sys/vfs/hammer2: Fix comment on bmradix in freemap
[dragonfly.git] / sys / net / if_ethersubr.c
blob75f5137dd7a2607841a3528663623dd16f460592
1 /*
2 * Copyright (c) 1982, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93
30 * $FreeBSD: src/sys/net/if_ethersubr.c,v 1.70.2.33 2003/04/28 15:45:53 archie Exp $
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mpls.h"
36 #include "opt_netgraph.h"
37 #include "opt_carp.h"
38 #include "opt_rss.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/globaldata.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/msgport.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 #include <sys/thread.h>
54 #include <sys/thread2.h>
55 #include <sys/mplock2.h>
57 #include <net/if.h>
58 #include <net/netisr.h>
59 #include <net/route.h>
60 #include <net/if_llc.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/ifq_var.h>
64 #include <net/bpf.h>
65 #include <net/ethernet.h>
66 #include <net/vlan/if_vlan_ether.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/netmsg2.h>
69 #include <net/netisr2.h>
71 #if defined(INET) || defined(INET6)
72 #include <netinet/in.h>
73 #include <netinet/ip_var.h>
74 #include <netinet/tcp_var.h>
75 #include <netinet/if_ether.h>
76 #include <netinet/ip_flow.h>
77 #include <net/ipfw/ip_fw.h>
78 #include <net/ipfw3/ip_fw.h>
79 #include <net/dummynet/ip_dummynet.h>
80 #endif
81 #ifdef INET6
82 #include <netinet6/nd6.h>
83 #endif
85 #ifdef CARP
86 #include <netinet/ip_carp.h>
87 #endif
89 #ifdef MPLS
90 #include <netproto/mpls/mpls.h>
91 #endif
93 /* netgraph node hooks for ng_ether(4) */
94 void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
95 void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
96 int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
97 void (*ng_ether_attach_p)(struct ifnet *ifp);
98 void (*ng_ether_detach_p)(struct ifnet *ifp);
100 void (*vlan_input_p)(struct mbuf *);
102 static int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *,
103 struct rtentry *);
104 static void ether_restore_header(struct mbuf **, const struct ether_header *,
105 const struct ether_header *);
106 static int ether_characterize(struct mbuf **);
107 static void ether_dispatch(struct ifnet *, int, struct mbuf *, int);
110 * if_bridge support
112 struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *);
113 int (*bridge_output_p)(struct ifnet *, struct mbuf *);
114 void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
115 struct ifnet *(*bridge_interface_p)(void *if_bridge);
117 static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
118 struct sockaddr *);
121 * if_lagg(4) support
123 void (*lagg_input_p)(struct ifnet *, struct mbuf *);
124 int (*lagg_output_p)(struct ifnet *, struct mbuf *);
126 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] = {
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
130 #define gotoerr(e) do { error = (e); goto bad; } while (0)
131 #define IFP2AC(ifp) ((struct arpcom *)(ifp))
133 static boolean_t ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst,
134 struct ip_fw **rule,
135 const struct ether_header *eh);
137 static int ether_ipfw;
138 static u_long ether_restore_hdr;
139 static u_long ether_prepend_hdr;
140 static u_long ether_input_wronghash;
141 static int ether_debug;
143 #ifdef RSS_DEBUG
144 static u_long ether_pktinfo_try;
145 static u_long ether_pktinfo_hit;
146 static u_long ether_rss_nopi;
147 static u_long ether_rss_nohash;
148 static u_long ether_input_requeue;
149 #endif
150 static u_long ether_input_wronghwhash;
151 static int ether_input_ckhash;
153 #define ETHER_TSOLEN_DEFAULT (4 * ETHERMTU)
155 #define ETHER_NMBCLUSTERS_DEFMIN 32
156 #define ETHER_NMBCLUSTERS_DEFAULT 256
158 static int ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
159 TUNABLE_INT("net.link.ether.tsolen", &ether_tsolen_default);
161 static int ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
162 TUNABLE_INT("net.link.ether.nmbclusters", &ether_nmbclusters_default);
164 SYSCTL_DECL(_net_link);
165 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet");
166 SYSCTL_INT(_net_link_ether, OID_AUTO, debug, CTLFLAG_RW,
167 &ether_debug, 0, "Ether debug");
168 SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW,
169 &ether_ipfw, 0, "Pass ether pkts through firewall");
170 SYSCTL_ULONG(_net_link_ether, OID_AUTO, restore_hdr, CTLFLAG_RW,
171 &ether_restore_hdr, 0, "# of ether header restoration");
172 SYSCTL_ULONG(_net_link_ether, OID_AUTO, prepend_hdr, CTLFLAG_RW,
173 &ether_prepend_hdr, 0,
174 "# of ether header restoration which prepends mbuf");
175 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghash, CTLFLAG_RW,
176 &ether_input_wronghash, 0, "# of input packets with wrong hash");
177 SYSCTL_INT(_net_link_ether, OID_AUTO, tsolen, CTLFLAG_RW,
178 &ether_tsolen_default, 0, "Default max TSO length");
180 #ifdef RSS_DEBUG
181 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nopi, CTLFLAG_RW,
182 &ether_rss_nopi, 0, "# of packets do not have pktinfo");
183 SYSCTL_ULONG(_net_link_ether, OID_AUTO, rss_nohash, CTLFLAG_RW,
184 &ether_rss_nohash, 0, "# of packets do not have hash");
185 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_try, CTLFLAG_RW,
186 &ether_pktinfo_try, 0,
187 "# of tries to find packets' msgport using pktinfo");
188 SYSCTL_ULONG(_net_link_ether, OID_AUTO, pktinfo_hit, CTLFLAG_RW,
189 &ether_pktinfo_hit, 0,
190 "# of packets whose msgport are found using pktinfo");
191 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_requeue, CTLFLAG_RW,
192 &ether_input_requeue, 0, "# of input packets gets requeued");
193 #endif
194 SYSCTL_ULONG(_net_link_ether, OID_AUTO, input_wronghwhash, CTLFLAG_RW,
195 &ether_input_wronghwhash, 0, "# of input packets with wrong hw hash");
196 SYSCTL_INT(_net_link_ether, OID_AUTO, always_ckhash, CTLFLAG_RW,
197 &ether_input_ckhash, 0, "always check hash");
199 #define ETHER_KTR_STR "ifp=%p"
200 #define ETHER_KTR_ARGS struct ifnet *ifp
201 #ifndef KTR_ETHERNET
202 #define KTR_ETHERNET KTR_ALL
203 #endif
204 KTR_INFO_MASTER(ether);
205 KTR_INFO(KTR_ETHERNET, ether, pkt_beg, 0, ETHER_KTR_STR, ETHER_KTR_ARGS);
206 KTR_INFO(KTR_ETHERNET, ether, pkt_end, 1, ETHER_KTR_STR, ETHER_KTR_ARGS);
207 KTR_INFO(KTR_ETHERNET, ether, disp_beg, 2, ETHER_KTR_STR, ETHER_KTR_ARGS);
208 KTR_INFO(KTR_ETHERNET, ether, disp_end, 3, ETHER_KTR_STR, ETHER_KTR_ARGS);
209 #define logether(name, arg) KTR_LOG(ether_ ## name, arg)
212 * Ethernet output routine.
213 * Encapsulate a packet of type family for the local net.
214 * Use trailer local net encapsulation if enough data in first
215 * packet leaves a multiple of 512 bytes of data in remainder.
216 * Assumes that ifp is actually pointer to arpcom structure.
218 static int
219 ether_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
220 struct rtentry *rt)
222 struct ether_header *eh, *deh;
223 u_char *edst;
224 int loop_copy = 0;
225 int hlen = ETHER_HDR_LEN; /* link layer header length */
226 struct arpcom *ac = IFP2AC(ifp);
227 int error;
229 ASSERT_NETISR_NCPUS(mycpuid);
230 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
232 if (ifp->if_flags & IFF_MONITOR)
233 gotoerr(ENETDOWN);
234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 gotoerr(ENETDOWN);
237 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
238 if (m == NULL)
239 return (ENOBUFS);
240 m->m_pkthdr.csum_lhlen = sizeof(struct ether_header);
241 eh = mtod(m, struct ether_header *);
242 edst = eh->ether_dhost;
245 * Fill in the destination ethernet address and frame type.
247 switch (dst->sa_family) {
248 #ifdef INET
249 case AF_INET:
250 error = arpresolve(ifp, rt, m, dst, edst);
251 if (error != 0)
252 return error == EWOULDBLOCK ? 0 : error;
253 #ifdef MPLS
254 if (m->m_flags & M_MPLSLABELED)
255 eh->ether_type = htons(ETHERTYPE_MPLS);
256 else
257 #endif
258 eh->ether_type = htons(ETHERTYPE_IP);
259 break;
260 case AF_ARP:
262 struct arphdr *ah;
264 ah = mtod(m, struct arphdr *);
265 ah->ar_hrd = htons(ARPHRD_ETHER);
267 loop_copy = -1; /* if this is for us, don't do it */
269 switch(ntohs(ah->ar_op)) {
270 case ARPOP_REVREQUEST:
271 case ARPOP_REVREPLY:
272 eh->ether_type = htons(ETHERTYPE_REVARP);
273 break;
274 case ARPOP_REQUEST:
275 case ARPOP_REPLY:
276 default:
277 eh->ether_type = htons(ETHERTYPE_ARP);
278 break;
281 if (m->m_flags & M_BCAST)
282 bcopy(ifp->if_broadcastaddr, edst, ETHER_ADDR_LEN);
283 else
284 bcopy(ar_tha(ah), edst, ETHER_ADDR_LEN);
286 #endif
287 #ifdef INET6
288 case AF_INET6:
289 error = nd6_resolve(&ac->ac_if, rt, m, dst, edst);
290 if (error != 0)
291 return error == EWOULDBLOCK ? 0 : error;
292 eh->ether_type = htons(ETHERTYPE_IPV6);
293 break;
294 #endif
295 case pseudo_AF_HDRCMPLT:
296 case AF_UNSPEC:
297 loop_copy = -1; /* if this is for us, don't do it */
298 deh = (struct ether_header *)dst->sa_data;
299 memcpy(edst, deh->ether_dhost, ETHER_ADDR_LEN);
300 eh->ether_type = deh->ether_type;
301 break;
303 default:
304 if_printf(ifp, "can't handle af%d\n", dst->sa_family);
305 gotoerr(EAFNOSUPPORT);
308 if (dst->sa_family == pseudo_AF_HDRCMPLT) /* unlikely */
309 memcpy(eh->ether_shost,
310 ((struct ether_header *)dst->sa_data)->ether_shost,
311 ETHER_ADDR_LEN);
312 else
313 memcpy(eh->ether_shost, ac->ac_enaddr, ETHER_ADDR_LEN);
316 * Bridges require special output handling.
318 if (ifp->if_bridge) {
319 KASSERT(bridge_output_p != NULL,
320 ("%s: if_bridge not loaded!", __func__));
321 return bridge_output_p(ifp, m);
323 #if 0 /* XXX */
324 if (ifp->if_lagg) {
325 KASSERT(lagg_output_p != NULL,
326 ("%s: if_lagg not loaded!", __func__));
327 return lagg_output_p(ifp, m);
329 #endif
332 * If a simplex interface, and the packet is being sent to our
333 * Ethernet address or a broadcast address, loopback a copy.
334 * XXX To make a simplex device behave exactly like a duplex
335 * device, we should copy in the case of sending to our own
336 * ethernet address (thus letting the original actually appear
337 * on the wire). However, we don't do that here for security
338 * reasons and compatibility with the original behavior.
340 if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) {
341 int csum_flags = 0;
343 if (m->m_pkthdr.csum_flags & CSUM_IP)
344 csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID);
345 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
346 csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
347 if ((m->m_flags & M_BCAST) || (loop_copy > 0)) {
348 struct mbuf *n;
350 if ((n = m_copypacket(m, M_NOWAIT)) != NULL) {
351 n->m_pkthdr.csum_flags |= csum_flags;
352 if (csum_flags & CSUM_DATA_VALID)
353 n->m_pkthdr.csum_data = 0xffff;
354 if_simloop(ifp, n, dst->sa_family, hlen);
355 } else
356 IFNET_STAT_INC(ifp, iqdrops, 1);
357 } else if (bcmp(eh->ether_dhost, eh->ether_shost,
358 ETHER_ADDR_LEN) == 0) {
359 m->m_pkthdr.csum_flags |= csum_flags;
360 if (csum_flags & CSUM_DATA_VALID)
361 m->m_pkthdr.csum_data = 0xffff;
362 if_simloop(ifp, m, dst->sa_family, hlen);
363 return (0); /* XXX */
367 #ifdef CARP
368 if (ifp->if_type == IFT_CARP) {
369 ifp = carp_parent(ifp);
370 if (ifp == NULL)
371 gotoerr(ENETUNREACH);
373 ac = IFP2AC(ifp);
376 * Check precondition again
378 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
380 if (ifp->if_flags & IFF_MONITOR)
381 gotoerr(ENETDOWN);
382 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
383 (IFF_UP | IFF_RUNNING))
384 gotoerr(ENETDOWN);
386 #endif
388 /* Handle ng_ether(4) processing, if any */
389 if (ng_ether_output_p != NULL) {
391 * Hold BGL and recheck ng_ether_output_p
393 get_mplock();
394 if (ng_ether_output_p != NULL) {
395 if ((error = ng_ether_output_p(ifp, &m)) != 0) {
396 rel_mplock();
397 goto bad;
399 if (m == NULL) {
400 rel_mplock();
401 return (0);
404 rel_mplock();
407 /* Continue with link-layer output */
408 return ether_output_frame(ifp, m);
410 bad:
411 m_freem(m);
412 return (error);
416 * Returns the bridge interface an ifp is associated
417 * with.
419 * Only call if ifp->if_bridge != NULL.
421 struct ifnet *
422 ether_bridge_interface(struct ifnet *ifp)
424 if (bridge_interface_p)
425 return(bridge_interface_p(ifp->if_bridge));
426 return (ifp);
430 * Ethernet link layer output routine to send a raw frame to the device.
432 * This assumes that the 14 byte Ethernet header is present and contiguous
433 * in the first mbuf.
436 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
438 struct ip_fw *rule = NULL;
439 int error = 0;
440 struct altq_pktattr pktattr;
442 ASSERT_IFNET_NOT_SERIALIZED_ALL(ifp);
444 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
445 struct m_tag *mtag;
447 /* Extract info from dummynet tag */
448 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
449 KKASSERT(mtag != NULL);
450 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
451 KKASSERT(rule != NULL);
453 m_tag_delete(m, mtag);
454 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
457 if (ifq_is_enabled(&ifp->if_snd))
458 altq_etherclassify(&ifp->if_snd, m, &pktattr);
459 crit_enter();
460 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0) {
461 struct ether_header save_eh, *eh;
463 eh = mtod(m, struct ether_header *);
464 save_eh = *eh;
465 m_adj(m, ETHER_HDR_LEN);
466 if (!ether_ipfw_chk(&m, ifp, &rule, eh)) {
467 crit_exit();
468 if (m != NULL) {
469 m_freem(m);
470 return ENOBUFS; /* pkt dropped */
471 } else
472 return 0; /* consumed e.g. in a pipe */
475 /* packet was ok, restore the ethernet header */
476 ether_restore_header(&m, eh, &save_eh);
477 if (m == NULL) {
478 crit_exit();
479 return ENOBUFS;
482 crit_exit();
485 * Queue message on interface, update output statistics if
486 * successful, and start output if interface not yet active.
488 error = ifq_dispatch(ifp, m, &pktattr);
489 return (error);
493 * ipfw processing for ethernet packets (in and out).
494 * The second parameter is NULL from ether_demux(), and ifp from
495 * ether_output_frame().
497 static boolean_t
498 ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule,
499 const struct ether_header *eh)
501 struct ether_header save_eh = *eh; /* might be a ptr in *m0 */
502 struct ip_fw_args args;
503 struct m_tag *mtag;
504 struct mbuf *m;
505 int i;
507 if (*rule != NULL && fw_one_pass)
508 return TRUE; /* dummynet packet, already partially processed */
511 * I need some amount of data to be contiguous.
513 i = min((*m0)->m_pkthdr.len, max_protohdr);
514 if ((*m0)->m_len < i) {
515 *m0 = m_pullup(*m0, i);
516 if (*m0 == NULL)
517 return FALSE;
521 * Clean up tags
523 if ((mtag = m_tag_find(*m0, PACKET_TAG_IPFW_DIVERT, NULL)) != NULL)
524 m_tag_delete(*m0, mtag);
525 if ((*m0)->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
526 mtag = m_tag_find(*m0, PACKET_TAG_IPFORWARD, NULL);
527 KKASSERT(mtag != NULL);
528 m_tag_delete(*m0, mtag);
529 (*m0)->m_pkthdr.fw_flags &= ~IPFORWARD_MBUF_TAGGED;
532 args.flags = 0;
533 args.xlat = NULL;
534 args.m = *m0; /* the packet we are looking at */
535 args.oif = dst; /* destination, if any */
536 args.rule = *rule; /* matching rule to restart */
537 args.eh = &save_eh; /* MAC header for bridged/MAC packets */
538 i = ip_fw_chk_ptr(&args);
539 *m0 = args.m;
540 *rule = args.rule;
542 if (*m0 == NULL)
543 return FALSE;
545 switch (i) {
546 case IP_FW_PASS:
547 return TRUE;
549 case IP_FW_DIVERT:
550 case IP_FW_TEE:
551 case IP_FW_DENY:
553 * XXX at some point add support for divert/forward actions.
554 * If none of the above matches, we have to drop the pkt.
556 return FALSE;
558 case IP_FW_DUMMYNET:
560 * Pass the pkt to dummynet, which consumes it.
562 m = *m0; /* pass the original to dummynet */
563 *m0 = NULL; /* and nothing back to the caller */
565 ether_restore_header(&m, eh, &save_eh);
566 if (m == NULL)
567 return FALSE;
569 m = ip_fw_dn_io_ptr(m, args.cookie,
570 dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args);
571 if (m != NULL)
572 ip_dn_queue(m);
573 return FALSE;
575 default:
576 panic("unknown ipfw return value: %d", i);
581 * Perform common duties while attaching to interface list
583 void
584 ether_ifattach(struct ifnet *ifp, const uint8_t *lla,
585 lwkt_serialize_t serializer)
587 ether_ifattach_bpf(ifp, lla, DLT_EN10MB, sizeof(struct ether_header),
588 serializer);
591 void
592 ether_ifattach_bpf(struct ifnet *ifp, const uint8_t *lla,
593 u_int dlt, u_int hdrlen, lwkt_serialize_t serializer)
595 struct sockaddr_dl *sdl;
596 char ethstr[ETHER_ADDRSTRLEN + 1];
597 struct ifaltq *ifq;
598 int i;
601 * If driver does not configure # of mbuf clusters/jclusters
602 * that could sit on the device queues for quite some time,
603 * we then assume:
604 * - The device queues only consume mbuf clusters.
605 * - No more than ether_nmbclusters_default (by default 256)
606 * mbuf clusters will sit on the device queues for quite
607 * some time.
609 if (ifp->if_nmbclusters <= 0 && ifp->if_nmbjclusters <= 0) {
610 if (ether_nmbclusters_default < ETHER_NMBCLUSTERS_DEFMIN) {
611 kprintf("ether nmbclusters %d -> %d\n",
612 ether_nmbclusters_default,
613 ETHER_NMBCLUSTERS_DEFAULT);
614 ether_nmbclusters_default = ETHER_NMBCLUSTERS_DEFAULT;
616 ifp->if_nmbclusters = ether_nmbclusters_default;
619 ifp->if_type = IFT_ETHER;
620 ifp->if_addrlen = ETHER_ADDR_LEN;
621 ifp->if_hdrlen = ETHER_HDR_LEN;
622 if_attach(ifp, serializer);
623 ifq = &ifp->if_snd;
624 for (i = 0; i < ifq->altq_subq_cnt; ++i) {
625 struct ifaltq_subque *ifsq = ifq_get_subq(ifq, i);
627 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen *
628 (ETHER_MAX_LEN - ETHER_CRC_LEN);
630 ifp->if_mtu = ETHERMTU;
631 if (ifp->if_tsolen <= 0) {
632 if ((ether_tsolen_default / ETHERMTU) < 2) {
633 kprintf("ether TSO maxlen %d -> %d\n",
634 ether_tsolen_default, ETHER_TSOLEN_DEFAULT);
635 ether_tsolen_default = ETHER_TSOLEN_DEFAULT;
637 ifp->if_tsolen = ether_tsolen_default;
639 if (ifp->if_baudrate == 0)
640 ifp->if_baudrate = 10000000;
641 ifp->if_output = ether_output;
642 ifp->if_input = ether_input;
643 ifp->if_resolvemulti = ether_resolvemulti;
644 ifp->if_broadcastaddr = etherbroadcastaddr;
645 sdl = IF_LLSOCKADDR(ifp);
646 sdl->sdl_type = IFT_ETHER;
647 sdl->sdl_alen = ifp->if_addrlen;
648 bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
650 * XXX Keep the current drivers happy.
651 * XXX Remove once all drivers have been cleaned up
653 if (lla != IFP2AC(ifp)->ac_enaddr)
654 bcopy(lla, IFP2AC(ifp)->ac_enaddr, ifp->if_addrlen);
655 bpfattach(ifp, dlt, hdrlen);
656 if (ng_ether_attach_p != NULL)
657 (*ng_ether_attach_p)(ifp);
659 if_printf(ifp, "MAC address: %s\n", kether_ntoa(lla, ethstr));
663 * Perform common duties while detaching an Ethernet interface
665 void
666 ether_ifdetach(struct ifnet *ifp)
668 if_down(ifp);
670 if (ng_ether_detach_p != NULL)
671 (*ng_ether_detach_p)(ifp);
672 bpfdetach(ifp);
673 if_detach(ifp);
677 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
679 struct ifaddr *ifa = (struct ifaddr *) data;
680 struct ifreq *ifr = (struct ifreq *) data;
681 int error = 0;
683 #define IF_INIT(ifp) \
684 do { \
685 if (((ifp)->if_flags & IFF_UP) == 0) { \
686 (ifp)->if_flags |= IFF_UP; \
687 (ifp)->if_init((ifp)->if_softc); \
689 } while (0)
691 ASSERT_IFNET_SERIALIZED_ALL(ifp);
693 switch (command) {
694 case SIOCSIFADDR:
695 switch (ifa->ifa_addr->sa_family) {
696 #ifdef INET
697 case AF_INET:
698 IF_INIT(ifp); /* before arpwhohas */
699 arp_ifinit(ifp, ifa);
700 break;
701 #endif
702 default:
703 IF_INIT(ifp);
704 break;
706 break;
708 case SIOCGIFADDR:
709 case SIOCGHWADDR:
710 error = copyout(IFP2AC(ifp)->ac_enaddr,
711 ((struct sockaddr *)ifr->ifr_data)->sa_data,
712 ETHER_ADDR_LEN);
713 break;
715 case SIOCSIFMTU:
717 * Set the interface MTU.
719 if (ifr->ifr_mtu > ETHERMTU) {
720 error = EINVAL;
721 } else {
722 ifp->if_mtu = ifr->ifr_mtu;
724 break;
725 default:
726 error = EINVAL;
727 break;
729 return (error);
731 #undef IF_INIT
734 static int
735 ether_resolvemulti(
736 struct ifnet *ifp,
737 struct sockaddr **llsa,
738 struct sockaddr *sa)
740 struct sockaddr_dl *sdl;
741 #ifdef INET
742 struct sockaddr_in *sin;
743 #endif
744 #ifdef INET6
745 struct sockaddr_in6 *sin6;
746 #endif
747 u_char *e_addr;
749 switch(sa->sa_family) {
750 case AF_LINK:
752 * No mapping needed. Just check that it's a valid MC address.
754 sdl = (struct sockaddr_dl *)sa;
755 e_addr = LLADDR(sdl);
756 if ((e_addr[0] & 1) != 1)
757 return EADDRNOTAVAIL;
758 *llsa = NULL;
759 return 0;
761 #ifdef INET
762 case AF_INET:
763 sin = (struct sockaddr_in *)sa;
764 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
765 return EADDRNOTAVAIL;
766 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
767 sdl->sdl_len = sizeof *sdl;
768 sdl->sdl_family = AF_LINK;
769 sdl->sdl_index = ifp->if_index;
770 sdl->sdl_type = IFT_ETHER;
771 sdl->sdl_alen = ETHER_ADDR_LEN;
772 e_addr = LLADDR(sdl);
773 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
774 *llsa = (struct sockaddr *)sdl;
775 return 0;
776 #endif
777 #ifdef INET6
778 case AF_INET6:
779 sin6 = (struct sockaddr_in6 *)sa;
780 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
782 * An IP6 address of 0 means listen to all
783 * of the Ethernet multicast address used for IP6.
784 * (This is used for multicast routers.)
786 ifp->if_flags |= IFF_ALLMULTI;
787 *llsa = NULL;
788 return 0;
790 if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
791 return EADDRNOTAVAIL;
792 sdl = kmalloc(sizeof *sdl, M_IFMADDR, M_WAITOK | M_ZERO);
793 sdl->sdl_len = sizeof *sdl;
794 sdl->sdl_family = AF_LINK;
795 sdl->sdl_index = ifp->if_index;
796 sdl->sdl_type = IFT_ETHER;
797 sdl->sdl_alen = ETHER_ADDR_LEN;
798 e_addr = LLADDR(sdl);
799 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
800 *llsa = (struct sockaddr *)sdl;
801 return 0;
802 #endif
804 default:
806 * Well, the text isn't quite right, but it's the name
807 * that counts...
809 return EAFNOSUPPORT;
813 #if 0
815 * This is for reference. We have a table-driven version
816 * of the little-endian crc32 generator, which is faster
817 * than the double-loop.
819 uint32_t
820 ether_crc32_le(const uint8_t *buf, size_t len)
822 uint32_t c, crc, carry;
823 size_t i, j;
825 crc = 0xffffffffU; /* initial value */
827 for (i = 0; i < len; i++) {
828 c = buf[i];
829 for (j = 0; j < 8; j++) {
830 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
831 crc >>= 1;
832 c >>= 1;
833 if (carry)
834 crc = (crc ^ ETHER_CRC_POLY_LE);
838 return (crc);
840 #else
841 uint32_t
842 ether_crc32_le(const uint8_t *buf, size_t len)
844 static const uint32_t crctab[] = {
845 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
846 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
847 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
848 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
850 uint32_t crc;
851 size_t i;
853 crc = 0xffffffffU; /* initial value */
855 for (i = 0; i < len; i++) {
856 crc ^= buf[i];
857 crc = (crc >> 4) ^ crctab[crc & 0xf];
858 crc = (crc >> 4) ^ crctab[crc & 0xf];
861 return (crc);
863 #endif
865 uint32_t
866 ether_crc32_be(const uint8_t *buf, size_t len)
868 uint32_t c, crc, carry;
869 size_t i, j;
871 crc = 0xffffffffU; /* initial value */
873 for (i = 0; i < len; i++) {
874 c = buf[i];
875 for (j = 0; j < 8; j++) {
876 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
877 crc <<= 1;
878 c >>= 1;
879 if (carry)
880 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
884 return (crc);
888 * find the size of ethernet header, and call classifier
890 void
891 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m,
892 struct altq_pktattr *pktattr)
894 struct ether_header *eh;
895 uint16_t ether_type;
896 int hlen, af, hdrsize;
898 hlen = sizeof(struct ether_header);
899 eh = mtod(m, struct ether_header *);
901 ether_type = ntohs(eh->ether_type);
902 if (ether_type < ETHERMTU) {
903 /* ick! LLC/SNAP */
904 struct llc *llc = (struct llc *)(eh + 1);
905 hlen += 8;
907 if (m->m_len < hlen ||
908 llc->llc_dsap != LLC_SNAP_LSAP ||
909 llc->llc_ssap != LLC_SNAP_LSAP ||
910 llc->llc_control != LLC_UI)
911 goto bad; /* not snap! */
913 ether_type = ntohs(llc->llc_un.type_snap.ether_type);
916 if (ether_type == ETHERTYPE_IP) {
917 af = AF_INET;
918 hdrsize = 20; /* sizeof(struct ip) */
919 #ifdef INET6
920 } else if (ether_type == ETHERTYPE_IPV6) {
921 af = AF_INET6;
922 hdrsize = 40; /* sizeof(struct ip6_hdr) */
923 #endif
924 } else
925 goto bad;
927 while (m->m_len <= hlen) {
928 hlen -= m->m_len;
929 m = m->m_next;
931 if (m->m_len < hlen + hdrsize) {
933 * ip header is not in a single mbuf. this should not
934 * happen in the current code.
935 * (todo: use m_pulldown in the future)
937 goto bad;
939 m->m_data += hlen;
940 m->m_len -= hlen;
941 ifq_classify(ifq, m, af, pktattr);
942 m->m_data -= hlen;
943 m->m_len += hlen;
945 return;
947 bad:
948 pktattr->pattr_class = NULL;
949 pktattr->pattr_hdr = NULL;
950 pktattr->pattr_af = AF_UNSPEC;
953 static void
954 ether_restore_header(struct mbuf **m0, const struct ether_header *eh,
955 const struct ether_header *save_eh)
957 struct mbuf *m = *m0;
959 ether_restore_hdr++;
962 * Prepend the header, optimize for the common case of
963 * eh pointing into the mbuf.
965 if ((const void *)(eh + 1) == (void *)m->m_data) {
966 m->m_data -= ETHER_HDR_LEN;
967 m->m_len += ETHER_HDR_LEN;
968 m->m_pkthdr.len += ETHER_HDR_LEN;
969 } else {
970 ether_prepend_hdr++;
972 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
973 if (m != NULL) {
974 bcopy(save_eh, mtod(m, struct ether_header *),
975 ETHER_HDR_LEN);
978 *m0 = m;
982 * Upper layer processing for a received Ethernet packet.
984 void
985 ether_demux_oncpu(struct ifnet *ifp, struct mbuf *m)
987 struct ether_header *eh;
988 int isr, discard = 0;
989 u_short ether_type;
990 struct ip_fw *rule = NULL;
992 M_ASSERTPKTHDR(m);
993 KASSERT(m->m_len >= ETHER_HDR_LEN,
994 ("ether header is not contiguous!"));
996 eh = mtod(m, struct ether_header *);
998 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
999 struct m_tag *mtag;
1001 /* Extract info from dummynet tag */
1002 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
1003 KKASSERT(mtag != NULL);
1004 rule = ((struct dn_pkt *)m_tag_data(mtag))->dn_priv;
1005 KKASSERT(rule != NULL);
1007 m_tag_delete(m, mtag);
1008 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
1010 /* packet is passing the second time */
1011 goto post_stats;
1015 * We got a packet which was unicast to a different Ethernet
1016 * address. If the driver is working properly, then this
1017 * situation can only happen when the interface is in
1018 * promiscuous mode. We defer the packet discarding until the
1019 * vlan processing is done, so that vlan/bridge or vlan/netgraph
1020 * could work.
1022 if (((ifp->if_flags & (IFF_PROMISC | IFF_PPROMISC)) == IFF_PROMISC) &&
1023 !ETHER_IS_MULTICAST(eh->ether_dhost) &&
1024 bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN)) {
1025 if (ether_debug & 1) {
1026 kprintf("%02x:%02x:%02x:%02x:%02x:%02x "
1027 "%02x:%02x:%02x:%02x:%02x:%02x "
1028 "%04x vs %02x:%02x:%02x:%02x:%02x:%02x\n",
1029 eh->ether_dhost[0],
1030 eh->ether_dhost[1],
1031 eh->ether_dhost[2],
1032 eh->ether_dhost[3],
1033 eh->ether_dhost[4],
1034 eh->ether_dhost[5],
1035 eh->ether_shost[0],
1036 eh->ether_shost[1],
1037 eh->ether_shost[2],
1038 eh->ether_shost[3],
1039 eh->ether_shost[4],
1040 eh->ether_shost[5],
1041 eh->ether_type,
1042 ((u_char *)IFP2AC(ifp)->ac_enaddr)[0],
1043 ((u_char *)IFP2AC(ifp)->ac_enaddr)[1],
1044 ((u_char *)IFP2AC(ifp)->ac_enaddr)[2],
1045 ((u_char *)IFP2AC(ifp)->ac_enaddr)[3],
1046 ((u_char *)IFP2AC(ifp)->ac_enaddr)[4],
1047 ((u_char *)IFP2AC(ifp)->ac_enaddr)[5]
1050 if ((ether_debug & 2) == 0)
1051 discard = 1;
1054 post_stats:
1055 if ((IPFW_LOADED || IPFW3_LOADED) && ether_ipfw != 0 && !discard) {
1056 struct ether_header save_eh = *eh;
1058 /* XXX old crufty stuff, needs to be removed */
1059 m_adj(m, sizeof(struct ether_header));
1061 if (!ether_ipfw_chk(&m, NULL, &rule, eh)) {
1062 m_freem(m);
1063 return;
1066 ether_restore_header(&m, eh, &save_eh);
1067 if (m == NULL)
1068 return;
1069 eh = mtod(m, struct ether_header *);
1072 ether_type = ntohs(eh->ether_type);
1073 KKASSERT(ether_type != ETHERTYPE_VLAN);
1075 /* Handle input from a lagg(4) port */
1076 if (ifp->if_type == IFT_IEEE8023ADLAG) {
1077 KASSERT(lagg_input_p != NULL,
1078 ("%s: if_lagg not loaded!", __func__));
1079 (*lagg_input_p)(ifp, m);
1080 return;
1083 if (m->m_flags & M_VLANTAG) {
1084 void (*vlan_input_func)(struct mbuf *);
1086 vlan_input_func = vlan_input_p;
1087 /* Make sure 'vlan_input_func' is really used. */
1088 cpu_ccfence();
1089 if (vlan_input_func != NULL) {
1090 vlan_input_func(m);
1091 } else {
1092 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1093 m_freem(m);
1095 return;
1099 * If we have been asked to discard this packet
1100 * (e.g. not for us), drop it before entering
1101 * the upper layer.
1103 if (discard) {
1104 m_freem(m);
1105 return;
1109 * Clear protocol specific flags,
1110 * before entering the upper layer.
1112 m->m_flags &= ~M_ETHER_FLAGS;
1114 /* Strip ethernet header. */
1115 m_adj(m, sizeof(struct ether_header));
1117 switch (ether_type) {
1118 #ifdef INET
1119 case ETHERTYPE_IP:
1120 if ((m->m_flags & M_LENCHECKED) == 0) {
1121 if (!ip_lengthcheck(&m, 0))
1122 return;
1124 if (ipflow_fastforward(m))
1125 return;
1126 isr = NETISR_IP;
1127 break;
1129 case ETHERTYPE_ARP:
1130 if (ifp->if_flags & IFF_NOARP) {
1131 /* Discard packet if ARP is disabled on interface */
1132 m_freem(m);
1133 return;
1135 isr = NETISR_ARP;
1136 break;
1137 #endif
1139 #ifdef INET6
1140 case ETHERTYPE_IPV6:
1141 isr = NETISR_IPV6;
1142 break;
1143 #endif
1145 #ifdef MPLS
1146 case ETHERTYPE_MPLS:
1147 case ETHERTYPE_MPLS_MCAST:
1148 /* Should have been set by ether_input(). */
1149 KKASSERT(m->m_flags & M_MPLSLABELED);
1150 isr = NETISR_MPLS;
1151 break;
1152 #endif
1154 default:
1156 * The accurate msgport is not determined before
1157 * we reach here, so recharacterize packet.
1159 m->m_flags &= ~M_HASH;
1160 if (ng_ether_input_orphan_p != NULL) {
1162 * Put back the ethernet header so netgraph has a
1163 * consistent view of inbound packets.
1165 M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT);
1166 if (m == NULL) {
1168 * M_PREPEND frees the mbuf in case of failure.
1170 return;
1173 * Hold BGL and recheck ng_ether_input_orphan_p
1175 get_mplock();
1176 if (ng_ether_input_orphan_p != NULL) {
1177 ng_ether_input_orphan_p(ifp, m);
1178 rel_mplock();
1179 return;
1181 rel_mplock();
1183 m_freem(m);
1184 return;
1187 if (m->m_flags & M_HASH) {
1188 if (&curthread->td_msgport ==
1189 netisr_hashport(m->m_pkthdr.hash)) {
1190 netisr_handle(isr, m);
1191 return;
1192 } else {
1194 * XXX Something is wrong,
1195 * we probably should panic here!
1197 m->m_flags &= ~M_HASH;
1198 atomic_add_long(&ether_input_wronghash, 1);
1201 #ifdef RSS_DEBUG
1202 atomic_add_long(&ether_input_requeue, 1);
1203 #endif
1204 netisr_queue(isr, m);
1208 * First we perform any link layer operations, then continue to the
1209 * upper layers with ether_demux_oncpu().
1211 static void
1212 ether_input_oncpu(struct ifnet *ifp, struct mbuf *m)
1214 #ifdef CARP
1215 void *carp;
1216 #endif
1218 if ((ifp->if_flags & (IFF_UP | IFF_MONITOR)) != IFF_UP) {
1220 * Receiving interface's flags are changed, when this
1221 * packet is waiting for processing; discard it.
1223 m_freem(m);
1224 return;
1228 * A vlan tagged packet must be processed by ether_demux_oncpu()
1229 * immediately, before any bridging or packet filtering. If
1230 * the vlan decides to process it, this function will be called
1231 * again w/ the vlan interface for normal processing.
1233 if (m->m_flags & M_VLANTAG) {
1234 ether_demux_oncpu(ifp, m);
1235 return;
1239 * Tap the packet off here for a bridge. bridge_input()
1240 * will return NULL if it has consumed the packet, otherwise
1241 * it gets processed as normal. Note that bridge_input()
1242 * will always return the original packet if we need to
1243 * process it locally.
1245 if (ifp->if_bridge) {
1246 KASSERT(bridge_input_p != NULL,
1247 ("%s: if_bridge not loaded!", __func__));
1249 if(m->m_flags & M_ETHER_BRIDGED) {
1250 m->m_flags &= ~M_ETHER_BRIDGED;
1251 } else {
1252 m = bridge_input_p(ifp, m);
1253 if (m == NULL)
1254 return;
1256 KASSERT(ifp == m->m_pkthdr.rcvif,
1257 ("bridge_input_p changed rcvif"));
1261 #ifdef CARP
1262 carp = ifp->if_carp;
1263 if (carp) {
1264 m = carp_input(carp, m);
1265 if (m == NULL)
1266 return;
1267 KASSERT(ifp == m->m_pkthdr.rcvif,
1268 ("carp_input changed rcvif"));
1270 #endif
1272 /* Handle ng_ether(4) processing, if any */
1273 if (ng_ether_input_p != NULL) {
1275 * Hold BGL and recheck ng_ether_input_p
1277 get_mplock();
1278 if (ng_ether_input_p != NULL)
1279 ng_ether_input_p(ifp, &m);
1280 rel_mplock();
1282 if (m == NULL)
1283 return;
1286 /* Continue with upper layer processing */
1287 ether_demux_oncpu(ifp, m);
1291 * Perform certain functions of ether_input():
1292 * - Test IFF_UP
1293 * - Update statistics
1294 * - Run bpf(4) tap if requested
1295 * Then pass the packet to ether_input_oncpu().
1297 * This function should be used by pseudo interface (e.g. vlan(4)),
1298 * when it tries to claim that the packet is received by it.
1300 * REINPUT_KEEPRCVIF
1301 * REINPUT_RUNBPF
1303 void
1304 ether_reinput_oncpu(struct ifnet *ifp, struct mbuf *m, int reinput_flags)
1306 /* Discard packet if interface is not up */
1307 if (!(ifp->if_flags & IFF_UP)) {
1308 m_freem(m);
1309 return;
1313 * Change receiving interface. The bridge will often pass a flag to
1314 * ask that this not be done so ARPs get applied to the correct
1315 * side.
1317 if ((reinput_flags & REINPUT_KEEPRCVIF) == 0 ||
1318 m->m_pkthdr.rcvif == NULL)
1320 m->m_pkthdr.rcvif = ifp;
1323 /* Update statistics */
1324 IFNET_STAT_INC(ifp, ipackets, 1);
1325 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1326 if (m->m_flags & (M_MCAST | M_BCAST))
1327 IFNET_STAT_INC(ifp, imcasts, 1);
1329 if (reinput_flags & REINPUT_RUNBPF)
1330 BPF_MTAP(ifp, m);
1332 ether_input_oncpu(ifp, m);
1335 static __inline boolean_t
1336 ether_vlancheck(struct mbuf **m0)
1338 struct mbuf *m = *m0;
1339 struct ether_header *eh = mtod(m, struct ether_header *);
1340 uint16_t ether_type = ntohs(eh->ether_type);
1342 if (ether_type == ETHERTYPE_VLAN) {
1343 if ((m->m_flags & M_VLANTAG) == 0) {
1345 * Extract vlan tag if hardware does not do
1346 * it for us.
1348 vlan_ether_decap(&m);
1349 if (m == NULL)
1350 goto failed;
1352 eh = mtod(m, struct ether_header *);
1353 ether_type = ntohs(eh->ether_type);
1354 if (ether_type == ETHERTYPE_VLAN) {
1356 * To prevent possible dangerous recursion,
1357 * we don't do vlan-in-vlan.
1359 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1360 goto failed;
1362 } else {
1364 * To prevent possible dangerous recursion,
1365 * we don't do vlan-in-vlan.
1367 IFNET_STAT_INC(m->m_pkthdr.rcvif, noproto, 1);
1368 goto failed;
1370 KKASSERT(ether_type != ETHERTYPE_VLAN);
1373 m->m_flags |= M_ETHER_VLANCHECKED;
1374 *m0 = m;
1375 return TRUE;
1376 failed:
1377 if (m != NULL)
1378 m_freem(m);
1379 *m0 = NULL;
1380 return FALSE;
1383 static void
1384 ether_input_handler(netmsg_t nmsg)
1386 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */
1387 struct ether_header *eh;
1388 struct ifnet *ifp;
1389 struct mbuf *m;
1391 m = nmp->nm_packet;
1392 M_ASSERTPKTHDR(m);
1394 if ((m->m_flags & M_ETHER_VLANCHECKED) == 0) {
1395 if (!ether_vlancheck(&m)) {
1396 KKASSERT(m == NULL);
1397 return;
1401 ifp = m->m_pkthdr.rcvif;
1402 if ((m->m_flags & (M_HASH | M_CKHASH)) == (M_HASH | M_CKHASH) ||
1403 __predict_false(ether_input_ckhash)) {
1404 int isr;
1407 * Need to verify the hash supplied by the hardware
1408 * which could be wrong.
1410 m->m_flags &= ~(M_HASH | M_CKHASH);
1411 isr = ether_characterize(&m);
1412 if (m == NULL)
1413 return;
1414 KKASSERT(m->m_flags & M_HASH);
1416 if (netisr_hashcpu(m->m_pkthdr.hash) != mycpuid) {
1418 * Wrong hardware supplied hash; redispatch
1420 ether_dispatch(ifp, isr, m, -1);
1421 if (__predict_false(ether_input_ckhash))
1422 atomic_add_long(&ether_input_wronghwhash, 1);
1423 return;
1427 eh = mtod(m, struct ether_header *);
1428 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
1429 if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
1430 ifp->if_addrlen) == 0)
1431 m->m_flags |= M_BCAST;
1432 else
1433 m->m_flags |= M_MCAST;
1434 IFNET_STAT_INC(ifp, imcasts, 1);
1437 ether_input_oncpu(ifp, m);
1441 * Send the packet to the target netisr msgport
1443 * At this point the packet must be characterized (M_HASH set),
1444 * so we know which netisr to send it to.
1446 static void
1447 ether_dispatch(struct ifnet *ifp, int isr, struct mbuf *m, int cpuid)
1449 struct netmsg_packet *pmsg;
1450 int target_cpuid;
1452 KKASSERT(m->m_flags & M_HASH);
1453 target_cpuid = netisr_hashcpu(m->m_pkthdr.hash);
1455 pmsg = &m->m_hdr.mh_netmsg;
1456 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1457 0, ether_input_handler);
1458 pmsg->nm_packet = m;
1459 pmsg->base.lmsg.u.ms_result = isr;
1461 logether(disp_beg, NULL);
1462 if (target_cpuid == cpuid) {
1463 if ((ifp->if_flags & IFF_IDIRECT) && IN_NETISR_NCPUS(cpuid)) {
1464 ether_input_handler((netmsg_t)pmsg);
1465 } else {
1466 lwkt_sendmsg_oncpu(netisr_cpuport(target_cpuid),
1467 &pmsg->base.lmsg);
1469 } else {
1470 lwkt_sendmsg(netisr_cpuport(target_cpuid),
1471 &pmsg->base.lmsg);
1473 logether(disp_end, NULL);
1477 * Process a received Ethernet packet.
1479 * The ethernet header is assumed to be in the mbuf so the caller
1480 * MUST MAKE SURE that there are at least sizeof(struct ether_header)
1481 * bytes in the first mbuf.
1483 * If the caller knows that the current thread is stick to the current
1484 * cpu, e.g. the interrupt thread or the netisr thread, the current cpuid
1485 * (mycpuid) should be passed through 'cpuid' argument. Else -1 should
1486 * be passed as 'cpuid' argument.
1488 void
1489 ether_input(struct ifnet *ifp, struct mbuf *m, const struct pktinfo *pi,
1490 int cpuid)
1492 int isr;
1494 M_ASSERTPKTHDR(m);
1496 /* Discard packet if interface is not up */
1497 if (!(ifp->if_flags & IFF_UP)) {
1498 m_freem(m);
1499 return;
1502 if (m->m_len < sizeof(struct ether_header)) {
1503 /* XXX error in the caller. */
1504 m_freem(m);
1505 return;
1508 m->m_pkthdr.rcvif = ifp;
1510 logether(pkt_beg, ifp);
1512 ETHER_BPF_MTAP(ifp, m);
1514 IFNET_STAT_INC(ifp, ibytes, m->m_pkthdr.len);
1516 if (ifp->if_flags & IFF_MONITOR) {
1517 struct ether_header *eh;
1519 eh = mtod(m, struct ether_header *);
1520 if (ETHER_IS_MULTICAST(eh->ether_dhost))
1521 IFNET_STAT_INC(ifp, imcasts, 1);
1524 * Interface marked for monitoring; discard packet.
1526 m_freem(m);
1528 logether(pkt_end, ifp);
1529 return;
1533 * If the packet has been characterized (pi->pi_netisr / M_HASH)
1534 * we can dispatch it immediately with trivial checks.
1536 if (pi != NULL && (m->m_flags & M_HASH)) {
1537 #ifdef RSS_DEBUG
1538 atomic_add_long(&ether_pktinfo_try, 1);
1539 #endif
1540 netisr_hashcheck(pi->pi_netisr, m, pi);
1541 if (m->m_flags & M_HASH) {
1542 ether_dispatch(ifp, pi->pi_netisr, m, cpuid);
1543 #ifdef RSS_DEBUG
1544 atomic_add_long(&ether_pktinfo_hit, 1);
1545 #endif
1546 logether(pkt_end, ifp);
1547 return;
1550 #ifdef RSS_DEBUG
1551 else if (ifp->if_capenable & IFCAP_RSS) {
1552 if (pi == NULL)
1553 atomic_add_long(&ether_rss_nopi, 1);
1554 else
1555 atomic_add_long(&ether_rss_nohash, 1);
1557 #endif
1560 * Packet hash will be recalculated by software, so clear
1561 * the M_HASH and M_CKHASH flag set by the driver; the hash
1562 * value calculated by the hardware may not be exactly what
1563 * we want.
1565 m->m_flags &= ~(M_HASH | M_CKHASH);
1567 if (!ether_vlancheck(&m)) {
1568 KKASSERT(m == NULL);
1569 logether(pkt_end, ifp);
1570 return;
1573 isr = ether_characterize(&m);
1574 if (m == NULL) {
1575 logether(pkt_end, ifp);
1576 return;
1580 * Finally dispatch it
1582 ether_dispatch(ifp, isr, m, cpuid);
1584 logether(pkt_end, ifp);
1587 static int
1588 ether_characterize(struct mbuf **m0)
1590 struct mbuf *m = *m0;
1591 struct ether_header *eh;
1592 uint16_t ether_type;
1593 int isr;
1595 eh = mtod(m, struct ether_header *);
1596 ether_type = ntohs(eh->ether_type);
1599 * Map ether type to netisr id.
1601 switch (ether_type) {
1602 #ifdef INET
1603 case ETHERTYPE_IP:
1604 isr = NETISR_IP;
1605 break;
1607 case ETHERTYPE_ARP:
1608 isr = NETISR_ARP;
1609 break;
1610 #endif
1612 #ifdef INET6
1613 case ETHERTYPE_IPV6:
1614 isr = NETISR_IPV6;
1615 break;
1616 #endif
1618 #ifdef MPLS
1619 case ETHERTYPE_MPLS:
1620 case ETHERTYPE_MPLS_MCAST:
1621 m->m_flags |= M_MPLSLABELED;
1622 isr = NETISR_MPLS;
1623 break;
1624 #endif
1626 default:
1628 * NETISR_MAX is an invalid value; it is chosen to let
1629 * netisr_characterize() know that we have no clear
1630 * idea where this packet should go.
1632 isr = NETISR_MAX;
1633 break;
1637 * Ask the isr to characterize the packet since we couldn't.
1638 * This is an attempt to optimally get us onto the correct protocol
1639 * thread.
1641 netisr_characterize(isr, &m, sizeof(struct ether_header));
1643 *m0 = m;
1644 return isr;
1647 static void
1648 ether_demux_handler(netmsg_t nmsg)
1650 struct netmsg_packet *nmp = &nmsg->packet; /* actual size */
1651 struct ifnet *ifp;
1652 struct mbuf *m;
1654 m = nmp->nm_packet;
1655 M_ASSERTPKTHDR(m);
1656 ifp = m->m_pkthdr.rcvif;
1658 ether_demux_oncpu(ifp, m);
1661 void
1662 ether_demux(struct mbuf *m)
1664 struct netmsg_packet *pmsg;
1665 int isr;
1667 isr = ether_characterize(&m);
1668 if (m == NULL)
1669 return;
1671 KKASSERT(m->m_flags & M_HASH);
1672 pmsg = &m->m_hdr.mh_netmsg;
1673 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
1674 0, ether_demux_handler);
1675 pmsg->nm_packet = m;
1676 pmsg->base.lmsg.u.ms_result = isr;
1678 lwkt_sendmsg(netisr_hashport(m->m_pkthdr.hash), &pmsg->base.lmsg);
1681 u_char *
1682 kether_aton(const char *macstr, u_char *addr)
1684 unsigned int o0, o1, o2, o3, o4, o5;
1685 int n;
1687 if (macstr == NULL || addr == NULL)
1688 return NULL;
1690 n = ksscanf(macstr, "%x:%x:%x:%x:%x:%x", &o0, &o1, &o2,
1691 &o3, &o4, &o5);
1692 if (n != 6)
1693 return NULL;
1695 addr[0] = o0;
1696 addr[1] = o1;
1697 addr[2] = o2;
1698 addr[3] = o3;
1699 addr[4] = o4;
1700 addr[5] = o5;
1702 return addr;
1705 char *
1706 kether_ntoa(const u_char *addr, char *buf)
1708 int len = ETHER_ADDRSTRLEN + 1;
1709 int n;
1711 n = ksnprintf(buf, len, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0],
1712 addr[1], addr[2], addr[3], addr[4], addr[5]);
1714 if (n < 17)
1715 return NULL;
1717 return buf;
1720 MODULE_VERSION(ether, 1);