kernel - Fix races created by a comedy of circumstansces (3)
[dragonfly.git] / contrib / gcc-4.7 / gcc / sched-deps.c
blobe4aa5200241ee0a83f6b4a0ba1476b6f7c58f3d4
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
5 2011, 2012
6 Free Software Foundation, Inc.
7 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
8 and currently maintained by, Jim Wilson (wilson@cygnus.com)
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify it under
13 the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 3, or (at your option) any later
15 version.
17 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
18 WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "diagnostic-core.h"
31 #include "rtl.h"
32 #include "tm_p.h"
33 #include "hard-reg-set.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "insn-config.h"
38 #include "insn-attr.h"
39 #include "except.h"
40 #include "recog.h"
41 #include "sched-int.h"
42 #include "params.h"
43 #include "cselib.h"
44 #include "ira.h"
45 #include "target.h"
47 #ifdef INSN_SCHEDULING
49 #ifdef ENABLE_CHECKING
50 #define CHECK (true)
51 #else
52 #define CHECK (false)
53 #endif
55 /* Holds current parameters for the dependency analyzer. */
56 struct sched_deps_info_def *sched_deps_info;
58 /* The data is specific to the Haifa scheduler. */
59 VEC(haifa_deps_insn_data_def, heap) *h_d_i_d = NULL;
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
74 gcc_assert (ds & DEP_ANTI);
76 return REG_DEP_ANTI;
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
83 switch (dk)
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
100 /* Functions to operate with dependence information container - dep_t. */
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
113 /* Init DEP with the arguments.
114 While most of the scheduler (including targets) only need the major type
115 of the dependency, it is convenient to hide full dep_status from them. */
116 void
117 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
119 ds_t ds;
121 if ((current_sched_info->flags & USE_DEPS_LIST))
122 ds = dk_to_ds (kind);
123 else
124 ds = 0;
126 init_dep_1 (dep, pro, con, kind, ds);
129 /* Make a copy of FROM in TO. */
130 static void
131 copy_dep (dep_t to, dep_t from)
133 memcpy (to, from, sizeof (*to));
136 static void dump_ds (FILE *, ds_t);
138 /* Define flags for dump_dep (). */
140 /* Dump producer of the dependence. */
141 #define DUMP_DEP_PRO (2)
143 /* Dump consumer of the dependence. */
144 #define DUMP_DEP_CON (4)
146 /* Dump type of the dependence. */
147 #define DUMP_DEP_TYPE (8)
149 /* Dump status of the dependence. */
150 #define DUMP_DEP_STATUS (16)
152 /* Dump all information about the dependence. */
153 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
154 |DUMP_DEP_STATUS)
156 /* Dump DEP to DUMP.
157 FLAGS is a bit mask specifying what information about DEP needs
158 to be printed.
159 If FLAGS has the very first bit set, then dump all information about DEP
160 and propagate this bit into the callee dump functions. */
161 static void
162 dump_dep (FILE *dump, dep_t dep, int flags)
164 if (flags & 1)
165 flags |= DUMP_DEP_ALL;
167 fprintf (dump, "<");
169 if (flags & DUMP_DEP_PRO)
170 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
172 if (flags & DUMP_DEP_CON)
173 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
175 if (flags & DUMP_DEP_TYPE)
177 char t;
178 enum reg_note type = DEP_TYPE (dep);
180 switch (type)
182 case REG_DEP_TRUE:
183 t = 't';
184 break;
186 case REG_DEP_OUTPUT:
187 t = 'o';
188 break;
190 case REG_DEP_CONTROL:
191 t = 'c';
192 break;
194 case REG_DEP_ANTI:
195 t = 'a';
196 break;
198 default:
199 gcc_unreachable ();
200 break;
203 fprintf (dump, "%c; ", t);
206 if (flags & DUMP_DEP_STATUS)
208 if (current_sched_info->flags & USE_DEPS_LIST)
209 dump_ds (dump, DEP_STATUS (dep));
212 fprintf (dump, ">");
215 /* Default flags for dump_dep (). */
216 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
218 /* Dump all fields of DEP to STDERR. */
219 void
220 sd_debug_dep (dep_t dep)
222 dump_dep (stderr, dep, 1);
223 fprintf (stderr, "\n");
226 /* Determine whether DEP is a dependency link of a non-debug insn on a
227 debug insn. */
229 static inline bool
230 depl_on_debug_p (dep_link_t dep)
232 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
233 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
236 /* Functions to operate with a single link from the dependencies lists -
237 dep_link_t. */
239 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
240 PREV_NEXT_P. */
241 static void
242 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
244 dep_link_t next = *prev_nextp;
246 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
247 && DEP_LINK_NEXT (l) == NULL);
249 /* Init node being inserted. */
250 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
251 DEP_LINK_NEXT (l) = next;
253 /* Fix next node. */
254 if (next != NULL)
256 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
258 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
261 /* Fix prev node. */
262 *prev_nextp = l;
265 /* Add dep_link LINK to deps_list L. */
266 static void
267 add_to_deps_list (dep_link_t link, deps_list_t l)
269 attach_dep_link (link, &DEPS_LIST_FIRST (l));
271 /* Don't count debug deps. */
272 if (!depl_on_debug_p (link))
273 ++DEPS_LIST_N_LINKS (l);
276 /* Detach dep_link L from the list. */
277 static void
278 detach_dep_link (dep_link_t l)
280 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
281 dep_link_t next = DEP_LINK_NEXT (l);
283 *prev_nextp = next;
285 if (next != NULL)
286 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
288 DEP_LINK_PREV_NEXTP (l) = NULL;
289 DEP_LINK_NEXT (l) = NULL;
292 /* Remove link LINK from list LIST. */
293 static void
294 remove_from_deps_list (dep_link_t link, deps_list_t list)
296 detach_dep_link (link);
298 /* Don't count debug deps. */
299 if (!depl_on_debug_p (link))
300 --DEPS_LIST_N_LINKS (list);
303 /* Move link LINK from list FROM to list TO. */
304 static void
305 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
307 remove_from_deps_list (link, from);
308 add_to_deps_list (link, to);
311 /* Return true of LINK is not attached to any list. */
312 static bool
313 dep_link_is_detached_p (dep_link_t link)
315 return DEP_LINK_PREV_NEXTP (link) == NULL;
318 /* Pool to hold all dependency nodes (dep_node_t). */
319 static alloc_pool dn_pool;
321 /* Number of dep_nodes out there. */
322 static int dn_pool_diff = 0;
324 /* Create a dep_node. */
325 static dep_node_t
326 create_dep_node (void)
328 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
329 dep_link_t back = DEP_NODE_BACK (n);
330 dep_link_t forw = DEP_NODE_FORW (n);
332 DEP_LINK_NODE (back) = n;
333 DEP_LINK_NEXT (back) = NULL;
334 DEP_LINK_PREV_NEXTP (back) = NULL;
336 DEP_LINK_NODE (forw) = n;
337 DEP_LINK_NEXT (forw) = NULL;
338 DEP_LINK_PREV_NEXTP (forw) = NULL;
340 ++dn_pool_diff;
342 return n;
345 /* Delete dep_node N. N must not be connected to any deps_list. */
346 static void
347 delete_dep_node (dep_node_t n)
349 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
350 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
352 --dn_pool_diff;
354 pool_free (dn_pool, n);
357 /* Pool to hold dependencies lists (deps_list_t). */
358 static alloc_pool dl_pool;
360 /* Number of deps_lists out there. */
361 static int dl_pool_diff = 0;
363 /* Functions to operate with dependences lists - deps_list_t. */
365 /* Return true if list L is empty. */
366 static bool
367 deps_list_empty_p (deps_list_t l)
369 return DEPS_LIST_N_LINKS (l) == 0;
372 /* Create a new deps_list. */
373 static deps_list_t
374 create_deps_list (void)
376 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
378 DEPS_LIST_FIRST (l) = NULL;
379 DEPS_LIST_N_LINKS (l) = 0;
381 ++dl_pool_diff;
382 return l;
385 /* Free deps_list L. */
386 static void
387 free_deps_list (deps_list_t l)
389 gcc_assert (deps_list_empty_p (l));
391 --dl_pool_diff;
393 pool_free (dl_pool, l);
396 /* Return true if there is no dep_nodes and deps_lists out there.
397 After the region is scheduled all the dependency nodes and lists
398 should [generally] be returned to pool. */
399 bool
400 deps_pools_are_empty_p (void)
402 return dn_pool_diff == 0 && dl_pool_diff == 0;
405 /* Remove all elements from L. */
406 static void
407 clear_deps_list (deps_list_t l)
411 dep_link_t link = DEPS_LIST_FIRST (l);
413 if (link == NULL)
414 break;
416 remove_from_deps_list (link, l);
418 while (1);
421 /* Decide whether a dependency should be treated as a hard or a speculative
422 dependency. */
423 static bool
424 dep_spec_p (dep_t dep)
426 if (current_sched_info->flags & DO_SPECULATION)
428 if (DEP_STATUS (dep) & SPECULATIVE)
429 return true;
431 if (current_sched_info->flags & DO_PREDICATION)
433 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
434 return true;
436 return false;
439 static regset reg_pending_sets;
440 static regset reg_pending_clobbers;
441 static regset reg_pending_uses;
442 static regset reg_pending_control_uses;
443 static enum reg_pending_barrier_mode reg_pending_barrier;
445 /* Hard registers implicitly clobbered or used (or may be implicitly
446 clobbered or used) by the currently analyzed insn. For example,
447 insn in its constraint has one register class. Even if there is
448 currently no hard register in the insn, the particular hard
449 register will be in the insn after reload pass because the
450 constraint requires it. */
451 static HARD_REG_SET implicit_reg_pending_clobbers;
452 static HARD_REG_SET implicit_reg_pending_uses;
454 /* To speed up the test for duplicate dependency links we keep a
455 record of dependencies created by add_dependence when the average
456 number of instructions in a basic block is very large.
458 Studies have shown that there is typically around 5 instructions between
459 branches for typical C code. So we can make a guess that the average
460 basic block is approximately 5 instructions long; we will choose 100X
461 the average size as a very large basic block.
463 Each insn has associated bitmaps for its dependencies. Each bitmap
464 has enough entries to represent a dependency on any other insn in
465 the insn chain. All bitmap for true dependencies cache is
466 allocated then the rest two ones are also allocated. */
467 static bitmap_head *true_dependency_cache = NULL;
468 static bitmap_head *output_dependency_cache = NULL;
469 static bitmap_head *anti_dependency_cache = NULL;
470 static bitmap_head *control_dependency_cache = NULL;
471 static bitmap_head *spec_dependency_cache = NULL;
472 static int cache_size;
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx, rtx, enum reg_note);
476 static void add_dependence_list (rtx, rtx, int, enum reg_note);
477 static void add_dependence_list_and_free (struct deps_desc *, rtx,
478 rtx *, int, enum reg_note);
479 static void delete_all_dependences (rtx);
480 static void fixup_sched_groups (rtx);
482 static void flush_pending_lists (struct deps_desc *, rtx, int, int);
483 static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
484 static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
485 static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
487 static bool sched_has_condition_p (const_rtx);
488 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
490 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
491 rtx, rtx);
492 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
494 #ifdef ENABLE_CHECKING
495 static void check_dep (dep_t, bool);
496 #endif
498 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
500 static int
501 deps_may_trap_p (const_rtx mem)
503 const_rtx addr = XEXP (mem, 0);
505 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
507 const_rtx t = get_reg_known_value (REGNO (addr));
508 if (t)
509 addr = t;
511 return rtx_addr_can_trap_p (addr);
515 /* Find the condition under which INSN is executed. If REV is not NULL,
516 it is set to TRUE when the returned comparison should be reversed
517 to get the actual condition. */
518 static rtx
519 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
521 rtx pat = PATTERN (insn);
522 rtx src;
524 if (rev)
525 *rev = false;
527 if (GET_CODE (pat) == COND_EXEC)
528 return COND_EXEC_TEST (pat);
530 if (!any_condjump_p (insn) || !onlyjump_p (insn))
531 return 0;
533 src = SET_SRC (pc_set (insn));
535 if (XEXP (src, 2) == pc_rtx)
536 return XEXP (src, 0);
537 else if (XEXP (src, 1) == pc_rtx)
539 rtx cond = XEXP (src, 0);
540 enum rtx_code revcode = reversed_comparison_code (cond, insn);
542 if (revcode == UNKNOWN)
543 return 0;
545 if (rev)
546 *rev = true;
547 return cond;
550 return 0;
553 /* Return the condition under which INSN does not execute (i.e. the
554 not-taken condition for a conditional branch), or NULL if we cannot
555 find such a condition. The caller should make a copy of the condition
556 before using it. */
558 sched_get_reverse_condition_uncached (const_rtx insn)
560 bool rev;
561 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
562 if (cond == NULL_RTX)
563 return cond;
564 if (!rev)
566 enum rtx_code revcode = reversed_comparison_code (cond, insn);
567 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
568 XEXP (cond, 0),
569 XEXP (cond, 1));
571 return cond;
574 /* Caching variant of sched_get_condition_with_rev_uncached.
575 We only do actual work the first time we come here for an insn; the
576 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
577 static rtx
578 sched_get_condition_with_rev (const_rtx insn, bool *rev)
580 bool tmp;
582 if (INSN_LUID (insn) == 0)
583 return sched_get_condition_with_rev_uncached (insn, rev);
585 if (INSN_CACHED_COND (insn) == const_true_rtx)
586 return NULL_RTX;
588 if (INSN_CACHED_COND (insn) != NULL_RTX)
590 if (rev)
591 *rev = INSN_REVERSE_COND (insn);
592 return INSN_CACHED_COND (insn);
595 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
596 INSN_REVERSE_COND (insn) = tmp;
598 if (INSN_CACHED_COND (insn) == NULL_RTX)
600 INSN_CACHED_COND (insn) = const_true_rtx;
601 return NULL_RTX;
604 if (rev)
605 *rev = INSN_REVERSE_COND (insn);
606 return INSN_CACHED_COND (insn);
609 /* True when we can find a condition under which INSN is executed. */
610 static bool
611 sched_has_condition_p (const_rtx insn)
613 return !! sched_get_condition_with_rev (insn, NULL);
618 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
619 static int
620 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
622 if (COMPARISON_P (cond1)
623 && COMPARISON_P (cond2)
624 && GET_CODE (cond1) ==
625 (rev1==rev2
626 ? reversed_comparison_code (cond2, NULL)
627 : GET_CODE (cond2))
628 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
629 && XEXP (cond1, 1) == XEXP (cond2, 1))
630 return 1;
631 return 0;
634 /* Return true if insn1 and insn2 can never depend on one another because
635 the conditions under which they are executed are mutually exclusive. */
636 bool
637 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
639 rtx cond1, cond2;
640 bool rev1 = false, rev2 = false;
642 /* df doesn't handle conditional lifetimes entirely correctly;
643 calls mess up the conditional lifetimes. */
644 if (!CALL_P (insn1) && !CALL_P (insn2))
646 cond1 = sched_get_condition_with_rev (insn1, &rev1);
647 cond2 = sched_get_condition_with_rev (insn2, &rev2);
648 if (cond1 && cond2
649 && conditions_mutex_p (cond1, cond2, rev1, rev2)
650 /* Make sure first instruction doesn't affect condition of second
651 instruction if switched. */
652 && !modified_in_p (cond1, insn2)
653 /* Make sure second instruction doesn't affect condition of first
654 instruction if switched. */
655 && !modified_in_p (cond2, insn1))
656 return true;
658 return false;
662 /* Return true if INSN can potentially be speculated with type DS. */
663 bool
664 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
666 if (HAS_INTERNAL_DEP (insn))
667 return false;
669 if (!NONJUMP_INSN_P (insn))
670 return false;
672 if (SCHED_GROUP_P (insn))
673 return false;
675 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
676 return false;
678 if (side_effects_p (PATTERN (insn)))
679 return false;
681 if (ds & BE_IN_SPEC)
682 /* The following instructions, which depend on a speculatively scheduled
683 instruction, cannot be speculatively scheduled along. */
685 if (may_trap_or_fault_p (PATTERN (insn)))
686 /* If instruction might fault, it cannot be speculatively scheduled.
687 For control speculation it's obvious why and for data speculation
688 it's because the insn might get wrong input if speculation
689 wasn't successful. */
690 return false;
692 if ((ds & BE_IN_DATA)
693 && sched_has_condition_p (insn))
694 /* If this is a predicated instruction, then it cannot be
695 speculatively scheduled. See PR35659. */
696 return false;
699 return true;
702 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
703 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
704 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
705 This function is used to switch sd_iterator to the next list.
706 !!! For internal use only. Might consider moving it to sched-int.h. */
707 void
708 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
709 deps_list_t *list_ptr, bool *resolved_p_ptr)
711 sd_list_types_def types = *types_ptr;
713 if (types & SD_LIST_HARD_BACK)
715 *list_ptr = INSN_HARD_BACK_DEPS (insn);
716 *resolved_p_ptr = false;
717 *types_ptr = types & ~SD_LIST_HARD_BACK;
719 else if (types & SD_LIST_SPEC_BACK)
721 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
722 *resolved_p_ptr = false;
723 *types_ptr = types & ~SD_LIST_SPEC_BACK;
725 else if (types & SD_LIST_FORW)
727 *list_ptr = INSN_FORW_DEPS (insn);
728 *resolved_p_ptr = false;
729 *types_ptr = types & ~SD_LIST_FORW;
731 else if (types & SD_LIST_RES_BACK)
733 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
734 *resolved_p_ptr = true;
735 *types_ptr = types & ~SD_LIST_RES_BACK;
737 else if (types & SD_LIST_RES_FORW)
739 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
740 *resolved_p_ptr = true;
741 *types_ptr = types & ~SD_LIST_RES_FORW;
743 else
745 *list_ptr = NULL;
746 *resolved_p_ptr = false;
747 *types_ptr = SD_LIST_NONE;
751 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
753 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
755 int size = 0;
757 while (list_types != SD_LIST_NONE)
759 deps_list_t list;
760 bool resolved_p;
762 sd_next_list (insn, &list_types, &list, &resolved_p);
763 if (list)
764 size += DEPS_LIST_N_LINKS (list);
767 return size;
770 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
772 bool
773 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
775 while (list_types != SD_LIST_NONE)
777 deps_list_t list;
778 bool resolved_p;
780 sd_next_list (insn, &list_types, &list, &resolved_p);
781 if (!deps_list_empty_p (list))
782 return false;
785 return true;
788 /* Initialize data for INSN. */
789 void
790 sd_init_insn (rtx insn)
792 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
793 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
794 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
795 INSN_FORW_DEPS (insn) = create_deps_list ();
796 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
798 /* ??? It would be nice to allocate dependency caches here. */
801 /* Free data for INSN. */
802 void
803 sd_finish_insn (rtx insn)
805 /* ??? It would be nice to deallocate dependency caches here. */
807 free_deps_list (INSN_HARD_BACK_DEPS (insn));
808 INSN_HARD_BACK_DEPS (insn) = NULL;
810 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
811 INSN_SPEC_BACK_DEPS (insn) = NULL;
813 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
814 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
816 free_deps_list (INSN_FORW_DEPS (insn));
817 INSN_FORW_DEPS (insn) = NULL;
819 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
820 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
823 /* Find a dependency between producer PRO and consumer CON.
824 Search through resolved dependency lists if RESOLVED_P is true.
825 If no such dependency is found return NULL,
826 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
827 with an iterator pointing to it. */
828 static dep_t
829 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
830 sd_iterator_def *sd_it_ptr)
832 sd_list_types_def pro_list_type;
833 sd_list_types_def con_list_type;
834 sd_iterator_def sd_it;
835 dep_t dep;
836 bool found_p = false;
838 if (resolved_p)
840 pro_list_type = SD_LIST_RES_FORW;
841 con_list_type = SD_LIST_RES_BACK;
843 else
845 pro_list_type = SD_LIST_FORW;
846 con_list_type = SD_LIST_BACK;
849 /* Walk through either back list of INSN or forw list of ELEM
850 depending on which one is shorter. */
851 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
853 /* Find the dep_link with producer PRO in consumer's back_deps. */
854 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
855 if (DEP_PRO (dep) == pro)
857 found_p = true;
858 break;
861 else
863 /* Find the dep_link with consumer CON in producer's forw_deps. */
864 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
865 if (DEP_CON (dep) == con)
867 found_p = true;
868 break;
872 if (found_p)
874 if (sd_it_ptr != NULL)
875 *sd_it_ptr = sd_it;
877 return dep;
880 return NULL;
883 /* Find a dependency between producer PRO and consumer CON.
884 Use dependency [if available] to check if dependency is present at all.
885 Search through resolved dependency lists if RESOLVED_P is true.
886 If the dependency or NULL if none found. */
887 dep_t
888 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
890 if (true_dependency_cache != NULL)
891 /* Avoiding the list walk below can cut compile times dramatically
892 for some code. */
894 int elem_luid = INSN_LUID (pro);
895 int insn_luid = INSN_LUID (con);
897 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
898 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
899 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
901 return NULL;
904 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
907 /* Add or update a dependence described by DEP.
908 MEM1 and MEM2, if non-null, correspond to memory locations in case of
909 data speculation.
911 The function returns a value indicating if an old entry has been changed
912 or a new entry has been added to insn's backward deps.
914 This function merely checks if producer and consumer is the same insn
915 and doesn't create a dep in this case. Actual manipulation of
916 dependence data structures is performed in add_or_update_dep_1. */
917 static enum DEPS_ADJUST_RESULT
918 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
920 rtx elem = DEP_PRO (dep);
921 rtx insn = DEP_CON (dep);
923 gcc_assert (INSN_P (insn) && INSN_P (elem));
925 /* Don't depend an insn on itself. */
926 if (insn == elem)
928 if (sched_deps_info->generate_spec_deps)
929 /* INSN has an internal dependence, which we can't overcome. */
930 HAS_INTERNAL_DEP (insn) = 1;
932 return DEP_NODEP;
935 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
938 /* Ask dependency caches what needs to be done for dependence DEP.
939 Return DEP_CREATED if new dependence should be created and there is no
940 need to try to find one searching the dependencies lists.
941 Return DEP_PRESENT if there already is a dependence described by DEP and
942 hence nothing is to be done.
943 Return DEP_CHANGED if there already is a dependence, but it should be
944 updated to incorporate additional information from DEP. */
945 static enum DEPS_ADJUST_RESULT
946 ask_dependency_caches (dep_t dep)
948 int elem_luid = INSN_LUID (DEP_PRO (dep));
949 int insn_luid = INSN_LUID (DEP_CON (dep));
951 gcc_assert (true_dependency_cache != NULL
952 && output_dependency_cache != NULL
953 && anti_dependency_cache != NULL
954 && control_dependency_cache != NULL);
956 if (!(current_sched_info->flags & USE_DEPS_LIST))
958 enum reg_note present_dep_type;
960 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
961 present_dep_type = REG_DEP_TRUE;
962 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
963 present_dep_type = REG_DEP_OUTPUT;
964 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
965 present_dep_type = REG_DEP_ANTI;
966 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
967 present_dep_type = REG_DEP_CONTROL;
968 else
969 /* There is no existing dep so it should be created. */
970 return DEP_CREATED;
972 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
973 /* DEP does not add anything to the existing dependence. */
974 return DEP_PRESENT;
976 else
978 ds_t present_dep_types = 0;
980 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
981 present_dep_types |= DEP_TRUE;
982 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
983 present_dep_types |= DEP_OUTPUT;
984 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
985 present_dep_types |= DEP_ANTI;
986 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
987 present_dep_types |= DEP_CONTROL;
989 if (present_dep_types == 0)
990 /* There is no existing dep so it should be created. */
991 return DEP_CREATED;
993 if (!(current_sched_info->flags & DO_SPECULATION)
994 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
996 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
997 == present_dep_types)
998 /* DEP does not add anything to the existing dependence. */
999 return DEP_PRESENT;
1001 else
1003 /* Only true dependencies can be data speculative and
1004 only anti dependencies can be control speculative. */
1005 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1006 == present_dep_types);
1008 /* if (DEP is SPECULATIVE) then
1009 ..we should update DEP_STATUS
1010 else
1011 ..we should reset existing dep to non-speculative. */
1015 return DEP_CHANGED;
1018 /* Set dependency caches according to DEP. */
1019 static void
1020 set_dependency_caches (dep_t dep)
1022 int elem_luid = INSN_LUID (DEP_PRO (dep));
1023 int insn_luid = INSN_LUID (DEP_CON (dep));
1025 if (!(current_sched_info->flags & USE_DEPS_LIST))
1027 switch (DEP_TYPE (dep))
1029 case REG_DEP_TRUE:
1030 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1031 break;
1033 case REG_DEP_OUTPUT:
1034 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1035 break;
1037 case REG_DEP_ANTI:
1038 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1039 break;
1041 case REG_DEP_CONTROL:
1042 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1043 break;
1045 default:
1046 gcc_unreachable ();
1049 else
1051 ds_t ds = DEP_STATUS (dep);
1053 if (ds & DEP_TRUE)
1054 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1055 if (ds & DEP_OUTPUT)
1056 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1057 if (ds & DEP_ANTI)
1058 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1059 if (ds & DEP_CONTROL)
1060 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1062 if (ds & SPECULATIVE)
1064 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1065 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1070 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1071 caches accordingly. */
1072 static void
1073 update_dependency_caches (dep_t dep, enum reg_note old_type)
1075 int elem_luid = INSN_LUID (DEP_PRO (dep));
1076 int insn_luid = INSN_LUID (DEP_CON (dep));
1078 /* Clear corresponding cache entry because type of the link
1079 may have changed. Keep them if we use_deps_list. */
1080 if (!(current_sched_info->flags & USE_DEPS_LIST))
1082 switch (old_type)
1084 case REG_DEP_OUTPUT:
1085 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1086 break;
1088 case REG_DEP_ANTI:
1089 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1090 break;
1092 case REG_DEP_CONTROL:
1093 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1094 break;
1096 default:
1097 gcc_unreachable ();
1101 set_dependency_caches (dep);
1104 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1105 static void
1106 change_spec_dep_to_hard (sd_iterator_def sd_it)
1108 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1109 dep_link_t link = DEP_NODE_BACK (node);
1110 dep_t dep = DEP_NODE_DEP (node);
1111 rtx elem = DEP_PRO (dep);
1112 rtx insn = DEP_CON (dep);
1114 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1116 DEP_STATUS (dep) &= ~SPECULATIVE;
1118 if (true_dependency_cache != NULL)
1119 /* Clear the cache entry. */
1120 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1121 INSN_LUID (elem));
1124 /* Update DEP to incorporate information from NEW_DEP.
1125 SD_IT points to DEP in case it should be moved to another list.
1126 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1127 data-speculative dependence should be updated. */
1128 static enum DEPS_ADJUST_RESULT
1129 update_dep (dep_t dep, dep_t new_dep,
1130 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1131 rtx mem1 ATTRIBUTE_UNUSED,
1132 rtx mem2 ATTRIBUTE_UNUSED)
1134 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1135 enum reg_note old_type = DEP_TYPE (dep);
1136 bool was_spec = dep_spec_p (dep);
1138 /* If this is a more restrictive type of dependence than the
1139 existing one, then change the existing dependence to this
1140 type. */
1141 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1143 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1144 res = DEP_CHANGED;
1147 if (current_sched_info->flags & USE_DEPS_LIST)
1148 /* Update DEP_STATUS. */
1150 ds_t dep_status = DEP_STATUS (dep);
1151 ds_t ds = DEP_STATUS (new_dep);
1152 ds_t new_status = ds | dep_status;
1154 if (new_status & SPECULATIVE)
1156 /* Either existing dep or a dep we're adding or both are
1157 speculative. */
1158 if (!(ds & SPECULATIVE)
1159 || !(dep_status & SPECULATIVE))
1160 /* The new dep can't be speculative. */
1161 new_status &= ~SPECULATIVE;
1162 else
1164 /* Both are speculative. Merge probabilities. */
1165 if (mem1 != NULL)
1167 dw_t dw;
1169 dw = estimate_dep_weak (mem1, mem2);
1170 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1173 new_status = ds_merge (dep_status, ds);
1177 ds = new_status;
1179 if (dep_status != ds)
1181 DEP_STATUS (dep) = ds;
1182 res = DEP_CHANGED;
1186 if (was_spec && !dep_spec_p (dep))
1187 /* The old dep was speculative, but now it isn't. */
1188 change_spec_dep_to_hard (sd_it);
1190 if (true_dependency_cache != NULL
1191 && res == DEP_CHANGED)
1192 update_dependency_caches (dep, old_type);
1194 return res;
1197 /* Add or update a dependence described by DEP.
1198 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1199 data speculation.
1201 The function returns a value indicating if an old entry has been changed
1202 or a new entry has been added to insn's backward deps or nothing has
1203 been updated at all. */
1204 static enum DEPS_ADJUST_RESULT
1205 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1206 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1208 bool maybe_present_p = true;
1209 bool present_p = false;
1211 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1212 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1214 #ifdef ENABLE_CHECKING
1215 check_dep (new_dep, mem1 != NULL);
1216 #endif
1218 if (true_dependency_cache != NULL)
1220 switch (ask_dependency_caches (new_dep))
1222 case DEP_PRESENT:
1223 return DEP_PRESENT;
1225 case DEP_CHANGED:
1226 maybe_present_p = true;
1227 present_p = true;
1228 break;
1230 case DEP_CREATED:
1231 maybe_present_p = false;
1232 present_p = false;
1233 break;
1235 default:
1236 gcc_unreachable ();
1237 break;
1241 /* Check that we don't already have this dependence. */
1242 if (maybe_present_p)
1244 dep_t present_dep;
1245 sd_iterator_def sd_it;
1247 gcc_assert (true_dependency_cache == NULL || present_p);
1249 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1250 DEP_CON (new_dep),
1251 resolved_p, &sd_it);
1253 if (present_dep != NULL)
1254 /* We found an existing dependency between ELEM and INSN. */
1255 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1256 else
1257 /* We didn't find a dep, it shouldn't present in the cache. */
1258 gcc_assert (!present_p);
1261 /* Might want to check one level of transitivity to save conses.
1262 This check should be done in maybe_add_or_update_dep_1.
1263 Since we made it to add_or_update_dep_1, we must create
1264 (or update) a link. */
1266 if (mem1 != NULL_RTX)
1268 gcc_assert (sched_deps_info->generate_spec_deps);
1269 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1270 estimate_dep_weak (mem1, mem2));
1273 sd_add_dep (new_dep, resolved_p);
1275 return DEP_CREATED;
1278 /* Initialize BACK_LIST_PTR with consumer's backward list and
1279 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1280 initialize with lists that hold resolved deps. */
1281 static void
1282 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1283 deps_list_t *back_list_ptr,
1284 deps_list_t *forw_list_ptr)
1286 rtx con = DEP_CON (dep);
1288 if (!resolved_p)
1290 if (dep_spec_p (dep))
1291 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1292 else
1293 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1295 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1297 else
1299 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1300 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1304 /* Add dependence described by DEP.
1305 If RESOLVED_P is true treat the dependence as a resolved one. */
1306 void
1307 sd_add_dep (dep_t dep, bool resolved_p)
1309 dep_node_t n = create_dep_node ();
1310 deps_list_t con_back_deps;
1311 deps_list_t pro_forw_deps;
1312 rtx elem = DEP_PRO (dep);
1313 rtx insn = DEP_CON (dep);
1315 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1317 if ((current_sched_info->flags & DO_SPECULATION) == 0
1318 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1319 DEP_STATUS (dep) &= ~SPECULATIVE;
1321 copy_dep (DEP_NODE_DEP (n), dep);
1323 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1325 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1327 #ifdef ENABLE_CHECKING
1328 check_dep (dep, false);
1329 #endif
1331 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1333 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1334 in the bitmap caches of dependency information. */
1335 if (true_dependency_cache != NULL)
1336 set_dependency_caches (dep);
1339 /* Add or update backward dependence between INSN and ELEM
1340 with given type DEP_TYPE and dep_status DS.
1341 This function is a convenience wrapper. */
1342 enum DEPS_ADJUST_RESULT
1343 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1345 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1348 /* Resolved dependence pointed to by SD_IT.
1349 SD_IT will advance to the next element. */
1350 void
1351 sd_resolve_dep (sd_iterator_def sd_it)
1353 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1354 dep_t dep = DEP_NODE_DEP (node);
1355 rtx pro = DEP_PRO (dep);
1356 rtx con = DEP_CON (dep);
1358 if (dep_spec_p (dep))
1359 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1360 INSN_RESOLVED_BACK_DEPS (con));
1361 else
1362 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1363 INSN_RESOLVED_BACK_DEPS (con));
1365 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1366 INSN_RESOLVED_FORW_DEPS (pro));
1369 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1370 pointed to by SD_IT to unresolved state. */
1371 void
1372 sd_unresolve_dep (sd_iterator_def sd_it)
1374 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1375 dep_t dep = DEP_NODE_DEP (node);
1376 rtx pro = DEP_PRO (dep);
1377 rtx con = DEP_CON (dep);
1379 if (dep_spec_p (dep))
1380 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1381 INSN_SPEC_BACK_DEPS (con));
1382 else
1383 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1384 INSN_HARD_BACK_DEPS (con));
1386 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1387 INSN_FORW_DEPS (pro));
1390 /* Make TO depend on all the FROM's producers.
1391 If RESOLVED_P is true add dependencies to the resolved lists. */
1392 void
1393 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1395 sd_list_types_def list_type;
1396 sd_iterator_def sd_it;
1397 dep_t dep;
1399 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1401 FOR_EACH_DEP (from, list_type, sd_it, dep)
1403 dep_def _new_dep, *new_dep = &_new_dep;
1405 copy_dep (new_dep, dep);
1406 DEP_CON (new_dep) = to;
1407 sd_add_dep (new_dep, resolved_p);
1411 /* Remove a dependency referred to by SD_IT.
1412 SD_IT will point to the next dependence after removal. */
1413 void
1414 sd_delete_dep (sd_iterator_def sd_it)
1416 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1417 dep_t dep = DEP_NODE_DEP (n);
1418 rtx pro = DEP_PRO (dep);
1419 rtx con = DEP_CON (dep);
1420 deps_list_t con_back_deps;
1421 deps_list_t pro_forw_deps;
1423 if (true_dependency_cache != NULL)
1425 int elem_luid = INSN_LUID (pro);
1426 int insn_luid = INSN_LUID (con);
1428 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1429 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1430 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1431 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1433 if (current_sched_info->flags & DO_SPECULATION)
1434 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1437 get_back_and_forw_lists (dep, sd_it.resolved_p,
1438 &con_back_deps, &pro_forw_deps);
1440 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1441 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1443 delete_dep_node (n);
1446 /* Dump size of the lists. */
1447 #define DUMP_LISTS_SIZE (2)
1449 /* Dump dependencies of the lists. */
1450 #define DUMP_LISTS_DEPS (4)
1452 /* Dump all information about the lists. */
1453 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1455 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1456 FLAGS is a bit mask specifying what information about the lists needs
1457 to be printed.
1458 If FLAGS has the very first bit set, then dump all information about
1459 the lists and propagate this bit into the callee dump functions. */
1460 static void
1461 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1463 sd_iterator_def sd_it;
1464 dep_t dep;
1465 int all;
1467 all = (flags & 1);
1469 if (all)
1470 flags |= DUMP_LISTS_ALL;
1472 fprintf (dump, "[");
1474 if (flags & DUMP_LISTS_SIZE)
1475 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1477 if (flags & DUMP_LISTS_DEPS)
1479 FOR_EACH_DEP (insn, types, sd_it, dep)
1481 dump_dep (dump, dep, dump_dep_flags | all);
1482 fprintf (dump, " ");
1487 /* Dump all information about deps_lists of INSN specified by TYPES
1488 to STDERR. */
1489 void
1490 sd_debug_lists (rtx insn, sd_list_types_def types)
1492 dump_lists (stderr, insn, types, 1);
1493 fprintf (stderr, "\n");
1496 /* A wrapper around add_dependence_1, to add a dependence of CON on
1497 PRO, with type DEP_TYPE. This function implements special handling
1498 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1499 the type to REG_DEP_ANTI if we can determine that predication is
1500 impossible; otherwise we add additional true dependencies on the
1501 INSN_COND_DEPS list of the jump (which PRO must be). */
1502 void
1503 add_dependence (rtx con, rtx pro, enum reg_note dep_type)
1505 if (dep_type == REG_DEP_CONTROL
1506 && !(current_sched_info->flags & DO_PREDICATION))
1507 dep_type = REG_DEP_ANTI;
1509 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1510 so we must also make the insn dependent on the setter of the
1511 condition. */
1512 if (dep_type == REG_DEP_CONTROL)
1514 rtx real_pro = pro;
1515 rtx other = real_insn_for_shadow (real_pro);
1516 rtx cond;
1518 if (other != NULL_RTX)
1519 real_pro = other;
1520 cond = sched_get_reverse_condition_uncached (real_pro);
1521 /* Verify that the insn does not use a different value in
1522 the condition register than the one that was present at
1523 the jump. */
1524 if (cond == NULL_RTX)
1525 dep_type = REG_DEP_ANTI;
1526 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1528 HARD_REG_SET uses;
1529 CLEAR_HARD_REG_SET (uses);
1530 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1531 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1532 dep_type = REG_DEP_ANTI;
1534 if (dep_type == REG_DEP_CONTROL)
1536 if (sched_verbose >= 5)
1537 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1538 INSN_UID (real_pro));
1539 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1540 REG_DEP_TRUE);
1544 add_dependence_1 (con, pro, dep_type);
1547 /* A convenience wrapper to operate on an entire list. */
1549 static void
1550 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type)
1552 for (; list; list = XEXP (list, 1))
1554 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1555 add_dependence (insn, XEXP (list, 0), dep_type);
1559 /* Similar, but free *LISTP at the same time, when the context
1560 is not readonly. */
1562 static void
1563 add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
1564 int uncond, enum reg_note dep_type)
1566 add_dependence_list (insn, *listp, uncond, dep_type);
1568 /* We don't want to short-circuit dependencies involving debug
1569 insns, because they may cause actual dependencies to be
1570 disregarded. */
1571 if (deps->readonly || DEBUG_INSN_P (insn))
1572 return;
1574 free_INSN_LIST_list (listp);
1577 /* Remove all occurences of INSN from LIST. Return the number of
1578 occurences removed. */
1580 static int
1581 remove_from_dependence_list (rtx insn, rtx* listp)
1583 int removed = 0;
1585 while (*listp)
1587 if (XEXP (*listp, 0) == insn)
1589 remove_free_INSN_LIST_node (listp);
1590 removed++;
1591 continue;
1594 listp = &XEXP (*listp, 1);
1597 return removed;
1600 /* Same as above, but process two lists at once. */
1601 static int
1602 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1604 int removed = 0;
1606 while (*listp)
1608 if (XEXP (*listp, 0) == insn)
1610 remove_free_INSN_LIST_node (listp);
1611 remove_free_EXPR_LIST_node (exprp);
1612 removed++;
1613 continue;
1616 listp = &XEXP (*listp, 1);
1617 exprp = &XEXP (*exprp, 1);
1620 return removed;
1623 /* Clear all dependencies for an insn. */
1624 static void
1625 delete_all_dependences (rtx insn)
1627 sd_iterator_def sd_it;
1628 dep_t dep;
1630 /* The below cycle can be optimized to clear the caches and back_deps
1631 in one call but that would provoke duplication of code from
1632 delete_dep (). */
1634 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1635 sd_iterator_cond (&sd_it, &dep);)
1636 sd_delete_dep (sd_it);
1639 /* All insns in a scheduling group except the first should only have
1640 dependencies on the previous insn in the group. So we find the
1641 first instruction in the scheduling group by walking the dependence
1642 chains backwards. Then we add the dependencies for the group to
1643 the previous nonnote insn. */
1645 static void
1646 fixup_sched_groups (rtx insn)
1648 sd_iterator_def sd_it;
1649 dep_t dep;
1650 rtx prev_nonnote;
1652 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1654 rtx i = insn;
1655 rtx pro = DEP_PRO (dep);
1659 i = prev_nonnote_insn (i);
1661 if (pro == i)
1662 goto next_link;
1663 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1665 if (! sched_insns_conditions_mutex_p (i, pro))
1666 add_dependence (i, pro, DEP_TYPE (dep));
1667 next_link:;
1670 delete_all_dependences (insn);
1672 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1673 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1674 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1675 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1678 /* Process an insn's memory dependencies. There are four kinds of
1679 dependencies:
1681 (0) read dependence: read follows read
1682 (1) true dependence: read follows write
1683 (2) output dependence: write follows write
1684 (3) anti dependence: write follows read
1686 We are careful to build only dependencies which actually exist, and
1687 use transitivity to avoid building too many links. */
1689 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1690 The MEM is a memory reference contained within INSN, which we are saving
1691 so that we can do memory aliasing on it. */
1693 static void
1694 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1695 rtx insn, rtx mem)
1697 rtx *insn_list;
1698 rtx *mem_list;
1699 rtx link;
1701 gcc_assert (!deps->readonly);
1702 if (read_p)
1704 insn_list = &deps->pending_read_insns;
1705 mem_list = &deps->pending_read_mems;
1706 if (!DEBUG_INSN_P (insn))
1707 deps->pending_read_list_length++;
1709 else
1711 insn_list = &deps->pending_write_insns;
1712 mem_list = &deps->pending_write_mems;
1713 deps->pending_write_list_length++;
1716 link = alloc_INSN_LIST (insn, *insn_list);
1717 *insn_list = link;
1719 if (sched_deps_info->use_cselib)
1721 mem = shallow_copy_rtx (mem);
1722 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1723 GET_MODE (mem), insn);
1725 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1726 *mem_list = link;
1729 /* Make a dependency between every memory reference on the pending lists
1730 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1731 dependencies for a read operation, similarly with FOR_WRITE. */
1733 static void
1734 flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
1735 int for_write)
1737 if (for_write)
1739 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1740 1, REG_DEP_ANTI);
1741 if (!deps->readonly)
1743 free_EXPR_LIST_list (&deps->pending_read_mems);
1744 deps->pending_read_list_length = 0;
1748 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1749 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1751 add_dependence_list_and_free (deps, insn,
1752 &deps->last_pending_memory_flush, 1,
1753 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1755 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1756 REG_DEP_ANTI);
1758 if (DEBUG_INSN_P (insn))
1760 if (for_write)
1761 free_INSN_LIST_list (&deps->pending_read_insns);
1762 free_INSN_LIST_list (&deps->pending_write_insns);
1763 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1764 free_INSN_LIST_list (&deps->pending_jump_insns);
1767 if (!deps->readonly)
1769 free_EXPR_LIST_list (&deps->pending_write_mems);
1770 deps->pending_write_list_length = 0;
1772 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1773 deps->pending_flush_length = 1;
1777 /* Instruction which dependencies we are analyzing. */
1778 static rtx cur_insn = NULL_RTX;
1780 /* Implement hooks for haifa scheduler. */
1782 static void
1783 haifa_start_insn (rtx insn)
1785 gcc_assert (insn && !cur_insn);
1787 cur_insn = insn;
1790 static void
1791 haifa_finish_insn (void)
1793 cur_insn = NULL;
1796 void
1797 haifa_note_reg_set (int regno)
1799 SET_REGNO_REG_SET (reg_pending_sets, regno);
1802 void
1803 haifa_note_reg_clobber (int regno)
1805 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1808 void
1809 haifa_note_reg_use (int regno)
1811 SET_REGNO_REG_SET (reg_pending_uses, regno);
1814 static void
1815 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
1817 if (!(ds & SPECULATIVE))
1819 mem = NULL_RTX;
1820 pending_mem = NULL_RTX;
1822 else
1823 gcc_assert (ds & BEGIN_DATA);
1826 dep_def _dep, *dep = &_dep;
1828 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1829 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1830 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1835 static void
1836 haifa_note_dep (rtx elem, ds_t ds)
1838 dep_def _dep;
1839 dep_t dep = &_dep;
1841 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1842 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1845 static void
1846 note_reg_use (int r)
1848 if (sched_deps_info->note_reg_use)
1849 sched_deps_info->note_reg_use (r);
1852 static void
1853 note_reg_set (int r)
1855 if (sched_deps_info->note_reg_set)
1856 sched_deps_info->note_reg_set (r);
1859 static void
1860 note_reg_clobber (int r)
1862 if (sched_deps_info->note_reg_clobber)
1863 sched_deps_info->note_reg_clobber (r);
1866 static void
1867 note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
1869 if (sched_deps_info->note_mem_dep)
1870 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1873 static void
1874 note_dep (rtx e, ds_t ds)
1876 if (sched_deps_info->note_dep)
1877 sched_deps_info->note_dep (e, ds);
1880 /* Return corresponding to DS reg_note. */
1881 enum reg_note
1882 ds_to_dt (ds_t ds)
1884 if (ds & DEP_TRUE)
1885 return REG_DEP_TRUE;
1886 else if (ds & DEP_OUTPUT)
1887 return REG_DEP_OUTPUT;
1888 else if (ds & DEP_ANTI)
1889 return REG_DEP_ANTI;
1890 else
1892 gcc_assert (ds & DEP_CONTROL);
1893 return REG_DEP_CONTROL;
1899 /* Functions for computation of info needed for register pressure
1900 sensitive insn scheduling. */
1903 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1904 static struct reg_use_data *
1905 create_insn_reg_use (int regno, rtx insn)
1907 struct reg_use_data *use;
1909 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1910 use->regno = regno;
1911 use->insn = insn;
1912 use->next_insn_use = INSN_REG_USE_LIST (insn);
1913 INSN_REG_USE_LIST (insn) = use;
1914 return use;
1917 /* Allocate and return reg_set_data structure for REGNO and INSN. */
1918 static struct reg_set_data *
1919 create_insn_reg_set (int regno, rtx insn)
1921 struct reg_set_data *set;
1923 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1924 set->regno = regno;
1925 set->insn = insn;
1926 set->next_insn_set = INSN_REG_SET_LIST (insn);
1927 INSN_REG_SET_LIST (insn) = set;
1928 return set;
1931 /* Set up insn register uses for INSN and dependency context DEPS. */
1932 static void
1933 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1935 unsigned i;
1936 reg_set_iterator rsi;
1937 rtx list;
1938 struct reg_use_data *use, *use2, *next;
1939 struct deps_reg *reg_last;
1941 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1943 if (i < FIRST_PSEUDO_REGISTER
1944 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1945 continue;
1947 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1948 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1949 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1950 /* Ignore use which is not dying. */
1951 continue;
1953 use = create_insn_reg_use (i, insn);
1954 use->next_regno_use = use;
1955 reg_last = &deps->reg_last[i];
1957 /* Create the cycle list of uses. */
1958 for (list = reg_last->uses; list; list = XEXP (list, 1))
1960 use2 = create_insn_reg_use (i, XEXP (list, 0));
1961 next = use->next_regno_use;
1962 use->next_regno_use = use2;
1963 use2->next_regno_use = next;
1968 /* Register pressure info for the currently processed insn. */
1969 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1971 /* Return TRUE if INSN has the use structure for REGNO. */
1972 static bool
1973 insn_use_p (rtx insn, int regno)
1975 struct reg_use_data *use;
1977 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1978 if (use->regno == regno)
1979 return true;
1980 return false;
1983 /* Update the register pressure info after birth of pseudo register REGNO
1984 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
1985 the register is in clobber or unused after the insn. */
1986 static void
1987 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
1989 int incr, new_incr;
1990 enum reg_class cl;
1992 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
1993 cl = sched_regno_pressure_class[regno];
1994 if (cl != NO_REGS)
1996 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
1997 if (clobber_p)
1999 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2000 reg_pressure_info[cl].clobber_increase = new_incr;
2002 else if (unused_p)
2004 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2005 reg_pressure_info[cl].unused_set_increase = new_incr;
2007 else
2009 new_incr = reg_pressure_info[cl].set_increase + incr;
2010 reg_pressure_info[cl].set_increase = new_incr;
2011 if (! insn_use_p (insn, regno))
2012 reg_pressure_info[cl].change += incr;
2013 create_insn_reg_set (regno, insn);
2015 gcc_assert (new_incr < (1 << INCREASE_BITS));
2019 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2020 hard registers involved in the birth. */
2021 static void
2022 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2023 bool clobber_p, bool unused_p)
2025 enum reg_class cl;
2026 int new_incr, last = regno + nregs;
2028 while (regno < last)
2030 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2031 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2033 cl = sched_regno_pressure_class[regno];
2034 if (cl != NO_REGS)
2036 if (clobber_p)
2038 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2039 reg_pressure_info[cl].clobber_increase = new_incr;
2041 else if (unused_p)
2043 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2044 reg_pressure_info[cl].unused_set_increase = new_incr;
2046 else
2048 new_incr = reg_pressure_info[cl].set_increase + 1;
2049 reg_pressure_info[cl].set_increase = new_incr;
2050 if (! insn_use_p (insn, regno))
2051 reg_pressure_info[cl].change += 1;
2052 create_insn_reg_set (regno, insn);
2054 gcc_assert (new_incr < (1 << INCREASE_BITS));
2057 regno++;
2061 /* Update the register pressure info after birth of pseudo or hard
2062 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2063 correspondingly that the register is in clobber or unused after the
2064 insn. */
2065 static void
2066 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2068 int regno;
2070 if (GET_CODE (reg) == SUBREG)
2071 reg = SUBREG_REG (reg);
2073 if (! REG_P (reg))
2074 return;
2076 regno = REGNO (reg);
2077 if (regno < FIRST_PSEUDO_REGISTER)
2078 mark_insn_hard_regno_birth (insn, regno,
2079 hard_regno_nregs[regno][GET_MODE (reg)],
2080 clobber_p, unused_p);
2081 else
2082 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2085 /* Update the register pressure info after death of pseudo register
2086 REGNO. */
2087 static void
2088 mark_pseudo_death (int regno)
2090 int incr;
2091 enum reg_class cl;
2093 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2094 cl = sched_regno_pressure_class[regno];
2095 if (cl != NO_REGS)
2097 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2098 reg_pressure_info[cl].change -= incr;
2102 /* Like mark_pseudo_death except that NREGS saying how many hard
2103 registers involved in the death. */
2104 static void
2105 mark_hard_regno_death (int regno, int nregs)
2107 enum reg_class cl;
2108 int last = regno + nregs;
2110 while (regno < last)
2112 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2113 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2115 cl = sched_regno_pressure_class[regno];
2116 if (cl != NO_REGS)
2117 reg_pressure_info[cl].change -= 1;
2119 regno++;
2123 /* Update the register pressure info after death of pseudo or hard
2124 register REG. */
2125 static void
2126 mark_reg_death (rtx reg)
2128 int regno;
2130 if (GET_CODE (reg) == SUBREG)
2131 reg = SUBREG_REG (reg);
2133 if (! REG_P (reg))
2134 return;
2136 regno = REGNO (reg);
2137 if (regno < FIRST_PSEUDO_REGISTER)
2138 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2139 else
2140 mark_pseudo_death (regno);
2143 /* Process SETTER of REG. DATA is an insn containing the setter. */
2144 static void
2145 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2147 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2148 return;
2149 mark_insn_reg_birth
2150 ((rtx) data, reg, false,
2151 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2154 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2155 static void
2156 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2158 if (GET_CODE (setter) == CLOBBER)
2159 mark_insn_reg_birth ((rtx) data, reg, true, false);
2162 /* Set up reg pressure info related to INSN. */
2163 void
2164 init_insn_reg_pressure_info (rtx insn)
2166 int i, len;
2167 enum reg_class cl;
2168 static struct reg_pressure_data *pressure_info;
2169 rtx link;
2171 gcc_assert (sched_pressure_p);
2173 if (! INSN_P (insn))
2174 return;
2176 for (i = 0; i < ira_pressure_classes_num; i++)
2178 cl = ira_pressure_classes[i];
2179 reg_pressure_info[cl].clobber_increase = 0;
2180 reg_pressure_info[cl].set_increase = 0;
2181 reg_pressure_info[cl].unused_set_increase = 0;
2182 reg_pressure_info[cl].change = 0;
2185 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2187 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2189 #ifdef AUTO_INC_DEC
2190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2191 if (REG_NOTE_KIND (link) == REG_INC)
2192 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2193 #endif
2195 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2196 if (REG_NOTE_KIND (link) == REG_DEAD)
2197 mark_reg_death (XEXP (link, 0));
2199 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2200 pressure_info
2201 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2202 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2203 * sizeof (int), 1);
2204 for (i = 0; i < ira_pressure_classes_num; i++)
2206 cl = ira_pressure_classes[i];
2207 pressure_info[i].clobber_increase
2208 = reg_pressure_info[cl].clobber_increase;
2209 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2210 pressure_info[i].unused_set_increase
2211 = reg_pressure_info[cl].unused_set_increase;
2212 pressure_info[i].change = reg_pressure_info[cl].change;
2219 /* Internal variable for sched_analyze_[12] () functions.
2220 If it is nonzero, this means that sched_analyze_[12] looks
2221 at the most toplevel SET. */
2222 static bool can_start_lhs_rhs_p;
2224 /* Extend reg info for the deps context DEPS given that
2225 we have just generated a register numbered REGNO. */
2226 static void
2227 extend_deps_reg_info (struct deps_desc *deps, int regno)
2229 int max_regno = regno + 1;
2231 gcc_assert (!reload_completed);
2233 /* In a readonly context, it would not hurt to extend info,
2234 but it should not be needed. */
2235 if (reload_completed && deps->readonly)
2237 deps->max_reg = max_regno;
2238 return;
2241 if (max_regno > deps->max_reg)
2243 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2244 max_regno);
2245 memset (&deps->reg_last[deps->max_reg],
2246 0, (max_regno - deps->max_reg)
2247 * sizeof (struct deps_reg));
2248 deps->max_reg = max_regno;
2252 /* Extends REG_INFO_P if needed. */
2253 void
2254 maybe_extend_reg_info_p (void)
2256 /* Extend REG_INFO_P, if needed. */
2257 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2259 size_t new_reg_info_p_size = max_regno + 128;
2261 gcc_assert (!reload_completed && sel_sched_p ());
2263 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2264 new_reg_info_p_size,
2265 reg_info_p_size,
2266 sizeof (*reg_info_p));
2267 reg_info_p_size = new_reg_info_p_size;
2271 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2272 The type of the reference is specified by REF and can be SET,
2273 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2275 static void
2276 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2277 enum rtx_code ref, rtx insn)
2279 /* We could emit new pseudos in renaming. Extend the reg structures. */
2280 if (!reload_completed && sel_sched_p ()
2281 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2282 extend_deps_reg_info (deps, regno);
2284 maybe_extend_reg_info_p ();
2286 /* A hard reg in a wide mode may really be multiple registers.
2287 If so, mark all of them just like the first. */
2288 if (regno < FIRST_PSEUDO_REGISTER)
2290 int i = hard_regno_nregs[regno][mode];
2291 if (ref == SET)
2293 while (--i >= 0)
2294 note_reg_set (regno + i);
2296 else if (ref == USE)
2298 while (--i >= 0)
2299 note_reg_use (regno + i);
2301 else
2303 while (--i >= 0)
2304 note_reg_clobber (regno + i);
2308 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2309 it does not reload. Ignore these as they have served their
2310 purpose already. */
2311 else if (regno >= deps->max_reg)
2313 enum rtx_code code = GET_CODE (PATTERN (insn));
2314 gcc_assert (code == USE || code == CLOBBER);
2317 else
2319 if (ref == SET)
2320 note_reg_set (regno);
2321 else if (ref == USE)
2322 note_reg_use (regno);
2323 else
2324 note_reg_clobber (regno);
2326 /* Pseudos that are REG_EQUIV to something may be replaced
2327 by that during reloading. We need only add dependencies for
2328 the address in the REG_EQUIV note. */
2329 if (!reload_completed && get_reg_known_equiv_p (regno))
2331 rtx t = get_reg_known_value (regno);
2332 if (MEM_P (t))
2333 sched_analyze_2 (deps, XEXP (t, 0), insn);
2336 /* Don't let it cross a call after scheduling if it doesn't
2337 already cross one. */
2338 if (REG_N_CALLS_CROSSED (regno) == 0)
2340 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2341 deps->sched_before_next_call
2342 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2343 else
2344 add_dependence_list (insn, deps->last_function_call, 1,
2345 REG_DEP_ANTI);
2350 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2351 rtx, X, creating all dependencies generated by the write to the
2352 destination of X, and reads of everything mentioned. */
2354 static void
2355 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
2357 rtx dest = XEXP (x, 0);
2358 enum rtx_code code = GET_CODE (x);
2359 bool cslr_p = can_start_lhs_rhs_p;
2361 can_start_lhs_rhs_p = false;
2363 gcc_assert (dest);
2364 if (dest == 0)
2365 return;
2367 if (cslr_p && sched_deps_info->start_lhs)
2368 sched_deps_info->start_lhs (dest);
2370 if (GET_CODE (dest) == PARALLEL)
2372 int i;
2374 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2375 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2376 sched_analyze_1 (deps,
2377 gen_rtx_CLOBBER (VOIDmode,
2378 XEXP (XVECEXP (dest, 0, i), 0)),
2379 insn);
2381 if (cslr_p && sched_deps_info->finish_lhs)
2382 sched_deps_info->finish_lhs ();
2384 if (code == SET)
2386 can_start_lhs_rhs_p = cslr_p;
2388 sched_analyze_2 (deps, SET_SRC (x), insn);
2390 can_start_lhs_rhs_p = false;
2393 return;
2396 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2397 || GET_CODE (dest) == ZERO_EXTRACT)
2399 if (GET_CODE (dest) == STRICT_LOW_PART
2400 || GET_CODE (dest) == ZERO_EXTRACT
2401 || df_read_modify_subreg_p (dest))
2403 /* These both read and modify the result. We must handle
2404 them as writes to get proper dependencies for following
2405 instructions. We must handle them as reads to get proper
2406 dependencies from this to previous instructions.
2407 Thus we need to call sched_analyze_2. */
2409 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2411 if (GET_CODE (dest) == ZERO_EXTRACT)
2413 /* The second and third arguments are values read by this insn. */
2414 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2415 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2417 dest = XEXP (dest, 0);
2420 if (REG_P (dest))
2422 int regno = REGNO (dest);
2423 enum machine_mode mode = GET_MODE (dest);
2425 sched_analyze_reg (deps, regno, mode, code, insn);
2427 #ifdef STACK_REGS
2428 /* Treat all writes to a stack register as modifying the TOS. */
2429 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2431 /* Avoid analyzing the same register twice. */
2432 if (regno != FIRST_STACK_REG)
2433 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2435 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2436 FIRST_STACK_REG);
2438 #endif
2440 else if (MEM_P (dest))
2442 /* Writing memory. */
2443 rtx t = dest;
2445 if (sched_deps_info->use_cselib)
2447 enum machine_mode address_mode
2448 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2450 t = shallow_copy_rtx (dest);
2451 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2452 GET_MODE (t), insn);
2453 XEXP (t, 0)
2454 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2455 insn);
2457 t = canon_rtx (t);
2459 /* Pending lists can't get larger with a readonly context. */
2460 if (!deps->readonly
2461 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2462 > MAX_PENDING_LIST_LENGTH))
2464 /* Flush all pending reads and writes to prevent the pending lists
2465 from getting any larger. Insn scheduling runs too slowly when
2466 these lists get long. When compiling GCC with itself,
2467 this flush occurs 8 times for sparc, and 10 times for m88k using
2468 the default value of 32. */
2469 flush_pending_lists (deps, insn, false, true);
2471 else
2473 rtx pending, pending_mem;
2475 pending = deps->pending_read_insns;
2476 pending_mem = deps->pending_read_mems;
2477 while (pending)
2479 if (anti_dependence (XEXP (pending_mem, 0), t)
2480 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2481 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2482 DEP_ANTI);
2484 pending = XEXP (pending, 1);
2485 pending_mem = XEXP (pending_mem, 1);
2488 pending = deps->pending_write_insns;
2489 pending_mem = deps->pending_write_mems;
2490 while (pending)
2492 if (output_dependence (XEXP (pending_mem, 0), t)
2493 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2494 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2495 DEP_OUTPUT);
2497 pending = XEXP (pending, 1);
2498 pending_mem = XEXP (pending_mem, 1);
2501 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2502 REG_DEP_ANTI);
2503 add_dependence_list (insn, deps->pending_jump_insns, 1,
2504 REG_DEP_CONTROL);
2506 if (!deps->readonly)
2507 add_insn_mem_dependence (deps, false, insn, dest);
2509 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2512 if (cslr_p && sched_deps_info->finish_lhs)
2513 sched_deps_info->finish_lhs ();
2515 /* Analyze reads. */
2516 if (GET_CODE (x) == SET)
2518 can_start_lhs_rhs_p = cslr_p;
2520 sched_analyze_2 (deps, SET_SRC (x), insn);
2522 can_start_lhs_rhs_p = false;
2526 /* Analyze the uses of memory and registers in rtx X in INSN. */
2527 static void
2528 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
2530 int i;
2531 int j;
2532 enum rtx_code code;
2533 const char *fmt;
2534 bool cslr_p = can_start_lhs_rhs_p;
2536 can_start_lhs_rhs_p = false;
2538 gcc_assert (x);
2539 if (x == 0)
2540 return;
2542 if (cslr_p && sched_deps_info->start_rhs)
2543 sched_deps_info->start_rhs (x);
2545 code = GET_CODE (x);
2547 switch (code)
2549 case CONST_INT:
2550 case CONST_DOUBLE:
2551 case CONST_FIXED:
2552 case CONST_VECTOR:
2553 case SYMBOL_REF:
2554 case CONST:
2555 case LABEL_REF:
2556 /* Ignore constants. */
2557 if (cslr_p && sched_deps_info->finish_rhs)
2558 sched_deps_info->finish_rhs ();
2560 return;
2562 #ifdef HAVE_cc0
2563 case CC0:
2564 /* User of CC0 depends on immediately preceding insn. */
2565 SCHED_GROUP_P (insn) = 1;
2566 /* Don't move CC0 setter to another block (it can set up the
2567 same flag for previous CC0 users which is safe). */
2568 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2570 if (cslr_p && sched_deps_info->finish_rhs)
2571 sched_deps_info->finish_rhs ();
2573 return;
2574 #endif
2576 case REG:
2578 int regno = REGNO (x);
2579 enum machine_mode mode = GET_MODE (x);
2581 sched_analyze_reg (deps, regno, mode, USE, insn);
2583 #ifdef STACK_REGS
2584 /* Treat all reads of a stack register as modifying the TOS. */
2585 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2587 /* Avoid analyzing the same register twice. */
2588 if (regno != FIRST_STACK_REG)
2589 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2590 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2592 #endif
2594 if (cslr_p && sched_deps_info->finish_rhs)
2595 sched_deps_info->finish_rhs ();
2597 return;
2600 case MEM:
2602 /* Reading memory. */
2603 rtx u;
2604 rtx pending, pending_mem;
2605 rtx t = x;
2607 if (sched_deps_info->use_cselib)
2609 enum machine_mode address_mode
2610 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (t));
2612 t = shallow_copy_rtx (t);
2613 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2614 GET_MODE (t), insn);
2615 XEXP (t, 0)
2616 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2617 insn);
2620 if (!DEBUG_INSN_P (insn))
2622 t = canon_rtx (t);
2623 pending = deps->pending_read_insns;
2624 pending_mem = deps->pending_read_mems;
2625 while (pending)
2627 if (read_dependence (XEXP (pending_mem, 0), t)
2628 && ! sched_insns_conditions_mutex_p (insn,
2629 XEXP (pending, 0)))
2630 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2631 DEP_ANTI);
2633 pending = XEXP (pending, 1);
2634 pending_mem = XEXP (pending_mem, 1);
2637 pending = deps->pending_write_insns;
2638 pending_mem = deps->pending_write_mems;
2639 while (pending)
2641 if (true_dependence (XEXP (pending_mem, 0), VOIDmode, t)
2642 && ! sched_insns_conditions_mutex_p (insn,
2643 XEXP (pending, 0)))
2644 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2645 sched_deps_info->generate_spec_deps
2646 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2648 pending = XEXP (pending, 1);
2649 pending_mem = XEXP (pending_mem, 1);
2652 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2653 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2655 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2656 if (deps_may_trap_p (x))
2658 if ((sched_deps_info->generate_spec_deps)
2659 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2661 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2662 MAX_DEP_WEAK);
2664 note_dep (XEXP (u, 0), ds);
2666 else
2667 add_dependence (insn, XEXP (u, 0), REG_DEP_CONTROL);
2671 /* Always add these dependencies to pending_reads, since
2672 this insn may be followed by a write. */
2673 if (!deps->readonly)
2674 add_insn_mem_dependence (deps, true, insn, x);
2676 sched_analyze_2 (deps, XEXP (x, 0), insn);
2678 if (cslr_p && sched_deps_info->finish_rhs)
2679 sched_deps_info->finish_rhs ();
2681 return;
2684 /* Force pending stores to memory in case a trap handler needs them. */
2685 case TRAP_IF:
2686 flush_pending_lists (deps, insn, true, false);
2687 break;
2689 case PREFETCH:
2690 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2691 reg_pending_barrier = TRUE_BARRIER;
2692 break;
2694 case UNSPEC_VOLATILE:
2695 flush_pending_lists (deps, insn, true, true);
2696 /* FALLTHRU */
2698 case ASM_OPERANDS:
2699 case ASM_INPUT:
2701 /* Traditional and volatile asm instructions must be considered to use
2702 and clobber all hard registers, all pseudo-registers and all of
2703 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2705 Consider for instance a volatile asm that changes the fpu rounding
2706 mode. An insn should not be moved across this even if it only uses
2707 pseudo-regs because it might give an incorrectly rounded result. */
2708 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2709 reg_pending_barrier = TRUE_BARRIER;
2711 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2712 We can not just fall through here since then we would be confused
2713 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2714 traditional asms unlike their normal usage. */
2716 if (code == ASM_OPERANDS)
2718 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2719 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2721 if (cslr_p && sched_deps_info->finish_rhs)
2722 sched_deps_info->finish_rhs ();
2724 return;
2726 break;
2729 case PRE_DEC:
2730 case POST_DEC:
2731 case PRE_INC:
2732 case POST_INC:
2733 /* These both read and modify the result. We must handle them as writes
2734 to get proper dependencies for following instructions. We must handle
2735 them as reads to get proper dependencies from this to previous
2736 instructions. Thus we need to pass them to both sched_analyze_1
2737 and sched_analyze_2. We must call sched_analyze_2 first in order
2738 to get the proper antecedent for the read. */
2739 sched_analyze_2 (deps, XEXP (x, 0), insn);
2740 sched_analyze_1 (deps, x, insn);
2742 if (cslr_p && sched_deps_info->finish_rhs)
2743 sched_deps_info->finish_rhs ();
2745 return;
2747 case POST_MODIFY:
2748 case PRE_MODIFY:
2749 /* op0 = op0 + op1 */
2750 sched_analyze_2 (deps, XEXP (x, 0), insn);
2751 sched_analyze_2 (deps, XEXP (x, 1), insn);
2752 sched_analyze_1 (deps, x, insn);
2754 if (cslr_p && sched_deps_info->finish_rhs)
2755 sched_deps_info->finish_rhs ();
2757 return;
2759 default:
2760 break;
2763 /* Other cases: walk the insn. */
2764 fmt = GET_RTX_FORMAT (code);
2765 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2767 if (fmt[i] == 'e')
2768 sched_analyze_2 (deps, XEXP (x, i), insn);
2769 else if (fmt[i] == 'E')
2770 for (j = 0; j < XVECLEN (x, i); j++)
2771 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2774 if (cslr_p && sched_deps_info->finish_rhs)
2775 sched_deps_info->finish_rhs ();
2778 /* Analyze an INSN with pattern X to find all dependencies. */
2779 static void
2780 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
2782 RTX_CODE code = GET_CODE (x);
2783 rtx link;
2784 unsigned i;
2785 reg_set_iterator rsi;
2787 if (! reload_completed)
2789 HARD_REG_SET temp;
2791 extract_insn (insn);
2792 preprocess_constraints ();
2793 ira_implicitly_set_insn_hard_regs (&temp);
2794 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2795 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2798 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2799 && code == SET);
2801 if (may_trap_p (x))
2802 /* Avoid moving trapping instructions accross function calls that might
2803 not always return. */
2804 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2805 1, REG_DEP_ANTI);
2807 /* We must avoid creating a situation in which two successors of the
2808 current block have different unwind info after scheduling. If at any
2809 point the two paths re-join this leads to incorrect unwind info. */
2810 /* ??? There are certain situations involving a forced frame pointer in
2811 which, with extra effort, we could fix up the unwind info at a later
2812 CFG join. However, it seems better to notice these cases earlier
2813 during prologue generation and avoid marking the frame pointer setup
2814 as frame-related at all. */
2815 if (RTX_FRAME_RELATED_P (insn))
2817 /* Make sure prologue insn is scheduled before next jump. */
2818 deps->sched_before_next_jump
2819 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2821 /* Make sure epilogue insn is scheduled after preceding jumps. */
2822 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI);
2825 if (code == COND_EXEC)
2827 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2829 /* ??? Should be recording conditions so we reduce the number of
2830 false dependencies. */
2831 x = COND_EXEC_CODE (x);
2832 code = GET_CODE (x);
2834 if (code == SET || code == CLOBBER)
2836 sched_analyze_1 (deps, x, insn);
2838 /* Bare clobber insns are used for letting life analysis, reg-stack
2839 and others know that a value is dead. Depend on the last call
2840 instruction so that reg-stack won't get confused. */
2841 if (code == CLOBBER)
2842 add_dependence_list (insn, deps->last_function_call, 1,
2843 REG_DEP_OUTPUT);
2845 else if (code == PARALLEL)
2847 for (i = XVECLEN (x, 0); i--;)
2849 rtx sub = XVECEXP (x, 0, i);
2850 code = GET_CODE (sub);
2852 if (code == COND_EXEC)
2854 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2855 sub = COND_EXEC_CODE (sub);
2856 code = GET_CODE (sub);
2858 if (code == SET || code == CLOBBER)
2859 sched_analyze_1 (deps, sub, insn);
2860 else
2861 sched_analyze_2 (deps, sub, insn);
2864 else
2865 sched_analyze_2 (deps, x, insn);
2867 /* Mark registers CLOBBERED or used by called function. */
2868 if (CALL_P (insn))
2870 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2872 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2873 sched_analyze_1 (deps, XEXP (link, 0), insn);
2874 else
2875 sched_analyze_2 (deps, XEXP (link, 0), insn);
2877 /* Don't schedule anything after a tail call, tail call needs
2878 to use at least all call-saved registers. */
2879 if (SIBLING_CALL_P (insn))
2880 reg_pending_barrier = TRUE_BARRIER;
2881 else if (find_reg_note (insn, REG_SETJMP, NULL))
2882 reg_pending_barrier = MOVE_BARRIER;
2885 if (JUMP_P (insn))
2887 rtx next;
2888 next = next_nonnote_nondebug_insn (insn);
2889 if (next && BARRIER_P (next))
2890 reg_pending_barrier = MOVE_BARRIER;
2891 else
2893 rtx pending, pending_mem;
2895 if (sched_deps_info->compute_jump_reg_dependencies)
2897 (*sched_deps_info->compute_jump_reg_dependencies)
2898 (insn, reg_pending_control_uses);
2900 /* Make latency of jump equal to 0 by using anti-dependence. */
2901 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
2903 struct deps_reg *reg_last = &deps->reg_last[i];
2904 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
2905 add_dependence_list (insn, reg_last->implicit_sets,
2906 0, REG_DEP_ANTI);
2907 add_dependence_list (insn, reg_last->clobbers, 0,
2908 REG_DEP_ANTI);
2912 /* All memory writes and volatile reads must happen before the
2913 jump. Non-volatile reads must happen before the jump iff
2914 the result is needed by the above register used mask. */
2916 pending = deps->pending_write_insns;
2917 pending_mem = deps->pending_write_mems;
2918 while (pending)
2920 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2921 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2922 pending = XEXP (pending, 1);
2923 pending_mem = XEXP (pending_mem, 1);
2926 pending = deps->pending_read_insns;
2927 pending_mem = deps->pending_read_mems;
2928 while (pending)
2930 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
2931 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2932 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2933 pending = XEXP (pending, 1);
2934 pending_mem = XEXP (pending_mem, 1);
2937 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2938 REG_DEP_ANTI);
2939 add_dependence_list (insn, deps->pending_jump_insns, 1,
2940 REG_DEP_ANTI);
2944 /* If this instruction can throw an exception, then moving it changes
2945 where block boundaries fall. This is mighty confusing elsewhere.
2946 Therefore, prevent such an instruction from being moved. Same for
2947 non-jump instructions that define block boundaries.
2948 ??? Unclear whether this is still necessary in EBB mode. If not,
2949 add_branch_dependences should be adjusted for RGN mode instead. */
2950 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
2951 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
2952 reg_pending_barrier = MOVE_BARRIER;
2954 if (sched_pressure_p)
2956 setup_insn_reg_uses (deps, insn);
2957 init_insn_reg_pressure_info (insn);
2960 /* Add register dependencies for insn. */
2961 if (DEBUG_INSN_P (insn))
2963 rtx prev = deps->last_debug_insn;
2964 rtx u;
2966 if (!deps->readonly)
2967 deps->last_debug_insn = insn;
2969 if (prev)
2970 add_dependence (insn, prev, REG_DEP_ANTI);
2972 add_dependence_list (insn, deps->last_function_call, 1,
2973 REG_DEP_ANTI);
2975 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2976 if (!sel_sched_p ())
2977 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2979 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2981 struct deps_reg *reg_last = &deps->reg_last[i];
2982 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI);
2983 /* There's no point in making REG_DEP_CONTROL dependencies for
2984 debug insns. */
2985 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI);
2987 if (!deps->readonly)
2988 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2990 CLEAR_REG_SET (reg_pending_uses);
2992 /* Quite often, a debug insn will refer to stuff in the
2993 previous instruction, but the reason we want this
2994 dependency here is to make sure the scheduler doesn't
2995 gratuitously move a debug insn ahead. This could dirty
2996 DF flags and cause additional analysis that wouldn't have
2997 occurred in compilation without debug insns, and such
2998 additional analysis can modify the generated code. */
2999 prev = PREV_INSN (insn);
3001 if (prev && NONDEBUG_INSN_P (prev))
3002 add_dependence (insn, prev, REG_DEP_ANTI);
3004 else
3006 regset_head set_or_clobbered;
3008 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3010 struct deps_reg *reg_last = &deps->reg_last[i];
3011 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
3012 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI);
3013 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
3015 if (!deps->readonly)
3017 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3018 reg_last->uses_length++;
3022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3023 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3025 struct deps_reg *reg_last = &deps->reg_last[i];
3026 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
3027 add_dependence_list (insn, reg_last->implicit_sets, 0,
3028 REG_DEP_ANTI);
3029 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
3031 if (!deps->readonly)
3033 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3034 reg_last->uses_length++;
3038 if (targetm.sched.exposed_pipeline)
3040 INIT_REG_SET (&set_or_clobbered);
3041 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3042 reg_pending_sets);
3043 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3045 struct deps_reg *reg_last = &deps->reg_last[i];
3046 rtx list;
3047 for (list = reg_last->uses; list; list = XEXP (list, 1))
3049 rtx other = XEXP (list, 0);
3050 if (INSN_CACHED_COND (other) != const_true_rtx
3051 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3052 INSN_CACHED_COND (other) = const_true_rtx;
3057 /* If the current insn is conditional, we can't free any
3058 of the lists. */
3059 if (sched_has_condition_p (insn))
3061 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3063 struct deps_reg *reg_last = &deps->reg_last[i];
3064 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3065 add_dependence_list (insn, reg_last->implicit_sets, 0,
3066 REG_DEP_ANTI);
3067 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3068 add_dependence_list (insn, reg_last->control_uses, 0,
3069 REG_DEP_CONTROL);
3071 if (!deps->readonly)
3073 reg_last->clobbers
3074 = alloc_INSN_LIST (insn, reg_last->clobbers);
3075 reg_last->clobbers_length++;
3078 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3080 struct deps_reg *reg_last = &deps->reg_last[i];
3081 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3082 add_dependence_list (insn, reg_last->implicit_sets, 0,
3083 REG_DEP_ANTI);
3084 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT);
3085 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3086 add_dependence_list (insn, reg_last->control_uses, 0,
3087 REG_DEP_CONTROL);
3089 if (!deps->readonly)
3090 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3093 else
3095 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3097 struct deps_reg *reg_last = &deps->reg_last[i];
3098 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3099 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3101 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3102 REG_DEP_OUTPUT);
3103 add_dependence_list_and_free (deps, insn,
3104 &reg_last->implicit_sets, 0,
3105 REG_DEP_ANTI);
3106 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3107 REG_DEP_ANTI);
3108 add_dependence_list_and_free (deps, insn,
3109 &reg_last->control_uses, 0,
3110 REG_DEP_ANTI);
3111 add_dependence_list_and_free
3112 (deps, insn, &reg_last->clobbers, 0, REG_DEP_OUTPUT);
3114 if (!deps->readonly)
3116 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3117 reg_last->clobbers_length = 0;
3118 reg_last->uses_length = 0;
3121 else
3123 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3124 add_dependence_list (insn, reg_last->implicit_sets, 0,
3125 REG_DEP_ANTI);
3126 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3127 add_dependence_list (insn, reg_last->control_uses, 0,
3128 REG_DEP_CONTROL);
3131 if (!deps->readonly)
3133 reg_last->clobbers_length++;
3134 reg_last->clobbers
3135 = alloc_INSN_LIST (insn, reg_last->clobbers);
3138 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3140 struct deps_reg *reg_last = &deps->reg_last[i];
3142 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3143 REG_DEP_OUTPUT);
3144 add_dependence_list_and_free (deps, insn,
3145 &reg_last->implicit_sets,
3146 0, REG_DEP_ANTI);
3147 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3148 REG_DEP_OUTPUT);
3149 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3150 REG_DEP_ANTI);
3151 add_dependence_list (insn, reg_last->control_uses, 0,
3152 REG_DEP_CONTROL);
3154 if (!deps->readonly)
3156 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3157 reg_last->uses_length = 0;
3158 reg_last->clobbers_length = 0;
3162 if (!deps->readonly)
3164 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3166 struct deps_reg *reg_last = &deps->reg_last[i];
3167 reg_last->control_uses
3168 = alloc_INSN_LIST (insn, reg_last->control_uses);
3173 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3174 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3176 struct deps_reg *reg_last = &deps->reg_last[i];
3177 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
3178 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI);
3179 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3180 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI);
3182 if (!deps->readonly)
3183 reg_last->implicit_sets
3184 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3187 if (!deps->readonly)
3189 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3190 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3191 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3192 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3193 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3194 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3195 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3197 /* Set up the pending barrier found. */
3198 deps->last_reg_pending_barrier = reg_pending_barrier;
3201 CLEAR_REG_SET (reg_pending_uses);
3202 CLEAR_REG_SET (reg_pending_clobbers);
3203 CLEAR_REG_SET (reg_pending_sets);
3204 CLEAR_REG_SET (reg_pending_control_uses);
3205 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3206 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3208 /* Add dependencies if a scheduling barrier was found. */
3209 if (reg_pending_barrier)
3211 /* In the case of barrier the most added dependencies are not
3212 real, so we use anti-dependence here. */
3213 if (sched_has_condition_p (insn))
3215 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3217 struct deps_reg *reg_last = &deps->reg_last[i];
3218 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3219 add_dependence_list (insn, reg_last->sets, 0,
3220 reg_pending_barrier == TRUE_BARRIER
3221 ? REG_DEP_TRUE : REG_DEP_ANTI);
3222 add_dependence_list (insn, reg_last->implicit_sets, 0,
3223 REG_DEP_ANTI);
3224 add_dependence_list (insn, reg_last->clobbers, 0,
3225 reg_pending_barrier == TRUE_BARRIER
3226 ? REG_DEP_TRUE : REG_DEP_ANTI);
3229 else
3231 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3233 struct deps_reg *reg_last = &deps->reg_last[i];
3234 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3235 REG_DEP_ANTI);
3236 add_dependence_list_and_free (deps, insn,
3237 &reg_last->control_uses, 0,
3238 REG_DEP_CONTROL);
3239 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3240 reg_pending_barrier == TRUE_BARRIER
3241 ? REG_DEP_TRUE : REG_DEP_ANTI);
3242 add_dependence_list_and_free (deps, insn,
3243 &reg_last->implicit_sets, 0,
3244 REG_DEP_ANTI);
3245 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3246 reg_pending_barrier == TRUE_BARRIER
3247 ? REG_DEP_TRUE : REG_DEP_ANTI);
3249 if (!deps->readonly)
3251 reg_last->uses_length = 0;
3252 reg_last->clobbers_length = 0;
3257 if (!deps->readonly)
3258 for (i = 0; i < (unsigned)deps->max_reg; i++)
3260 struct deps_reg *reg_last = &deps->reg_last[i];
3261 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3262 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3265 /* Don't flush pending lists on speculative checks for
3266 selective scheduling. */
3267 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3268 flush_pending_lists (deps, insn, true, true);
3270 reg_pending_barrier = NOT_A_BARRIER;
3273 /* If a post-call group is still open, see if it should remain so.
3274 This insn must be a simple move of a hard reg to a pseudo or
3275 vice-versa.
3277 We must avoid moving these insns for correctness on targets
3278 with small register classes, and for special registers like
3279 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3280 hard regs for all targets. */
3282 if (deps->in_post_call_group_p)
3284 rtx tmp, set = single_set (insn);
3285 int src_regno, dest_regno;
3287 if (set == NULL)
3289 if (DEBUG_INSN_P (insn))
3290 /* We don't want to mark debug insns as part of the same
3291 sched group. We know they really aren't, but if we use
3292 debug insns to tell that a call group is over, we'll
3293 get different code if debug insns are not there and
3294 instructions that follow seem like they should be part
3295 of the call group.
3297 Also, if we did, fixup_sched_groups() would move the
3298 deps of the debug insn to the call insn, modifying
3299 non-debug post-dependency counts of the debug insn
3300 dependencies and otherwise messing with the scheduling
3301 order.
3303 Instead, let such debug insns be scheduled freely, but
3304 keep the call group open in case there are insns that
3305 should be part of it afterwards. Since we grant debug
3306 insns higher priority than even sched group insns, it
3307 will all turn out all right. */
3308 goto debug_dont_end_call_group;
3309 else
3310 goto end_call_group;
3313 tmp = SET_DEST (set);
3314 if (GET_CODE (tmp) == SUBREG)
3315 tmp = SUBREG_REG (tmp);
3316 if (REG_P (tmp))
3317 dest_regno = REGNO (tmp);
3318 else
3319 goto end_call_group;
3321 tmp = SET_SRC (set);
3322 if (GET_CODE (tmp) == SUBREG)
3323 tmp = SUBREG_REG (tmp);
3324 if ((GET_CODE (tmp) == PLUS
3325 || GET_CODE (tmp) == MINUS)
3326 && REG_P (XEXP (tmp, 0))
3327 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3328 && dest_regno == STACK_POINTER_REGNUM)
3329 src_regno = STACK_POINTER_REGNUM;
3330 else if (REG_P (tmp))
3331 src_regno = REGNO (tmp);
3332 else
3333 goto end_call_group;
3335 if (src_regno < FIRST_PSEUDO_REGISTER
3336 || dest_regno < FIRST_PSEUDO_REGISTER)
3338 if (!deps->readonly
3339 && deps->in_post_call_group_p == post_call_initial)
3340 deps->in_post_call_group_p = post_call;
3342 if (!sel_sched_p () || sched_emulate_haifa_p)
3344 SCHED_GROUP_P (insn) = 1;
3345 CANT_MOVE (insn) = 1;
3348 else
3350 end_call_group:
3351 if (!deps->readonly)
3352 deps->in_post_call_group_p = not_post_call;
3356 debug_dont_end_call_group:
3357 if ((current_sched_info->flags & DO_SPECULATION)
3358 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3359 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3360 be speculated. */
3362 if (sel_sched_p ())
3363 sel_mark_hard_insn (insn);
3364 else
3366 sd_iterator_def sd_it;
3367 dep_t dep;
3369 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3370 sd_iterator_cond (&sd_it, &dep);)
3371 change_spec_dep_to_hard (sd_it);
3376 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3377 longjmp, loop forever, ...). */
3378 static bool
3379 call_may_noreturn_p (rtx insn)
3381 rtx call;
3383 /* const or pure calls that aren't looping will always return. */
3384 if (RTL_CONST_OR_PURE_CALL_P (insn)
3385 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3386 return false;
3388 call = PATTERN (insn);
3389 if (GET_CODE (call) == PARALLEL)
3390 call = XVECEXP (call, 0, 0);
3391 if (GET_CODE (call) == SET)
3392 call = SET_SRC (call);
3393 if (GET_CODE (call) == CALL
3394 && MEM_P (XEXP (call, 0))
3395 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3397 rtx symbol = XEXP (XEXP (call, 0), 0);
3398 if (SYMBOL_REF_DECL (symbol)
3399 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3401 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3402 == BUILT_IN_NORMAL)
3403 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3405 case BUILT_IN_BCMP:
3406 case BUILT_IN_BCOPY:
3407 case BUILT_IN_BZERO:
3408 case BUILT_IN_INDEX:
3409 case BUILT_IN_MEMCHR:
3410 case BUILT_IN_MEMCMP:
3411 case BUILT_IN_MEMCPY:
3412 case BUILT_IN_MEMMOVE:
3413 case BUILT_IN_MEMPCPY:
3414 case BUILT_IN_MEMSET:
3415 case BUILT_IN_RINDEX:
3416 case BUILT_IN_STPCPY:
3417 case BUILT_IN_STPNCPY:
3418 case BUILT_IN_STRCAT:
3419 case BUILT_IN_STRCHR:
3420 case BUILT_IN_STRCMP:
3421 case BUILT_IN_STRCPY:
3422 case BUILT_IN_STRCSPN:
3423 case BUILT_IN_STRLEN:
3424 case BUILT_IN_STRNCAT:
3425 case BUILT_IN_STRNCMP:
3426 case BUILT_IN_STRNCPY:
3427 case BUILT_IN_STRPBRK:
3428 case BUILT_IN_STRRCHR:
3429 case BUILT_IN_STRSPN:
3430 case BUILT_IN_STRSTR:
3431 /* Assume certain string/memory builtins always return. */
3432 return false;
3433 default:
3434 break;
3439 /* For all other calls assume that they might not always return. */
3440 return true;
3443 /* Analyze INSN with DEPS as a context. */
3444 void
3445 deps_analyze_insn (struct deps_desc *deps, rtx insn)
3447 if (sched_deps_info->start_insn)
3448 sched_deps_info->start_insn (insn);
3450 /* Record the condition for this insn. */
3451 if (NONDEBUG_INSN_P (insn))
3453 rtx t;
3454 sched_get_condition_with_rev (insn, NULL);
3455 t = INSN_CACHED_COND (insn);
3456 INSN_COND_DEPS (insn) = NULL_RTX;
3457 if (reload_completed
3458 && (current_sched_info->flags & DO_PREDICATION)
3459 && COMPARISON_P (t)
3460 && REG_P (XEXP (t, 0))
3461 && CONSTANT_P (XEXP (t, 1)))
3463 unsigned int regno;
3464 int nregs;
3465 t = XEXP (t, 0);
3466 regno = REGNO (t);
3467 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3468 t = NULL_RTX;
3469 while (nregs-- > 0)
3471 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3472 t = concat_INSN_LIST (reg_last->sets, t);
3473 t = concat_INSN_LIST (reg_last->clobbers, t);
3474 t = concat_INSN_LIST (reg_last->implicit_sets, t);
3476 INSN_COND_DEPS (insn) = t;
3480 if (JUMP_P (insn))
3482 /* Make each JUMP_INSN (but not a speculative check)
3483 a scheduling barrier for memory references. */
3484 if (!deps->readonly
3485 && !(sel_sched_p ()
3486 && sel_insn_is_speculation_check (insn)))
3488 /* Keep the list a reasonable size. */
3489 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3490 flush_pending_lists (deps, insn, true, true);
3491 else
3492 deps->pending_jump_insns
3493 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3496 /* For each insn which shouldn't cross a jump, add a dependence. */
3497 add_dependence_list_and_free (deps, insn,
3498 &deps->sched_before_next_jump, 1,
3499 REG_DEP_ANTI);
3501 sched_analyze_insn (deps, PATTERN (insn), insn);
3503 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3505 sched_analyze_insn (deps, PATTERN (insn), insn);
3507 else if (CALL_P (insn))
3509 int i;
3511 CANT_MOVE (insn) = 1;
3513 if (find_reg_note (insn, REG_SETJMP, NULL))
3515 /* This is setjmp. Assume that all registers, not just
3516 hard registers, may be clobbered by this call. */
3517 reg_pending_barrier = MOVE_BARRIER;
3519 else
3521 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3522 /* A call may read and modify global register variables. */
3523 if (global_regs[i])
3525 SET_REGNO_REG_SET (reg_pending_sets, i);
3526 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3528 /* Other call-clobbered hard regs may be clobbered.
3529 Since we only have a choice between 'might be clobbered'
3530 and 'definitely not clobbered', we must include all
3531 partly call-clobbered registers here. */
3532 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3533 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3534 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3535 /* We don't know what set of fixed registers might be used
3536 by the function, but it is certain that the stack pointer
3537 is among them, but be conservative. */
3538 else if (fixed_regs[i])
3539 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3540 /* The frame pointer is normally not used by the function
3541 itself, but by the debugger. */
3542 /* ??? MIPS o32 is an exception. It uses the frame pointer
3543 in the macro expansion of jal but does not represent this
3544 fact in the call_insn rtl. */
3545 else if (i == FRAME_POINTER_REGNUM
3546 || (i == HARD_FRAME_POINTER_REGNUM
3547 && (! reload_completed || frame_pointer_needed)))
3548 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3551 /* For each insn which shouldn't cross a call, add a dependence
3552 between that insn and this call insn. */
3553 add_dependence_list_and_free (deps, insn,
3554 &deps->sched_before_next_call, 1,
3555 REG_DEP_ANTI);
3557 sched_analyze_insn (deps, PATTERN (insn), insn);
3559 /* If CALL would be in a sched group, then this will violate
3560 convention that sched group insns have dependencies only on the
3561 previous instruction.
3563 Of course one can say: "Hey! What about head of the sched group?"
3564 And I will answer: "Basic principles (one dep per insn) are always
3565 the same." */
3566 gcc_assert (!SCHED_GROUP_P (insn));
3568 /* In the absence of interprocedural alias analysis, we must flush
3569 all pending reads and writes, and start new dependencies starting
3570 from here. But only flush writes for constant calls (which may
3571 be passed a pointer to something we haven't written yet). */
3572 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3574 if (!deps->readonly)
3576 /* Remember the last function call for limiting lifetimes. */
3577 free_INSN_LIST_list (&deps->last_function_call);
3578 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3580 if (call_may_noreturn_p (insn))
3582 /* Remember the last function call that might not always return
3583 normally for limiting moves of trapping insns. */
3584 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3585 deps->last_function_call_may_noreturn
3586 = alloc_INSN_LIST (insn, NULL_RTX);
3589 /* Before reload, begin a post-call group, so as to keep the
3590 lifetimes of hard registers correct. */
3591 if (! reload_completed)
3592 deps->in_post_call_group_p = post_call;
3596 if (sched_deps_info->use_cselib)
3597 cselib_process_insn (insn);
3599 /* EH_REGION insn notes can not appear until well after we complete
3600 scheduling. */
3601 if (NOTE_P (insn))
3602 gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
3603 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END);
3605 if (sched_deps_info->finish_insn)
3606 sched_deps_info->finish_insn ();
3608 /* Fixup the dependencies in the sched group. */
3609 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3610 && SCHED_GROUP_P (insn) && !sel_sched_p ())
3611 fixup_sched_groups (insn);
3614 /* Initialize DEPS for the new block beginning with HEAD. */
3615 void
3616 deps_start_bb (struct deps_desc *deps, rtx head)
3618 gcc_assert (!deps->readonly);
3620 /* Before reload, if the previous block ended in a call, show that
3621 we are inside a post-call group, so as to keep the lifetimes of
3622 hard registers correct. */
3623 if (! reload_completed && !LABEL_P (head))
3625 rtx insn = prev_nonnote_nondebug_insn (head);
3627 if (insn && CALL_P (insn))
3628 deps->in_post_call_group_p = post_call_initial;
3632 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3633 dependencies for each insn. */
3634 void
3635 sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
3637 rtx insn;
3639 if (sched_deps_info->use_cselib)
3640 cselib_init (CSELIB_RECORD_MEMORY);
3642 deps_start_bb (deps, head);
3644 for (insn = head;; insn = NEXT_INSN (insn))
3647 if (INSN_P (insn))
3649 /* And initialize deps_lists. */
3650 sd_init_insn (insn);
3653 deps_analyze_insn (deps, insn);
3655 if (insn == tail)
3657 if (sched_deps_info->use_cselib)
3658 cselib_finish ();
3659 return;
3662 gcc_unreachable ();
3665 /* Helper for sched_free_deps ().
3666 Delete INSN's (RESOLVED_P) backward dependencies. */
3667 static void
3668 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3670 sd_iterator_def sd_it;
3671 dep_t dep;
3672 sd_list_types_def types;
3674 if (resolved_p)
3675 types = SD_LIST_RES_BACK;
3676 else
3677 types = SD_LIST_BACK;
3679 for (sd_it = sd_iterator_start (insn, types);
3680 sd_iterator_cond (&sd_it, &dep);)
3682 dep_link_t link = *sd_it.linkp;
3683 dep_node_t node = DEP_LINK_NODE (link);
3684 deps_list_t back_list;
3685 deps_list_t forw_list;
3687 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3688 remove_from_deps_list (link, back_list);
3689 delete_dep_node (node);
3693 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3694 deps_lists. */
3695 void
3696 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3698 rtx insn;
3699 rtx next_tail = NEXT_INSN (tail);
3701 /* We make two passes since some insns may be scheduled before their
3702 dependencies are resolved. */
3703 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3704 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3706 /* Clear forward deps and leave the dep_nodes to the
3707 corresponding back_deps list. */
3708 if (resolved_p)
3709 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3710 else
3711 clear_deps_list (INSN_FORW_DEPS (insn));
3713 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3714 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3716 /* Clear resolved back deps together with its dep_nodes. */
3717 delete_dep_nodes_in_back_deps (insn, resolved_p);
3719 sd_finish_insn (insn);
3723 /* Initialize variables for region data dependence analysis.
3724 When LAZY_REG_LAST is true, do not allocate reg_last array
3725 of struct deps_desc immediately. */
3727 void
3728 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3730 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3732 deps->max_reg = max_reg;
3733 if (lazy_reg_last)
3734 deps->reg_last = NULL;
3735 else
3736 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3737 INIT_REG_SET (&deps->reg_last_in_use);
3739 deps->pending_read_insns = 0;
3740 deps->pending_read_mems = 0;
3741 deps->pending_write_insns = 0;
3742 deps->pending_write_mems = 0;
3743 deps->pending_jump_insns = 0;
3744 deps->pending_read_list_length = 0;
3745 deps->pending_write_list_length = 0;
3746 deps->pending_flush_length = 0;
3747 deps->last_pending_memory_flush = 0;
3748 deps->last_function_call = 0;
3749 deps->last_function_call_may_noreturn = 0;
3750 deps->sched_before_next_call = 0;
3751 deps->sched_before_next_jump = 0;
3752 deps->in_post_call_group_p = not_post_call;
3753 deps->last_debug_insn = 0;
3754 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3755 deps->readonly = 0;
3758 /* Init only reg_last field of DEPS, which was not allocated before as
3759 we inited DEPS lazily. */
3760 void
3761 init_deps_reg_last (struct deps_desc *deps)
3763 gcc_assert (deps && deps->max_reg > 0);
3764 gcc_assert (deps->reg_last == NULL);
3766 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3770 /* Free insn lists found in DEPS. */
3772 void
3773 free_deps (struct deps_desc *deps)
3775 unsigned i;
3776 reg_set_iterator rsi;
3778 /* We set max_reg to 0 when this context was already freed. */
3779 if (deps->max_reg == 0)
3781 gcc_assert (deps->reg_last == NULL);
3782 return;
3784 deps->max_reg = 0;
3786 free_INSN_LIST_list (&deps->pending_read_insns);
3787 free_EXPR_LIST_list (&deps->pending_read_mems);
3788 free_INSN_LIST_list (&deps->pending_write_insns);
3789 free_EXPR_LIST_list (&deps->pending_write_mems);
3790 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3792 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3793 times. For a testcase with 42000 regs and 8000 small basic blocks,
3794 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3795 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3797 struct deps_reg *reg_last = &deps->reg_last[i];
3798 if (reg_last->uses)
3799 free_INSN_LIST_list (&reg_last->uses);
3800 if (reg_last->sets)
3801 free_INSN_LIST_list (&reg_last->sets);
3802 if (reg_last->implicit_sets)
3803 free_INSN_LIST_list (&reg_last->implicit_sets);
3804 if (reg_last->control_uses)
3805 free_INSN_LIST_list (&reg_last->control_uses);
3806 if (reg_last->clobbers)
3807 free_INSN_LIST_list (&reg_last->clobbers);
3809 CLEAR_REG_SET (&deps->reg_last_in_use);
3811 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3812 it at all. */
3813 free (deps->reg_last);
3814 deps->reg_last = NULL;
3816 deps = NULL;
3819 /* Remove INSN from dependence contexts DEPS. */
3820 void
3821 remove_from_deps (struct deps_desc *deps, rtx insn)
3823 int removed;
3824 unsigned i;
3825 reg_set_iterator rsi;
3827 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3828 &deps->pending_read_mems);
3829 if (!DEBUG_INSN_P (insn))
3830 deps->pending_read_list_length -= removed;
3831 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3832 &deps->pending_write_mems);
3833 deps->pending_write_list_length -= removed;
3835 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
3836 deps->pending_flush_length -= removed;
3837 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3838 deps->pending_flush_length -= removed;
3840 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3842 struct deps_reg *reg_last = &deps->reg_last[i];
3843 if (reg_last->uses)
3844 remove_from_dependence_list (insn, &reg_last->uses);
3845 if (reg_last->sets)
3846 remove_from_dependence_list (insn, &reg_last->sets);
3847 if (reg_last->implicit_sets)
3848 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3849 if (reg_last->clobbers)
3850 remove_from_dependence_list (insn, &reg_last->clobbers);
3851 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
3852 && !reg_last->clobbers)
3853 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
3856 if (CALL_P (insn))
3858 remove_from_dependence_list (insn, &deps->last_function_call);
3859 remove_from_dependence_list (insn,
3860 &deps->last_function_call_may_noreturn);
3862 remove_from_dependence_list (insn, &deps->sched_before_next_call);
3865 /* Init deps data vector. */
3866 static void
3867 init_deps_data_vector (void)
3869 int reserve = (sched_max_luid + 1
3870 - VEC_length (haifa_deps_insn_data_def, h_d_i_d));
3871 if (reserve > 0
3872 && ! VEC_space (haifa_deps_insn_data_def, h_d_i_d, reserve))
3873 VEC_safe_grow_cleared (haifa_deps_insn_data_def, heap, h_d_i_d,
3874 3 * sched_max_luid / 2);
3877 /* If it is profitable to use them, initialize or extend (depending on
3878 GLOBAL_P) dependency data. */
3879 void
3880 sched_deps_init (bool global_p)
3882 /* Average number of insns in the basic block.
3883 '+ 1' is used to make it nonzero. */
3884 int insns_in_block = sched_max_luid / n_basic_blocks + 1;
3886 init_deps_data_vector ();
3888 /* We use another caching mechanism for selective scheduling, so
3889 we don't use this one. */
3890 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
3892 /* ?!? We could save some memory by computing a per-region luid mapping
3893 which could reduce both the number of vectors in the cache and the
3894 size of each vector. Instead we just avoid the cache entirely unless
3895 the average number of instructions in a basic block is very high. See
3896 the comment before the declaration of true_dependency_cache for
3897 what we consider "very high". */
3898 cache_size = 0;
3899 extend_dependency_caches (sched_max_luid, true);
3902 if (global_p)
3904 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
3905 /* Allocate lists for one block at a time. */
3906 insns_in_block);
3907 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
3908 /* Allocate nodes for one block at a time.
3909 We assume that average insn has
3910 5 producers. */
3911 5 * insns_in_block);
3916 /* Create or extend (depending on CREATE_P) dependency caches to
3917 size N. */
3918 void
3919 extend_dependency_caches (int n, bool create_p)
3921 if (create_p || true_dependency_cache)
3923 int i, luid = cache_size + n;
3925 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
3926 luid);
3927 output_dependency_cache = XRESIZEVEC (bitmap_head,
3928 output_dependency_cache, luid);
3929 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
3930 luid);
3931 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
3932 luid);
3934 if (current_sched_info->flags & DO_SPECULATION)
3935 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
3936 luid);
3938 for (i = cache_size; i < luid; i++)
3940 bitmap_initialize (&true_dependency_cache[i], 0);
3941 bitmap_initialize (&output_dependency_cache[i], 0);
3942 bitmap_initialize (&anti_dependency_cache[i], 0);
3943 bitmap_initialize (&control_dependency_cache[i], 0);
3945 if (current_sched_info->flags & DO_SPECULATION)
3946 bitmap_initialize (&spec_dependency_cache[i], 0);
3948 cache_size = luid;
3952 /* Finalize dependency information for the whole function. */
3953 void
3954 sched_deps_finish (void)
3956 gcc_assert (deps_pools_are_empty_p ());
3957 free_alloc_pool_if_empty (&dn_pool);
3958 free_alloc_pool_if_empty (&dl_pool);
3959 gcc_assert (dn_pool == NULL && dl_pool == NULL);
3961 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
3962 cache_size = 0;
3964 if (true_dependency_cache)
3966 int i;
3968 for (i = 0; i < cache_size; i++)
3970 bitmap_clear (&true_dependency_cache[i]);
3971 bitmap_clear (&output_dependency_cache[i]);
3972 bitmap_clear (&anti_dependency_cache[i]);
3973 bitmap_clear (&control_dependency_cache[i]);
3975 if (sched_deps_info->generate_spec_deps)
3976 bitmap_clear (&spec_dependency_cache[i]);
3978 free (true_dependency_cache);
3979 true_dependency_cache = NULL;
3980 free (output_dependency_cache);
3981 output_dependency_cache = NULL;
3982 free (anti_dependency_cache);
3983 anti_dependency_cache = NULL;
3984 free (control_dependency_cache);
3985 control_dependency_cache = NULL;
3987 if (sched_deps_info->generate_spec_deps)
3989 free (spec_dependency_cache);
3990 spec_dependency_cache = NULL;
3996 /* Initialize some global variables needed by the dependency analysis
3997 code. */
3999 void
4000 init_deps_global (void)
4002 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4003 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4004 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4005 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4006 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4007 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4008 reg_pending_barrier = NOT_A_BARRIER;
4010 if (!sel_sched_p () || sched_emulate_haifa_p)
4012 sched_deps_info->start_insn = haifa_start_insn;
4013 sched_deps_info->finish_insn = haifa_finish_insn;
4015 sched_deps_info->note_reg_set = haifa_note_reg_set;
4016 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4017 sched_deps_info->note_reg_use = haifa_note_reg_use;
4019 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4020 sched_deps_info->note_dep = haifa_note_dep;
4024 /* Free everything used by the dependency analysis code. */
4026 void
4027 finish_deps_global (void)
4029 FREE_REG_SET (reg_pending_sets);
4030 FREE_REG_SET (reg_pending_clobbers);
4031 FREE_REG_SET (reg_pending_uses);
4032 FREE_REG_SET (reg_pending_control_uses);
4035 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4036 dw_t
4037 estimate_dep_weak (rtx mem1, rtx mem2)
4039 rtx r1, r2;
4041 if (mem1 == mem2)
4042 /* MEMs are the same - don't speculate. */
4043 return MIN_DEP_WEAK;
4045 r1 = XEXP (mem1, 0);
4046 r2 = XEXP (mem2, 0);
4048 if (r1 == r2
4049 || (REG_P (r1) && REG_P (r2)
4050 && REGNO (r1) == REGNO (r2)))
4051 /* Again, MEMs are the same. */
4052 return MIN_DEP_WEAK;
4053 else if ((REG_P (r1) && !REG_P (r2))
4054 || (!REG_P (r1) && REG_P (r2)))
4055 /* Different addressing modes - reason to be more speculative,
4056 than usual. */
4057 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4058 else
4059 /* We can't say anything about the dependence. */
4060 return UNCERTAIN_DEP_WEAK;
4063 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4064 This function can handle same INSN and ELEM (INSN == ELEM).
4065 It is a convenience wrapper. */
4066 static void
4067 add_dependence_1 (rtx insn, rtx elem, enum reg_note dep_type)
4069 ds_t ds;
4070 bool internal;
4072 if (dep_type == REG_DEP_TRUE)
4073 ds = DEP_TRUE;
4074 else if (dep_type == REG_DEP_OUTPUT)
4075 ds = DEP_OUTPUT;
4076 else if (dep_type == REG_DEP_CONTROL)
4077 ds = DEP_CONTROL;
4078 else
4080 gcc_assert (dep_type == REG_DEP_ANTI);
4081 ds = DEP_ANTI;
4084 /* When add_dependence is called from inside sched-deps.c, we expect
4085 cur_insn to be non-null. */
4086 internal = cur_insn != NULL;
4087 if (internal)
4088 gcc_assert (insn == cur_insn);
4089 else
4090 cur_insn = insn;
4092 note_dep (elem, ds);
4093 if (!internal)
4094 cur_insn = NULL;
4097 /* Return weakness of speculative type TYPE in the dep_status DS. */
4098 dw_t
4099 get_dep_weak_1 (ds_t ds, ds_t type)
4101 ds = ds & type;
4103 switch (type)
4105 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4106 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4107 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4108 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4109 default: gcc_unreachable ();
4112 return (dw_t) ds;
4115 dw_t
4116 get_dep_weak (ds_t ds, ds_t type)
4118 dw_t dw = get_dep_weak_1 (ds, type);
4120 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4121 return dw;
4124 /* Return the dep_status, which has the same parameters as DS, except for
4125 speculative type TYPE, that will have weakness DW. */
4126 ds_t
4127 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4129 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4131 ds &= ~type;
4132 switch (type)
4134 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4135 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4136 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4137 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4138 default: gcc_unreachable ();
4140 return ds;
4143 /* Return the join of two dep_statuses DS1 and DS2.
4144 If MAX_P is true then choose the greater probability,
4145 otherwise multiply probabilities.
4146 This function assumes that both DS1 and DS2 contain speculative bits. */
4147 static ds_t
4148 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4150 ds_t ds, t;
4152 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4154 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4156 t = FIRST_SPEC_TYPE;
4159 if ((ds1 & t) && !(ds2 & t))
4160 ds |= ds1 & t;
4161 else if (!(ds1 & t) && (ds2 & t))
4162 ds |= ds2 & t;
4163 else if ((ds1 & t) && (ds2 & t))
4165 dw_t dw1 = get_dep_weak (ds1, t);
4166 dw_t dw2 = get_dep_weak (ds2, t);
4167 ds_t dw;
4169 if (!max_p)
4171 dw = ((ds_t) dw1) * ((ds_t) dw2);
4172 dw /= MAX_DEP_WEAK;
4173 if (dw < MIN_DEP_WEAK)
4174 dw = MIN_DEP_WEAK;
4176 else
4178 if (dw1 >= dw2)
4179 dw = dw1;
4180 else
4181 dw = dw2;
4184 ds = set_dep_weak (ds, t, (dw_t) dw);
4187 if (t == LAST_SPEC_TYPE)
4188 break;
4189 t <<= SPEC_TYPE_SHIFT;
4191 while (1);
4193 return ds;
4196 /* Return the join of two dep_statuses DS1 and DS2.
4197 This function assumes that both DS1 and DS2 contain speculative bits. */
4198 ds_t
4199 ds_merge (ds_t ds1, ds_t ds2)
4201 return ds_merge_1 (ds1, ds2, false);
4204 /* Return the join of two dep_statuses DS1 and DS2. */
4205 ds_t
4206 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4208 ds_t new_status = ds | ds2;
4210 if (new_status & SPECULATIVE)
4212 if ((ds && !(ds & SPECULATIVE))
4213 || (ds2 && !(ds2 & SPECULATIVE)))
4214 /* Then this dep can't be speculative. */
4215 new_status &= ~SPECULATIVE;
4216 else
4218 /* Both are speculative. Merging probabilities. */
4219 if (mem1)
4221 dw_t dw;
4223 dw = estimate_dep_weak (mem1, mem2);
4224 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4227 if (!ds)
4228 new_status = ds2;
4229 else if (!ds2)
4230 new_status = ds;
4231 else
4232 new_status = ds_merge (ds2, ds);
4236 return new_status;
4239 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4240 probabilities. */
4241 ds_t
4242 ds_max_merge (ds_t ds1, ds_t ds2)
4244 if (ds1 == 0 && ds2 == 0)
4245 return 0;
4247 if (ds1 == 0 && ds2 != 0)
4248 return ds2;
4250 if (ds1 != 0 && ds2 == 0)
4251 return ds1;
4253 return ds_merge_1 (ds1, ds2, true);
4256 /* Return the probability of speculation success for the speculation
4257 status DS. */
4258 dw_t
4259 ds_weak (ds_t ds)
4261 ds_t res = 1, dt;
4262 int n = 0;
4264 dt = FIRST_SPEC_TYPE;
4267 if (ds & dt)
4269 res *= (ds_t) get_dep_weak (ds, dt);
4270 n++;
4273 if (dt == LAST_SPEC_TYPE)
4274 break;
4275 dt <<= SPEC_TYPE_SHIFT;
4277 while (1);
4279 gcc_assert (n);
4280 while (--n)
4281 res /= MAX_DEP_WEAK;
4283 if (res < MIN_DEP_WEAK)
4284 res = MIN_DEP_WEAK;
4286 gcc_assert (res <= MAX_DEP_WEAK);
4288 return (dw_t) res;
4291 /* Return a dep status that contains all speculation types of DS. */
4292 ds_t
4293 ds_get_speculation_types (ds_t ds)
4295 if (ds & BEGIN_DATA)
4296 ds |= BEGIN_DATA;
4297 if (ds & BE_IN_DATA)
4298 ds |= BE_IN_DATA;
4299 if (ds & BEGIN_CONTROL)
4300 ds |= BEGIN_CONTROL;
4301 if (ds & BE_IN_CONTROL)
4302 ds |= BE_IN_CONTROL;
4304 return ds & SPECULATIVE;
4307 /* Return a dep status that contains maximal weakness for each speculation
4308 type present in DS. */
4309 ds_t
4310 ds_get_max_dep_weak (ds_t ds)
4312 if (ds & BEGIN_DATA)
4313 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4314 if (ds & BE_IN_DATA)
4315 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4316 if (ds & BEGIN_CONTROL)
4317 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4318 if (ds & BE_IN_CONTROL)
4319 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4321 return ds;
4324 /* Dump information about the dependence status S. */
4325 static void
4326 dump_ds (FILE *f, ds_t s)
4328 fprintf (f, "{");
4330 if (s & BEGIN_DATA)
4331 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4332 if (s & BE_IN_DATA)
4333 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4334 if (s & BEGIN_CONTROL)
4335 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4336 if (s & BE_IN_CONTROL)
4337 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4339 if (s & HARD_DEP)
4340 fprintf (f, "HARD_DEP; ");
4342 if (s & DEP_TRUE)
4343 fprintf (f, "DEP_TRUE; ");
4344 if (s & DEP_OUTPUT)
4345 fprintf (f, "DEP_OUTPUT; ");
4346 if (s & DEP_ANTI)
4347 fprintf (f, "DEP_ANTI; ");
4348 if (s & DEP_CONTROL)
4349 fprintf (f, "DEP_CONTROL; ");
4351 fprintf (f, "}");
4354 DEBUG_FUNCTION void
4355 debug_ds (ds_t s)
4357 dump_ds (stderr, s);
4358 fprintf (stderr, "\n");
4361 #ifdef ENABLE_CHECKING
4362 /* Verify that dependence type and status are consistent.
4363 If RELAXED_P is true, then skip dep_weakness checks. */
4364 static void
4365 check_dep (dep_t dep, bool relaxed_p)
4367 enum reg_note dt = DEP_TYPE (dep);
4368 ds_t ds = DEP_STATUS (dep);
4370 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4372 if (!(current_sched_info->flags & USE_DEPS_LIST))
4374 gcc_assert (ds == 0);
4375 return;
4378 /* Check that dependence type contains the same bits as the status. */
4379 if (dt == REG_DEP_TRUE)
4380 gcc_assert (ds & DEP_TRUE);
4381 else if (dt == REG_DEP_OUTPUT)
4382 gcc_assert ((ds & DEP_OUTPUT)
4383 && !(ds & DEP_TRUE));
4384 else if (dt == REG_DEP_ANTI)
4385 gcc_assert ((ds & DEP_ANTI)
4386 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4387 else
4388 gcc_assert (dt == REG_DEP_CONTROL
4389 && (ds & DEP_CONTROL)
4390 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4392 /* HARD_DEP can not appear in dep_status of a link. */
4393 gcc_assert (!(ds & HARD_DEP));
4395 /* Check that dependence status is set correctly when speculation is not
4396 supported. */
4397 if (!sched_deps_info->generate_spec_deps)
4398 gcc_assert (!(ds & SPECULATIVE));
4399 else if (ds & SPECULATIVE)
4401 if (!relaxed_p)
4403 ds_t type = FIRST_SPEC_TYPE;
4405 /* Check that dependence weakness is in proper range. */
4408 if (ds & type)
4409 get_dep_weak (ds, type);
4411 if (type == LAST_SPEC_TYPE)
4412 break;
4413 type <<= SPEC_TYPE_SHIFT;
4415 while (1);
4418 if (ds & BEGIN_SPEC)
4420 /* Only true dependence can be data speculative. */
4421 if (ds & BEGIN_DATA)
4422 gcc_assert (ds & DEP_TRUE);
4424 /* Control dependencies in the insn scheduler are represented by
4425 anti-dependencies, therefore only anti dependence can be
4426 control speculative. */
4427 if (ds & BEGIN_CONTROL)
4428 gcc_assert (ds & DEP_ANTI);
4430 else
4432 /* Subsequent speculations should resolve true dependencies. */
4433 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4436 /* Check that true and anti dependencies can't have other speculative
4437 statuses. */
4438 if (ds & DEP_TRUE)
4439 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4440 /* An output dependence can't be speculative at all. */
4441 gcc_assert (!(ds & DEP_OUTPUT));
4442 if (ds & DEP_ANTI)
4443 gcc_assert (ds & BEGIN_CONTROL);
4446 #endif /* ENABLE_CHECKING */
4448 #endif /* INSN_SCHEDULING */