HAMMER 60I/Many: Mirroring
[dragonfly.git] / sys / vm / vm_map.c
blob762c7744f07b7d561e2f7ec3fc634b36f945e0c1
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65 * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
69 * Virtual memory mapping module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_zone.h>
97 #include <sys/thread2.h>
98 #include <sys/sysref2.h>
101 * Virtual memory maps provide for the mapping, protection,
102 * and sharing of virtual memory objects. In addition,
103 * this module provides for an efficient virtual copy of
104 * memory from one map to another.
106 * Synchronization is required prior to most operations.
108 * Maps consist of an ordered doubly-linked list of simple
109 * entries; a single hint is used to speed up lookups.
111 * Since portions of maps are specified by start/end addresses,
112 * which may not align with existing map entries, all
113 * routines merely "clip" entries to these start/end values.
114 * [That is, an entry is split into two, bordering at a
115 * start or end value.] Note that these clippings may not
116 * always be necessary (as the two resulting entries are then
117 * not changed); however, the clipping is done for convenience.
119 * As mentioned above, virtual copy operations are performed
120 * by copying VM object references from one map to
121 * another, and then marking both regions as copy-on-write.
124 static void vmspace_terminate(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
129 struct sysref_class vmspace_sysref_class = {
130 .name = "vmspace",
131 .mtype = M_VMSPACE,
132 .proto = SYSREF_PROTO_VMSPACE,
133 .offset = offsetof(struct vmspace, vm_sysref),
134 .objsize = sizeof(struct vmspace),
135 .mag_capacity = 32,
136 .flags = SRC_MANAGEDINIT,
137 .dtor = vmspace_dtor,
138 .ops = {
139 .terminate = (sysref_terminate_func_t)vmspace_terminate
143 #define VMEPERCPU 2
145 static struct vm_zone mapentzone_store, mapzone_store;
146 static vm_zone_t mapentzone, mapzone;
147 static struct vm_object mapentobj, mapobj;
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
151 static struct vm_map map_init[MAX_KMAP];
153 static void vm_map_entry_shadow(vm_map_entry_t entry);
154 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
155 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
156 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
158 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
159 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
160 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
161 vm_map_entry_t);
162 static void vm_map_split (vm_map_entry_t);
163 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
166 * vm_map_startup:
168 * Initialize the vm_map module. Must be called before
169 * any other vm_map routines.
171 * Map and entry structures are allocated from the general
172 * purpose memory pool with some exceptions:
174 * - The kernel map and kmem submap are allocated statically.
175 * - Kernel map entries are allocated out of a static pool.
177 * These restrictions are necessary since malloc() uses the
178 * maps and requires map entries.
180 void
181 vm_map_startup(void)
183 mapzone = &mapzone_store;
184 zbootinit(mapzone, "MAP", sizeof (struct vm_map),
185 map_init, MAX_KMAP);
186 mapentzone = &mapentzone_store;
187 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
188 map_entry_init, MAX_MAPENT);
192 * vm_init2 - called prior to any vmspace allocations
194 void
195 vm_init2(void)
197 zinitna(mapentzone, &mapentobj, NULL, 0, 0,
198 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
199 zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
200 pmap_init2();
201 vm_object_init2();
206 * Red black tree functions
208 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
209 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
211 /* a->start is address, and the only field has to be initialized */
212 static int
213 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
215 if (a->start < b->start)
216 return(-1);
217 else if (a->start > b->start)
218 return(1);
219 return(0);
223 * Allocate a vmspace structure, including a vm_map and pmap.
224 * Initialize numerous fields. While the initial allocation is zerod,
225 * subsequence reuse from the objcache leaves elements of the structure
226 * intact (particularly the pmap), so portions must be zerod.
228 * The structure is not considered activated until we call sysref_activate().
230 struct vmspace *
231 vmspace_alloc(vm_offset_t min, vm_offset_t max)
233 struct vmspace *vm;
235 vm = sysref_alloc(&vmspace_sysref_class);
236 bzero(&vm->vm_startcopy,
237 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
238 vm_map_init(&vm->vm_map, min, max, NULL);
239 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */
240 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */
241 vm->vm_shm = NULL;
242 vm->vm_exitingcnt = 0;
243 cpu_vmspace_alloc(vm);
244 sysref_activate(&vm->vm_sysref);
245 return (vm);
249 * dtor function - Some elements of the pmap are retained in the
250 * free-cached vmspaces to improve performance. We have to clean them up
251 * here before returning the vmspace to the memory pool.
253 static void
254 vmspace_dtor(void *obj, void *private)
256 struct vmspace *vm = obj;
258 pmap_puninit(vmspace_pmap(vm));
262 * Called in two cases:
264 * (1) When the last sysref is dropped, but exitingcnt might still be
265 * non-zero.
267 * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
268 * exitingcnt becomes zero
270 * sysref will not scrap the object until we call sysref_put() once more
271 * after the last ref has been dropped.
273 static void
274 vmspace_terminate(struct vmspace *vm)
276 int count;
279 * If exitingcnt is non-zero we can't get rid of the entire vmspace
280 * yet, but we can scrap user memory.
282 if (vm->vm_exitingcnt) {
283 shmexit(vm);
284 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
285 VM_MAX_USER_ADDRESS);
286 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
287 VM_MAX_USER_ADDRESS);
289 return;
291 cpu_vmspace_free(vm);
294 * Make sure any SysV shm is freed, it might not have in
295 * exit1()
297 shmexit(vm);
299 KKASSERT(vm->vm_upcalls == NULL);
302 * Lock the map, to wait out all other references to it.
303 * Delete all of the mappings and pages they hold, then call
304 * the pmap module to reclaim anything left.
306 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
307 vm_map_lock(&vm->vm_map);
308 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
309 vm->vm_map.max_offset, &count);
310 vm_map_unlock(&vm->vm_map);
311 vm_map_entry_release(count);
313 pmap_release(vmspace_pmap(vm));
314 sysref_put(&vm->vm_sysref);
318 * This is called in the wait*() handling code. The vmspace can be terminated
319 * after the last wait is finished using it.
321 void
322 vmspace_exitfree(struct proc *p)
324 struct vmspace *vm;
326 vm = p->p_vmspace;
327 p->p_vmspace = NULL;
329 if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
330 vmspace_terminate(vm);
334 * vmspace_swap_count() - count the approximate swap useage in pages for a
335 * vmspace.
337 * Swap useage is determined by taking the proportional swap used by
338 * VM objects backing the VM map. To make up for fractional losses,
339 * if the VM object has any swap use at all the associated map entries
340 * count for at least 1 swap page.
343 vmspace_swap_count(struct vmspace *vmspace)
345 vm_map_t map = &vmspace->vm_map;
346 vm_map_entry_t cur;
347 vm_object_t object;
348 int count = 0;
349 int n;
351 for (cur = map->header.next; cur != &map->header; cur = cur->next) {
352 switch(cur->maptype) {
353 case VM_MAPTYPE_NORMAL:
354 case VM_MAPTYPE_VPAGETABLE:
355 if ((object = cur->object.vm_object) == NULL)
356 break;
357 if (object->type != OBJT_SWAP)
358 break;
359 n = (cur->end - cur->start) / PAGE_SIZE;
360 if (object->un_pager.swp.swp_bcount) {
361 count += object->un_pager.swp.swp_bcount *
362 SWAP_META_PAGES * n / object->size + 1;
364 break;
365 default:
366 break;
369 return(count);
374 * vm_map_create:
376 * Creates and returns a new empty VM map with
377 * the given physical map structure, and having
378 * the given lower and upper address bounds.
380 vm_map_t
381 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
383 if (result == NULL)
384 result = zalloc(mapzone);
385 vm_map_init(result, min, max, pmap);
386 return (result);
390 * Initialize an existing vm_map structure
391 * such as that in the vmspace structure.
392 * The pmap is set elsewhere.
394 void
395 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
397 map->header.next = map->header.prev = &map->header;
398 RB_INIT(&map->rb_root);
399 map->nentries = 0;
400 map->size = 0;
401 map->system_map = 0;
402 map->infork = 0;
403 map->min_offset = min;
404 map->max_offset = max;
405 map->pmap = pmap;
406 map->first_free = &map->header;
407 map->hint = &map->header;
408 map->timestamp = 0;
409 lockinit(&map->lock, "thrd_sleep", 0, 0);
413 * Shadow the vm_map_entry's object. This typically needs to be done when
414 * a write fault is taken on an entry which had previously been cloned by
415 * fork(). The shared object (which might be NULL) must become private so
416 * we add a shadow layer above it.
418 * Object allocation for anonymous mappings is defered as long as possible.
419 * When creating a shadow, however, the underlying object must be instantiated
420 * so it can be shared.
422 * If the map segment is governed by a virtual page table then it is
423 * possible to address offsets beyond the mapped area. Just allocate
424 * a maximally sized object for this case.
426 static
427 void
428 vm_map_entry_shadow(vm_map_entry_t entry)
430 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
431 vm_object_shadow(&entry->object.vm_object, &entry->offset,
432 0x7FFFFFFF); /* XXX */
433 } else {
434 vm_object_shadow(&entry->object.vm_object, &entry->offset,
435 atop(entry->end - entry->start));
437 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
441 * Allocate an object for a vm_map_entry.
443 * Object allocation for anonymous mappings is defered as long as possible.
444 * This function is called when we can defer no longer, generally when a map
445 * entry might be split or forked or takes a page fault.
447 * If the map segment is governed by a virtual page table then it is
448 * possible to address offsets beyond the mapped area. Just allocate
449 * a maximally sized object for this case.
451 void
452 vm_map_entry_allocate_object(vm_map_entry_t entry)
454 vm_object_t obj;
456 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
457 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
458 } else {
459 obj = vm_object_allocate(OBJT_DEFAULT,
460 atop(entry->end - entry->start));
462 entry->object.vm_object = obj;
463 entry->offset = 0;
467 * vm_map_entry_reserve_cpu_init:
469 * Set an initial negative count so the first attempt to reserve
470 * space preloads a bunch of vm_map_entry's for this cpu. Also
471 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
472 * map a new page for vm_map_entry structures. SMP systems are
473 * particularly sensitive.
475 * This routine is called in early boot so we cannot just call
476 * vm_map_entry_reserve().
478 * May be called for a gd other then mycpu, but may only be called
479 * during early boot.
481 void
482 vm_map_entry_reserve_cpu_init(globaldata_t gd)
484 vm_map_entry_t entry;
485 int i;
487 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
488 entry = &cpu_map_entry_init[gd->gd_cpuid][0];
489 for (i = 0; i < VMEPERCPU; ++i, ++entry) {
490 entry->next = gd->gd_vme_base;
491 gd->gd_vme_base = entry;
496 * vm_map_entry_reserve:
498 * Reserves vm_map_entry structures so code later on can manipulate
499 * map_entry structures within a locked map without blocking trying
500 * to allocate a new vm_map_entry.
503 vm_map_entry_reserve(int count)
505 struct globaldata *gd = mycpu;
506 vm_map_entry_t entry;
508 crit_enter();
511 * Make sure we have enough structures in gd_vme_base to handle
512 * the reservation request.
514 while (gd->gd_vme_avail < count) {
515 entry = zalloc(mapentzone);
516 entry->next = gd->gd_vme_base;
517 gd->gd_vme_base = entry;
518 ++gd->gd_vme_avail;
520 gd->gd_vme_avail -= count;
521 crit_exit();
522 return(count);
526 * vm_map_entry_release:
528 * Releases previously reserved vm_map_entry structures that were not
529 * used. If we have too much junk in our per-cpu cache clean some of
530 * it out.
532 void
533 vm_map_entry_release(int count)
535 struct globaldata *gd = mycpu;
536 vm_map_entry_t entry;
538 crit_enter();
539 gd->gd_vme_avail += count;
540 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
541 entry = gd->gd_vme_base;
542 KKASSERT(entry != NULL);
543 gd->gd_vme_base = entry->next;
544 --gd->gd_vme_avail;
545 crit_exit();
546 zfree(mapentzone, entry);
547 crit_enter();
549 crit_exit();
553 * vm_map_entry_kreserve:
555 * Reserve map entry structures for use in kernel_map itself. These
556 * entries have *ALREADY* been reserved on a per-cpu basis when the map
557 * was inited. This function is used by zalloc() to avoid a recursion
558 * when zalloc() itself needs to allocate additional kernel memory.
560 * This function works like the normal reserve but does not load the
561 * vm_map_entry cache (because that would result in an infinite
562 * recursion). Note that gd_vme_avail may go negative. This is expected.
564 * Any caller of this function must be sure to renormalize after
565 * potentially eating entries to ensure that the reserve supply
566 * remains intact.
569 vm_map_entry_kreserve(int count)
571 struct globaldata *gd = mycpu;
573 crit_enter();
574 gd->gd_vme_avail -= count;
575 crit_exit();
576 KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
577 return(count);
581 * vm_map_entry_krelease:
583 * Release previously reserved map entries for kernel_map. We do not
584 * attempt to clean up like the normal release function as this would
585 * cause an unnecessary (but probably not fatal) deep procedure call.
587 void
588 vm_map_entry_krelease(int count)
590 struct globaldata *gd = mycpu;
592 crit_enter();
593 gd->gd_vme_avail += count;
594 crit_exit();
598 * vm_map_entry_create: [ internal use only ]
600 * Allocates a VM map entry for insertion. No entry fields are filled
601 * in.
603 * This routine may be called from an interrupt thread but not a FAST
604 * interrupt. This routine may recurse the map lock.
606 static vm_map_entry_t
607 vm_map_entry_create(vm_map_t map, int *countp)
609 struct globaldata *gd = mycpu;
610 vm_map_entry_t entry;
612 KKASSERT(*countp > 0);
613 --*countp;
614 crit_enter();
615 entry = gd->gd_vme_base;
616 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
617 gd->gd_vme_base = entry->next;
618 crit_exit();
619 return(entry);
623 * vm_map_entry_dispose: [ internal use only ]
625 * Dispose of a vm_map_entry that is no longer being referenced. This
626 * function may be called from an interrupt.
628 static void
629 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
631 struct globaldata *gd = mycpu;
633 KKASSERT(map->hint != entry);
634 KKASSERT(map->first_free != entry);
636 ++*countp;
637 crit_enter();
638 entry->next = gd->gd_vme_base;
639 gd->gd_vme_base = entry;
640 crit_exit();
645 * vm_map_entry_{un,}link:
647 * Insert/remove entries from maps.
649 static __inline void
650 vm_map_entry_link(vm_map_t map,
651 vm_map_entry_t after_where,
652 vm_map_entry_t entry)
654 map->nentries++;
655 entry->prev = after_where;
656 entry->next = after_where->next;
657 entry->next->prev = entry;
658 after_where->next = entry;
659 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
660 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
663 static __inline void
664 vm_map_entry_unlink(vm_map_t map,
665 vm_map_entry_t entry)
667 vm_map_entry_t prev;
668 vm_map_entry_t next;
670 if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
671 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
672 prev = entry->prev;
673 next = entry->next;
674 next->prev = prev;
675 prev->next = next;
676 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
677 map->nentries--;
681 * vm_map_lookup_entry: [ internal use only ]
683 * Finds the map entry containing (or
684 * immediately preceding) the specified address
685 * in the given map; the entry is returned
686 * in the "entry" parameter. The boolean
687 * result indicates whether the address is
688 * actually contained in the map.
690 boolean_t
691 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
692 vm_map_entry_t *entry /* OUT */)
694 vm_map_entry_t tmp;
695 vm_map_entry_t last;
697 #if 0
699 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive
700 * the hint code with the red-black lookup meets with system crashes
701 * and lockups. We do not yet know why.
703 * It is possible that the problem is related to the setting
704 * of the hint during map_entry deletion, in the code specified
705 * at the GGG comment later on in this file.
708 * Quickly check the cached hint, there's a good chance of a match.
710 if (map->hint != &map->header) {
711 tmp = map->hint;
712 if (address >= tmp->start && address < tmp->end) {
713 *entry = tmp;
714 return(TRUE);
717 #endif
720 * Locate the record from the top of the tree. 'last' tracks the
721 * closest prior record and is returned if no match is found, which
722 * in binary tree terms means tracking the most recent right-branch
723 * taken. If there is no prior record, &map->header is returned.
725 last = &map->header;
726 tmp = RB_ROOT(&map->rb_root);
728 while (tmp) {
729 if (address >= tmp->start) {
730 if (address < tmp->end) {
731 *entry = tmp;
732 map->hint = tmp;
733 return(TRUE);
735 last = tmp;
736 tmp = RB_RIGHT(tmp, rb_entry);
737 } else {
738 tmp = RB_LEFT(tmp, rb_entry);
741 *entry = last;
742 return (FALSE);
746 * vm_map_insert:
748 * Inserts the given whole VM object into the target
749 * map at the specified address range. The object's
750 * size should match that of the address range.
752 * Requires that the map be locked, and leaves it so. Requires that
753 * sufficient vm_map_entry structures have been reserved and tracks
754 * the use via countp.
756 * If object is non-NULL, ref count must be bumped by caller
757 * prior to making call to account for the new entry.
760 vm_map_insert(vm_map_t map, int *countp,
761 vm_object_t object, vm_ooffset_t offset,
762 vm_offset_t start, vm_offset_t end,
763 vm_maptype_t maptype,
764 vm_prot_t prot, vm_prot_t max,
765 int cow)
767 vm_map_entry_t new_entry;
768 vm_map_entry_t prev_entry;
769 vm_map_entry_t temp_entry;
770 vm_eflags_t protoeflags;
773 * Check that the start and end points are not bogus.
776 if ((start < map->min_offset) || (end > map->max_offset) ||
777 (start >= end))
778 return (KERN_INVALID_ADDRESS);
781 * Find the entry prior to the proposed starting address; if it's part
782 * of an existing entry, this range is bogus.
785 if (vm_map_lookup_entry(map, start, &temp_entry))
786 return (KERN_NO_SPACE);
788 prev_entry = temp_entry;
791 * Assert that the next entry doesn't overlap the end point.
794 if ((prev_entry->next != &map->header) &&
795 (prev_entry->next->start < end))
796 return (KERN_NO_SPACE);
798 protoeflags = 0;
800 if (cow & MAP_COPY_ON_WRITE)
801 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
803 if (cow & MAP_NOFAULT) {
804 protoeflags |= MAP_ENTRY_NOFAULT;
806 KASSERT(object == NULL,
807 ("vm_map_insert: paradoxical MAP_NOFAULT request"));
809 if (cow & MAP_DISABLE_SYNCER)
810 protoeflags |= MAP_ENTRY_NOSYNC;
811 if (cow & MAP_DISABLE_COREDUMP)
812 protoeflags |= MAP_ENTRY_NOCOREDUMP;
814 if (object) {
816 * When object is non-NULL, it could be shared with another
817 * process. We have to set or clear OBJ_ONEMAPPING
818 * appropriately.
820 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
821 vm_object_clear_flag(object, OBJ_ONEMAPPING);
824 else if ((prev_entry != &map->header) &&
825 (prev_entry->eflags == protoeflags) &&
826 (prev_entry->end == start) &&
827 (prev_entry->wired_count == 0) &&
828 prev_entry->maptype == maptype &&
829 ((prev_entry->object.vm_object == NULL) ||
830 vm_object_coalesce(prev_entry->object.vm_object,
831 OFF_TO_IDX(prev_entry->offset),
832 (vm_size_t)(prev_entry->end - prev_entry->start),
833 (vm_size_t)(end - prev_entry->end)))) {
835 * We were able to extend the object. Determine if we
836 * can extend the previous map entry to include the
837 * new range as well.
839 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
840 (prev_entry->protection == prot) &&
841 (prev_entry->max_protection == max)) {
842 map->size += (end - prev_entry->end);
843 prev_entry->end = end;
844 vm_map_simplify_entry(map, prev_entry, countp);
845 return (KERN_SUCCESS);
849 * If we can extend the object but cannot extend the
850 * map entry, we have to create a new map entry. We
851 * must bump the ref count on the extended object to
852 * account for it. object may be NULL.
854 object = prev_entry->object.vm_object;
855 offset = prev_entry->offset +
856 (prev_entry->end - prev_entry->start);
857 vm_object_reference(object);
861 * NOTE: if conditionals fail, object can be NULL here. This occurs
862 * in things like the buffer map where we manage kva but do not manage
863 * backing objects.
867 * Create a new entry
870 new_entry = vm_map_entry_create(map, countp);
871 new_entry->start = start;
872 new_entry->end = end;
874 new_entry->maptype = maptype;
875 new_entry->eflags = protoeflags;
876 new_entry->object.vm_object = object;
877 new_entry->offset = offset;
878 new_entry->aux.master_pde = 0;
880 new_entry->inheritance = VM_INHERIT_DEFAULT;
881 new_entry->protection = prot;
882 new_entry->max_protection = max;
883 new_entry->wired_count = 0;
886 * Insert the new entry into the list
889 vm_map_entry_link(map, prev_entry, new_entry);
890 map->size += new_entry->end - new_entry->start;
893 * Update the free space hint
895 if ((map->first_free == prev_entry) &&
896 (prev_entry->end >= new_entry->start)) {
897 map->first_free = new_entry;
900 #if 0
902 * Temporarily removed to avoid MAP_STACK panic, due to
903 * MAP_STACK being a huge hack. Will be added back in
904 * when MAP_STACK (and the user stack mapping) is fixed.
907 * It may be possible to simplify the entry
909 vm_map_simplify_entry(map, new_entry, countp);
910 #endif
913 * Try to pre-populate the page table. Mappings governed by virtual
914 * page tables cannot be prepopulated without a lot of work, so
915 * don't try.
917 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
918 maptype != VM_MAPTYPE_VPAGETABLE) {
919 pmap_object_init_pt(map->pmap, start, prot,
920 object, OFF_TO_IDX(offset), end - start,
921 cow & MAP_PREFAULT_PARTIAL);
924 return (KERN_SUCCESS);
928 * Find sufficient space for `length' bytes in the given map, starting at
929 * `start'. The map must be locked. Returns 0 on success, 1 on no space.
931 * This function will returned an arbitrarily aligned pointer. If no
932 * particular alignment is required you should pass align as 1. Note that
933 * the map may return PAGE_SIZE aligned pointers if all the lengths used in
934 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
935 * argument.
937 * 'align' should be a power of 2 but is not required to be.
940 vm_map_findspace(
941 vm_map_t map,
942 vm_offset_t start,
943 vm_size_t length,
944 vm_offset_t align,
945 vm_offset_t *addr)
947 vm_map_entry_t entry, next;
948 vm_offset_t end;
949 vm_offset_t align_mask;
951 if (start < map->min_offset)
952 start = map->min_offset;
953 if (start > map->max_offset)
954 return (1);
957 * If the alignment is not a power of 2 we will have to use
958 * a mod/division, set align_mask to a special value.
960 if ((align | (align - 1)) + 1 != (align << 1))
961 align_mask = (vm_offset_t)-1;
962 else
963 align_mask = align - 1;
965 retry:
967 * Look for the first possible address; if there's already something
968 * at this address, we have to start after it.
970 if (start == map->min_offset) {
971 if ((entry = map->first_free) != &map->header)
972 start = entry->end;
973 } else {
974 vm_map_entry_t tmp;
976 if (vm_map_lookup_entry(map, start, &tmp))
977 start = tmp->end;
978 entry = tmp;
982 * Look through the rest of the map, trying to fit a new region in the
983 * gap between existing regions, or after the very last region.
985 for (;; start = (entry = next)->end) {
987 * Adjust the proposed start by the requested alignment,
988 * be sure that we didn't wrap the address.
990 if (align_mask == (vm_offset_t)-1)
991 end = ((start + align - 1) / align) * align;
992 else
993 end = (start + align_mask) & ~align_mask;
994 if (end < start)
995 return (1);
996 start = end;
998 * Find the end of the proposed new region. Be sure we didn't
999 * go beyond the end of the map, or wrap around the address.
1000 * Then check to see if this is the last entry or if the
1001 * proposed end fits in the gap between this and the next
1002 * entry.
1004 end = start + length;
1005 if (end > map->max_offset || end < start)
1006 return (1);
1007 next = entry->next;
1008 if (next == &map->header || next->start >= end)
1009 break;
1011 map->hint = entry;
1012 if (map == &kernel_map) {
1013 vm_offset_t ksize;
1014 if ((ksize = round_page(start + length)) > kernel_vm_end) {
1015 pmap_growkernel(ksize);
1016 goto retry;
1019 *addr = start;
1020 return (0);
1024 * vm_map_find finds an unallocated region in the target address
1025 * map with the given length. The search is defined to be
1026 * first-fit from the specified address; the region found is
1027 * returned in the same parameter.
1029 * If object is non-NULL, ref count must be bumped by caller
1030 * prior to making call to account for the new entry.
1033 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1034 vm_offset_t *addr, vm_size_t length,
1035 boolean_t find_space,
1036 vm_maptype_t maptype,
1037 vm_prot_t prot, vm_prot_t max,
1038 int cow)
1040 vm_offset_t start;
1041 int result;
1042 int count;
1044 start = *addr;
1046 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1047 vm_map_lock(map);
1048 if (find_space) {
1049 if (vm_map_findspace(map, start, length, 1, addr)) {
1050 vm_map_unlock(map);
1051 vm_map_entry_release(count);
1052 return (KERN_NO_SPACE);
1054 start = *addr;
1056 result = vm_map_insert(map, &count, object, offset,
1057 start, start + length,
1058 maptype,
1059 prot, max,
1060 cow);
1061 vm_map_unlock(map);
1062 vm_map_entry_release(count);
1064 return (result);
1068 * vm_map_simplify_entry:
1070 * Simplify the given map entry by merging with either neighbor. This
1071 * routine also has the ability to merge with both neighbors.
1073 * The map must be locked.
1075 * This routine guarentees that the passed entry remains valid (though
1076 * possibly extended). When merging, this routine may delete one or
1077 * both neighbors. No action is taken on entries which have their
1078 * in-transition flag set.
1080 void
1081 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1083 vm_map_entry_t next, prev;
1084 vm_size_t prevsize, esize;
1086 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1087 ++mycpu->gd_cnt.v_intrans_coll;
1088 return;
1091 if (entry->maptype == VM_MAPTYPE_SUBMAP)
1092 return;
1094 prev = entry->prev;
1095 if (prev != &map->header) {
1096 prevsize = prev->end - prev->start;
1097 if ( (prev->end == entry->start) &&
1098 (prev->maptype == entry->maptype) &&
1099 (prev->object.vm_object == entry->object.vm_object) &&
1100 (!prev->object.vm_object ||
1101 (prev->offset + prevsize == entry->offset)) &&
1102 (prev->eflags == entry->eflags) &&
1103 (prev->protection == entry->protection) &&
1104 (prev->max_protection == entry->max_protection) &&
1105 (prev->inheritance == entry->inheritance) &&
1106 (prev->wired_count == entry->wired_count)) {
1107 if (map->first_free == prev)
1108 map->first_free = entry;
1109 if (map->hint == prev)
1110 map->hint = entry;
1111 vm_map_entry_unlink(map, prev);
1112 entry->start = prev->start;
1113 entry->offset = prev->offset;
1114 if (prev->object.vm_object)
1115 vm_object_deallocate(prev->object.vm_object);
1116 vm_map_entry_dispose(map, prev, countp);
1120 next = entry->next;
1121 if (next != &map->header) {
1122 esize = entry->end - entry->start;
1123 if ((entry->end == next->start) &&
1124 (next->maptype == entry->maptype) &&
1125 (next->object.vm_object == entry->object.vm_object) &&
1126 (!entry->object.vm_object ||
1127 (entry->offset + esize == next->offset)) &&
1128 (next->eflags == entry->eflags) &&
1129 (next->protection == entry->protection) &&
1130 (next->max_protection == entry->max_protection) &&
1131 (next->inheritance == entry->inheritance) &&
1132 (next->wired_count == entry->wired_count)) {
1133 if (map->first_free == next)
1134 map->first_free = entry;
1135 if (map->hint == next)
1136 map->hint = entry;
1137 vm_map_entry_unlink(map, next);
1138 entry->end = next->end;
1139 if (next->object.vm_object)
1140 vm_object_deallocate(next->object.vm_object);
1141 vm_map_entry_dispose(map, next, countp);
1146 * vm_map_clip_start: [ internal use only ]
1148 * Asserts that the given entry begins at or after
1149 * the specified address; if necessary,
1150 * it splits the entry into two.
1152 #define vm_map_clip_start(map, entry, startaddr, countp) \
1154 if (startaddr > entry->start) \
1155 _vm_map_clip_start(map, entry, startaddr, countp); \
1159 * This routine is called only when it is known that
1160 * the entry must be split.
1162 static void
1163 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1165 vm_map_entry_t new_entry;
1168 * Split off the front portion -- note that we must insert the new
1169 * entry BEFORE this one, so that this entry has the specified
1170 * starting address.
1173 vm_map_simplify_entry(map, entry, countp);
1176 * If there is no object backing this entry, we might as well create
1177 * one now. If we defer it, an object can get created after the map
1178 * is clipped, and individual objects will be created for the split-up
1179 * map. This is a bit of a hack, but is also about the best place to
1180 * put this improvement.
1182 if (entry->object.vm_object == NULL && !map->system_map) {
1183 vm_map_entry_allocate_object(entry);
1186 new_entry = vm_map_entry_create(map, countp);
1187 *new_entry = *entry;
1189 new_entry->end = start;
1190 entry->offset += (start - entry->start);
1191 entry->start = start;
1193 vm_map_entry_link(map, entry->prev, new_entry);
1195 switch(entry->maptype) {
1196 case VM_MAPTYPE_NORMAL:
1197 case VM_MAPTYPE_VPAGETABLE:
1198 vm_object_reference(new_entry->object.vm_object);
1199 break;
1200 default:
1201 break;
1206 * vm_map_clip_end: [ internal use only ]
1208 * Asserts that the given entry ends at or before
1209 * the specified address; if necessary,
1210 * it splits the entry into two.
1213 #define vm_map_clip_end(map, entry, endaddr, countp) \
1215 if (endaddr < entry->end) \
1216 _vm_map_clip_end(map, entry, endaddr, countp); \
1220 * This routine is called only when it is known that
1221 * the entry must be split.
1223 static void
1224 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1226 vm_map_entry_t new_entry;
1229 * If there is no object backing this entry, we might as well create
1230 * one now. If we defer it, an object can get created after the map
1231 * is clipped, and individual objects will be created for the split-up
1232 * map. This is a bit of a hack, but is also about the best place to
1233 * put this improvement.
1236 if (entry->object.vm_object == NULL && !map->system_map) {
1237 vm_map_entry_allocate_object(entry);
1241 * Create a new entry and insert it AFTER the specified entry
1244 new_entry = vm_map_entry_create(map, countp);
1245 *new_entry = *entry;
1247 new_entry->start = entry->end = end;
1248 new_entry->offset += (end - entry->start);
1250 vm_map_entry_link(map, entry, new_entry);
1252 switch(entry->maptype) {
1253 case VM_MAPTYPE_NORMAL:
1254 case VM_MAPTYPE_VPAGETABLE:
1255 vm_object_reference(new_entry->object.vm_object);
1256 break;
1257 default:
1258 break;
1263 * VM_MAP_RANGE_CHECK: [ internal use only ]
1265 * Asserts that the starting and ending region
1266 * addresses fall within the valid range of the map.
1268 #define VM_MAP_RANGE_CHECK(map, start, end) \
1270 if (start < vm_map_min(map)) \
1271 start = vm_map_min(map); \
1272 if (end > vm_map_max(map)) \
1273 end = vm_map_max(map); \
1274 if (start > end) \
1275 start = end; \
1279 * vm_map_transition_wait: [ kernel use only ]
1281 * Used to block when an in-transition collison occurs. The map
1282 * is unlocked for the sleep and relocked before the return.
1284 static
1285 void
1286 vm_map_transition_wait(vm_map_t map)
1288 vm_map_unlock(map);
1289 tsleep(map, 0, "vment", 0);
1290 vm_map_lock(map);
1294 * CLIP_CHECK_BACK
1295 * CLIP_CHECK_FWD
1297 * When we do blocking operations with the map lock held it is
1298 * possible that a clip might have occured on our in-transit entry,
1299 * requiring an adjustment to the entry in our loop. These macros
1300 * help the pageable and clip_range code deal with the case. The
1301 * conditional costs virtually nothing if no clipping has occured.
1304 #define CLIP_CHECK_BACK(entry, save_start) \
1305 do { \
1306 while (entry->start != save_start) { \
1307 entry = entry->prev; \
1308 KASSERT(entry != &map->header, ("bad entry clip")); \
1310 } while(0)
1312 #define CLIP_CHECK_FWD(entry, save_end) \
1313 do { \
1314 while (entry->end != save_end) { \
1315 entry = entry->next; \
1316 KASSERT(entry != &map->header, ("bad entry clip")); \
1318 } while(0)
1322 * vm_map_clip_range: [ kernel use only ]
1324 * Clip the specified range and return the base entry. The
1325 * range may cover several entries starting at the returned base
1326 * and the first and last entry in the covering sequence will be
1327 * properly clipped to the requested start and end address.
1329 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1330 * flag.
1332 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1333 * covered by the requested range.
1335 * The map must be exclusively locked on entry and will remain locked
1336 * on return. If no range exists or the range contains holes and you
1337 * specified that no holes were allowed, NULL will be returned. This
1338 * routine may temporarily unlock the map in order avoid a deadlock when
1339 * sleeping.
1341 static
1342 vm_map_entry_t
1343 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1344 int *countp, int flags)
1346 vm_map_entry_t start_entry;
1347 vm_map_entry_t entry;
1350 * Locate the entry and effect initial clipping. The in-transition
1351 * case does not occur very often so do not try to optimize it.
1353 again:
1354 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1355 return (NULL);
1356 entry = start_entry;
1357 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1358 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1359 ++mycpu->gd_cnt.v_intrans_coll;
1360 ++mycpu->gd_cnt.v_intrans_wait;
1361 vm_map_transition_wait(map);
1363 * entry and/or start_entry may have been clipped while
1364 * we slept, or may have gone away entirely. We have
1365 * to restart from the lookup.
1367 goto again;
1370 * Since we hold an exclusive map lock we do not have to restart
1371 * after clipping, even though clipping may block in zalloc.
1373 vm_map_clip_start(map, entry, start, countp);
1374 vm_map_clip_end(map, entry, end, countp);
1375 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1378 * Scan entries covered by the range. When working on the next
1379 * entry a restart need only re-loop on the current entry which
1380 * we have already locked, since 'next' may have changed. Also,
1381 * even though entry is safe, it may have been clipped so we
1382 * have to iterate forwards through the clip after sleeping.
1384 while (entry->next != &map->header && entry->next->start < end) {
1385 vm_map_entry_t next = entry->next;
1387 if (flags & MAP_CLIP_NO_HOLES) {
1388 if (next->start > entry->end) {
1389 vm_map_unclip_range(map, start_entry,
1390 start, entry->end, countp, flags);
1391 return(NULL);
1395 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1396 vm_offset_t save_end = entry->end;
1397 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1398 ++mycpu->gd_cnt.v_intrans_coll;
1399 ++mycpu->gd_cnt.v_intrans_wait;
1400 vm_map_transition_wait(map);
1403 * clips might have occured while we blocked.
1405 CLIP_CHECK_FWD(entry, save_end);
1406 CLIP_CHECK_BACK(start_entry, start);
1407 continue;
1410 * No restart necessary even though clip_end may block, we
1411 * are holding the map lock.
1413 vm_map_clip_end(map, next, end, countp);
1414 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1415 entry = next;
1417 if (flags & MAP_CLIP_NO_HOLES) {
1418 if (entry->end != end) {
1419 vm_map_unclip_range(map, start_entry,
1420 start, entry->end, countp, flags);
1421 return(NULL);
1424 return(start_entry);
1428 * vm_map_unclip_range: [ kernel use only ]
1430 * Undo the effect of vm_map_clip_range(). You should pass the same
1431 * flags and the same range that you passed to vm_map_clip_range().
1432 * This code will clear the in-transition flag on the entries and
1433 * wake up anyone waiting. This code will also simplify the sequence
1434 * and attempt to merge it with entries before and after the sequence.
1436 * The map must be locked on entry and will remain locked on return.
1438 * Note that you should also pass the start_entry returned by
1439 * vm_map_clip_range(). However, if you block between the two calls
1440 * with the map unlocked please be aware that the start_entry may
1441 * have been clipped and you may need to scan it backwards to find
1442 * the entry corresponding with the original start address. You are
1443 * responsible for this, vm_map_unclip_range() expects the correct
1444 * start_entry to be passed to it and will KASSERT otherwise.
1446 static
1447 void
1448 vm_map_unclip_range(
1449 vm_map_t map,
1450 vm_map_entry_t start_entry,
1451 vm_offset_t start,
1452 vm_offset_t end,
1453 int *countp,
1454 int flags)
1456 vm_map_entry_t entry;
1458 entry = start_entry;
1460 KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1461 while (entry != &map->header && entry->start < end) {
1462 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1463 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1464 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1465 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1466 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1467 wakeup(map);
1469 entry = entry->next;
1473 * Simplification does not block so there is no restart case.
1475 entry = start_entry;
1476 while (entry != &map->header && entry->start < end) {
1477 vm_map_simplify_entry(map, entry, countp);
1478 entry = entry->next;
1483 * vm_map_submap: [ kernel use only ]
1485 * Mark the given range as handled by a subordinate map.
1487 * This range must have been created with vm_map_find,
1488 * and no other operations may have been performed on this
1489 * range prior to calling vm_map_submap.
1491 * Only a limited number of operations can be performed
1492 * within this rage after calling vm_map_submap:
1493 * vm_fault
1494 * [Don't try vm_map_copy!]
1496 * To remove a submapping, one must first remove the
1497 * range from the superior map, and then destroy the
1498 * submap (if desired). [Better yet, don't try it.]
1501 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1503 vm_map_entry_t entry;
1504 int result = KERN_INVALID_ARGUMENT;
1505 int count;
1507 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1508 vm_map_lock(map);
1510 VM_MAP_RANGE_CHECK(map, start, end);
1512 if (vm_map_lookup_entry(map, start, &entry)) {
1513 vm_map_clip_start(map, entry, start, &count);
1514 } else {
1515 entry = entry->next;
1518 vm_map_clip_end(map, entry, end, &count);
1520 if ((entry->start == start) && (entry->end == end) &&
1521 ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1522 (entry->object.vm_object == NULL)) {
1523 entry->object.sub_map = submap;
1524 entry->maptype = VM_MAPTYPE_SUBMAP;
1525 result = KERN_SUCCESS;
1527 vm_map_unlock(map);
1528 vm_map_entry_release(count);
1530 return (result);
1534 * vm_map_protect:
1536 * Sets the protection of the specified address region in the target map.
1537 * If "set_max" is specified, the maximum protection is to be set;
1538 * otherwise, only the current protection is affected.
1540 * The protection is not applicable to submaps, but is applicable to normal
1541 * maps and maps governed by virtual page tables. For example, when operating
1542 * on a virtual page table our protection basically controls how COW occurs
1543 * on the backing object, whereas the virtual page table abstraction itself
1544 * is an abstraction for userland.
1547 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1548 vm_prot_t new_prot, boolean_t set_max)
1550 vm_map_entry_t current;
1551 vm_map_entry_t entry;
1552 int count;
1554 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1555 vm_map_lock(map);
1557 VM_MAP_RANGE_CHECK(map, start, end);
1559 if (vm_map_lookup_entry(map, start, &entry)) {
1560 vm_map_clip_start(map, entry, start, &count);
1561 } else {
1562 entry = entry->next;
1566 * Make a first pass to check for protection violations.
1568 current = entry;
1569 while ((current != &map->header) && (current->start < end)) {
1570 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1571 vm_map_unlock(map);
1572 vm_map_entry_release(count);
1573 return (KERN_INVALID_ARGUMENT);
1575 if ((new_prot & current->max_protection) != new_prot) {
1576 vm_map_unlock(map);
1577 vm_map_entry_release(count);
1578 return (KERN_PROTECTION_FAILURE);
1580 current = current->next;
1584 * Go back and fix up protections. [Note that clipping is not
1585 * necessary the second time.]
1587 current = entry;
1589 while ((current != &map->header) && (current->start < end)) {
1590 vm_prot_t old_prot;
1592 vm_map_clip_end(map, current, end, &count);
1594 old_prot = current->protection;
1595 if (set_max) {
1596 current->protection =
1597 (current->max_protection = new_prot) &
1598 old_prot;
1599 } else {
1600 current->protection = new_prot;
1604 * Update physical map if necessary. Worry about copy-on-write
1605 * here -- CHECK THIS XXX
1608 if (current->protection != old_prot) {
1609 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1610 VM_PROT_ALL)
1612 pmap_protect(map->pmap, current->start,
1613 current->end,
1614 current->protection & MASK(current));
1615 #undef MASK
1618 vm_map_simplify_entry(map, current, &count);
1620 current = current->next;
1623 vm_map_unlock(map);
1624 vm_map_entry_release(count);
1625 return (KERN_SUCCESS);
1629 * vm_map_madvise:
1631 * This routine traverses a processes map handling the madvise
1632 * system call. Advisories are classified as either those effecting
1633 * the vm_map_entry structure, or those effecting the underlying
1634 * objects.
1636 * The <value> argument is used for extended madvise calls.
1639 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1640 int behav, off_t value)
1642 vm_map_entry_t current, entry;
1643 int modify_map = 0;
1644 int error = 0;
1645 int count;
1648 * Some madvise calls directly modify the vm_map_entry, in which case
1649 * we need to use an exclusive lock on the map and we need to perform
1650 * various clipping operations. Otherwise we only need a read-lock
1651 * on the map.
1654 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1656 switch(behav) {
1657 case MADV_NORMAL:
1658 case MADV_SEQUENTIAL:
1659 case MADV_RANDOM:
1660 case MADV_NOSYNC:
1661 case MADV_AUTOSYNC:
1662 case MADV_NOCORE:
1663 case MADV_CORE:
1664 case MADV_SETMAP:
1665 case MADV_INVAL:
1666 modify_map = 1;
1667 vm_map_lock(map);
1668 break;
1669 case MADV_WILLNEED:
1670 case MADV_DONTNEED:
1671 case MADV_FREE:
1672 vm_map_lock_read(map);
1673 break;
1674 default:
1675 vm_map_entry_release(count);
1676 return (EINVAL);
1680 * Locate starting entry and clip if necessary.
1683 VM_MAP_RANGE_CHECK(map, start, end);
1685 if (vm_map_lookup_entry(map, start, &entry)) {
1686 if (modify_map)
1687 vm_map_clip_start(map, entry, start, &count);
1688 } else {
1689 entry = entry->next;
1692 if (modify_map) {
1694 * madvise behaviors that are implemented in the vm_map_entry.
1696 * We clip the vm_map_entry so that behavioral changes are
1697 * limited to the specified address range.
1699 for (current = entry;
1700 (current != &map->header) && (current->start < end);
1701 current = current->next
1703 if (current->maptype == VM_MAPTYPE_SUBMAP)
1704 continue;
1706 vm_map_clip_end(map, current, end, &count);
1708 switch (behav) {
1709 case MADV_NORMAL:
1710 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1711 break;
1712 case MADV_SEQUENTIAL:
1713 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1714 break;
1715 case MADV_RANDOM:
1716 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1717 break;
1718 case MADV_NOSYNC:
1719 current->eflags |= MAP_ENTRY_NOSYNC;
1720 break;
1721 case MADV_AUTOSYNC:
1722 current->eflags &= ~MAP_ENTRY_NOSYNC;
1723 break;
1724 case MADV_NOCORE:
1725 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1726 break;
1727 case MADV_CORE:
1728 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1729 break;
1730 case MADV_INVAL:
1732 * Invalidate the related pmap entries, used
1733 * to flush portions of the real kernel's
1734 * pmap when the caller has removed or
1735 * modified existing mappings in a virtual
1736 * page table.
1738 pmap_remove(map->pmap,
1739 current->start, current->end);
1740 break;
1741 case MADV_SETMAP:
1743 * Set the page directory page for a map
1744 * governed by a virtual page table. Mark
1745 * the entry as being governed by a virtual
1746 * page table if it is not.
1748 * XXX the page directory page is stored
1749 * in the avail_ssize field if the map_entry.
1751 * XXX the map simplification code does not
1752 * compare this field so weird things may
1753 * happen if you do not apply this function
1754 * to the entire mapping governed by the
1755 * virtual page table.
1757 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1758 error = EINVAL;
1759 break;
1761 current->aux.master_pde = value;
1762 pmap_remove(map->pmap,
1763 current->start, current->end);
1764 break;
1765 default:
1766 error = EINVAL;
1767 break;
1769 vm_map_simplify_entry(map, current, &count);
1771 vm_map_unlock(map);
1772 } else {
1773 vm_pindex_t pindex;
1774 int count;
1777 * madvise behaviors that are implemented in the underlying
1778 * vm_object.
1780 * Since we don't clip the vm_map_entry, we have to clip
1781 * the vm_object pindex and count.
1783 * NOTE! We currently do not support these functions on
1784 * virtual page tables.
1786 for (current = entry;
1787 (current != &map->header) && (current->start < end);
1788 current = current->next
1790 vm_offset_t useStart;
1792 if (current->maptype != VM_MAPTYPE_NORMAL)
1793 continue;
1795 pindex = OFF_TO_IDX(current->offset);
1796 count = atop(current->end - current->start);
1797 useStart = current->start;
1799 if (current->start < start) {
1800 pindex += atop(start - current->start);
1801 count -= atop(start - current->start);
1802 useStart = start;
1804 if (current->end > end)
1805 count -= atop(current->end - end);
1807 if (count <= 0)
1808 continue;
1810 vm_object_madvise(current->object.vm_object,
1811 pindex, count, behav);
1814 * Try to populate the page table. Mappings governed
1815 * by virtual page tables cannot be pre-populated
1816 * without a lot of work so don't try.
1818 if (behav == MADV_WILLNEED &&
1819 current->maptype != VM_MAPTYPE_VPAGETABLE) {
1820 pmap_object_init_pt(
1821 map->pmap,
1822 useStart,
1823 current->protection,
1824 current->object.vm_object,
1825 pindex,
1826 (count << PAGE_SHIFT),
1827 MAP_PREFAULT_MADVISE
1831 vm_map_unlock_read(map);
1833 vm_map_entry_release(count);
1834 return(error);
1839 * vm_map_inherit:
1841 * Sets the inheritance of the specified address
1842 * range in the target map. Inheritance
1843 * affects how the map will be shared with
1844 * child maps at the time of vm_map_fork.
1847 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1848 vm_inherit_t new_inheritance)
1850 vm_map_entry_t entry;
1851 vm_map_entry_t temp_entry;
1852 int count;
1854 switch (new_inheritance) {
1855 case VM_INHERIT_NONE:
1856 case VM_INHERIT_COPY:
1857 case VM_INHERIT_SHARE:
1858 break;
1859 default:
1860 return (KERN_INVALID_ARGUMENT);
1863 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1864 vm_map_lock(map);
1866 VM_MAP_RANGE_CHECK(map, start, end);
1868 if (vm_map_lookup_entry(map, start, &temp_entry)) {
1869 entry = temp_entry;
1870 vm_map_clip_start(map, entry, start, &count);
1871 } else
1872 entry = temp_entry->next;
1874 while ((entry != &map->header) && (entry->start < end)) {
1875 vm_map_clip_end(map, entry, end, &count);
1877 entry->inheritance = new_inheritance;
1879 vm_map_simplify_entry(map, entry, &count);
1881 entry = entry->next;
1883 vm_map_unlock(map);
1884 vm_map_entry_release(count);
1885 return (KERN_SUCCESS);
1889 * Implement the semantics of mlock
1892 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1893 boolean_t new_pageable)
1895 vm_map_entry_t entry;
1896 vm_map_entry_t start_entry;
1897 vm_offset_t end;
1898 int rv = KERN_SUCCESS;
1899 int count;
1901 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1902 vm_map_lock(map);
1903 VM_MAP_RANGE_CHECK(map, start, real_end);
1904 end = real_end;
1906 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1907 if (start_entry == NULL) {
1908 vm_map_unlock(map);
1909 vm_map_entry_release(count);
1910 return (KERN_INVALID_ADDRESS);
1913 if (new_pageable == 0) {
1914 entry = start_entry;
1915 while ((entry != &map->header) && (entry->start < end)) {
1916 vm_offset_t save_start;
1917 vm_offset_t save_end;
1920 * Already user wired or hard wired (trivial cases)
1922 if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1923 entry = entry->next;
1924 continue;
1926 if (entry->wired_count != 0) {
1927 entry->wired_count++;
1928 entry->eflags |= MAP_ENTRY_USER_WIRED;
1929 entry = entry->next;
1930 continue;
1934 * A new wiring requires instantiation of appropriate
1935 * management structures and the faulting in of the
1936 * page.
1938 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1939 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1940 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1941 vm_map_entry_shadow(entry);
1942 } else if (entry->object.vm_object == NULL &&
1943 !map->system_map) {
1944 vm_map_entry_allocate_object(entry);
1947 entry->wired_count++;
1948 entry->eflags |= MAP_ENTRY_USER_WIRED;
1951 * Now fault in the area. Note that vm_fault_wire()
1952 * may release the map lock temporarily, it will be
1953 * relocked on return. The in-transition
1954 * flag protects the entries.
1956 save_start = entry->start;
1957 save_end = entry->end;
1958 rv = vm_fault_wire(map, entry, TRUE);
1959 if (rv) {
1960 CLIP_CHECK_BACK(entry, save_start);
1961 for (;;) {
1962 KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1963 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1964 entry->wired_count = 0;
1965 if (entry->end == save_end)
1966 break;
1967 entry = entry->next;
1968 KASSERT(entry != &map->header, ("bad entry clip during backout"));
1970 end = save_start; /* unwire the rest */
1971 break;
1974 * note that even though the entry might have been
1975 * clipped, the USER_WIRED flag we set prevents
1976 * duplication so we do not have to do a
1977 * clip check.
1979 entry = entry->next;
1983 * If we failed fall through to the unwiring section to
1984 * unwire what we had wired so far. 'end' has already
1985 * been adjusted.
1987 if (rv)
1988 new_pageable = 1;
1991 * start_entry might have been clipped if we unlocked the
1992 * map and blocked. No matter how clipped it has gotten
1993 * there should be a fragment that is on our start boundary.
1995 CLIP_CHECK_BACK(start_entry, start);
1999 * Deal with the unwiring case.
2001 if (new_pageable) {
2003 * This is the unwiring case. We must first ensure that the
2004 * range to be unwired is really wired down. We know there
2005 * are no holes.
2007 entry = start_entry;
2008 while ((entry != &map->header) && (entry->start < end)) {
2009 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2010 rv = KERN_INVALID_ARGUMENT;
2011 goto done;
2013 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2014 entry = entry->next;
2018 * Now decrement the wiring count for each region. If a region
2019 * becomes completely unwired, unwire its physical pages and
2020 * mappings.
2023 * The map entries are processed in a loop, checking to
2024 * make sure the entry is wired and asserting it has a wired
2025 * count. However, another loop was inserted more-or-less in
2026 * the middle of the unwiring path. This loop picks up the
2027 * "entry" loop variable from the first loop without first
2028 * setting it to start_entry. Naturally, the secound loop
2029 * is never entered and the pages backing the entries are
2030 * never unwired. This can lead to a leak of wired pages.
2032 entry = start_entry;
2033 while ((entry != &map->header) && (entry->start < end)) {
2034 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2035 ("expected USER_WIRED on entry %p", entry));
2036 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2037 entry->wired_count--;
2038 if (entry->wired_count == 0)
2039 vm_fault_unwire(map, entry);
2040 entry = entry->next;
2043 done:
2044 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2045 MAP_CLIP_NO_HOLES);
2046 map->timestamp++;
2047 vm_map_unlock(map);
2048 vm_map_entry_release(count);
2049 return (rv);
2053 * vm_map_wire:
2055 * Sets the pageability of the specified address
2056 * range in the target map. Regions specified
2057 * as not pageable require locked-down physical
2058 * memory and physical page maps.
2060 * The map must not be locked, but a reference
2061 * must remain to the map throughout the call.
2063 * This function may be called via the zalloc path and must properly
2064 * reserve map entries for kernel_map.
2067 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2069 vm_map_entry_t entry;
2070 vm_map_entry_t start_entry;
2071 vm_offset_t end;
2072 int rv = KERN_SUCCESS;
2073 int count;
2075 if (kmflags & KM_KRESERVE)
2076 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2077 else
2078 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2079 vm_map_lock(map);
2080 VM_MAP_RANGE_CHECK(map, start, real_end);
2081 end = real_end;
2083 start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2084 if (start_entry == NULL) {
2085 vm_map_unlock(map);
2086 rv = KERN_INVALID_ADDRESS;
2087 goto failure;
2089 if ((kmflags & KM_PAGEABLE) == 0) {
2091 * Wiring.
2093 * 1. Holding the write lock, we create any shadow or zero-fill
2094 * objects that need to be created. Then we clip each map
2095 * entry to the region to be wired and increment its wiring
2096 * count. We create objects before clipping the map entries
2097 * to avoid object proliferation.
2099 * 2. We downgrade to a read lock, and call vm_fault_wire to
2100 * fault in the pages for any newly wired area (wired_count is
2101 * 1).
2103 * Downgrading to a read lock for vm_fault_wire avoids a
2104 * possible deadlock with another process that may have faulted
2105 * on one of the pages to be wired (it would mark the page busy,
2106 * blocking us, then in turn block on the map lock that we
2107 * hold). Because of problems in the recursive lock package,
2108 * we cannot upgrade to a write lock in vm_map_lookup. Thus,
2109 * any actions that require the write lock must be done
2110 * beforehand. Because we keep the read lock on the map, the
2111 * copy-on-write status of the entries we modify here cannot
2112 * change.
2115 entry = start_entry;
2116 while ((entry != &map->header) && (entry->start < end)) {
2118 * Trivial case if the entry is already wired
2120 if (entry->wired_count) {
2121 entry->wired_count++;
2122 entry = entry->next;
2123 continue;
2127 * The entry is being newly wired, we have to setup
2128 * appropriate management structures. A shadow
2129 * object is required for a copy-on-write region,
2130 * or a normal object for a zero-fill region. We
2131 * do not have to do this for entries that point to sub
2132 * maps because we won't hold the lock on the sub map.
2134 if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2135 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2136 if (copyflag &&
2137 ((entry->protection & VM_PROT_WRITE) != 0)) {
2138 vm_map_entry_shadow(entry);
2139 } else if (entry->object.vm_object == NULL &&
2140 !map->system_map) {
2141 vm_map_entry_allocate_object(entry);
2145 entry->wired_count++;
2146 entry = entry->next;
2150 * Pass 2.
2154 * HACK HACK HACK HACK
2156 * Unlock the map to avoid deadlocks. The in-transit flag
2157 * protects us from most changes but note that
2158 * clipping may still occur. To prevent clipping from
2159 * occuring after the unlock, except for when we are
2160 * blocking in vm_fault_wire, we must run in a critical
2161 * section, otherwise our accesses to entry->start and
2162 * entry->end could be corrupted. We have to enter the
2163 * critical section prior to unlocking so start_entry does
2164 * not change out from under us at the very beginning of the
2165 * loop.
2167 * HACK HACK HACK HACK
2170 crit_enter();
2172 entry = start_entry;
2173 while (entry != &map->header && entry->start < end) {
2175 * If vm_fault_wire fails for any page we need to undo
2176 * what has been done. We decrement the wiring count
2177 * for those pages which have not yet been wired (now)
2178 * and unwire those that have (later).
2180 vm_offset_t save_start = entry->start;
2181 vm_offset_t save_end = entry->end;
2183 if (entry->wired_count == 1)
2184 rv = vm_fault_wire(map, entry, FALSE);
2185 if (rv) {
2186 CLIP_CHECK_BACK(entry, save_start);
2187 for (;;) {
2188 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2189 entry->wired_count = 0;
2190 if (entry->end == save_end)
2191 break;
2192 entry = entry->next;
2193 KASSERT(entry != &map->header, ("bad entry clip during backout"));
2195 end = save_start;
2196 break;
2198 CLIP_CHECK_FWD(entry, save_end);
2199 entry = entry->next;
2201 crit_exit();
2204 * If a failure occured undo everything by falling through
2205 * to the unwiring code. 'end' has already been adjusted
2206 * appropriately.
2208 if (rv)
2209 kmflags |= KM_PAGEABLE;
2212 * start_entry is still IN_TRANSITION but may have been
2213 * clipped since vm_fault_wire() unlocks and relocks the
2214 * map. No matter how clipped it has gotten there should
2215 * be a fragment that is on our start boundary.
2217 CLIP_CHECK_BACK(start_entry, start);
2220 if (kmflags & KM_PAGEABLE) {
2222 * This is the unwiring case. We must first ensure that the
2223 * range to be unwired is really wired down. We know there
2224 * are no holes.
2226 entry = start_entry;
2227 while ((entry != &map->header) && (entry->start < end)) {
2228 if (entry->wired_count == 0) {
2229 rv = KERN_INVALID_ARGUMENT;
2230 goto done;
2232 entry = entry->next;
2236 * Now decrement the wiring count for each region. If a region
2237 * becomes completely unwired, unwire its physical pages and
2238 * mappings.
2240 entry = start_entry;
2241 while ((entry != &map->header) && (entry->start < end)) {
2242 entry->wired_count--;
2243 if (entry->wired_count == 0)
2244 vm_fault_unwire(map, entry);
2245 entry = entry->next;
2248 done:
2249 vm_map_unclip_range(map, start_entry, start, real_end, &count,
2250 MAP_CLIP_NO_HOLES);
2251 map->timestamp++;
2252 vm_map_unlock(map);
2253 failure:
2254 if (kmflags & KM_KRESERVE)
2255 vm_map_entry_krelease(count);
2256 else
2257 vm_map_entry_release(count);
2258 return (rv);
2262 * vm_map_set_wired_quick()
2264 * Mark a newly allocated address range as wired but do not fault in
2265 * the pages. The caller is expected to load the pages into the object.
2267 * The map must be locked on entry and will remain locked on return.
2269 void
2270 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2272 vm_map_entry_t scan;
2273 vm_map_entry_t entry;
2275 entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2276 for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2277 KKASSERT(entry->wired_count == 0);
2278 entry->wired_count = 1;
2280 vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2284 * vm_map_clean
2286 * Push any dirty cached pages in the address range to their pager.
2287 * If syncio is TRUE, dirty pages are written synchronously.
2288 * If invalidate is TRUE, any cached pages are freed as well.
2290 * Returns an error if any part of the specified range is not mapped.
2293 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2294 boolean_t invalidate)
2296 vm_map_entry_t current;
2297 vm_map_entry_t entry;
2298 vm_size_t size;
2299 vm_object_t object;
2300 vm_ooffset_t offset;
2302 vm_map_lock_read(map);
2303 VM_MAP_RANGE_CHECK(map, start, end);
2304 if (!vm_map_lookup_entry(map, start, &entry)) {
2305 vm_map_unlock_read(map);
2306 return (KERN_INVALID_ADDRESS);
2309 * Make a first pass to check for holes.
2311 for (current = entry; current->start < end; current = current->next) {
2312 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2313 vm_map_unlock_read(map);
2314 return (KERN_INVALID_ARGUMENT);
2316 if (end > current->end &&
2317 (current->next == &map->header ||
2318 current->end != current->next->start)) {
2319 vm_map_unlock_read(map);
2320 return (KERN_INVALID_ADDRESS);
2324 if (invalidate)
2325 pmap_remove(vm_map_pmap(map), start, end);
2327 * Make a second pass, cleaning/uncaching pages from the indicated
2328 * objects as we go.
2330 for (current = entry; current->start < end; current = current->next) {
2331 offset = current->offset + (start - current->start);
2332 size = (end <= current->end ? end : current->end) - start;
2333 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2334 vm_map_t smap;
2335 vm_map_entry_t tentry;
2336 vm_size_t tsize;
2338 smap = current->object.sub_map;
2339 vm_map_lock_read(smap);
2340 vm_map_lookup_entry(smap, offset, &tentry);
2341 tsize = tentry->end - offset;
2342 if (tsize < size)
2343 size = tsize;
2344 object = tentry->object.vm_object;
2345 offset = tentry->offset + (offset - tentry->start);
2346 vm_map_unlock_read(smap);
2347 } else {
2348 object = current->object.vm_object;
2351 * Note that there is absolutely no sense in writing out
2352 * anonymous objects, so we track down the vnode object
2353 * to write out.
2354 * We invalidate (remove) all pages from the address space
2355 * anyway, for semantic correctness.
2357 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2358 * may start out with a NULL object.
2360 while (object && object->backing_object) {
2361 offset += object->backing_object_offset;
2362 object = object->backing_object;
2363 if (object->size < OFF_TO_IDX( offset + size))
2364 size = IDX_TO_OFF(object->size) - offset;
2366 if (object && (object->type == OBJT_VNODE) &&
2367 (current->protection & VM_PROT_WRITE)) {
2369 * Flush pages if writing is allowed, invalidate them
2370 * if invalidation requested. Pages undergoing I/O
2371 * will be ignored by vm_object_page_remove().
2373 * We cannot lock the vnode and then wait for paging
2374 * to complete without deadlocking against vm_fault.
2375 * Instead we simply call vm_object_page_remove() and
2376 * allow it to block internally on a page-by-page
2377 * basis when it encounters pages undergoing async
2378 * I/O.
2380 int flags;
2382 vm_object_reference(object);
2383 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2384 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2385 flags |= invalidate ? OBJPC_INVAL : 0;
2388 * When operating on a virtual page table just
2389 * flush the whole object. XXX we probably ought
2390 * to
2392 switch(current->maptype) {
2393 case VM_MAPTYPE_NORMAL:
2394 vm_object_page_clean(object,
2395 OFF_TO_IDX(offset),
2396 OFF_TO_IDX(offset + size + PAGE_MASK),
2397 flags);
2398 break;
2399 case VM_MAPTYPE_VPAGETABLE:
2400 vm_object_page_clean(object, 0, 0, flags);
2401 break;
2403 vn_unlock(((struct vnode *)object->handle));
2404 vm_object_deallocate(object);
2406 if (object && invalidate &&
2407 ((object->type == OBJT_VNODE) ||
2408 (object->type == OBJT_DEVICE))) {
2409 int clean_only =
2410 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2411 vm_object_reference(object);
2412 switch(current->maptype) {
2413 case VM_MAPTYPE_NORMAL:
2414 vm_object_page_remove(object,
2415 OFF_TO_IDX(offset),
2416 OFF_TO_IDX(offset + size + PAGE_MASK),
2417 clean_only);
2418 break;
2419 case VM_MAPTYPE_VPAGETABLE:
2420 vm_object_page_remove(object, 0, 0, clean_only);
2421 break;
2423 vm_object_deallocate(object);
2425 start += size;
2428 vm_map_unlock_read(map);
2429 return (KERN_SUCCESS);
2433 * vm_map_entry_unwire: [ internal use only ]
2435 * Make the region specified by this entry pageable.
2437 * The map in question should be locked.
2438 * [This is the reason for this routine's existence.]
2440 static void
2441 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2443 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2444 entry->wired_count = 0;
2445 vm_fault_unwire(map, entry);
2449 * vm_map_entry_delete: [ internal use only ]
2451 * Deallocate the given entry from the target map.
2453 static void
2454 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2456 vm_map_entry_unlink(map, entry);
2457 map->size -= entry->end - entry->start;
2459 switch(entry->maptype) {
2460 case VM_MAPTYPE_NORMAL:
2461 case VM_MAPTYPE_VPAGETABLE:
2462 vm_object_deallocate(entry->object.vm_object);
2463 break;
2464 default:
2465 break;
2468 vm_map_entry_dispose(map, entry, countp);
2472 * vm_map_delete: [ internal use only ]
2474 * Deallocates the given address range from the target
2475 * map.
2478 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2480 vm_object_t object;
2481 vm_map_entry_t entry;
2482 vm_map_entry_t first_entry;
2484 again:
2486 * Find the start of the region, and clip it. Set entry to point
2487 * at the first record containing the requested address or, if no
2488 * such record exists, the next record with a greater address. The
2489 * loop will run from this point until a record beyond the termination
2490 * address is encountered.
2492 * map->hint must be adjusted to not point to anything we delete,
2493 * so set it to the entry prior to the one being deleted.
2495 * GGG see other GGG comment.
2497 if (vm_map_lookup_entry(map, start, &first_entry)) {
2498 entry = first_entry;
2499 vm_map_clip_start(map, entry, start, countp);
2500 map->hint = entry->prev; /* possible problem XXX */
2501 } else {
2502 map->hint = first_entry; /* possible problem XXX */
2503 entry = first_entry->next;
2507 * If a hole opens up prior to the current first_free then
2508 * adjust first_free. As with map->hint, map->first_free
2509 * cannot be left set to anything we might delete.
2511 if (entry == &map->header) {
2512 map->first_free = &map->header;
2513 } else if (map->first_free->start >= start) {
2514 map->first_free = entry->prev;
2518 * Step through all entries in this region
2521 while ((entry != &map->header) && (entry->start < end)) {
2522 vm_map_entry_t next;
2523 vm_offset_t s, e;
2524 vm_pindex_t offidxstart, offidxend, count;
2527 * If we hit an in-transition entry we have to sleep and
2528 * retry. It's easier (and not really slower) to just retry
2529 * since this case occurs so rarely and the hint is already
2530 * pointing at the right place. We have to reset the
2531 * start offset so as not to accidently delete an entry
2532 * another process just created in vacated space.
2534 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2535 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2536 start = entry->start;
2537 ++mycpu->gd_cnt.v_intrans_coll;
2538 ++mycpu->gd_cnt.v_intrans_wait;
2539 vm_map_transition_wait(map);
2540 goto again;
2542 vm_map_clip_end(map, entry, end, countp);
2544 s = entry->start;
2545 e = entry->end;
2546 next = entry->next;
2548 offidxstart = OFF_TO_IDX(entry->offset);
2549 count = OFF_TO_IDX(e - s);
2550 object = entry->object.vm_object;
2553 * Unwire before removing addresses from the pmap; otherwise,
2554 * unwiring will put the entries back in the pmap.
2556 if (entry->wired_count != 0)
2557 vm_map_entry_unwire(map, entry);
2559 offidxend = offidxstart + count;
2561 if (object == &kernel_object) {
2562 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2563 } else {
2564 pmap_remove(map->pmap, s, e);
2565 if (object != NULL &&
2566 object->ref_count != 1 &&
2567 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2568 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2569 vm_object_collapse(object);
2570 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2571 if (object->type == OBJT_SWAP) {
2572 swap_pager_freespace(object, offidxstart, count);
2574 if (offidxend >= object->size &&
2575 offidxstart < object->size) {
2576 object->size = offidxstart;
2582 * Delete the entry (which may delete the object) only after
2583 * removing all pmap entries pointing to its pages.
2584 * (Otherwise, its page frames may be reallocated, and any
2585 * modify bits will be set in the wrong object!)
2587 vm_map_entry_delete(map, entry, countp);
2588 entry = next;
2590 return (KERN_SUCCESS);
2594 * vm_map_remove:
2596 * Remove the given address range from the target map.
2597 * This is the exported form of vm_map_delete.
2600 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2602 int result;
2603 int count;
2605 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2606 vm_map_lock(map);
2607 VM_MAP_RANGE_CHECK(map, start, end);
2608 result = vm_map_delete(map, start, end, &count);
2609 vm_map_unlock(map);
2610 vm_map_entry_release(count);
2612 return (result);
2616 * vm_map_check_protection:
2618 * Assert that the target map allows the specified
2619 * privilege on the entire address region given.
2620 * The entire region must be allocated.
2622 boolean_t
2623 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2624 vm_prot_t protection)
2626 vm_map_entry_t entry;
2627 vm_map_entry_t tmp_entry;
2629 if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2630 return (FALSE);
2632 entry = tmp_entry;
2634 while (start < end) {
2635 if (entry == &map->header) {
2636 return (FALSE);
2639 * No holes allowed!
2642 if (start < entry->start) {
2643 return (FALSE);
2646 * Check protection associated with entry.
2649 if ((entry->protection & protection) != protection) {
2650 return (FALSE);
2652 /* go to next entry */
2654 start = entry->end;
2655 entry = entry->next;
2657 return (TRUE);
2661 * Split the pages in a map entry into a new object. This affords
2662 * easier removal of unused pages, and keeps object inheritance from
2663 * being a negative impact on memory usage.
2665 static void
2666 vm_map_split(vm_map_entry_t entry)
2668 vm_page_t m;
2669 vm_object_t orig_object, new_object, source;
2670 vm_offset_t s, e;
2671 vm_pindex_t offidxstart, offidxend, idx;
2672 vm_size_t size;
2673 vm_ooffset_t offset;
2675 orig_object = entry->object.vm_object;
2676 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2677 return;
2678 if (orig_object->ref_count <= 1)
2679 return;
2681 offset = entry->offset;
2682 s = entry->start;
2683 e = entry->end;
2685 offidxstart = OFF_TO_IDX(offset);
2686 offidxend = offidxstart + OFF_TO_IDX(e - s);
2687 size = offidxend - offidxstart;
2689 new_object = vm_pager_allocate(orig_object->type, NULL,
2690 IDX_TO_OFF(size), VM_PROT_ALL, 0);
2691 if (new_object == NULL)
2692 return;
2694 source = orig_object->backing_object;
2695 if (source != NULL) {
2696 vm_object_reference(source); /* Referenced by new_object */
2697 LIST_INSERT_HEAD(&source->shadow_head,
2698 new_object, shadow_list);
2699 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2700 new_object->backing_object_offset =
2701 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2702 new_object->backing_object = source;
2703 source->shadow_count++;
2704 source->generation++;
2707 for (idx = 0; idx < size; idx++) {
2708 vm_page_t m;
2711 * A critical section is required to avoid a race between
2712 * the lookup and an interrupt/unbusy/free and our busy
2713 * check.
2715 crit_enter();
2716 retry:
2717 m = vm_page_lookup(orig_object, offidxstart + idx);
2718 if (m == NULL) {
2719 crit_exit();
2720 continue;
2724 * We must wait for pending I/O to complete before we can
2725 * rename the page.
2727 * We do not have to VM_PROT_NONE the page as mappings should
2728 * not be changed by this operation.
2730 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2731 goto retry;
2732 vm_page_busy(m);
2733 vm_page_rename(m, new_object, idx);
2734 /* page automatically made dirty by rename and cache handled */
2735 vm_page_busy(m);
2736 crit_exit();
2739 if (orig_object->type == OBJT_SWAP) {
2740 vm_object_pip_add(orig_object, 1);
2742 * copy orig_object pages into new_object
2743 * and destroy unneeded pages in
2744 * shadow object.
2746 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2747 vm_object_pip_wakeup(orig_object);
2751 * Wakeup the pages we played with. No spl protection is needed
2752 * for a simple wakeup.
2754 for (idx = 0; idx < size; idx++) {
2755 m = vm_page_lookup(new_object, idx);
2756 if (m)
2757 vm_page_wakeup(m);
2760 entry->object.vm_object = new_object;
2761 entry->offset = 0LL;
2762 vm_object_deallocate(orig_object);
2766 * vm_map_copy_entry:
2768 * Copies the contents of the source entry to the destination
2769 * entry. The entries *must* be aligned properly.
2771 static void
2772 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2773 vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2775 vm_object_t src_object;
2777 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2778 return;
2779 if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2780 return;
2782 if (src_entry->wired_count == 0) {
2784 * If the source entry is marked needs_copy, it is already
2785 * write-protected.
2787 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2788 pmap_protect(src_map->pmap,
2789 src_entry->start,
2790 src_entry->end,
2791 src_entry->protection & ~VM_PROT_WRITE);
2795 * Make a copy of the object.
2797 if ((src_object = src_entry->object.vm_object) != NULL) {
2798 if ((src_object->handle == NULL) &&
2799 (src_object->type == OBJT_DEFAULT ||
2800 src_object->type == OBJT_SWAP)) {
2801 vm_object_collapse(src_object);
2802 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2803 vm_map_split(src_entry);
2804 src_object = src_entry->object.vm_object;
2808 vm_object_reference(src_object);
2809 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2810 dst_entry->object.vm_object = src_object;
2811 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2812 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2813 dst_entry->offset = src_entry->offset;
2814 } else {
2815 dst_entry->object.vm_object = NULL;
2816 dst_entry->offset = 0;
2819 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2820 dst_entry->end - dst_entry->start, src_entry->start);
2821 } else {
2823 * Of course, wired down pages can't be set copy-on-write.
2824 * Cause wired pages to be copied into the new map by
2825 * simulating faults (the new pages are pageable)
2827 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2832 * vmspace_fork:
2833 * Create a new process vmspace structure and vm_map
2834 * based on those of an existing process. The new map
2835 * is based on the old map, according to the inheritance
2836 * values on the regions in that map.
2838 * The source map must not be locked.
2840 struct vmspace *
2841 vmspace_fork(struct vmspace *vm1)
2843 struct vmspace *vm2;
2844 vm_map_t old_map = &vm1->vm_map;
2845 vm_map_t new_map;
2846 vm_map_entry_t old_entry;
2847 vm_map_entry_t new_entry;
2848 vm_object_t object;
2849 int count;
2851 vm_map_lock(old_map);
2852 old_map->infork = 1;
2855 * XXX Note: upcalls are not copied.
2857 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2858 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2859 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2860 new_map = &vm2->vm_map; /* XXX */
2861 new_map->timestamp = 1;
2863 count = 0;
2864 old_entry = old_map->header.next;
2865 while (old_entry != &old_map->header) {
2866 ++count;
2867 old_entry = old_entry->next;
2870 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2872 old_entry = old_map->header.next;
2873 while (old_entry != &old_map->header) {
2874 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2875 panic("vm_map_fork: encountered a submap");
2877 switch (old_entry->inheritance) {
2878 case VM_INHERIT_NONE:
2879 break;
2881 case VM_INHERIT_SHARE:
2883 * Clone the entry, creating the shared object if
2884 * necessary.
2886 object = old_entry->object.vm_object;
2887 if (object == NULL) {
2888 vm_map_entry_allocate_object(old_entry);
2889 object = old_entry->object.vm_object;
2893 * Add the reference before calling vm_map_entry_shadow
2894 * to insure that a shadow object is created.
2896 vm_object_reference(object);
2897 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2898 vm_map_entry_shadow(old_entry);
2899 /* Transfer the second reference too. */
2900 vm_object_reference(
2901 old_entry->object.vm_object);
2902 vm_object_deallocate(object);
2903 object = old_entry->object.vm_object;
2905 vm_object_clear_flag(object, OBJ_ONEMAPPING);
2908 * Clone the entry, referencing the shared object.
2910 new_entry = vm_map_entry_create(new_map, &count);
2911 *new_entry = *old_entry;
2912 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2913 new_entry->wired_count = 0;
2916 * Insert the entry into the new map -- we know we're
2917 * inserting at the end of the new map.
2920 vm_map_entry_link(new_map, new_map->header.prev,
2921 new_entry);
2924 * Update the physical map
2927 pmap_copy(new_map->pmap, old_map->pmap,
2928 new_entry->start,
2929 (old_entry->end - old_entry->start),
2930 old_entry->start);
2931 break;
2933 case VM_INHERIT_COPY:
2935 * Clone the entry and link into the map.
2937 new_entry = vm_map_entry_create(new_map, &count);
2938 *new_entry = *old_entry;
2939 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2940 new_entry->wired_count = 0;
2941 new_entry->object.vm_object = NULL;
2942 vm_map_entry_link(new_map, new_map->header.prev,
2943 new_entry);
2944 vm_map_copy_entry(old_map, new_map, old_entry,
2945 new_entry);
2946 break;
2948 old_entry = old_entry->next;
2951 new_map->size = old_map->size;
2952 old_map->infork = 0;
2953 vm_map_unlock(old_map);
2954 vm_map_entry_release(count);
2956 return (vm2);
2960 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2961 vm_prot_t prot, vm_prot_t max, int cow)
2963 vm_map_entry_t prev_entry;
2964 vm_map_entry_t new_stack_entry;
2965 vm_size_t init_ssize;
2966 int rv;
2967 int count;
2969 if (VM_MIN_USER_ADDRESS > 0 && addrbos < VM_MIN_USER_ADDRESS)
2970 return (KERN_NO_SPACE);
2972 if (max_ssize < sgrowsiz)
2973 init_ssize = max_ssize;
2974 else
2975 init_ssize = sgrowsiz;
2977 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2978 vm_map_lock(map);
2980 /* If addr is already mapped, no go */
2981 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2982 vm_map_unlock(map);
2983 vm_map_entry_release(count);
2984 return (KERN_NO_SPACE);
2987 /* If we would blow our VMEM resource limit, no go */
2988 if (map->size + init_ssize >
2989 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2990 vm_map_unlock(map);
2991 vm_map_entry_release(count);
2992 return (KERN_NO_SPACE);
2995 /* If we can't accomodate max_ssize in the current mapping,
2996 * no go. However, we need to be aware that subsequent user
2997 * mappings might map into the space we have reserved for
2998 * stack, and currently this space is not protected.
3000 * Hopefully we will at least detect this condition
3001 * when we try to grow the stack.
3003 if ((prev_entry->next != &map->header) &&
3004 (prev_entry->next->start < addrbos + max_ssize)) {
3005 vm_map_unlock(map);
3006 vm_map_entry_release(count);
3007 return (KERN_NO_SPACE);
3010 /* We initially map a stack of only init_ssize. We will
3011 * grow as needed later. Since this is to be a grow
3012 * down stack, we map at the top of the range.
3014 * Note: we would normally expect prot and max to be
3015 * VM_PROT_ALL, and cow to be 0. Possibly we should
3016 * eliminate these as input parameters, and just
3017 * pass these values here in the insert call.
3019 rv = vm_map_insert(map, &count,
3020 NULL, 0, addrbos + max_ssize - init_ssize,
3021 addrbos + max_ssize,
3022 VM_MAPTYPE_NORMAL,
3023 prot, max,
3024 cow);
3026 /* Now set the avail_ssize amount */
3027 if (rv == KERN_SUCCESS) {
3028 if (prev_entry != &map->header)
3029 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3030 new_stack_entry = prev_entry->next;
3031 if (new_stack_entry->end != addrbos + max_ssize ||
3032 new_stack_entry->start != addrbos + max_ssize - init_ssize)
3033 panic ("Bad entry start/end for new stack entry");
3034 else
3035 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3038 vm_map_unlock(map);
3039 vm_map_entry_release(count);
3040 return (rv);
3043 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the
3044 * desired address is already mapped, or if we successfully grow
3045 * the stack. Also returns KERN_SUCCESS if addr is outside the
3046 * stack range (this is strange, but preserves compatibility with
3047 * the grow function in vm_machdep.c).
3050 vm_map_growstack (struct proc *p, vm_offset_t addr)
3052 vm_map_entry_t prev_entry;
3053 vm_map_entry_t stack_entry;
3054 vm_map_entry_t new_stack_entry;
3055 struct vmspace *vm = p->p_vmspace;
3056 vm_map_t map = &vm->vm_map;
3057 vm_offset_t end;
3058 int grow_amount;
3059 int rv = KERN_SUCCESS;
3060 int is_procstack;
3061 int use_read_lock = 1;
3062 int count;
3064 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3065 Retry:
3066 if (use_read_lock)
3067 vm_map_lock_read(map);
3068 else
3069 vm_map_lock(map);
3071 /* If addr is already in the entry range, no need to grow.*/
3072 if (vm_map_lookup_entry(map, addr, &prev_entry))
3073 goto done;
3075 if ((stack_entry = prev_entry->next) == &map->header)
3076 goto done;
3077 if (prev_entry == &map->header)
3078 end = stack_entry->start - stack_entry->aux.avail_ssize;
3079 else
3080 end = prev_entry->end;
3082 /* This next test mimics the old grow function in vm_machdep.c.
3083 * It really doesn't quite make sense, but we do it anyway
3084 * for compatibility.
3086 * If not growable stack, return success. This signals the
3087 * caller to proceed as he would normally with normal vm.
3089 if (stack_entry->aux.avail_ssize < 1 ||
3090 addr >= stack_entry->start ||
3091 addr < stack_entry->start - stack_entry->aux.avail_ssize) {
3092 goto done;
3095 /* Find the minimum grow amount */
3096 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3097 if (grow_amount > stack_entry->aux.avail_ssize) {
3098 rv = KERN_NO_SPACE;
3099 goto done;
3102 /* If there is no longer enough space between the entries
3103 * nogo, and adjust the available space. Note: this
3104 * should only happen if the user has mapped into the
3105 * stack area after the stack was created, and is
3106 * probably an error.
3108 * This also effectively destroys any guard page the user
3109 * might have intended by limiting the stack size.
3111 if (grow_amount > stack_entry->start - end) {
3112 if (use_read_lock && vm_map_lock_upgrade(map)) {
3113 use_read_lock = 0;
3114 goto Retry;
3116 use_read_lock = 0;
3117 stack_entry->aux.avail_ssize = stack_entry->start - end;
3118 rv = KERN_NO_SPACE;
3119 goto done;
3122 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3124 /* If this is the main process stack, see if we're over the
3125 * stack limit.
3127 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3128 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3129 rv = KERN_NO_SPACE;
3130 goto done;
3133 /* Round up the grow amount modulo SGROWSIZ */
3134 grow_amount = roundup (grow_amount, sgrowsiz);
3135 if (grow_amount > stack_entry->aux.avail_ssize) {
3136 grow_amount = stack_entry->aux.avail_ssize;
3138 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3139 p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3140 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3141 ctob(vm->vm_ssize);
3144 /* If we would blow our VMEM resource limit, no go */
3145 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3146 rv = KERN_NO_SPACE;
3147 goto done;
3150 if (use_read_lock && vm_map_lock_upgrade(map)) {
3151 use_read_lock = 0;
3152 goto Retry;
3154 use_read_lock = 0;
3156 /* Get the preliminary new entry start value */
3157 addr = stack_entry->start - grow_amount;
3159 /* If this puts us into the previous entry, cut back our growth
3160 * to the available space. Also, see the note above.
3162 if (addr < end) {
3163 stack_entry->aux.avail_ssize = stack_entry->start - end;
3164 addr = end;
3167 rv = vm_map_insert(map, &count,
3168 NULL, 0, addr, stack_entry->start,
3169 VM_MAPTYPE_NORMAL,
3170 VM_PROT_ALL, VM_PROT_ALL,
3173 /* Adjust the available stack space by the amount we grew. */
3174 if (rv == KERN_SUCCESS) {
3175 if (prev_entry != &map->header)
3176 vm_map_clip_end(map, prev_entry, addr, &count);
3177 new_stack_entry = prev_entry->next;
3178 if (new_stack_entry->end != stack_entry->start ||
3179 new_stack_entry->start != addr)
3180 panic ("Bad stack grow start/end in new stack entry");
3181 else {
3182 new_stack_entry->aux.avail_ssize =
3183 stack_entry->aux.avail_ssize -
3184 (new_stack_entry->end - new_stack_entry->start);
3185 if (is_procstack)
3186 vm->vm_ssize += btoc(new_stack_entry->end -
3187 new_stack_entry->start);
3191 done:
3192 if (use_read_lock)
3193 vm_map_unlock_read(map);
3194 else
3195 vm_map_unlock(map);
3196 vm_map_entry_release(count);
3197 return (rv);
3201 * Unshare the specified VM space for exec. If other processes are
3202 * mapped to it, then create a new one. The new vmspace is null.
3204 void
3205 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3207 struct vmspace *oldvmspace = p->p_vmspace;
3208 struct vmspace *newvmspace;
3209 vm_map_t map = &p->p_vmspace->vm_map;
3212 * If we are execing a resident vmspace we fork it, otherwise
3213 * we create a new vmspace. Note that exitingcnt and upcalls
3214 * are not copied to the new vmspace.
3216 if (vmcopy) {
3217 newvmspace = vmspace_fork(vmcopy);
3218 } else {
3219 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3220 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3221 (caddr_t)&oldvmspace->vm_endcopy -
3222 (caddr_t)&oldvmspace->vm_startcopy);
3226 * Finish initializing the vmspace before assigning it
3227 * to the process. The vmspace will become the current vmspace
3228 * if p == curproc.
3230 pmap_pinit2(vmspace_pmap(newvmspace));
3231 pmap_replacevm(p, newvmspace, 0);
3232 sysref_put(&oldvmspace->vm_sysref);
3236 * Unshare the specified VM space for forcing COW. This
3237 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3239 * The exitingcnt test is not strictly necessary but has been
3240 * included for code sanity (to make the code a bit more deterministic).
3243 void
3244 vmspace_unshare(struct proc *p)
3246 struct vmspace *oldvmspace = p->p_vmspace;
3247 struct vmspace *newvmspace;
3249 if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3250 return;
3251 newvmspace = vmspace_fork(oldvmspace);
3252 pmap_pinit2(vmspace_pmap(newvmspace));
3253 pmap_replacevm(p, newvmspace, 0);
3254 sysref_put(&oldvmspace->vm_sysref);
3258 * vm_map_lookup:
3260 * Finds the VM object, offset, and
3261 * protection for a given virtual address in the
3262 * specified map, assuming a page fault of the
3263 * type specified.
3265 * Leaves the map in question locked for read; return
3266 * values are guaranteed until a vm_map_lookup_done
3267 * call is performed. Note that the map argument
3268 * is in/out; the returned map must be used in
3269 * the call to vm_map_lookup_done.
3271 * A handle (out_entry) is returned for use in
3272 * vm_map_lookup_done, to make that fast.
3274 * If a lookup is requested with "write protection"
3275 * specified, the map may be changed to perform virtual
3276 * copying operations, although the data referenced will
3277 * remain the same.
3280 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
3281 vm_offset_t vaddr,
3282 vm_prot_t fault_typea,
3283 vm_map_entry_t *out_entry, /* OUT */
3284 vm_object_t *object, /* OUT */
3285 vm_pindex_t *pindex, /* OUT */
3286 vm_prot_t *out_prot, /* OUT */
3287 boolean_t *wired) /* OUT */
3289 vm_map_entry_t entry;
3290 vm_map_t map = *var_map;
3291 vm_prot_t prot;
3292 vm_prot_t fault_type = fault_typea;
3293 int use_read_lock = 1;
3294 int rv = KERN_SUCCESS;
3296 RetryLookup:
3297 if (use_read_lock)
3298 vm_map_lock_read(map);
3299 else
3300 vm_map_lock(map);
3303 * If the map has an interesting hint, try it before calling full
3304 * blown lookup routine.
3306 entry = map->hint;
3307 *out_entry = entry;
3309 if ((entry == &map->header) ||
3310 (vaddr < entry->start) || (vaddr >= entry->end)) {
3311 vm_map_entry_t tmp_entry;
3314 * Entry was either not a valid hint, or the vaddr was not
3315 * contained in the entry, so do a full lookup.
3317 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3318 rv = KERN_INVALID_ADDRESS;
3319 goto done;
3322 entry = tmp_entry;
3323 *out_entry = entry;
3327 * Handle submaps.
3329 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3330 vm_map_t old_map = map;
3332 *var_map = map = entry->object.sub_map;
3333 if (use_read_lock)
3334 vm_map_unlock_read(old_map);
3335 else
3336 vm_map_unlock(old_map);
3337 use_read_lock = 1;
3338 goto RetryLookup;
3342 * Check whether this task is allowed to have this page.
3343 * Note the special case for MAP_ENTRY_COW
3344 * pages with an override. This is to implement a forced
3345 * COW for debuggers.
3348 if (fault_type & VM_PROT_OVERRIDE_WRITE)
3349 prot = entry->max_protection;
3350 else
3351 prot = entry->protection;
3353 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3354 if ((fault_type & prot) != fault_type) {
3355 rv = KERN_PROTECTION_FAILURE;
3356 goto done;
3359 if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3360 (entry->eflags & MAP_ENTRY_COW) &&
3361 (fault_type & VM_PROT_WRITE) &&
3362 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3363 rv = KERN_PROTECTION_FAILURE;
3364 goto done;
3368 * If this page is not pageable, we have to get it for all possible
3369 * accesses.
3371 *wired = (entry->wired_count != 0);
3372 if (*wired)
3373 prot = fault_type = entry->protection;
3376 * Virtual page tables may need to update the accessed (A) bit
3377 * in a page table entry. Upgrade the fault to a write fault for
3378 * that case if the map will support it. If the map does not support
3379 * it the page table entry simply will not be updated.
3381 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3382 if (prot & VM_PROT_WRITE)
3383 fault_type |= VM_PROT_WRITE;
3387 * If the entry was copy-on-write, we either ...
3389 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3391 * If we want to write the page, we may as well handle that
3392 * now since we've got the map locked.
3394 * If we don't need to write the page, we just demote the
3395 * permissions allowed.
3398 if (fault_type & VM_PROT_WRITE) {
3400 * Make a new object, and place it in the object
3401 * chain. Note that no new references have appeared
3402 * -- one just moved from the map to the new
3403 * object.
3406 if (use_read_lock && vm_map_lock_upgrade(map)) {
3407 use_read_lock = 0;
3408 goto RetryLookup;
3410 use_read_lock = 0;
3412 vm_map_entry_shadow(entry);
3413 } else {
3415 * We're attempting to read a copy-on-write page --
3416 * don't allow writes.
3419 prot &= ~VM_PROT_WRITE;
3424 * Create an object if necessary.
3426 if (entry->object.vm_object == NULL &&
3427 !map->system_map) {
3428 if (use_read_lock && vm_map_lock_upgrade(map)) {
3429 use_read_lock = 0;
3430 goto RetryLookup;
3432 use_read_lock = 0;
3433 vm_map_entry_allocate_object(entry);
3437 * Return the object/offset from this entry. If the entry was
3438 * copy-on-write or empty, it has been fixed up.
3441 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3442 *object = entry->object.vm_object;
3445 * Return whether this is the only map sharing this data. On
3446 * success we return with a read lock held on the map. On failure
3447 * we return with the map unlocked.
3449 *out_prot = prot;
3450 done:
3451 if (rv == KERN_SUCCESS) {
3452 if (use_read_lock == 0)
3453 vm_map_lock_downgrade(map);
3454 } else if (use_read_lock) {
3455 vm_map_unlock_read(map);
3456 } else {
3457 vm_map_unlock(map);
3459 return (rv);
3463 * vm_map_lookup_done:
3465 * Releases locks acquired by a vm_map_lookup
3466 * (according to the handle returned by that lookup).
3469 void
3470 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3473 * Unlock the main-level map
3475 vm_map_unlock_read(map);
3476 if (count)
3477 vm_map_entry_release(count);
3480 #include "opt_ddb.h"
3481 #ifdef DDB
3482 #include <sys/kernel.h>
3484 #include <ddb/ddb.h>
3487 * vm_map_print: [ debug ]
3489 DB_SHOW_COMMAND(map, vm_map_print)
3491 static int nlines;
3492 /* XXX convert args. */
3493 vm_map_t map = (vm_map_t)addr;
3494 boolean_t full = have_addr;
3496 vm_map_entry_t entry;
3498 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3499 (void *)map,
3500 (void *)map->pmap, map->nentries, map->timestamp);
3501 nlines++;
3503 if (!full && db_indent)
3504 return;
3506 db_indent += 2;
3507 for (entry = map->header.next; entry != &map->header;
3508 entry = entry->next) {
3509 db_iprintf("map entry %p: start=%p, end=%p\n",
3510 (void *)entry, (void *)entry->start, (void *)entry->end);
3511 nlines++;
3513 static char *inheritance_name[4] =
3514 {"share", "copy", "none", "donate_copy"};
3516 db_iprintf(" prot=%x/%x/%s",
3517 entry->protection,
3518 entry->max_protection,
3519 inheritance_name[(int)(unsigned char)entry->inheritance]);
3520 if (entry->wired_count != 0)
3521 db_printf(", wired");
3523 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3524 /* XXX no %qd in kernel. Truncate entry->offset. */
3525 db_printf(", share=%p, offset=0x%lx\n",
3526 (void *)entry->object.sub_map,
3527 (long)entry->offset);
3528 nlines++;
3529 if ((entry->prev == &map->header) ||
3530 (entry->prev->object.sub_map !=
3531 entry->object.sub_map)) {
3532 db_indent += 2;
3533 vm_map_print((db_expr_t)(intptr_t)
3534 entry->object.sub_map,
3535 full, 0, (char *)0);
3536 db_indent -= 2;
3538 } else {
3539 /* XXX no %qd in kernel. Truncate entry->offset. */
3540 db_printf(", object=%p, offset=0x%lx",
3541 (void *)entry->object.vm_object,
3542 (long)entry->offset);
3543 if (entry->eflags & MAP_ENTRY_COW)
3544 db_printf(", copy (%s)",
3545 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3546 db_printf("\n");
3547 nlines++;
3549 if ((entry->prev == &map->header) ||
3550 (entry->prev->object.vm_object !=
3551 entry->object.vm_object)) {
3552 db_indent += 2;
3553 vm_object_print((db_expr_t)(intptr_t)
3554 entry->object.vm_object,
3555 full, 0, (char *)0);
3556 nlines += 4;
3557 db_indent -= 2;
3561 db_indent -= 2;
3562 if (db_indent == 0)
3563 nlines = 0;
3567 DB_SHOW_COMMAND(procvm, procvm)
3569 struct proc *p;
3571 if (have_addr) {
3572 p = (struct proc *) addr;
3573 } else {
3574 p = curproc;
3577 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3578 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3579 (void *)vmspace_pmap(p->p_vmspace));
3581 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3584 #endif /* DDB */