HAMMER 60I/Many: Mirroring
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
blobbb6515f2e4bda7f9171bc0889a70973de3a16722
1 /*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.96 2008/07/09 10:29:20 dillon Exp $
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
42 static int hammer_unload_inode(struct hammer_inode *ip);
43 static void hammer_free_inode(hammer_inode_t ip);
44 static void hammer_flush_inode_core(hammer_inode_t ip, int flags);
45 static int hammer_setup_child_callback(hammer_record_t rec, void *data);
46 static int hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
47 static int hammer_setup_parent_inodes(hammer_inode_t ip);
48 static int hammer_setup_parent_inodes_helper(hammer_record_t record);
49 static void hammer_inode_wakereclaims(hammer_inode_t ip);
51 #ifdef DEBUG_TRUNCATE
52 extern struct hammer_inode *HammerTruncIp;
53 #endif
56 * RB-Tree support for inode structures
58 int
59 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
61 if (ip1->obj_localization < ip2->obj_localization)
62 return(-1);
63 if (ip1->obj_localization > ip2->obj_localization)
64 return(1);
65 if (ip1->obj_id < ip2->obj_id)
66 return(-1);
67 if (ip1->obj_id > ip2->obj_id)
68 return(1);
69 if (ip1->obj_asof < ip2->obj_asof)
70 return(-1);
71 if (ip1->obj_asof > ip2->obj_asof)
72 return(1);
73 return(0);
77 * RB-Tree support for inode structures / special LOOKUP_INFO
79 static int
80 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
82 if (info->obj_localization < ip->obj_localization)
83 return(-1);
84 if (info->obj_localization > ip->obj_localization)
85 return(1);
86 if (info->obj_id < ip->obj_id)
87 return(-1);
88 if (info->obj_id > ip->obj_id)
89 return(1);
90 if (info->obj_asof < ip->obj_asof)
91 return(-1);
92 if (info->obj_asof > ip->obj_asof)
93 return(1);
94 return(0);
98 * Used by hammer_scan_inode_snapshots() to locate all of an object's
99 * snapshots. Note that the asof field is not tested, which we can get
100 * away with because it is the lowest-priority field.
102 static int
103 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
105 hammer_inode_info_t info = data;
107 if (ip->obj_localization > info->obj_localization)
108 return(1);
109 if (ip->obj_localization < info->obj_localization)
110 return(-1);
111 if (ip->obj_id > info->obj_id)
112 return(1);
113 if (ip->obj_id < info->obj_id)
114 return(-1);
115 return(0);
119 * RB-Tree support for pseudofs structures
121 static int
122 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
124 if (p1->localization < p2->localization)
125 return(-1);
126 if (p1->localization > p2->localization)
127 return(1);
128 return(0);
132 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
133 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
134 hammer_inode_info_cmp, hammer_inode_info_t);
135 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
136 hammer_pfs_rb_compare, u_int32_t, localization);
139 * The kernel is not actively referencing this vnode but is still holding
140 * it cached.
142 * This is called from the frontend.
145 hammer_vop_inactive(struct vop_inactive_args *ap)
147 struct hammer_inode *ip = VTOI(ap->a_vp);
150 * Degenerate case
152 if (ip == NULL) {
153 vrecycle(ap->a_vp);
154 return(0);
158 * If the inode no longer has visibility in the filesystem try to
159 * recycle it immediately, even if the inode is dirty. Recycling
160 * it quickly allows the system to reclaim buffer cache and VM
161 * resources which can matter a lot in a heavily loaded system.
163 * This can deadlock in vfsync() if we aren't careful.
165 * Do not queue the inode to the flusher if we still have visibility,
166 * otherwise namespace calls such as chmod will unnecessarily generate
167 * multiple inode updates.
169 hammer_inode_unloadable_check(ip, 0);
170 if (ip->ino_data.nlinks == 0) {
171 if (ip->flags & HAMMER_INODE_MODMASK)
172 hammer_flush_inode(ip, 0);
173 vrecycle(ap->a_vp);
175 return(0);
179 * Release the vnode association. This is typically (but not always)
180 * the last reference on the inode.
182 * Once the association is lost we are on our own with regards to
183 * flushing the inode.
186 hammer_vop_reclaim(struct vop_reclaim_args *ap)
188 struct hammer_inode *ip;
189 hammer_mount_t hmp;
190 struct vnode *vp;
192 vp = ap->a_vp;
194 if ((ip = vp->v_data) != NULL) {
195 hmp = ip->hmp;
196 vp->v_data = NULL;
197 ip->vp = NULL;
199 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
200 ++hammer_count_reclaiming;
201 ++hmp->inode_reclaims;
202 ip->flags |= HAMMER_INODE_RECLAIM;
203 if (hmp->inode_reclaims > HAMMER_RECLAIM_FLUSH &&
204 (hmp->inode_reclaims & 255) == 0) {
205 hammer_flusher_async(hmp);
208 hammer_rel_inode(ip, 1);
210 return(0);
214 * Return a locked vnode for the specified inode. The inode must be
215 * referenced but NOT LOCKED on entry and will remain referenced on
216 * return.
218 * Called from the frontend.
221 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
223 hammer_mount_t hmp;
224 struct vnode *vp;
225 int error = 0;
226 u_int8_t obj_type;
228 hmp = ip->hmp;
230 for (;;) {
231 if ((vp = ip->vp) == NULL) {
232 error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
233 if (error)
234 break;
235 hammer_lock_ex(&ip->lock);
236 if (ip->vp != NULL) {
237 hammer_unlock(&ip->lock);
238 vp->v_type = VBAD;
239 vx_put(vp);
240 continue;
242 hammer_ref(&ip->lock);
243 vp = *vpp;
244 ip->vp = vp;
246 obj_type = ip->ino_data.obj_type;
247 vp->v_type = hammer_get_vnode_type(obj_type);
249 hammer_inode_wakereclaims(ip);
251 switch(ip->ino_data.obj_type) {
252 case HAMMER_OBJTYPE_CDEV:
253 case HAMMER_OBJTYPE_BDEV:
254 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
255 addaliasu(vp, ip->ino_data.rmajor,
256 ip->ino_data.rminor);
257 break;
258 case HAMMER_OBJTYPE_FIFO:
259 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
260 break;
261 default:
262 break;
266 * Only mark as the root vnode if the ip is not
267 * historical, otherwise the VFS cache will get
268 * confused. The other half of the special handling
269 * is in hammer_vop_nlookupdotdot().
271 * Pseudo-filesystem roots also do not count.
273 if (ip->obj_id == HAMMER_OBJID_ROOT &&
274 ip->obj_asof == hmp->asof &&
275 ip->obj_localization == 0) {
276 vp->v_flag |= VROOT;
279 vp->v_data = (void *)ip;
280 /* vnode locked by getnewvnode() */
281 /* make related vnode dirty if inode dirty? */
282 hammer_unlock(&ip->lock);
283 if (vp->v_type == VREG)
284 vinitvmio(vp, ip->ino_data.size);
285 break;
289 * loop if the vget fails (aka races), or if the vp
290 * no longer matches ip->vp.
292 if (vget(vp, LK_EXCLUSIVE) == 0) {
293 if (vp == ip->vp)
294 break;
295 vput(vp);
298 *vpp = vp;
299 return(error);
303 * Locate all copies of the inode for obj_id compatible with the specified
304 * asof, reference, and issue the related call-back. This routine is used
305 * for direct-io invalidation and does not create any new inodes.
307 void
308 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
309 int (*callback)(hammer_inode_t ip, void *data),
310 void *data)
312 hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
313 hammer_inode_info_cmp_all_history,
314 callback, iinfo);
318 * Acquire a HAMMER inode. The returned inode is not locked. These functions
319 * do not attach or detach the related vnode (use hammer_get_vnode() for
320 * that).
322 * The flags argument is only applied for newly created inodes, and only
323 * certain flags are inherited.
325 * Called from the frontend.
327 struct hammer_inode *
328 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
329 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
330 int flags, int *errorp)
332 hammer_mount_t hmp = trans->hmp;
333 struct hammer_inode_info iinfo;
334 struct hammer_cursor cursor;
335 struct hammer_inode *ip;
339 * Determine if we already have an inode cached. If we do then
340 * we are golden.
342 iinfo.obj_id = obj_id;
343 iinfo.obj_asof = asof;
344 iinfo.obj_localization = localization;
345 loop:
346 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
347 if (ip) {
348 hammer_ref(&ip->lock);
349 *errorp = 0;
350 return(ip);
354 * Allocate a new inode structure and deal with races later.
356 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
357 ++hammer_count_inodes;
358 ++hmp->count_inodes;
359 ip->obj_id = obj_id;
360 ip->obj_asof = iinfo.obj_asof;
361 ip->obj_localization = localization;
362 ip->hmp = hmp;
363 ip->flags = flags & HAMMER_INODE_RO;
364 ip->cache[0].ip = ip;
365 ip->cache[1].ip = ip;
366 if (hmp->ronly)
367 ip->flags |= HAMMER_INODE_RO;
368 ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
369 0x7FFFFFFFFFFFFFFFLL;
370 RB_INIT(&ip->rec_tree);
371 TAILQ_INIT(&ip->target_list);
372 hammer_ref(&ip->lock);
375 * Locate the on-disk inode. If this is a PFS root we always
376 * access the current version of the root inode and (if it is not
377 * a master) always access information under it with a snapshot
378 * TID.
380 retry:
381 hammer_init_cursor(trans, &cursor, (dip ? &dip->cache[0] : NULL), NULL);
382 cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
383 cursor.key_beg.obj_id = ip->obj_id;
384 cursor.key_beg.key = 0;
385 cursor.key_beg.create_tid = 0;
386 cursor.key_beg.delete_tid = 0;
387 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
388 cursor.key_beg.obj_type = 0;
390 cursor.asof = iinfo.obj_asof;
391 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
392 HAMMER_CURSOR_ASOF;
394 *errorp = hammer_btree_lookup(&cursor);
395 if (*errorp == EDEADLK) {
396 hammer_done_cursor(&cursor);
397 goto retry;
401 * On success the B-Tree lookup will hold the appropriate
402 * buffer cache buffers and provide a pointer to the requested
403 * information. Copy the information to the in-memory inode
404 * and cache the B-Tree node to improve future operations.
406 if (*errorp == 0) {
407 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
408 ip->ino_data = cursor.data->inode;
411 * cache[0] tries to cache the location of the object inode.
412 * The assumption is that it is near the directory inode.
414 * cache[1] tries to cache the location of the object data.
415 * The assumption is that it is near the directory data.
417 hammer_cache_node(&ip->cache[0], cursor.node);
418 if (dip && dip->cache[1].node)
419 hammer_cache_node(&ip->cache[1], dip->cache[1].node);
422 * The file should not contain any data past the file size
423 * stored in the inode. Setting save_trunc_off to the
424 * file size instead of max reduces B-Tree lookup overheads
425 * on append by allowing the flusher to avoid checking for
426 * record overwrites.
428 ip->save_trunc_off = ip->ino_data.size;
431 * Locate and assign the pseudofs management structure to
432 * the inode.
434 if (dip && dip->obj_localization == ip->obj_localization) {
435 ip->pfsm = dip->pfsm;
436 hammer_ref(&ip->pfsm->lock);
437 } else {
438 ip->pfsm = hammer_load_pseudofs(trans,
439 ip->obj_localization,
440 errorp);
441 *errorp = 0; /* ignore ENOENT */
446 * The inode is placed on the red-black tree and will be synced to
447 * the media when flushed or by the filesystem sync. If this races
448 * another instantiation/lookup the insertion will fail.
450 if (*errorp == 0) {
451 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
452 hammer_free_inode(ip);
453 hammer_done_cursor(&cursor);
454 goto loop;
456 ip->flags |= HAMMER_INODE_ONDISK;
457 } else {
458 if (ip->flags & HAMMER_INODE_RSV_INODES) {
459 ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
460 --hmp->rsv_inodes;
463 hammer_free_inode(ip);
464 ip = NULL;
466 hammer_done_cursor(&cursor);
467 return (ip);
471 * Create a new filesystem object, returning the inode in *ipp. The
472 * returned inode will be referenced. The inode is created in-memory.
474 * If pfsm is non-NULL the caller wishes to create the root inode for
475 * a master PFS.
478 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
479 struct ucred *cred, hammer_inode_t dip,
480 hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
482 hammer_mount_t hmp;
483 hammer_inode_t ip;
484 uid_t xuid;
485 int error;
487 hmp = trans->hmp;
489 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
490 ++hammer_count_inodes;
491 ++hmp->count_inodes;
493 if (pfsm) {
494 KKASSERT(pfsm->localization != 0);
495 ip->obj_id = HAMMER_OBJID_ROOT;
496 ip->obj_localization = pfsm->localization;
497 } else {
498 KKASSERT(dip != NULL);
499 ip->obj_id = hammer_alloc_objid(hmp, dip);
500 ip->obj_localization = dip->obj_localization;
503 KKASSERT(ip->obj_id != 0);
504 ip->obj_asof = hmp->asof;
505 ip->hmp = hmp;
506 ip->flush_state = HAMMER_FST_IDLE;
507 ip->flags = HAMMER_INODE_DDIRTY |
508 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
509 ip->cache[0].ip = ip;
510 ip->cache[1].ip = ip;
512 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
513 /* ip->save_trunc_off = 0; (already zero) */
514 RB_INIT(&ip->rec_tree);
515 TAILQ_INIT(&ip->target_list);
517 ip->ino_data.atime = trans->time;
518 ip->ino_data.mtime = trans->time;
519 ip->ino_data.size = 0;
520 ip->ino_data.nlinks = 0;
523 * A nohistory designator on the parent directory is inherited by
524 * the child. We will do this even for pseudo-fs creation... the
525 * sysad can turn it off.
527 if (dip) {
528 ip->ino_data.uflags = dip->ino_data.uflags &
529 (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
532 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
533 ip->ino_leaf.base.localization = ip->obj_localization +
534 HAMMER_LOCALIZE_INODE;
535 ip->ino_leaf.base.obj_id = ip->obj_id;
536 ip->ino_leaf.base.key = 0;
537 ip->ino_leaf.base.create_tid = 0;
538 ip->ino_leaf.base.delete_tid = 0;
539 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
540 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
542 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
543 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
544 ip->ino_data.mode = vap->va_mode;
545 ip->ino_data.ctime = trans->time;
548 * Setup the ".." pointer. This only needs to be done for directories
549 * but we do it for all objects as a recovery aid.
551 if (dip)
552 ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
553 #if 0
555 * The parent_obj_localization field only applies to pseudo-fs roots.
556 * XXX this is no longer applicable, PFSs are no longer directly
557 * tied into the parent's directory structure.
559 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
560 ip->obj_id == HAMMER_OBJID_ROOT) {
561 ip->ino_data.ext.obj.parent_obj_localization =
562 dip->obj_localization;
564 #endif
566 switch(ip->ino_leaf.base.obj_type) {
567 case HAMMER_OBJTYPE_CDEV:
568 case HAMMER_OBJTYPE_BDEV:
569 ip->ino_data.rmajor = vap->va_rmajor;
570 ip->ino_data.rminor = vap->va_rminor;
571 break;
572 default:
573 break;
577 * Calculate default uid/gid and overwrite with information from
578 * the vap.
580 if (dip) {
581 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
582 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
583 xuid, cred, &vap->va_mode);
584 } else {
585 xuid = 0;
587 ip->ino_data.mode = vap->va_mode;
589 if (vap->va_vaflags & VA_UID_UUID_VALID)
590 ip->ino_data.uid = vap->va_uid_uuid;
591 else if (vap->va_uid != (uid_t)VNOVAL)
592 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
593 else
594 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
596 if (vap->va_vaflags & VA_GID_UUID_VALID)
597 ip->ino_data.gid = vap->va_gid_uuid;
598 else if (vap->va_gid != (gid_t)VNOVAL)
599 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
600 else if (dip)
601 ip->ino_data.gid = dip->ino_data.gid;
603 hammer_ref(&ip->lock);
605 if (pfsm) {
606 ip->pfsm = pfsm;
607 hammer_ref(&pfsm->lock);
608 error = 0;
609 } else if (dip->obj_localization == ip->obj_localization) {
610 ip->pfsm = dip->pfsm;
611 hammer_ref(&ip->pfsm->lock);
612 error = 0;
613 } else {
614 ip->pfsm = hammer_load_pseudofs(trans,
615 ip->obj_localization,
616 &error);
617 error = 0; /* ignore ENOENT */
620 if (error) {
621 hammer_free_inode(ip);
622 ip = NULL;
623 } else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
624 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
625 /* not reached */
626 hammer_free_inode(ip);
628 *ipp = ip;
629 return(error);
633 * Final cleanup / freeing of an inode structure
635 static void
636 hammer_free_inode(hammer_inode_t ip)
638 KKASSERT(ip->lock.refs == 1);
639 hammer_uncache_node(&ip->cache[0]);
640 hammer_uncache_node(&ip->cache[1]);
641 hammer_inode_wakereclaims(ip);
642 if (ip->objid_cache)
643 hammer_clear_objid(ip);
644 --hammer_count_inodes;
645 --ip->hmp->count_inodes;
646 if (ip->pfsm) {
647 hammer_rel_pseudofs(ip->hmp, ip->pfsm);
648 ip->pfsm = NULL;
650 kfree(ip, M_HAMMER);
651 ip = NULL;
655 * Retrieve pseudo-fs data. NULL will never be returned.
657 * If an error occurs *errorp will be set and a default template is returned,
658 * otherwise *errorp is set to 0. Typically when an error occurs it will
659 * be ENOENT.
661 hammer_pseudofs_inmem_t
662 hammer_load_pseudofs(hammer_transaction_t trans,
663 u_int32_t localization, int *errorp)
665 hammer_mount_t hmp = trans->hmp;
666 hammer_inode_t ip;
667 hammer_pseudofs_inmem_t pfsm;
668 struct hammer_cursor cursor;
669 int bytes;
671 retry:
672 pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
673 if (pfsm) {
674 hammer_ref(&pfsm->lock);
675 *errorp = 0;
676 return(pfsm);
680 * PFS records are stored in the root inode (not the PFS root inode,
681 * but the real root). Avoid an infinite recursion if loading
682 * the PFS for the real root.
684 if (localization) {
685 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
686 HAMMER_MAX_TID,
687 HAMMER_DEF_LOCALIZATION, 0, errorp);
688 } else {
689 ip = NULL;
692 pfsm = kmalloc(sizeof(*pfsm), M_HAMMER, M_WAITOK | M_ZERO);
693 pfsm->localization = localization;
694 pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
695 pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
697 hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
698 cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
699 HAMMER_LOCALIZE_MISC;
700 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
701 cursor.key_beg.create_tid = 0;
702 cursor.key_beg.delete_tid = 0;
703 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
704 cursor.key_beg.obj_type = 0;
705 cursor.key_beg.key = localization;
706 cursor.asof = HAMMER_MAX_TID;
707 cursor.flags |= HAMMER_CURSOR_ASOF;
709 if (ip)
710 *errorp = hammer_ip_lookup(&cursor);
711 else
712 *errorp = hammer_btree_lookup(&cursor);
713 if (*errorp == 0) {
714 *errorp = hammer_ip_resolve_data(&cursor);
715 if (*errorp == 0) {
716 bytes = cursor.leaf->data_len;
717 if (bytes > sizeof(pfsm->pfsd))
718 bytes = sizeof(pfsm->pfsd);
719 bcopy(cursor.data, &pfsm->pfsd, bytes);
722 hammer_done_cursor(&cursor);
724 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
725 hammer_ref(&pfsm->lock);
726 if (ip)
727 hammer_rel_inode(ip, 0);
728 if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
729 kfree(pfsm, M_HAMMER);
730 goto retry;
732 return(pfsm);
736 * Store pseudo-fs data. The backend will automatically delete any prior
737 * on-disk pseudo-fs data but we have to delete in-memory versions.
740 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
742 struct hammer_cursor cursor;
743 hammer_record_t record;
744 hammer_inode_t ip;
745 int error;
747 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
748 HAMMER_DEF_LOCALIZATION, 0, &error);
749 retry:
750 pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
751 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
752 cursor.key_beg.localization = ip->obj_localization +
753 HAMMER_LOCALIZE_MISC;
754 cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
755 cursor.key_beg.create_tid = 0;
756 cursor.key_beg.delete_tid = 0;
757 cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
758 cursor.key_beg.obj_type = 0;
759 cursor.key_beg.key = pfsm->localization;
760 cursor.asof = HAMMER_MAX_TID;
761 cursor.flags |= HAMMER_CURSOR_ASOF;
763 error = hammer_ip_lookup(&cursor);
764 if (error == 0 && hammer_cursor_inmem(&cursor)) {
765 record = cursor.iprec;
766 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
767 KKASSERT(cursor.deadlk_rec == NULL);
768 hammer_ref(&record->lock);
769 cursor.deadlk_rec = record;
770 error = EDEADLK;
771 } else {
772 record->flags |= HAMMER_RECF_DELETED_FE;
773 error = 0;
776 if (error == 0 || error == ENOENT) {
777 record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
778 record->type = HAMMER_MEM_RECORD_GENERAL;
780 record->leaf.base.localization = ip->obj_localization +
781 HAMMER_LOCALIZE_MISC;
782 record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
783 record->leaf.base.key = pfsm->localization;
784 record->leaf.data_len = sizeof(pfsm->pfsd);
785 bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
786 error = hammer_ip_add_record(trans, record);
788 hammer_done_cursor(&cursor);
789 if (error == EDEADLK)
790 goto retry;
791 hammer_rel_inode(ip, 0);
792 return(error);
796 * Create a root directory for a PFS if one does not alredy exist.
799 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
800 hammer_pseudofs_inmem_t pfsm)
802 hammer_inode_t ip;
803 struct vattr vap;
804 int error;
806 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
807 pfsm->localization, 0, &error);
808 if (ip == NULL) {
809 vattr_null(&vap);
810 vap.va_mode = 0755;
811 vap.va_type = VDIR;
812 error = hammer_create_inode(trans, &vap, cred, NULL, pfsm, &ip);
814 if (ip)
815 hammer_rel_inode(ip, 0);
816 return(error);
820 * Release a reference on a PFS
822 void
823 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
825 hammer_unref(&pfsm->lock);
826 if (pfsm->lock.refs == 0) {
827 RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
828 kfree(pfsm, M_HAMMER);
833 * Called by hammer_sync_inode().
835 static int
836 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
838 hammer_transaction_t trans = cursor->trans;
839 hammer_record_t record;
840 int error;
841 int redirty;
843 retry:
844 error = 0;
847 * If the inode has a presence on-disk then locate it and mark
848 * it deleted, setting DELONDISK.
850 * The record may or may not be physically deleted, depending on
851 * the retention policy.
853 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
854 HAMMER_INODE_ONDISK) {
855 hammer_normalize_cursor(cursor);
856 cursor->key_beg.localization = ip->obj_localization +
857 HAMMER_LOCALIZE_INODE;
858 cursor->key_beg.obj_id = ip->obj_id;
859 cursor->key_beg.key = 0;
860 cursor->key_beg.create_tid = 0;
861 cursor->key_beg.delete_tid = 0;
862 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
863 cursor->key_beg.obj_type = 0;
864 cursor->asof = ip->obj_asof;
865 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
866 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
867 cursor->flags |= HAMMER_CURSOR_BACKEND;
869 error = hammer_btree_lookup(cursor);
870 if (hammer_debug_inode)
871 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
872 if (error) {
873 kprintf("error %d\n", error);
874 Debugger("hammer_update_inode");
877 if (error == 0) {
878 error = hammer_ip_delete_record(cursor, ip, trans->tid);
879 if (hammer_debug_inode)
880 kprintf(" error %d\n", error);
881 if (error && error != EDEADLK) {
882 kprintf("error %d\n", error);
883 Debugger("hammer_update_inode2");
885 if (error == 0) {
886 ip->flags |= HAMMER_INODE_DELONDISK;
888 if (cursor->node)
889 hammer_cache_node(&ip->cache[0], cursor->node);
891 if (error == EDEADLK) {
892 hammer_done_cursor(cursor);
893 error = hammer_init_cursor(trans, cursor,
894 &ip->cache[0], ip);
895 if (hammer_debug_inode)
896 kprintf("IPDED %p %d\n", ip, error);
897 if (error == 0)
898 goto retry;
903 * Ok, write out the initial record or a new record (after deleting
904 * the old one), unless the DELETED flag is set. This routine will
905 * clear DELONDISK if it writes out a record.
907 * Update our inode statistics if this is the first application of
908 * the inode on-disk.
910 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
912 * Generate a record and write it to the media
914 record = hammer_alloc_mem_record(ip, 0);
915 record->type = HAMMER_MEM_RECORD_INODE;
916 record->flush_state = HAMMER_FST_FLUSH;
917 record->leaf = ip->sync_ino_leaf;
918 record->leaf.base.create_tid = trans->tid;
919 record->leaf.data_len = sizeof(ip->sync_ino_data);
920 record->leaf.create_ts = trans->time32;
921 record->data = (void *)&ip->sync_ino_data;
922 record->flags |= HAMMER_RECF_INTERLOCK_BE;
925 * If this flag is set we cannot sync the new file size
926 * because we haven't finished related truncations. The
927 * inode will be flushed in another flush group to finish
928 * the job.
930 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
931 ip->sync_ino_data.size != ip->ino_data.size) {
932 redirty = 1;
933 ip->sync_ino_data.size = ip->ino_data.size;
934 } else {
935 redirty = 0;
938 for (;;) {
939 error = hammer_ip_sync_record_cursor(cursor, record);
940 if (hammer_debug_inode)
941 kprintf("GENREC %p rec %08x %d\n",
942 ip, record->flags, error);
943 if (error != EDEADLK)
944 break;
945 hammer_done_cursor(cursor);
946 error = hammer_init_cursor(trans, cursor,
947 &ip->cache[0], ip);
948 if (hammer_debug_inode)
949 kprintf("GENREC reinit %d\n", error);
950 if (error)
951 break;
953 if (error) {
954 kprintf("error %d\n", error);
955 Debugger("hammer_update_inode3");
959 * The record isn't managed by the inode's record tree,
960 * destroy it whether we succeed or fail.
962 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
963 record->flags |= HAMMER_RECF_DELETED_FE;
964 record->flush_state = HAMMER_FST_IDLE;
965 hammer_rel_mem_record(record);
968 * Finish up.
970 if (error == 0) {
971 if (hammer_debug_inode)
972 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
973 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
974 HAMMER_INODE_ATIME |
975 HAMMER_INODE_MTIME);
976 ip->flags &= ~HAMMER_INODE_DELONDISK;
977 if (redirty)
978 ip->sync_flags |= HAMMER_INODE_DDIRTY;
981 * Root volume count of inodes
983 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
984 hammer_modify_volume_field(trans,
985 trans->rootvol,
986 vol0_stat_inodes);
987 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
988 hammer_modify_volume_done(trans->rootvol);
989 ip->flags |= HAMMER_INODE_ONDISK;
990 if (hammer_debug_inode)
991 kprintf("NOWONDISK %p\n", ip);
997 * If the inode has been destroyed, clean out any left-over flags
998 * that may have been set by the frontend.
1000 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1001 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1002 HAMMER_INODE_ATIME |
1003 HAMMER_INODE_MTIME);
1005 return(error);
1009 * Update only the itimes fields.
1011 * ATIME can be updated without generating any UNDO. MTIME is updated
1012 * with UNDO so it is guaranteed to be synchronized properly in case of
1013 * a crash.
1015 * Neither field is included in the B-Tree leaf element's CRC, which is how
1016 * we can get away with updating ATIME the way we do.
1018 static int
1019 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1021 hammer_transaction_t trans = cursor->trans;
1022 int error;
1024 retry:
1025 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1026 HAMMER_INODE_ONDISK) {
1027 return(0);
1030 hammer_normalize_cursor(cursor);
1031 cursor->key_beg.localization = ip->obj_localization +
1032 HAMMER_LOCALIZE_INODE;
1033 cursor->key_beg.obj_id = ip->obj_id;
1034 cursor->key_beg.key = 0;
1035 cursor->key_beg.create_tid = 0;
1036 cursor->key_beg.delete_tid = 0;
1037 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1038 cursor->key_beg.obj_type = 0;
1039 cursor->asof = ip->obj_asof;
1040 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1041 cursor->flags |= HAMMER_CURSOR_ASOF;
1042 cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1043 cursor->flags |= HAMMER_CURSOR_GET_DATA;
1044 cursor->flags |= HAMMER_CURSOR_BACKEND;
1046 error = hammer_btree_lookup(cursor);
1047 if (error) {
1048 kprintf("error %d\n", error);
1049 Debugger("hammer_update_itimes1");
1051 if (error == 0) {
1052 hammer_cache_node(&ip->cache[0], cursor->node);
1053 if (ip->sync_flags & HAMMER_INODE_MTIME) {
1055 * Updating MTIME requires an UNDO. Just cover
1056 * both atime and mtime.
1058 hammer_modify_buffer(trans, cursor->data_buffer,
1059 HAMMER_ITIMES_BASE(&cursor->data->inode),
1060 HAMMER_ITIMES_BYTES);
1061 cursor->data->inode.atime = ip->sync_ino_data.atime;
1062 cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1063 hammer_modify_buffer_done(cursor->data_buffer);
1064 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1066 * Updating atime only can be done in-place with
1067 * no UNDO.
1069 hammer_modify_buffer(trans, cursor->data_buffer,
1070 NULL, 0);
1071 cursor->data->inode.atime = ip->sync_ino_data.atime;
1072 hammer_modify_buffer_done(cursor->data_buffer);
1074 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1076 if (error == EDEADLK) {
1077 hammer_done_cursor(cursor);
1078 error = hammer_init_cursor(trans, cursor,
1079 &ip->cache[0], ip);
1080 if (error == 0)
1081 goto retry;
1083 return(error);
1087 * Release a reference on an inode, flush as requested.
1089 * On the last reference we queue the inode to the flusher for its final
1090 * disposition.
1092 void
1093 hammer_rel_inode(struct hammer_inode *ip, int flush)
1095 hammer_mount_t hmp = ip->hmp;
1098 * Handle disposition when dropping the last ref.
1100 for (;;) {
1101 if (ip->lock.refs == 1) {
1103 * Determine whether on-disk action is needed for
1104 * the inode's final disposition.
1106 KKASSERT(ip->vp == NULL);
1107 hammer_inode_unloadable_check(ip, 0);
1108 if (ip->flags & HAMMER_INODE_MODMASK) {
1109 if (hmp->rsv_inodes > desiredvnodes) {
1110 hammer_flush_inode(ip,
1111 HAMMER_FLUSH_SIGNAL);
1112 } else {
1113 hammer_flush_inode(ip, 0);
1115 } else if (ip->lock.refs == 1) {
1116 hammer_unload_inode(ip);
1117 break;
1119 } else {
1120 if (flush)
1121 hammer_flush_inode(ip, 0);
1124 * The inode still has multiple refs, try to drop
1125 * one ref.
1127 KKASSERT(ip->lock.refs >= 1);
1128 if (ip->lock.refs > 1) {
1129 hammer_unref(&ip->lock);
1130 break;
1137 * Unload and destroy the specified inode. Must be called with one remaining
1138 * reference. The reference is disposed of.
1140 * This can only be called in the context of the flusher.
1142 static int
1143 hammer_unload_inode(struct hammer_inode *ip)
1145 hammer_mount_t hmp = ip->hmp;
1147 KASSERT(ip->lock.refs == 1,
1148 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
1149 KKASSERT(ip->vp == NULL);
1150 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1151 KKASSERT(ip->cursor_ip_refs == 0);
1152 KKASSERT(ip->lock.lockcount == 0);
1153 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1155 KKASSERT(RB_EMPTY(&ip->rec_tree));
1156 KKASSERT(TAILQ_EMPTY(&ip->target_list));
1158 RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1160 hammer_free_inode(ip);
1161 return(0);
1165 * Called on mount -u when switching from RW to RO or vise-versa. Adjust
1166 * the read-only flag for cached inodes.
1168 * This routine is called from a RB_SCAN().
1171 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1173 hammer_mount_t hmp = ip->hmp;
1175 if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1176 ip->flags |= HAMMER_INODE_RO;
1177 else
1178 ip->flags &= ~HAMMER_INODE_RO;
1179 return(0);
1183 * A transaction has modified an inode, requiring updates as specified by
1184 * the passed flags.
1186 * HAMMER_INODE_DDIRTY: Inode data has been updated
1187 * HAMMER_INODE_XDIRTY: Dirty in-memory records
1188 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
1189 * HAMMER_INODE_DELETED: Inode record/data must be deleted
1190 * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1192 void
1193 hammer_modify_inode(hammer_inode_t ip, int flags)
1195 KKASSERT(ip->hmp->ronly == 0 ||
1196 (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1197 HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1198 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1199 if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1200 ip->flags |= HAMMER_INODE_RSV_INODES;
1201 ++ip->hmp->rsv_inodes;
1204 ip->flags |= flags;
1208 * Request that an inode be flushed. This whole mess cannot block and may
1209 * recurse (if not synchronous). Once requested HAMMER will attempt to
1210 * actively flush the inode until the flush can be done.
1212 * The inode may already be flushing, or may be in a setup state. We can
1213 * place the inode in a flushing state if it is currently idle and flag it
1214 * to reflush if it is currently flushing.
1216 * If the HAMMER_FLUSH_SYNCHRONOUS flag is specified we will attempt to
1217 * flush the indoe synchronously using the caller's context.
1219 void
1220 hammer_flush_inode(hammer_inode_t ip, int flags)
1222 int good;
1225 * Trivial 'nothing to flush' case. If the inode is ina SETUP
1226 * state we have to put it back into an IDLE state so we can
1227 * drop the extra ref.
1229 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1230 if (ip->flush_state == HAMMER_FST_SETUP) {
1231 ip->flush_state = HAMMER_FST_IDLE;
1232 hammer_rel_inode(ip, 0);
1234 return;
1238 * Our flush action will depend on the current state.
1240 switch(ip->flush_state) {
1241 case HAMMER_FST_IDLE:
1243 * We have no dependancies and can flush immediately. Some
1244 * our children may not be flushable so we have to re-test
1245 * with that additional knowledge.
1247 hammer_flush_inode_core(ip, flags);
1248 break;
1249 case HAMMER_FST_SETUP:
1251 * Recurse upwards through dependancies via target_list
1252 * and start their flusher actions going if possible.
1254 * 'good' is our connectivity. -1 means we have none and
1255 * can't flush, 0 means there weren't any dependancies, and
1256 * 1 means we have good connectivity.
1258 good = hammer_setup_parent_inodes(ip);
1261 * We can continue if good >= 0. Determine how many records
1262 * under our inode can be flushed (and mark them).
1264 if (good >= 0) {
1265 hammer_flush_inode_core(ip, flags);
1266 } else {
1267 ip->flags |= HAMMER_INODE_REFLUSH;
1268 if (flags & HAMMER_FLUSH_SIGNAL) {
1269 ip->flags |= HAMMER_INODE_RESIGNAL;
1270 hammer_flusher_async(ip->hmp);
1273 break;
1274 default:
1276 * We are already flushing, flag the inode to reflush
1277 * if needed after it completes its current flush.
1279 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1280 ip->flags |= HAMMER_INODE_REFLUSH;
1281 if (flags & HAMMER_FLUSH_SIGNAL) {
1282 ip->flags |= HAMMER_INODE_RESIGNAL;
1283 hammer_flusher_async(ip->hmp);
1285 break;
1290 * Scan ip->target_list, which is a list of records owned by PARENTS to our
1291 * ip which reference our ip.
1293 * XXX This is a huge mess of recursive code, but not one bit of it blocks
1294 * so for now do not ref/deref the structures. Note that if we use the
1295 * ref/rel code later, the rel CAN block.
1297 static int
1298 hammer_setup_parent_inodes(hammer_inode_t ip)
1300 hammer_record_t depend;
1301 #if 0
1302 hammer_record_t next;
1303 hammer_inode_t pip;
1304 #endif
1305 int good;
1306 int r;
1308 good = 0;
1309 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1310 r = hammer_setup_parent_inodes_helper(depend);
1311 KKASSERT(depend->target_ip == ip);
1312 if (r < 0 && good == 0)
1313 good = -1;
1314 if (r > 0)
1315 good = 1;
1317 return(good);
1319 #if 0
1320 retry:
1321 good = 0;
1322 next = TAILQ_FIRST(&ip->target_list);
1323 if (next) {
1324 hammer_ref(&next->lock);
1325 hammer_ref(&next->ip->lock);
1327 while ((depend = next) != NULL) {
1328 if (depend->target_ip == NULL) {
1329 pip = depend->ip;
1330 hammer_rel_mem_record(depend);
1331 hammer_rel_inode(pip, 0);
1332 goto retry;
1334 KKASSERT(depend->target_ip == ip);
1335 next = TAILQ_NEXT(depend, target_entry);
1336 if (next) {
1337 hammer_ref(&next->lock);
1338 hammer_ref(&next->ip->lock);
1340 r = hammer_setup_parent_inodes_helper(depend);
1341 if (r < 0 && good == 0)
1342 good = -1;
1343 if (r > 0)
1344 good = 1;
1345 pip = depend->ip;
1346 hammer_rel_mem_record(depend);
1347 hammer_rel_inode(pip, 0);
1349 return(good);
1350 #endif
1354 * This helper function takes a record representing the dependancy between
1355 * the parent inode and child inode.
1357 * record->ip = parent inode
1358 * record->target_ip = child inode
1360 * We are asked to recurse upwards and convert the record from SETUP
1361 * to FLUSH if possible.
1363 * Return 1 if the record gives us connectivity
1365 * Return 0 if the record is not relevant
1367 * Return -1 if we can't resolve the dependancy and there is no connectivity.
1369 static int
1370 hammer_setup_parent_inodes_helper(hammer_record_t record)
1372 hammer_mount_t hmp;
1373 hammer_inode_t pip;
1374 int good;
1376 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1377 pip = record->ip;
1378 hmp = pip->hmp;
1381 * If the record is already flushing, is it in our flush group?
1383 * If it is in our flush group but it is a general record or a
1384 * delete-on-disk, it does not improve our connectivity (return 0),
1385 * and if the target inode is not trying to destroy itself we can't
1386 * allow the operation yet anyway (the second return -1).
1388 if (record->flush_state == HAMMER_FST_FLUSH) {
1389 if (record->flush_group != hmp->flusher.next) {
1390 pip->flags |= HAMMER_INODE_REFLUSH;
1391 return(-1);
1393 if (record->type == HAMMER_MEM_RECORD_ADD)
1394 return(1);
1395 /* GENERAL or DEL */
1396 return(0);
1400 * It must be a setup record. Try to resolve the setup dependancies
1401 * by recursing upwards so we can place ip on the flush list.
1403 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1405 good = hammer_setup_parent_inodes(pip);
1408 * We can't flush ip because it has no connectivity (XXX also check
1409 * nlinks for pre-existing connectivity!). Flag it so any resolution
1410 * recurses back down.
1412 if (good < 0) {
1413 pip->flags |= HAMMER_INODE_REFLUSH;
1414 return(good);
1418 * We are go, place the parent inode in a flushing state so we can
1419 * place its record in a flushing state. Note that the parent
1420 * may already be flushing. The record must be in the same flush
1421 * group as the parent.
1423 if (pip->flush_state != HAMMER_FST_FLUSH)
1424 hammer_flush_inode_core(pip, HAMMER_FLUSH_RECURSION);
1425 KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1426 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1428 #if 0
1429 if (record->type == HAMMER_MEM_RECORD_DEL &&
1430 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1432 * Regardless of flushing state we cannot sync this path if the
1433 * record represents a delete-on-disk but the target inode
1434 * is not ready to sync its own deletion.
1436 * XXX need to count effective nlinks to determine whether
1437 * the flush is ok, otherwise removing a hardlink will
1438 * just leave the DEL record to rot.
1440 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1441 return(-1);
1442 } else
1443 #endif
1444 if (pip->flush_group == pip->hmp->flusher.next) {
1446 * This is the record we wanted to synchronize. If the
1447 * record went into a flush state while we blocked it
1448 * had better be in the correct flush group.
1450 if (record->flush_state != HAMMER_FST_FLUSH) {
1451 record->flush_state = HAMMER_FST_FLUSH;
1452 record->flush_group = pip->flush_group;
1453 hammer_ref(&record->lock);
1454 } else {
1455 KKASSERT(record->flush_group == pip->flush_group);
1457 if (record->type == HAMMER_MEM_RECORD_ADD)
1458 return(1);
1461 * A general or delete-on-disk record does not contribute
1462 * to our visibility. We can still flush it, however.
1464 return(0);
1465 } else {
1467 * We couldn't resolve the dependancies, request that the
1468 * inode be flushed when the dependancies can be resolved.
1470 pip->flags |= HAMMER_INODE_REFLUSH;
1471 return(-1);
1476 * This is the core routine placing an inode into the FST_FLUSH state.
1478 static void
1479 hammer_flush_inode_core(hammer_inode_t ip, int flags)
1481 int go_count;
1484 * Set flush state and prevent the flusher from cycling into
1485 * the next flush group. Do not place the ip on the list yet.
1486 * Inodes not in the idle state get an extra reference.
1488 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1489 if (ip->flush_state == HAMMER_FST_IDLE)
1490 hammer_ref(&ip->lock);
1491 ip->flush_state = HAMMER_FST_FLUSH;
1492 ip->flush_group = ip->hmp->flusher.next;
1493 ++ip->hmp->flusher.group_lock;
1494 ++ip->hmp->count_iqueued;
1495 ++hammer_count_iqueued;
1498 * We need to be able to vfsync/truncate from the backend.
1500 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1501 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1502 ip->flags |= HAMMER_INODE_VHELD;
1503 vref(ip->vp);
1507 * Figure out how many in-memory records we can actually flush
1508 * (not including inode meta-data, buffers, etc).
1510 * Do not add new records to the flush if this is a recursion or
1511 * if we must still complete a flush from the previous flush cycle.
1513 if (flags & HAMMER_FLUSH_RECURSION) {
1514 go_count = 1;
1515 } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1516 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1517 hammer_syncgrp_child_callback, NULL);
1518 go_count = 1;
1519 } else {
1520 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1521 hammer_setup_child_callback, NULL);
1525 * This is a more involved test that includes go_count. If we
1526 * can't flush, flag the inode and return. If go_count is 0 we
1527 * were are unable to flush any records in our rec_tree and
1528 * must ignore the XDIRTY flag.
1530 if (go_count == 0) {
1531 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1532 ip->flags |= HAMMER_INODE_REFLUSH;
1534 --ip->hmp->count_iqueued;
1535 --hammer_count_iqueued;
1537 ip->flush_state = HAMMER_FST_SETUP;
1538 if (ip->flags & HAMMER_INODE_VHELD) {
1539 ip->flags &= ~HAMMER_INODE_VHELD;
1540 vrele(ip->vp);
1542 if (flags & HAMMER_FLUSH_SIGNAL) {
1543 ip->flags |= HAMMER_INODE_RESIGNAL;
1544 hammer_flusher_async(ip->hmp);
1546 if (--ip->hmp->flusher.group_lock == 0)
1547 wakeup(&ip->hmp->flusher.group_lock);
1548 return;
1553 * Snapshot the state of the inode for the backend flusher.
1555 * We continue to retain save_trunc_off even when all truncations
1556 * have been resolved as an optimization to determine if we can
1557 * skip the B-Tree lookup for overwrite deletions.
1559 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1560 * and stays in ip->flags. Once set, it stays set until the
1561 * inode is destroyed.
1563 * NOTE: If a truncation from a previous flush cycle had to be
1564 * continued into this one, the TRUNCATED flag will still be
1565 * set in sync_flags as will WOULDBLOCK. When this occurs
1566 * we CANNOT safely integrate a new truncation from the front-end
1567 * because there may be data records in-memory assigned a flush
1568 * state from the previous cycle that are supposed to be flushed
1569 * before the next frontend truncation.
1571 if ((ip->flags & (HAMMER_INODE_TRUNCATED | HAMMER_INODE_WOULDBLOCK)) ==
1572 HAMMER_INODE_TRUNCATED) {
1573 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
1574 ip->sync_trunc_off = ip->trunc_off;
1575 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1576 ip->flags &= ~HAMMER_INODE_TRUNCATED;
1577 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1580 * The save_trunc_off used to cache whether the B-Tree
1581 * holds any records past that point is not used until
1582 * after the truncation has succeeded, so we can safely
1583 * set it now.
1585 if (ip->save_trunc_off > ip->sync_trunc_off)
1586 ip->save_trunc_off = ip->sync_trunc_off;
1588 ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
1589 ~HAMMER_INODE_TRUNCATED);
1590 ip->sync_ino_leaf = ip->ino_leaf;
1591 ip->sync_ino_data = ip->ino_data;
1592 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
1593 #ifdef DEBUG_TRUNCATE
1594 if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1595 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1596 #endif
1599 * The flusher list inherits our inode and reference.
1601 TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
1602 if (--ip->hmp->flusher.group_lock == 0)
1603 wakeup(&ip->hmp->flusher.group_lock);
1605 if (flags & HAMMER_FLUSH_SIGNAL) {
1606 hammer_flusher_async(ip->hmp);
1611 * Callback for scan of ip->rec_tree. Try to include each record in our
1612 * flush. ip->flush_group has been set but the inode has not yet been
1613 * moved into a flushing state.
1615 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1616 * both inodes.
1618 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1619 * the caller from shortcutting the flush.
1621 static int
1622 hammer_setup_child_callback(hammer_record_t rec, void *data)
1624 hammer_inode_t target_ip;
1625 hammer_inode_t ip;
1626 int r;
1629 * Deleted records are ignored. Note that the flush detects deleted
1630 * front-end records at multiple points to deal with races. This is
1631 * just the first line of defense. The only time DELETED_FE cannot
1632 * be set is when HAMMER_RECF_INTERLOCK_BE is set.
1634 * Don't get confused between record deletion and, say, directory
1635 * entry deletion. The deletion of a directory entry that is on
1636 * the media has nothing to do with the record deletion flags.
1638 * The flush_group for a record already in a flush state must
1639 * be updated. This case can only occur if the inode deleting
1640 * too many records had to be moved to the next flush group.
1642 if (rec->flags & (HAMMER_RECF_DELETED_FE|HAMMER_RECF_DELETED_BE)) {
1643 if (rec->flush_state == HAMMER_FST_FLUSH) {
1644 KKASSERT(rec->ip->flags & HAMMER_INODE_WOULDBLOCK);
1645 rec->flush_group = rec->ip->flush_group;
1646 r = 1;
1647 } else {
1648 r = 0;
1650 return(r);
1654 * If the record is in an idle state it has no dependancies and
1655 * can be flushed.
1657 ip = rec->ip;
1658 r = 0;
1660 switch(rec->flush_state) {
1661 case HAMMER_FST_IDLE:
1663 * Record has no setup dependancy, we can flush it.
1665 KKASSERT(rec->target_ip == NULL);
1666 rec->flush_state = HAMMER_FST_FLUSH;
1667 rec->flush_group = ip->flush_group;
1668 hammer_ref(&rec->lock);
1669 r = 1;
1670 break;
1671 case HAMMER_FST_SETUP:
1673 * Record has a setup dependancy. Try to include the
1674 * target ip in the flush.
1676 * We have to be careful here, if we do not do the right
1677 * thing we can lose track of dirty inodes and the system
1678 * will lockup trying to allocate buffers.
1680 target_ip = rec->target_ip;
1681 KKASSERT(target_ip != NULL);
1682 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1683 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1685 * If the target IP is already flushing in our group
1686 * we are golden, otherwise make sure the target
1687 * reflushes.
1689 if (target_ip->flush_group == ip->flush_group) {
1690 rec->flush_state = HAMMER_FST_FLUSH;
1691 rec->flush_group = ip->flush_group;
1692 hammer_ref(&rec->lock);
1693 r = 1;
1694 } else {
1695 target_ip->flags |= HAMMER_INODE_REFLUSH;
1697 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1699 * If the target IP is not flushing we can force
1700 * it to flush, even if it is unable to write out
1701 * any of its own records we have at least one in
1702 * hand that we CAN deal with.
1704 rec->flush_state = HAMMER_FST_FLUSH;
1705 rec->flush_group = ip->flush_group;
1706 hammer_ref(&rec->lock);
1707 hammer_flush_inode_core(target_ip,
1708 HAMMER_FLUSH_RECURSION);
1709 r = 1;
1710 } else {
1712 * General or delete-on-disk record.
1714 * XXX this needs help. If a delete-on-disk we could
1715 * disconnect the target. If the target has its own
1716 * dependancies they really need to be flushed.
1718 * XXX
1720 rec->flush_state = HAMMER_FST_FLUSH;
1721 rec->flush_group = ip->flush_group;
1722 hammer_ref(&rec->lock);
1723 hammer_flush_inode_core(target_ip,
1724 HAMMER_FLUSH_RECURSION);
1725 r = 1;
1727 break;
1728 case HAMMER_FST_FLUSH:
1730 * If the WOULDBLOCK flag is set records may have been left
1731 * over from a previous flush attempt and should be moved
1732 * to the current flush group. If it is not set then all
1733 * such records had better have been flushed already or
1734 * already associated with the current flush group.
1736 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1737 rec->flush_group = ip->flush_group;
1738 } else {
1739 KKASSERT(rec->flush_group == ip->flush_group);
1741 r = 1;
1742 break;
1744 return(r);
1748 * This version just moves records already in a flush state to the new
1749 * flush group and that is it.
1751 static int
1752 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
1754 hammer_inode_t ip = rec->ip;
1756 switch(rec->flush_state) {
1757 case HAMMER_FST_FLUSH:
1758 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1759 rec->flush_group = ip->flush_group;
1760 } else {
1761 KKASSERT(rec->flush_group == ip->flush_group);
1763 break;
1764 default:
1765 break;
1767 return(0);
1771 * Wait for a previously queued flush to complete. Not only do we need to
1772 * wait for the inode to sync out, we also may have to run the flusher again
1773 * to get it past the UNDO position pertaining to the flush so a crash does
1774 * not 'undo' our flush.
1776 void
1777 hammer_wait_inode(hammer_inode_t ip)
1779 hammer_mount_t hmp = ip->hmp;
1780 int sync_group;
1781 int waitcount;
1783 sync_group = ip->flush_group;
1784 waitcount = (ip->flags & HAMMER_INODE_REFLUSH) ? 2 : 1;
1786 if (ip->flush_state == HAMMER_FST_SETUP) {
1787 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1789 /* XXX can we make this != FST_IDLE ? check SETUP depends */
1790 while (ip->flush_state == HAMMER_FST_FLUSH &&
1791 (ip->flush_group - sync_group) < waitcount) {
1792 ip->flags |= HAMMER_INODE_FLUSHW;
1793 tsleep(&ip->flags, 0, "hmrwin", 0);
1795 while (hmp->flusher.done - sync_group < waitcount) {
1796 kprintf("Y");
1797 hammer_flusher_sync(hmp);
1802 * Called by the backend code when a flush has been completed.
1803 * The inode has already been removed from the flush list.
1805 * A pipelined flush can occur, in which case we must re-enter the
1806 * inode on the list and re-copy its fields.
1808 void
1809 hammer_flush_inode_done(hammer_inode_t ip)
1811 hammer_mount_t hmp;
1812 int dorel;
1814 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1816 hmp = ip->hmp;
1819 * Merge left-over flags back into the frontend and fix the state.
1820 * Incomplete truncations are retained by the backend.
1822 ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
1823 ip->sync_flags &= HAMMER_INODE_TRUNCATED;
1826 * The backend may have adjusted nlinks, so if the adjusted nlinks
1827 * does not match the fronttend set the frontend's RDIRTY flag again.
1829 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1830 ip->flags |= HAMMER_INODE_DDIRTY;
1833 * Fix up the dirty buffer status.
1835 if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
1836 ip->flags |= HAMMER_INODE_BUFS;
1840 * Re-set the XDIRTY flag if some of the inode's in-memory records
1841 * could not be flushed.
1843 KKASSERT((RB_EMPTY(&ip->rec_tree) &&
1844 (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
1845 (!RB_EMPTY(&ip->rec_tree) &&
1846 (ip->flags & HAMMER_INODE_XDIRTY) != 0));
1849 * Do not lose track of inodes which no longer have vnode
1850 * assocations, otherwise they may never get flushed again.
1852 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1853 ip->flags |= HAMMER_INODE_REFLUSH;
1856 * Clean up the vnode ref
1858 if (ip->flags & HAMMER_INODE_VHELD) {
1859 ip->flags &= ~HAMMER_INODE_VHELD;
1860 vrele(ip->vp);
1864 * Adjust flush_state. The target state (idle or setup) shouldn't
1865 * be terribly important since we will reflush if we really need
1866 * to do anything.
1868 * If the WOULDBLOCK flag is set we must re-flush immediately
1869 * to continue a potentially large deletion. The flag also causes
1870 * the hammer_setup_child_callback() to move records in the old
1871 * flush group to the new one.
1873 if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1874 ip->flush_state = HAMMER_FST_IDLE;
1875 hammer_flush_inode_core(ip, HAMMER_FLUSH_SIGNAL);
1876 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
1877 dorel = 1;
1878 } else if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1879 ip->flush_state = HAMMER_FST_IDLE;
1880 dorel = 1;
1881 } else {
1882 ip->flush_state = HAMMER_FST_SETUP;
1883 dorel = 0;
1886 --hmp->count_iqueued;
1887 --hammer_count_iqueued;
1890 * If the frontend made more changes and requested another flush,
1891 * then try to get it running.
1893 if (ip->flags & HAMMER_INODE_REFLUSH) {
1894 ip->flags &= ~HAMMER_INODE_REFLUSH;
1895 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1896 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1897 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1898 } else {
1899 hammer_flush_inode(ip, 0);
1904 * If the inode is now clean drop the space reservation.
1906 if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1907 (ip->flags & HAMMER_INODE_RSV_INODES)) {
1908 ip->flags &= ~HAMMER_INODE_RSV_INODES;
1909 --hmp->rsv_inodes;
1913 * Finally, if the frontend is waiting for a flush to complete,
1914 * wake it up.
1916 if (ip->flush_state != HAMMER_FST_FLUSH) {
1917 if (ip->flags & HAMMER_INODE_FLUSHW) {
1918 ip->flags &= ~HAMMER_INODE_FLUSHW;
1919 wakeup(&ip->flags);
1922 if (dorel)
1923 hammer_rel_inode(ip, 0);
1927 * Called from hammer_sync_inode() to synchronize in-memory records
1928 * to the media.
1930 static int
1931 hammer_sync_record_callback(hammer_record_t record, void *data)
1933 hammer_cursor_t cursor = data;
1934 hammer_transaction_t trans = cursor->trans;
1935 int error;
1938 * Skip records that do not belong to the current flush.
1940 ++hammer_stats_record_iterations;
1941 if (record->flush_state != HAMMER_FST_FLUSH)
1942 return(0);
1944 #if 1
1945 if (record->flush_group != record->ip->flush_group) {
1946 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1947 Debugger("blah2");
1948 return(0);
1950 #endif
1951 KKASSERT(record->flush_group == record->ip->flush_group);
1954 * Interlock the record using the BE flag. Once BE is set the
1955 * frontend cannot change the state of FE.
1957 * NOTE: If FE is set prior to us setting BE we still sync the
1958 * record out, but the flush completion code converts it to
1959 * a delete-on-disk record instead of destroying it.
1961 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1962 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1965 * The backend may have already disposed of the record.
1967 if (record->flags & HAMMER_RECF_DELETED_BE) {
1968 error = 0;
1969 goto done;
1973 * If the whole inode is being deleting all on-disk records will
1974 * be deleted very soon, we can't sync any new records to disk
1975 * because they will be deleted in the same transaction they were
1976 * created in (delete_tid == create_tid), which will assert.
1978 * XXX There may be a case with RECORD_ADD with DELETED_FE set
1979 * that we currently panic on.
1981 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
1982 switch(record->type) {
1983 case HAMMER_MEM_RECORD_DATA:
1985 * We don't have to do anything, if the record was
1986 * committed the space will have been accounted for
1987 * in the blockmap.
1989 /* fall through */
1990 case HAMMER_MEM_RECORD_GENERAL:
1991 record->flags |= HAMMER_RECF_DELETED_FE;
1992 record->flags |= HAMMER_RECF_DELETED_BE;
1993 error = 0;
1994 goto done;
1995 case HAMMER_MEM_RECORD_ADD:
1996 panic("hammer_sync_record_callback: illegal add "
1997 "during inode deletion record %p", record);
1998 break; /* NOT REACHED */
1999 case HAMMER_MEM_RECORD_INODE:
2000 panic("hammer_sync_record_callback: attempt to "
2001 "sync inode record %p?", record);
2002 break; /* NOT REACHED */
2003 case HAMMER_MEM_RECORD_DEL:
2005 * Follow through and issue the on-disk deletion
2007 break;
2012 * If DELETED_FE is set special handling is needed for directory
2013 * entries. Dependant pieces related to the directory entry may
2014 * have already been synced to disk. If this occurs we have to
2015 * sync the directory entry and then change the in-memory record
2016 * from an ADD to a DELETE to cover the fact that it's been
2017 * deleted by the frontend.
2019 * A directory delete covering record (MEM_RECORD_DEL) can never
2020 * be deleted by the frontend.
2022 * Any other record type (aka DATA) can be deleted by the frontend.
2023 * XXX At the moment the flusher must skip it because there may
2024 * be another data record in the flush group for the same block,
2025 * meaning that some frontend data changes can leak into the backend's
2026 * synchronization point.
2028 if (record->flags & HAMMER_RECF_DELETED_FE) {
2029 if (record->type == HAMMER_MEM_RECORD_ADD) {
2030 record->flags |= HAMMER_RECF_CONVERT_DELETE;
2031 } else {
2032 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2033 record->flags |= HAMMER_RECF_DELETED_BE;
2034 error = 0;
2035 goto done;
2040 * Assign the create_tid for new records. Deletions already
2041 * have the record's entire key properly set up.
2043 if (record->type != HAMMER_MEM_RECORD_DEL)
2044 record->leaf.base.create_tid = trans->tid;
2045 record->leaf.create_ts = trans->time32;
2046 for (;;) {
2047 error = hammer_ip_sync_record_cursor(cursor, record);
2048 if (error != EDEADLK)
2049 break;
2050 hammer_done_cursor(cursor);
2051 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2052 record->ip);
2053 if (error)
2054 break;
2056 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2058 if (error) {
2059 error = -error;
2060 if (error != -ENOSPC) {
2061 kprintf("hammer_sync_record_callback: sync failed rec "
2062 "%p, error %d\n", record, error);
2063 Debugger("sync failed rec");
2066 done:
2067 hammer_flush_record_done(record, error);
2068 return(error);
2072 * XXX error handling
2075 hammer_sync_inode(hammer_inode_t ip)
2077 struct hammer_transaction trans;
2078 struct hammer_cursor cursor;
2079 hammer_node_t tmp_node;
2080 hammer_record_t depend;
2081 hammer_record_t next;
2082 int error, tmp_error;
2083 u_int64_t nlinks;
2085 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2086 return(0);
2088 hammer_start_transaction_fls(&trans, ip->hmp);
2089 error = hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
2090 if (error)
2091 goto done;
2094 * Any directory records referencing this inode which are not in
2095 * our current flush group must adjust our nlink count for the
2096 * purposes of synchronization to disk.
2098 * Records which are in our flush group can be unlinked from our
2099 * inode now, potentially allowing the inode to be physically
2100 * deleted.
2102 * This cannot block.
2104 nlinks = ip->ino_data.nlinks;
2105 next = TAILQ_FIRST(&ip->target_list);
2106 while ((depend = next) != NULL) {
2107 next = TAILQ_NEXT(depend, target_entry);
2108 if (depend->flush_state == HAMMER_FST_FLUSH &&
2109 depend->flush_group == ip->hmp->flusher.act) {
2111 * If this is an ADD that was deleted by the frontend
2112 * the frontend nlinks count will have already been
2113 * decremented, but the backend is going to sync its
2114 * directory entry and must account for it. The
2115 * record will be converted to a delete-on-disk when
2116 * it gets synced.
2118 * If the ADD was not deleted by the frontend we
2119 * can remove the dependancy from our target_list.
2121 if (depend->flags & HAMMER_RECF_DELETED_FE) {
2122 ++nlinks;
2123 } else {
2124 TAILQ_REMOVE(&ip->target_list, depend,
2125 target_entry);
2126 depend->target_ip = NULL;
2128 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2130 * Not part of our flush group
2132 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2133 switch(depend->type) {
2134 case HAMMER_MEM_RECORD_ADD:
2135 --nlinks;
2136 break;
2137 case HAMMER_MEM_RECORD_DEL:
2138 ++nlinks;
2139 break;
2140 default:
2141 break;
2147 * Set dirty if we had to modify the link count.
2149 if (ip->sync_ino_data.nlinks != nlinks) {
2150 KKASSERT((int64_t)nlinks >= 0);
2151 ip->sync_ino_data.nlinks = nlinks;
2152 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2156 * If there is a trunction queued destroy any data past the (aligned)
2157 * truncation point. Userland will have dealt with the buffer
2158 * containing the truncation point for us.
2160 * We don't flush pending frontend data buffers until after we've
2161 * dealt with the truncation.
2163 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2165 * Interlock trunc_off. The VOP front-end may continue to
2166 * make adjustments to it while we are blocked.
2168 off_t trunc_off;
2169 off_t aligned_trunc_off;
2170 int blkmask;
2172 trunc_off = ip->sync_trunc_off;
2173 blkmask = hammer_blocksize(trunc_off) - 1;
2174 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2177 * Delete any whole blocks on-media. The front-end has
2178 * already cleaned out any partial block and made it
2179 * pending. The front-end may have updated trunc_off
2180 * while we were blocked so we only use sync_trunc_off.
2182 * This operation can blow out the buffer cache, EWOULDBLOCK
2183 * means we were unable to complete the deletion. The
2184 * deletion will update sync_trunc_off in that case.
2186 error = hammer_ip_delete_range(&cursor, ip,
2187 aligned_trunc_off,
2188 0x7FFFFFFFFFFFFFFFLL, 2);
2189 if (error == EWOULDBLOCK) {
2190 ip->flags |= HAMMER_INODE_WOULDBLOCK;
2191 error = 0;
2192 goto defer_buffer_flush;
2195 if (error)
2196 Debugger("hammer_ip_delete_range errored");
2199 * Clear the truncation flag on the backend after we have
2200 * complete the deletions. Backend data is now good again
2201 * (including new records we are about to sync, below).
2203 * Leave sync_trunc_off intact. As we write additional
2204 * records the backend will update sync_trunc_off. This
2205 * tells the backend whether it can skip the overwrite
2206 * test. This should work properly even when the backend
2207 * writes full blocks where the truncation point straddles
2208 * the block because the comparison is against the base
2209 * offset of the record.
2211 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2212 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2213 } else {
2214 error = 0;
2218 * Now sync related records. These will typically be directory
2219 * entries or delete-on-disk records.
2221 * Not all records will be flushed, but clear XDIRTY anyway. We
2222 * will set it again in the frontend hammer_flush_inode_done()
2223 * if records remain.
2225 if (error == 0) {
2226 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2227 hammer_sync_record_callback, &cursor);
2228 if (tmp_error < 0)
2229 tmp_error = -error;
2230 if (tmp_error)
2231 error = tmp_error;
2233 hammer_cache_node(&ip->cache[1], cursor.node);
2236 * Re-seek for inode update, assuming our cache hasn't been ripped
2237 * out from under us.
2239 if (error == 0) {
2240 tmp_node = hammer_ref_node_safe(ip->hmp, &ip->cache[0], &error);
2241 if (tmp_node) {
2242 hammer_cursor_downgrade(&cursor);
2243 hammer_lock_sh(&tmp_node->lock);
2244 if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2245 hammer_cursor_seek(&cursor, tmp_node, 0);
2246 hammer_unlock(&tmp_node->lock);
2247 hammer_rel_node(tmp_node);
2249 error = 0;
2253 * If we are deleting the inode the frontend had better not have
2254 * any active references on elements making up the inode.
2256 * The call to hammer_ip_delete_clean() cleans up auxillary records
2257 * but not DB or DATA records. Those must have already been deleted
2258 * by the normal truncation mechanic.
2260 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2261 RB_EMPTY(&ip->rec_tree) &&
2262 (ip->sync_flags & HAMMER_INODE_DELETING) &&
2263 (ip->flags & HAMMER_INODE_DELETED) == 0) {
2264 int count1 = 0;
2266 error = hammer_ip_delete_clean(&cursor, ip, &count1);
2267 if (error == 0) {
2268 ip->flags |= HAMMER_INODE_DELETED;
2269 ip->sync_flags &= ~HAMMER_INODE_DELETING;
2270 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2271 KKASSERT(RB_EMPTY(&ip->rec_tree));
2274 * Set delete_tid in both the frontend and backend
2275 * copy of the inode record. The DELETED flag handles
2276 * this, do not set RDIRTY.
2278 ip->ino_leaf.base.delete_tid = trans.tid;
2279 ip->sync_ino_leaf.base.delete_tid = trans.tid;
2280 ip->ino_leaf.delete_ts = trans.time32;
2281 ip->sync_ino_leaf.delete_ts = trans.time32;
2285 * Adjust the inode count in the volume header
2287 if (ip->flags & HAMMER_INODE_ONDISK) {
2288 hammer_modify_volume_field(&trans,
2289 trans.rootvol,
2290 vol0_stat_inodes);
2291 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2292 hammer_modify_volume_done(trans.rootvol);
2294 } else {
2295 Debugger("hammer_ip_delete_clean errored");
2299 ip->sync_flags &= ~HAMMER_INODE_BUFS;
2301 if (error)
2302 Debugger("RB_SCAN errored");
2304 defer_buffer_flush:
2306 * Now update the inode's on-disk inode-data and/or on-disk record.
2307 * DELETED and ONDISK are managed only in ip->flags.
2309 * In the case of a defered buffer flush we still update the on-disk
2310 * inode to satisfy visibility requirements if there happen to be
2311 * directory dependancies.
2313 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2314 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2316 * If deleted and on-disk, don't set any additional flags.
2317 * the delete flag takes care of things.
2319 * Clear flags which may have been set by the frontend.
2321 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2322 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2323 HAMMER_INODE_DELETING);
2324 break;
2325 case HAMMER_INODE_DELETED:
2327 * Take care of the case where a deleted inode was never
2328 * flushed to the disk in the first place.
2330 * Clear flags which may have been set by the frontend.
2332 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2333 HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2334 HAMMER_INODE_DELETING);
2335 while (RB_ROOT(&ip->rec_tree)) {
2336 hammer_record_t record = RB_ROOT(&ip->rec_tree);
2337 hammer_ref(&record->lock);
2338 KKASSERT(record->lock.refs == 1);
2339 record->flags |= HAMMER_RECF_DELETED_FE;
2340 record->flags |= HAMMER_RECF_DELETED_BE;
2341 hammer_rel_mem_record(record);
2343 break;
2344 case HAMMER_INODE_ONDISK:
2346 * If already on-disk, do not set any additional flags.
2348 break;
2349 default:
2351 * If not on-disk and not deleted, set DDIRTY to force
2352 * an initial record to be written.
2354 * Also set the create_tid in both the frontend and backend
2355 * copy of the inode record.
2357 ip->ino_leaf.base.create_tid = trans.tid;
2358 ip->ino_leaf.create_ts = trans.time32;
2359 ip->sync_ino_leaf.base.create_tid = trans.tid;
2360 ip->sync_ino_leaf.create_ts = trans.time32;
2361 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2362 break;
2366 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
2367 * is already on-disk the old record is marked as deleted.
2369 * If DELETED is set hammer_update_inode() will delete the existing
2370 * record without writing out a new one.
2372 * If *ONLY* the ITIMES flag is set we can update the record in-place.
2374 if (ip->flags & HAMMER_INODE_DELETED) {
2375 error = hammer_update_inode(&cursor, ip);
2376 } else
2377 if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2378 (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2379 error = hammer_update_itimes(&cursor, ip);
2380 } else
2381 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2382 error = hammer_update_inode(&cursor, ip);
2384 if (error)
2385 Debugger("hammer_update_itimes/inode errored");
2386 done:
2388 * Save the TID we used to sync the inode with to make sure we
2389 * do not improperly reuse it.
2391 hammer_done_cursor(&cursor);
2392 hammer_done_transaction(&trans);
2393 return(error);
2397 * This routine is called when the OS is no longer actively referencing
2398 * the inode (but might still be keeping it cached), or when releasing
2399 * the last reference to an inode.
2401 * At this point if the inode's nlinks count is zero we want to destroy
2402 * it, which may mean destroying it on-media too.
2404 void
2405 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2407 struct vnode *vp;
2410 * Set the DELETING flag when the link count drops to 0 and the
2411 * OS no longer has any opens on the inode.
2413 * The backend will clear DELETING (a mod flag) and set DELETED
2414 * (a state flag) when it is actually able to perform the
2415 * operation.
2417 if (ip->ino_data.nlinks == 0 &&
2418 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2419 ip->flags |= HAMMER_INODE_DELETING;
2420 ip->flags |= HAMMER_INODE_TRUNCATED;
2421 ip->trunc_off = 0;
2422 vp = NULL;
2423 if (getvp) {
2424 if (hammer_get_vnode(ip, &vp) != 0)
2425 return;
2429 * Final cleanup
2431 if (ip->vp) {
2432 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2433 vnode_pager_setsize(ip->vp, 0);
2435 if (getvp) {
2436 vput(vp);
2442 * Re-test an inode when a dependancy had gone away to see if we
2443 * can chain flush it.
2445 void
2446 hammer_test_inode(hammer_inode_t ip)
2448 if (ip->flags & HAMMER_INODE_REFLUSH) {
2449 ip->flags &= ~HAMMER_INODE_REFLUSH;
2450 hammer_ref(&ip->lock);
2451 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2452 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2453 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2454 } else {
2455 hammer_flush_inode(ip, 0);
2457 hammer_rel_inode(ip, 0);
2462 * Clear the RECLAIM flag on an inode. This occurs when the inode is
2463 * reassociated with a vp or just before it gets freed.
2465 * Wakeup one thread blocked waiting on reclaims to complete. Note that
2466 * the inode the thread is waiting on behalf of is a different inode then
2467 * the inode we are called with. This is to create a pipeline.
2469 static void
2470 hammer_inode_wakereclaims(hammer_inode_t ip)
2472 struct hammer_reclaim *reclaim;
2473 hammer_mount_t hmp = ip->hmp;
2475 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2476 return;
2478 --hammer_count_reclaiming;
2479 --hmp->inode_reclaims;
2480 ip->flags &= ~HAMMER_INODE_RECLAIM;
2482 if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
2483 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
2484 reclaim->okydoky = 1;
2485 wakeup(reclaim);
2490 * Setup our reclaim pipeline. We only let so many detached (and dirty)
2491 * inodes build up before we start blocking.
2493 * When we block we don't care *which* inode has finished reclaiming,
2494 * as lone as one does. This is somewhat heuristical... we also put a
2495 * cap on how long we are willing to wait.
2497 void
2498 hammer_inode_waitreclaims(hammer_mount_t hmp)
2500 struct hammer_reclaim reclaim;
2501 int delay;
2503 if (hmp->inode_reclaims > HAMMER_RECLAIM_WAIT) {
2504 reclaim.okydoky = 0;
2505 TAILQ_INSERT_TAIL(&hmp->reclaim_list,
2506 &reclaim, entry);
2507 } else {
2508 reclaim.okydoky = 1;
2511 if (reclaim.okydoky == 0) {
2512 delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
2513 HAMMER_RECLAIM_WAIT;
2514 if (delay >= 0)
2515 tsleep(&reclaim, 0, "hmrrcm", delay + 1);
2516 if (reclaim.okydoky == 0)
2517 TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);