kernel - Attempt to fix cluster pbuf deadlock on recursive filesystems
[dragonfly.git] / sys / kern / vfs_lock.c
blob0ae048d4bf642906a9d778a2c95663d7cbb81915
1 /*
2 * Copyright (c) 2004,2013 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * External lock/ref-related vnode functions
38 * vs_state transition locking requirements:
40 * INACTIVE -> CACHED|DYING vx_lock(excl) + vfs_spin
41 * DYING -> CACHED vx_lock(excl)
42 * ACTIVE -> INACTIVE (none) + v_spin + vfs_spin
43 * INACTIVE -> ACTIVE vn_lock(any) + v_spin + vfs_spin
44 * CACHED -> ACTIVE vn_lock(any) + v_spin + vfs_spin
46 * NOTE: Switching to/from ACTIVE/INACTIVE requires v_spin and vfs_spin,
48 * Switching into ACTIVE also requires a vref and vnode lock, however
49 * the vnode lock is allowed to be SHARED.
51 * Switching into a CACHED or DYING state requires an exclusive vnode
52 * lock or vx_lock (which is almost the same thing).
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/malloc.h>
59 #include <sys/mount.h>
60 #include <sys/proc.h>
61 #include <sys/vnode.h>
62 #include <sys/buf.h>
63 #include <sys/sysctl.h>
65 #include <machine/limits.h>
67 #include <vm/vm.h>
68 #include <vm/vm_object.h>
70 #include <sys/buf2.h>
71 #include <sys/thread2.h>
73 #define VACT_MAX 10
74 #define VACT_INC 2
76 static void vnode_terminate(struct vnode *vp);
78 static MALLOC_DEFINE(M_VNODE, "vnodes", "vnode structures");
81 * The vnode free list hold inactive vnodes. Aged inactive vnodes
82 * are inserted prior to the mid point, and otherwise inserted
83 * at the tail.
85 TAILQ_HEAD(freelst, vnode);
86 static struct freelst vnode_active_list;
87 static struct freelst vnode_inactive_list;
88 static struct vnode vnode_active_rover;
89 static struct spinlock vfs_spin = SPINLOCK_INITIALIZER(vfs_spin, "vfs_spin");
91 int activevnodes = 0;
92 SYSCTL_INT(_debug, OID_AUTO, activevnodes, CTLFLAG_RD,
93 &activevnodes, 0, "Number of active nodes");
94 int cachedvnodes = 0;
95 SYSCTL_INT(_debug, OID_AUTO, cachedvnodes, CTLFLAG_RD,
96 &cachedvnodes, 0, "Number of total cached nodes");
97 int inactivevnodes = 0;
98 SYSCTL_INT(_debug, OID_AUTO, inactivevnodes, CTLFLAG_RD,
99 &inactivevnodes, 0, "Number of inactive nodes");
100 static int batchfreevnodes = 5;
101 SYSCTL_INT(_debug, OID_AUTO, batchfreevnodes, CTLFLAG_RW,
102 &batchfreevnodes, 0, "Number of vnodes to free at once");
103 #ifdef TRACKVNODE
104 static u_long trackvnode;
105 SYSCTL_ULONG(_debug, OID_AUTO, trackvnode, CTLFLAG_RW,
106 &trackvnode, 0, "");
107 #endif
110 * Called from vfsinit()
112 void
113 vfs_lock_init(void)
115 TAILQ_INIT(&vnode_inactive_list);
116 TAILQ_INIT(&vnode_active_list);
117 TAILQ_INSERT_TAIL(&vnode_active_list, &vnode_active_rover, v_list);
118 spin_init(&vfs_spin, "vfslock");
119 kmalloc_raise_limit(M_VNODE, 0); /* unlimited */
123 * Misc functions
125 static __inline
126 void
127 _vsetflags(struct vnode *vp, int flags)
129 atomic_set_int(&vp->v_flag, flags);
132 static __inline
133 void
134 _vclrflags(struct vnode *vp, int flags)
136 atomic_clear_int(&vp->v_flag, flags);
139 void
140 vsetflags(struct vnode *vp, int flags)
142 _vsetflags(vp, flags);
145 void
146 vclrflags(struct vnode *vp, int flags)
148 _vclrflags(vp, flags);
152 * Place the vnode on the active list.
154 * Caller must hold vp->v_spin
156 static __inline
157 void
158 _vactivate(struct vnode *vp)
160 #ifdef TRACKVNODE
161 if ((u_long)vp == trackvnode)
162 kprintf("_vactivate %p %08x\n", vp, vp->v_flag);
163 #endif
164 spin_lock(&vfs_spin);
166 switch(vp->v_state) {
167 case VS_ACTIVE:
168 panic("_vactivate: already active");
169 /* NOT REACHED */
170 spin_unlock(&vfs_spin);
171 return;
172 case VS_INACTIVE:
173 TAILQ_REMOVE(&vnode_inactive_list, vp, v_list);
174 --inactivevnodes;
175 break;
176 case VS_CACHED:
177 case VS_DYING:
178 break;
180 TAILQ_INSERT_TAIL(&vnode_active_list, vp, v_list);
181 vp->v_state = VS_ACTIVE;
182 ++activevnodes;
184 spin_unlock(&vfs_spin);
188 * Put a vnode on the inactive list.
190 * Caller must hold v_spin
192 static __inline
193 void
194 _vinactive(struct vnode *vp)
196 #ifdef TRACKVNODE
197 if ((u_long)vp == trackvnode) {
198 kprintf("_vinactive %p %08x\n", vp, vp->v_flag);
199 print_backtrace(-1);
201 #endif
202 spin_lock(&vfs_spin);
205 * Remove from active list if it is sitting on it
207 switch(vp->v_state) {
208 case VS_ACTIVE:
209 TAILQ_REMOVE(&vnode_active_list, vp, v_list);
210 --activevnodes;
211 break;
212 case VS_INACTIVE:
213 panic("_vinactive: already inactive");
214 /* NOT REACHED */
215 spin_unlock(&vfs_spin);
216 return;
217 case VS_CACHED:
218 case VS_DYING:
219 break;
223 * Distinguish between basically dead vnodes, vnodes with cached
224 * data, and vnodes without cached data. A rover will shift the
225 * vnodes around as their cache status is lost.
227 if (vp->v_flag & VRECLAIMED) {
228 TAILQ_INSERT_HEAD(&vnode_inactive_list, vp, v_list);
229 } else {
230 TAILQ_INSERT_TAIL(&vnode_inactive_list, vp, v_list);
232 ++inactivevnodes;
233 vp->v_state = VS_INACTIVE;
235 spin_unlock(&vfs_spin);
238 static __inline
239 void
240 _vinactive_tail(struct vnode *vp)
242 spin_lock(&vfs_spin);
245 * Remove from active list if it is sitting on it
247 switch(vp->v_state) {
248 case VS_ACTIVE:
249 TAILQ_REMOVE(&vnode_active_list, vp, v_list);
250 --activevnodes;
251 break;
252 case VS_INACTIVE:
253 panic("_vinactive_tail: already inactive");
254 /* NOT REACHED */
255 spin_unlock(&vfs_spin);
256 return;
257 case VS_CACHED:
258 case VS_DYING:
259 break;
262 TAILQ_INSERT_TAIL(&vnode_inactive_list, vp, v_list);
263 ++inactivevnodes;
264 vp->v_state = VS_INACTIVE;
266 spin_unlock(&vfs_spin);
270 * Add a ref to an active vnode. This function should never be called
271 * with an inactive vnode (use vget() instead), but might be called
272 * with other states.
274 void
275 vref(struct vnode *vp)
277 KASSERT((VREFCNT(vp) > 0 && vp->v_state != VS_INACTIVE),
278 ("vref: bad refcnt %08x %d", vp->v_refcnt, vp->v_state));
279 atomic_add_int(&vp->v_refcnt, 1);
283 * Release a ref on an active or inactive vnode.
285 * Caller has no other requirements.
287 * If VREF_FINALIZE is set this will deactivate the vnode on the 1->0
288 * transition, otherwise we leave the vnode in the active list and
289 * do a lockless transition to 0, which is very important for the
290 * critical path.
292 * (vrele() is not called when a vnode is being destroyed w/kfree)
294 void
295 vrele(struct vnode *vp)
297 for (;;) {
298 int count = vp->v_refcnt;
299 cpu_ccfence();
300 KKASSERT((count & VREF_MASK) > 0);
301 KKASSERT(vp->v_state == VS_ACTIVE ||
302 vp->v_state == VS_INACTIVE);
305 * 2+ case
307 if ((count & VREF_MASK) > 1) {
308 if (atomic_cmpset_int(&vp->v_refcnt, count, count - 1))
309 break;
310 continue;
314 * 1->0 transition case must handle possible finalization.
315 * When finalizing we transition 1->0x40000000. Note that
316 * cachedvnodes is only adjusted on transitions to ->0.
318 * WARNING! VREF_TERMINATE can be cleared at any point
319 * when the refcnt is non-zero (by vget()) and
320 * the vnode has not been reclaimed. Thus
321 * transitions out of VREF_TERMINATE do not have
322 * to mess with cachedvnodes.
324 if (count & VREF_FINALIZE) {
325 vx_lock(vp);
326 if (atomic_cmpset_int(&vp->v_refcnt,
327 count, VREF_TERMINATE)) {
328 vnode_terminate(vp);
329 break;
331 vx_unlock(vp);
332 } else {
333 if (atomic_cmpset_int(&vp->v_refcnt, count, 0)) {
334 atomic_add_int(&cachedvnodes, 1);
335 break;
338 /* retry */
343 * Add an auxiliary data structure reference to the vnode. Auxiliary
344 * references do not change the state of the vnode or prevent deactivation
345 * or reclamation of the vnode, but will prevent the vnode from being
346 * destroyed (kfree()'d).
348 * WARNING! vhold() must not acquire v_spin. The spinlock may or may not
349 * already be held by the caller. vdrop() will clean up the
350 * free list state.
352 void
353 vhold(struct vnode *vp)
355 atomic_add_int(&vp->v_auxrefs, 1);
359 * Remove an auxiliary reference from the vnode.
361 void
362 vdrop(struct vnode *vp)
364 atomic_add_int(&vp->v_auxrefs, -1);
368 * This function is called on the 1->0 transition (which is actually
369 * 1->VREF_TERMINATE) when VREF_FINALIZE is set, forcing deactivation
370 * of the vnode.
372 * Additional vrefs are allowed to race but will not result in a reentrant
373 * call to vnode_terminate() due to refcnt being VREF_TERMINATE. This
374 * prevents additional 1->0 transitions.
376 * ONLY A VGET() CAN REACTIVATE THE VNODE.
378 * Caller must hold the VX lock.
380 * NOTE: v_mount may be NULL due to assigmment to dead_vnode_vops
382 * NOTE: The vnode may be marked inactive with dirty buffers
383 * or dirty pages in its cached VM object still present.
385 * NOTE: VS_FREE should not be set on entry (the vnode was expected to
386 * previously be active). We lose control of the vnode the instant
387 * it is placed on the free list.
389 * The VX lock is required when transitioning to VS_CACHED but is
390 * not sufficient for the vshouldfree() interlocked test or when
391 * transitioning away from VS_CACHED. v_spin is also required for
392 * those cases.
394 static
395 void
396 vnode_terminate(struct vnode *vp)
398 KKASSERT(vp->v_state == VS_ACTIVE);
400 if ((vp->v_flag & VINACTIVE) == 0) {
401 _vsetflags(vp, VINACTIVE);
402 if (vp->v_mount)
403 VOP_INACTIVE(vp);
404 /* might deactivate page */
406 spin_lock(&vp->v_spin);
407 _vinactive(vp);
408 spin_unlock(&vp->v_spin);
410 vx_unlock(vp);
413 /****************************************************************
414 * VX LOCKING FUNCTIONS *
415 ****************************************************************
417 * These functions lock vnodes for reclamation and deactivation related
418 * activities. The caller must already be holding some sort of reference
419 * on the vnode.
421 void
422 vx_lock(struct vnode *vp)
424 lockmgr(&vp->v_lock, LK_EXCLUSIVE);
427 void
428 vx_unlock(struct vnode *vp)
430 lockmgr(&vp->v_lock, LK_RELEASE);
433 /****************************************************************
434 * VNODE ACQUISITION FUNCTIONS *
435 ****************************************************************
437 * These functions must be used when accessing a vnode that has no
438 * chance of being destroyed in a SMP race. That means the caller will
439 * usually either hold an auxiliary reference (such as the namecache)
440 * or hold some other lock that ensures that the vnode cannot be destroyed.
442 * These functions are MANDATORY for any code chain accessing a vnode
443 * whos activation state is not known.
445 * vget() can be called with LK_NOWAIT and will return EBUSY if the
446 * lock cannot be immediately acquired.
448 * vget()/vput() are used when reactivation is desired.
450 * vx_get() and vx_put() are used when reactivation is not desired.
453 vget(struct vnode *vp, int flags)
455 int error;
458 * A lock type must be passed
460 if ((flags & LK_TYPE_MASK) == 0) {
461 panic("vget() called with no lock specified!");
462 /* NOT REACHED */
466 * Reference the structure and then acquire the lock.
468 * NOTE: The requested lock might be a shared lock and does
469 * not protect our access to the refcnt or other fields.
471 if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
472 atomic_add_int(&cachedvnodes, -1);
474 if ((error = vn_lock(vp, flags | LK_FAILRECLAIM)) != 0) {
476 * The lock failed, undo and return an error. This will not
477 * normally trigger a termination.
479 vrele(vp);
480 } else if (vp->v_flag & VRECLAIMED) {
482 * The node is being reclaimed and cannot be reactivated
483 * any more, undo and return ENOENT.
485 vn_unlock(vp);
486 vrele(vp);
487 error = ENOENT;
488 } else if (vp->v_state == VS_ACTIVE) {
490 * A VS_ACTIVE vnode coupled with the fact that we have
491 * a vnode lock (even if shared) prevents v_state from
492 * changing. Since the vnode is not in a VRECLAIMED state,
493 * we can safely clear VINACTIVE.
495 * NOTE! Multiple threads may clear VINACTIVE if this is
496 * shared lock. This race is allowed.
498 _vclrflags(vp, VINACTIVE); /* SMP race ok */
499 vp->v_act += VACT_INC;
500 if (vp->v_act > VACT_MAX) /* SMP race ok */
501 vp->v_act = VACT_MAX;
502 error = 0;
503 } else {
505 * If the vnode is not VS_ACTIVE it must be reactivated
506 * in addition to clearing VINACTIVE. An exclusive spin_lock
507 * is needed to manipulate the vnode's list.
509 * Because the lockmgr lock might be shared, we might race
510 * another reactivation, which we handle. In this situation,
511 * however, the refcnt prevents other v_state races.
513 * As with above, clearing VINACTIVE is allowed to race other
514 * clearings of VINACTIVE.
516 * VREF_TERMINATE and VREF_FINALIZE can only be cleared when
517 * the refcnt is non-zero and the vnode has not been
518 * reclaimed. This also means that the transitions do
519 * not affect cachedvnodes.
521 _vclrflags(vp, VINACTIVE);
522 vp->v_act += VACT_INC;
523 if (vp->v_act > VACT_MAX) /* SMP race ok */
524 vp->v_act = VACT_MAX;
525 spin_lock(&vp->v_spin);
527 switch(vp->v_state) {
528 case VS_INACTIVE:
529 _vactivate(vp);
530 atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE |
531 VREF_FINALIZE);
532 spin_unlock(&vp->v_spin);
533 break;
534 case VS_CACHED:
535 _vactivate(vp);
536 atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE |
537 VREF_FINALIZE);
538 spin_unlock(&vp->v_spin);
539 break;
540 case VS_ACTIVE:
541 atomic_clear_int(&vp->v_refcnt, VREF_FINALIZE);
542 spin_unlock(&vp->v_spin);
543 break;
544 case VS_DYING:
545 spin_unlock(&vp->v_spin);
546 panic("Impossible VS_DYING state");
547 break;
549 error = 0;
551 return(error);
554 #ifdef DEBUG_VPUT
556 void
557 debug_vput(struct vnode *vp, const char *filename, int line)
559 kprintf("vput(%p) %s:%d\n", vp, filename, line);
560 vn_unlock(vp);
561 vrele(vp);
564 #else
566 void
567 vput(struct vnode *vp)
569 vn_unlock(vp);
570 vrele(vp);
573 #endif
576 * Acquire the vnode lock unguarded.
578 * The non-blocking version also uses a slightly different mechanic.
579 * This function will explicitly fail not only if it cannot acquire
580 * the lock normally, but also if the caller already holds a lock.
582 * The adjusted mechanic is used to close a loophole where complex
583 * VOP_RECLAIM code can circle around recursively and allocate the
584 * same vnode it is trying to destroy from the freelist.
586 * Any filesystem (aka UFS) which puts LK_CANRECURSE in lk_flags can
587 * cause the incorrect behavior to occur. If not for that lockmgr()
588 * would do the right thing.
590 * XXX The vx_*() locks should use auxrefs, not the main reference counter.
592 void
593 vx_get(struct vnode *vp)
595 if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
596 atomic_add_int(&cachedvnodes, -1);
597 lockmgr(&vp->v_lock, LK_EXCLUSIVE);
601 vx_get_nonblock(struct vnode *vp)
603 int error;
605 if (lockcountnb(&vp->v_lock))
606 return(EBUSY);
607 error = lockmgr(&vp->v_lock, LK_EXCLUSIVE | LK_NOWAIT);
608 if (error == 0) {
609 if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
610 atomic_add_int(&cachedvnodes, -1);
612 return(error);
616 * Release a VX lock that also held a ref on the vnode. vrele() will handle
617 * any needed state transitions.
619 * However, filesystems use this function to get rid of unwanted new vnodes
620 * so try to get the vnode on the correct queue in that case.
622 void
623 vx_put(struct vnode *vp)
625 if (vp->v_type == VNON || vp->v_type == VBAD)
626 atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
627 lockmgr(&vp->v_lock, LK_RELEASE);
628 vrele(vp);
632 * Try to reuse a vnode from the free list. This function is somewhat
633 * advisory in that NULL can be returned as a normal case, even if free
634 * vnodes are present.
636 * The scan is limited because it can result in excessive CPU use during
637 * periods of extreme vnode use.
639 * NOTE: The returned vnode is not completely initialized.
641 static
642 struct vnode *
643 cleanfreevnode(int maxcount)
645 struct vnode *vp;
646 int count;
647 int trigger = (long)vmstats.v_page_count / (activevnodes * 2 + 1);
650 * Try to deactivate some vnodes cached on the active list.
652 if (cachedvnodes < inactivevnodes)
653 goto skip;
655 for (count = 0; count < maxcount * 2; count++) {
656 spin_lock(&vfs_spin);
658 vp = TAILQ_NEXT(&vnode_active_rover, v_list);
659 TAILQ_REMOVE(&vnode_active_list, &vnode_active_rover, v_list);
660 if (vp == NULL) {
661 TAILQ_INSERT_HEAD(&vnode_active_list,
662 &vnode_active_rover, v_list);
663 } else {
664 TAILQ_INSERT_AFTER(&vnode_active_list, vp,
665 &vnode_active_rover, v_list);
667 if (vp == NULL) {
668 spin_unlock(&vfs_spin);
669 continue;
671 if ((vp->v_refcnt & VREF_MASK) != 0) {
672 spin_unlock(&vfs_spin);
673 vp->v_act += VACT_INC;
674 if (vp->v_act > VACT_MAX) /* SMP race ok */
675 vp->v_act = VACT_MAX;
676 continue;
680 * decrement by less if the vnode's object has a lot of
681 * VM pages. XXX possible SMP races.
683 if (vp->v_act > 0) {
684 vm_object_t obj;
685 if ((obj = vp->v_object) != NULL &&
686 obj->resident_page_count >= trigger) {
687 vp->v_act -= 1;
688 } else {
689 vp->v_act -= VACT_INC;
691 if (vp->v_act < 0)
692 vp->v_act = 0;
693 spin_unlock(&vfs_spin);
694 continue;
698 * Try to deactivate the vnode.
700 if ((atomic_fetchadd_int(&vp->v_refcnt, 1) & VREF_MASK) == 0)
701 atomic_add_int(&cachedvnodes, -1);
702 atomic_set_int(&vp->v_refcnt, VREF_FINALIZE);
704 spin_unlock(&vfs_spin);
705 vrele(vp);
708 skip:
710 * Loop trying to lock the first vnode on the free list.
711 * Cycle if we can't.
713 for (count = 0; count < maxcount; count++) {
714 spin_lock(&vfs_spin);
716 vp = TAILQ_FIRST(&vnode_inactive_list);
717 if (vp == NULL) {
718 spin_unlock(&vfs_spin);
719 break;
723 * non-blocking vx_get will also ref the vnode on success.
725 if (vx_get_nonblock(vp)) {
726 KKASSERT(vp->v_state == VS_INACTIVE);
727 TAILQ_REMOVE(&vnode_inactive_list, vp, v_list);
728 TAILQ_INSERT_TAIL(&vnode_inactive_list, vp, v_list);
729 spin_unlock(&vfs_spin);
730 continue;
734 * Because we are holding vfs_spin the vnode should currently
735 * be inactive and VREF_TERMINATE should still be set.
737 * Once vfs_spin is released the vnode's state should remain
738 * unmodified due to both the lock and ref on it.
740 KKASSERT(vp->v_state == VS_INACTIVE);
741 spin_unlock(&vfs_spin);
742 #ifdef TRACKVNODE
743 if ((u_long)vp == trackvnode)
744 kprintf("cleanfreevnode %p %08x\n", vp, vp->v_flag);
745 #endif
748 * Do not reclaim/reuse a vnode while auxillary refs exists.
749 * This includes namecache refs due to a related ncp being
750 * locked or having children, a VM object association, or
751 * other hold users.
753 * Do not reclaim/reuse a vnode if someone else has a real
754 * ref on it. This can occur if a filesystem temporarily
755 * releases the vnode lock during VOP_RECLAIM.
757 if (vp->v_auxrefs ||
758 (vp->v_refcnt & ~VREF_FINALIZE) != VREF_TERMINATE + 1) {
759 failed:
760 if (vp->v_state == VS_INACTIVE) {
761 spin_lock(&vfs_spin);
762 if (vp->v_state == VS_INACTIVE) {
763 TAILQ_REMOVE(&vnode_inactive_list,
764 vp, v_list);
765 TAILQ_INSERT_TAIL(&vnode_inactive_list,
766 vp, v_list);
768 spin_unlock(&vfs_spin);
770 vx_put(vp);
771 continue;
775 * VINACTIVE and VREF_TERMINATE are expected to both be set
776 * for vnodes pulled from the inactive list, and cannot be
777 * changed while we hold the vx lock.
779 * Try to reclaim the vnode.
781 KKASSERT(vp->v_flag & VINACTIVE);
782 KKASSERT(vp->v_refcnt & VREF_TERMINATE);
784 if ((vp->v_flag & VRECLAIMED) == 0) {
785 if (cache_inval_vp_nonblock(vp))
786 goto failed;
787 vgone_vxlocked(vp);
788 /* vnode is still VX locked */
792 * At this point if there are no other refs or auxrefs on
793 * the vnode with the inactive list locked, and we remove
794 * the vnode from the inactive list, it should not be
795 * possible for anyone else to access the vnode any more.
797 * Since the vnode is in a VRECLAIMED state, no new
798 * namecache associations could have been made and the
799 * vnode should have already been removed from its mountlist.
801 * Since we hold a VX lock on the vnode it cannot have been
802 * reactivated (moved out of the inactive list).
804 KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
805 spin_lock(&vfs_spin);
806 if (vp->v_auxrefs ||
807 (vp->v_refcnt & ~VREF_FINALIZE) != VREF_TERMINATE + 1) {
808 spin_unlock(&vfs_spin);
809 goto failed;
811 KKASSERT(vp->v_state == VS_INACTIVE);
812 TAILQ_REMOVE(&vnode_inactive_list, vp, v_list);
813 --inactivevnodes;
814 vp->v_state = VS_DYING;
815 spin_unlock(&vfs_spin);
818 * Nothing should have been able to access this vp. Only
819 * our ref should remain now.
821 atomic_clear_int(&vp->v_refcnt, VREF_TERMINATE|VREF_FINALIZE);
822 KASSERT(vp->v_refcnt == 1,
823 ("vp %p badrefs %08x", vp, vp->v_refcnt));
826 * Return a VX locked vnode suitable for reuse.
828 return(vp);
830 return(NULL);
834 * Obtain a new vnode. The returned vnode is VX locked & vrefd.
836 * All new vnodes set the VAGE flags. An open() of the vnode will
837 * decrement the (2-bit) flags. Vnodes which are opened several times
838 * are thus retained in the cache over vnodes which are merely stat()d.
840 * We always allocate the vnode. Attempting to recycle existing vnodes
841 * here can lead to numerous deadlocks, particularly with softupdates.
843 struct vnode *
844 allocvnode(int lktimeout, int lkflags)
846 struct vnode *vp;
849 * Do not flag for synchronous recyclement unless there are enough
850 * freeable vnodes to recycle and the number of vnodes has
851 * significantly exceeded our target. We want the normal vnlru
852 * process to handle the cleaning (at 9/10's) before we are forced
853 * to flag it here at 11/10's for userexit path processing.
855 if (numvnodes >= maxvnodes * 11 / 10 &&
856 cachedvnodes + inactivevnodes >= maxvnodes * 5 / 10) {
857 struct thread *td = curthread;
858 if (td->td_lwp)
859 atomic_set_int(&td->td_lwp->lwp_mpflags, LWP_MP_VNLRU);
863 * lktimeout only applies when LK_TIMELOCK is used, and only
864 * the pageout daemon uses it. The timeout may not be zero
865 * or the pageout daemon can deadlock in low-VM situations.
867 if (lktimeout == 0)
868 lktimeout = hz / 10;
870 vp = kmalloc(sizeof(*vp), M_VNODE, M_ZERO | M_WAITOK);
872 lwkt_token_init(&vp->v_token, "vnode");
873 lockinit(&vp->v_lock, "vnode", lktimeout, lkflags);
874 TAILQ_INIT(&vp->v_namecache);
875 RB_INIT(&vp->v_rbclean_tree);
876 RB_INIT(&vp->v_rbdirty_tree);
877 RB_INIT(&vp->v_rbhash_tree);
878 spin_init(&vp->v_spin, "allocvnode");
880 lockmgr(&vp->v_lock, LK_EXCLUSIVE);
881 atomic_add_int(&numvnodes, 1);
882 vp->v_refcnt = 1;
883 vp->v_flag = VAGE0 | VAGE1;
884 vp->v_pbuf_count = nswbuf_kva / NSWBUF_SPLIT;
886 KKASSERT(TAILQ_EMPTY(&vp->v_namecache));
887 /* exclusive lock still held */
889 vp->v_filesize = NOOFFSET;
890 vp->v_type = VNON;
891 vp->v_tag = 0;
892 vp->v_state = VS_CACHED;
893 _vactivate(vp);
895 return (vp);
899 * Called after a process has allocated a vnode via allocvnode()
900 * and we detected that too many vnodes were present.
902 * This function is called just prior to a return to userland if the
903 * process at some point had to allocate a new vnode during the last
904 * system call and the vnode count was found to be excessive.
906 * This is a synchronous path that we do not normally want to execute.
908 * Flagged at >= 11/10's, runs if >= 10/10, vnlru runs at 9/10.
910 * WARNING: Sometimes numvnodes can blow out due to children being
911 * present under directory vnodes in the namecache. For the
912 * moment use an if() instead of a while() and note that if
913 * we were to use a while() we would still have to break out
914 * if freesomevnodes() returned 0. vnlru will also be trying
915 * hard to free vnodes at the same time (with a lower trigger
916 * pointer).
918 void
919 allocvnode_gc(void)
921 if (numvnodes >= maxvnodes &&
922 cachedvnodes + inactivevnodes >= maxvnodes * 5 / 10) {
923 freesomevnodes(batchfreevnodes);
928 freesomevnodes(int n)
930 struct vnode *vp;
931 int count = 0;
933 while (n) {
934 if ((vp = cleanfreevnode(n)) == NULL)
935 break;
936 vx_unlock(vp);
937 --n;
938 ++count;
939 kfree(vp, M_VNODE);
940 atomic_add_int(&numvnodes, -1);
942 return(count);