337 tryagain:
3340 * Note: must allocate system pages since blocking here
3341 * could intefere with paging I/O, no matter which
3342 * process we are.
3344 p = vm_page_alloc(kernel_object,
3345 ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3346 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
3347 if (!p) {
3348 vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3349 vm_wait();
3350 goto tryagain;
3352 vm_page_wire(p);
3353 p->valid = VM_PAGE_BITS_ALL;
3354 vm_page_flag_clear(p, PG_ZERO);
3355 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3356 bp->b_xio.xio_pages[index] = p;
3357 vm_page_wakeup(p);
3359 bp->b_xio.xio_npages = index;
3363 * vm_hold_free_pages:
3365 * Return pages associated with the buffer back to the VM system.
3367 * The range of pages underlying the buffer's address space will
3368 * be unmapped and un-wired.
3370 void
3371 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3373 vm_offset_t pg;
3374 vm_page_t p;
3375 int index, newnpages;
3377 from = round_page(from);
3378 to = round_page(to);
3379 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3381 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3382 p = bp->b_xio.xio_pages[index];
3383 if (p && (index < bp->b_xio.xio_npages)) {
3384 if (p->busy) {
3385 kprintf("vm_hold_free_pages: doffset: %lld, loffset: %lld\n",
3386 bp->b_bio2.bio_offset, bp->b_loffset);
3388 bp->b_xio.xio_pages[index] = NULL;
3389 pmap_kremove(pg);
3390 vm_page_busy(p);
3391 vm_page_unwire(p, 0);
3392 vm_page_free(p);
3395 bp->b_xio.xio_npages = newnpages;
3399 * vmapbuf:
3401 * Map a user buffer into KVM via a pbuf. On return the buffer's
3402 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
3403 * initialized.
3406 vmapbuf(struct buf *bp, caddr_t udata, int bytes)
3408 caddr_t addr;
3409 vm_paddr_t pa;
3410 int pidx;
3411 int i;
3412 int vmprot;
3413 struct vm_page *m;
3416 * bp had better have a command and it better be a pbuf.
3418 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3419 KKASSERT(bp->b_flags & B_PAGING);
3421 if (bytes < 0)
3422 return (-1);
3425 * Map the user data into KVM. Mappings have to be page-aligned.
3427 addr = (caddr_t)trunc_page((vm_offset_t)udata);
3428 pidx = 0;
3430 vmprot = VM_PROT_READ;
3431 if (bp->b_cmd == BUF_CMD_READ)
3432 vmprot |= VM_PROT_WRITE;
3434 while (addr < udata + bytes) {
3436 * Do the vm_fault if needed; do the copy-on-write thing
3437 * when reading stuff off device into memory.
3439 retry:
3440 if (addr >= udata)
3441 i = vm_fault_quick(addr, vmprot);
3442 else
3443 i = vm_fault_quick(udata, vmprot);
3444 if (i < 0) {
3445 for (i = 0; i < pidx; ++i) {
3446 vm_page_unhold(bp->b_xio.xio_pages[i]);
3447 bp->b_xio.xio_pages[i] = NULL;
3449 return(-1);
3453 * Extract from current process's address map. Since the
3454 * fault succeeded, an empty page indicates a race.
3456 pa = pmap_extract(&curproc->p_vmspace->vm_pmap, (vm_offset_t)addr);
3457 if (pa == 0) {
3458 kprintf("vmapbuf: warning, race against user address during I/O");
3459 goto retry;
3461 m = PHYS_TO_VM_PAGE(pa);
3462 vm_page_hold(m);
3463 bp->b_xio.xio_pages[pidx] = m;
3464 addr += PAGE_SIZE;
3465 ++pidx;
3469 * Map the page array and set the buffer fields to point to
3470 * the mapped data buffer.
3472 if (pidx > btoc(MAXPHYS))
3473 panic("vmapbuf: mapped more than MAXPHYS");
3474 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
3476 bp->b_xio.xio_npages = pidx;
3477 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
3478 bp->b_bcount = bytes;
3479 bp->b_bufsize = bytes;
3480 return(0);
3484 * vunmapbuf:
3486 * Free the io map PTEs associated with this IO operation.
3487 * We also invalidate the TLB entries and restore the original b_addr.
3489 void
3490 vunmapbuf(struct buf *bp)
3492 int pidx;
3493 int npages;
3495 KKASSERT(bp->b_flags & B_PAGING);
3497 npages = bp->b_xio.xio_npages;
3498 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3499 for (pidx = 0; pidx < npages; ++pidx) {
3500 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
3501 bp->b_xio.xio_pages[pidx] = NULL;
3503 bp->b_xio.xio_npages = 0;
3504 bp->b_data = bp->b_kvabase;
3508 * Scan all buffers in the system and issue the callback.
3511 scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
3513 int count = 0;
3514 int error;
3515 int n;
3517 for (n = 0; n < nbuf; ++n) {
3518 if ((error = callback(&buf[n], info)) < 0) {
3519 count = error;
3520 break;
3522 count += error;
3524 return (count);
3528 * print out statistics from the current status of the buffer pool
3529 * this can be toggeled by the system control option debug.syncprt
3531 #ifdef DEBUG
3532 void
3533 vfs_bufstats(void)
3535 int i, j, count;
3536 struct buf *bp;
3537 struct bqueues *dp;
3538 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
3539 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
3541 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
3542 count = 0;
3543 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3544 counts[j] = 0;
3545 crit_enter();
3546 TAILQ_FOREACH(bp, dp, b_freelist) {
3547 counts[bp->b_bufsize/PAGE_SIZE]++;
3548 count++;
3550 crit_exit();
3551 kprintf("%s: total-%d", bname[i], count);
3552 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
3553 if (counts[j] != 0)
3554 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
3555 kprintf("\n");
3558 #endif
3560 #ifdef DDB
3562 DB_SHOW_COMMAND(buffer, db_show_buffer)
3564 /* get args */
3565 struct buf *bp = (struct buf *)addr;
3567 if (!have_addr) {
3568 db_printf("usage: show buffer <addr>\n");
3569 return;
3572 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3573 db_printf("b_cmd = %d\n", bp->b_cmd);
3574 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
3575 "b_resid = %d\n, b_data = %p, "
3576 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
3577 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3578 bp->b_data, bp->b_bio2.bio_offset, (bp->b_bio2.bio_next ? bp->b_bio2.bio_next->bio_offset : (off_t)-1));
3579 if (bp->b_xio.xio_npages) {
3580 int i;
3581 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
3582 bp->b_xio.xio_npages);
3583 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3584 vm_page_t m;
3585 m = bp->b_xio.xio_pages[i];
3586 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3587 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3588 if ((i + 1) < bp->b_xio.xio_npages)
3589 db_printf(",");
3591 db_printf("\n");
3594 #endif /* DDB */