kernel: Remove the COMPAT_43 kernel option along with all related code.
[dragonfly.git] / sys / kern / kern_exit.c
blob8cd0107fad4523af8e5cd24d9f81c038849060de
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
35 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h> /* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/sysref2.h>
76 #include <sys/mplock2.h>
78 #include <machine/vmm.h>
80 static void reaplwps(void *context, int dummy);
81 static void reaplwp(struct lwp *lp);
82 static void killlwps(struct lwp *lp);
84 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
87 * callout list for things to do at exit time
89 struct exitlist {
90 exitlist_fn function;
91 TAILQ_ENTRY(exitlist) next;
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
98 * LWP reaper data
100 static struct task *deadlwp_task[MAXCPU];
101 static struct lwplist deadlwp_list[MAXCPU];
102 static struct lwkt_token deadlwp_token[MAXCPU];
105 * exit --
106 * Death of process.
108 * SYS_EXIT_ARGS(int rval)
111 sys_exit(struct exit_args *uap)
113 exit1(W_EXITCODE(uap->rval, 0));
114 /* NOTREACHED */
118 * Extended exit --
119 * Death of a lwp or process with optional bells and whistles.
122 sys_extexit(struct extexit_args *uap)
124 struct proc *p = curproc;
125 int action, who;
126 int error;
128 action = EXTEXIT_ACTION(uap->how);
129 who = EXTEXIT_WHO(uap->how);
131 /* Check parameters before we might perform some action */
132 switch (who) {
133 case EXTEXIT_PROC:
134 case EXTEXIT_LWP:
135 break;
136 default:
137 return (EINVAL);
140 switch (action) {
141 case EXTEXIT_SIMPLE:
142 break;
143 case EXTEXIT_SETINT:
144 error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 if (error)
146 return (error);
147 break;
148 default:
149 return (EINVAL);
152 lwkt_gettoken(&p->p_token);
154 switch (who) {
155 case EXTEXIT_LWP:
157 * Be sure only to perform a simple lwp exit if there is at
158 * least one more lwp in the proc, which will call exit1()
159 * later, otherwise the proc will be an UNDEAD and not even a
160 * SZOMB!
162 if (p->p_nthreads > 1) {
163 lwp_exit(0, NULL); /* called w/ p_token held */
164 /* NOT REACHED */
166 /* else last lwp in proc: do the real thing */
167 /* FALLTHROUGH */
168 default: /* to help gcc */
169 case EXTEXIT_PROC:
170 lwkt_reltoken(&p->p_token);
171 exit1(W_EXITCODE(uap->status, 0));
172 /* NOTREACHED */
175 /* NOTREACHED */
176 lwkt_reltoken(&p->p_token); /* safety */
180 * Kill all lwps associated with the current process except the
181 * current lwp. Return an error if we race another thread trying to
182 * do the same thing and lose the race.
184 * If forexec is non-zero the current thread and process flags are
185 * cleaned up so they can be reused.
187 * Caller must hold curproc->p_token
190 killalllwps(int forexec)
192 struct lwp *lp = curthread->td_lwp;
193 struct proc *p = lp->lwp_proc;
194 int fakestop;
197 * Interlock against P_WEXIT. Only one of the process's thread
198 * is allowed to do the master exit.
200 if (p->p_flags & P_WEXIT)
201 return (EALREADY);
202 p->p_flags |= P_WEXIT;
205 * Set temporary stopped state in case we are racing a coredump.
206 * Otherwise the coredump may hang forever.
208 if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 fakestop = 0;
210 } else {
211 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 ++p->p_nstopped;
213 fakestop = 1;
214 wakeup(&p->p_nstopped);
218 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
220 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 if (p->p_nthreads > 1)
222 killlwps(lp);
225 * Undo temporary stopped state
227 if (fakestop) {
228 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 --p->p_nstopped;
233 * If doing this for an exec, clean up the remaining thread
234 * (us) for continuing operation after all the other threads
235 * have been killed.
237 if (forexec) {
238 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 p->p_flags &= ~P_WEXIT;
241 return(0);
245 * Kill all LWPs except the current one. Do not try to signal
246 * LWPs which have exited on their own or have already been
247 * signaled.
249 static void
250 killlwps(struct lwp *lp)
252 struct proc *p = lp->lwp_proc;
253 struct lwp *tlp;
256 * Kill the remaining LWPs. We must send the signal before setting
257 * LWP_MP_WEXIT. The setting of WEXIT is optional but helps reduce
258 * races. tlp must be held across the call as it might block and
259 * allow the target lwp to rip itself out from under our loop.
261 FOREACH_LWP_IN_PROC(tlp, p) {
262 LWPHOLD(tlp);
263 lwkt_gettoken(&tlp->lwp_token);
264 if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
265 atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
266 lwpsignal(p, tlp, SIGKILL);
268 lwkt_reltoken(&tlp->lwp_token);
269 LWPRELE(tlp);
273 * Wait for everything to clear out. Also make sure any tstop()s
274 * are signalled (we are holding p_token for the interlock).
276 wakeup(p);
277 while (p->p_nthreads > 1)
278 tsleep(&p->p_nthreads, 0, "killlwps", 0);
282 * Exit: deallocate address space and other resources, change proc state
283 * to zombie, and unlink proc from allproc and parent's lists. Save exit
284 * status and rusage for wait(). Check for child processes and orphan them.
286 void
287 exit1(int rv)
289 struct thread *td = curthread;
290 struct proc *p = td->td_proc;
291 struct lwp *lp = td->td_lwp;
292 struct proc *q;
293 struct proc *pp;
294 struct proc *reproc;
295 struct sysreaper *reap;
296 struct vmspace *vm;
297 struct vnode *vtmp;
298 struct exitlist *ep;
299 int error;
301 lwkt_gettoken(&p->p_token);
303 if (p->p_pid == 1) {
304 kprintf("init died (signal %d, exit %d)\n",
305 WTERMSIG(rv), WEXITSTATUS(rv));
306 panic("Going nowhere without my init!");
308 varsymset_clean(&p->p_varsymset);
309 lockuninit(&p->p_varsymset.vx_lock);
312 * Kill all lwps associated with the current process, return an
313 * error if we race another thread trying to do the same thing
314 * and lose the race.
316 error = killalllwps(0);
317 if (error) {
318 lwp_exit(0, NULL);
319 /* NOT REACHED */
322 /* are we a task leader? */
323 if (p == p->p_leader) {
324 struct kill_args killArgs;
325 killArgs.signum = SIGKILL;
326 q = p->p_peers;
327 while(q) {
328 killArgs.pid = q->p_pid;
330 * The interface for kill is better
331 * than the internal signal
333 sys_kill(&killArgs);
334 q = q->p_peers;
336 while (p->p_peers)
337 tsleep((caddr_t)p, 0, "exit1", 0);
340 #ifdef PGINPROF
341 vmsizmon();
342 #endif
343 STOPEVENT(p, S_EXIT, rv);
344 p->p_flags |= P_POSTEXIT; /* stop procfs stepping */
347 * Check if any loadable modules need anything done at process exit.
348 * e.g. SYSV IPC stuff
349 * XXX what if one of these generates an error?
351 p->p_xstat = rv;
352 EVENTHANDLER_INVOKE(process_exit, p);
355 * XXX: imho, the eventhandler stuff is much cleaner than this.
356 * Maybe we should move everything to use eventhandler.
358 TAILQ_FOREACH(ep, &exit_list, next)
359 (*ep->function)(td);
361 if (p->p_flags & P_PROFIL)
362 stopprofclock(p);
364 SIGEMPTYSET(p->p_siglist);
365 SIGEMPTYSET(lp->lwp_siglist);
366 if (timevalisset(&p->p_realtimer.it_value))
367 callout_stop_sync(&p->p_ithandle);
370 * Reset any sigio structures pointing to us as a result of
371 * F_SETOWN with our pid.
373 funsetownlst(&p->p_sigiolst);
376 * Close open files and release open-file table.
377 * This may block!
379 fdfree(p, NULL);
381 if (p->p_leader->p_peers) {
382 q = p->p_leader;
383 while(q->p_peers != p)
384 q = q->p_peers;
385 q->p_peers = p->p_peers;
386 wakeup((caddr_t)p->p_leader);
390 * XXX Shutdown SYSV semaphores
392 semexit(p);
394 KKASSERT(p->p_numposixlocks == 0);
396 /* The next two chunks should probably be moved to vmspace_exit. */
397 vm = p->p_vmspace;
400 * Clean up data related to virtual kernel operation. Clean up
401 * any vkernel context related to the current lwp now so we can
402 * destroy p_vkernel.
404 if (p->p_vkernel) {
405 vkernel_lwp_exit(lp);
406 vkernel_exit(p);
410 * Release the user portion of address space. The exitbump prevents
411 * the vmspace from being completely eradicated (using holdcnt).
412 * This releases references to vnodes, which could cause I/O if the
413 * file has been unlinked. We need to do this early enough that
414 * we can still sleep.
416 * We can't free the entire vmspace as the kernel stack may be mapped
417 * within that space also.
419 * Processes sharing the same vmspace may exit in one order, and
420 * get cleaned up by vmspace_exit() in a different order. The
421 * last exiting process to reach this point releases as much of
422 * the environment as it can, and the last process cleaned up
423 * by vmspace_exit() (which decrements exitingcnt) cleans up the
424 * remainder.
426 * NOTE: Releasing p_token around this call is helpful if the
427 * vmspace had a huge RSS. Otherwise some other process
428 * trying to do an allproc or other scan (like 'ps') may
429 * stall for a long time.
431 lwkt_reltoken(&p->p_token);
432 vmspace_relexit(vm);
433 lwkt_gettoken(&p->p_token);
435 if (SESS_LEADER(p)) {
436 struct session *sp = p->p_session;
438 if (sp->s_ttyvp) {
440 * We are the controlling process. Signal the
441 * foreground process group, drain the controlling
442 * terminal, and revoke access to the controlling
443 * terminal.
445 * NOTE: while waiting for the process group to exit
446 * it is possible that one of the processes in the
447 * group will revoke the tty, so the ttyclosesession()
448 * function will re-check sp->s_ttyvp.
450 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
451 if (sp->s_ttyp->t_pgrp)
452 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
453 ttywait(sp->s_ttyp);
454 ttyclosesession(sp, 1); /* also revoke */
457 * Release the tty. If someone has it open via
458 * /dev/tty then close it (since they no longer can
459 * once we've NULL'd it out).
461 ttyclosesession(sp, 0);
464 * s_ttyp is not zero'd; we use this to indicate
465 * that the session once had a controlling terminal.
466 * (for logging and informational purposes)
469 sp->s_leader = NULL;
471 fixjobc(p, p->p_pgrp, 0);
472 (void)acct_process(p);
473 #ifdef KTRACE
475 * release trace file
477 if (p->p_tracenode)
478 ktrdestroy(&p->p_tracenode);
479 p->p_traceflag = 0;
480 #endif
482 * Release reference to text vnode
484 if ((vtmp = p->p_textvp) != NULL) {
485 p->p_textvp = NULL;
486 vrele(vtmp);
489 /* Release namecache handle to text file */
490 if (p->p_textnch.ncp)
491 cache_drop(&p->p_textnch);
494 * We have to handle PPWAIT here or proc_move_allproc_zombie()
495 * will block on the PHOLD() the parent is doing.
497 * We are using the flag as an interlock so an atomic op is
498 * necessary to synchronize with the parent's cpu.
500 if (p->p_flags & P_PPWAIT) {
501 if (p->p_pptr && p->p_pptr->p_upmap)
502 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
503 atomic_clear_int(&p->p_flags, P_PPWAIT);
504 wakeup(p->p_pptr);
508 * Move the process to the zombie list. This will block
509 * until the process p_lock count reaches 0. The process will
510 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
511 * which is called from cpu_proc_exit().
513 * Interlock against waiters using p_waitgen. We increment
514 * p_waitgen after completing the move of our process to the
515 * zombie list.
517 * WARNING: pp becomes stale when we block, clear it now as a
518 * reminder.
520 proc_move_allproc_zombie(p);
521 pp = p->p_pptr;
522 atomic_add_long(&pp->p_waitgen, 1);
523 pp = NULL;
526 * release controlled reaper for exit if we own it and return the
527 * remaining reaper (the one for us), which we will drop after we
528 * are done.
530 reap = reaper_exit(p);
533 * Reparent all of this process's children to the init process or
534 * to the designated reaper. We must hold the reaper's p_token in
535 * order to safely mess with p_children.
537 * We already hold p->p_token (to remove the children from our list).
539 reproc = NULL;
540 q = LIST_FIRST(&p->p_children);
541 if (q) {
542 reproc = reaper_get(reap);
543 lwkt_gettoken(&reproc->p_token);
544 while ((q = LIST_FIRST(&p->p_children)) != NULL) {
545 PHOLD(q);
546 lwkt_gettoken(&q->p_token);
547 if (q != LIST_FIRST(&p->p_children)) {
548 lwkt_reltoken(&q->p_token);
549 PRELE(q);
550 continue;
552 LIST_REMOVE(q, p_sibling);
553 LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
554 q->p_pptr = reproc;
555 q->p_sigparent = SIGCHLD;
558 * Traced processes are killed
559 * since their existence means someone is screwing up.
561 if (q->p_flags & P_TRACED) {
562 q->p_flags &= ~P_TRACED;
563 ksignal(q, SIGKILL);
565 lwkt_reltoken(&q->p_token);
566 PRELE(q);
568 lwkt_reltoken(&reproc->p_token);
569 wakeup(reproc);
573 * Save exit status and final rusage info, adding in child rusage
574 * info and self times.
576 calcru_proc(p, &p->p_ru);
577 ruadd(&p->p_ru, &p->p_cru);
580 * notify interested parties of our demise.
582 KNOTE(&p->p_klist, NOTE_EXIT);
585 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT
586 * flag set, or if the handler is set to SIG_IGN, notify the reaper
587 * instead (it will handle this situation).
589 * NOTE: The reaper can still be the parent process.
591 * (must reload pp)
593 if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
594 if (reproc == NULL)
595 reproc = reaper_get(reap);
596 proc_reparent(p, reproc);
598 if (reproc)
599 PRELE(reproc);
600 if (reap)
601 reaper_drop(reap);
604 * Signal (possibly new) parent.
606 pp = p->p_pptr;
607 PHOLD(pp);
608 if (p->p_sigparent && pp != initproc) {
609 int sig = p->p_sigparent;
611 if (sig != SIGUSR1 && sig != SIGCHLD)
612 sig = SIGCHLD;
613 ksignal(pp, sig);
614 } else {
615 ksignal(pp, SIGCHLD);
617 p->p_flags &= ~P_TRACED;
618 PRELE(pp);
621 * cpu_exit is responsible for clearing curproc, since
622 * it is heavily integrated with the thread/switching sequence.
624 * Other substructures are freed from wait().
626 plimit_free(p);
629 * Finally, call machine-dependent code to release as many of the
630 * lwp's resources as we can and halt execution of this thread.
632 * pp is a wild pointer now but still the correct wakeup() target.
633 * lwp_exit() only uses it to send the wakeup() signal to the likely
634 * parent. Any reparenting race that occurs will get a signal
635 * automatically and not be an issue.
637 lwp_exit(1, pp);
641 * Eventually called by every exiting LWP
643 * p->p_token must be held. mplock may be held and will be released.
645 void
646 lwp_exit(int masterexit, void *waddr)
648 struct thread *td = curthread;
649 struct lwp *lp = td->td_lwp;
650 struct proc *p = lp->lwp_proc;
651 int dowake = 0;
654 * Release the current user process designation on the process so
655 * the userland scheduler can work in someone else.
657 p->p_usched->release_curproc(lp);
660 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
661 * make sure it is set here.
663 ASSERT_LWKT_TOKEN_HELD(&p->p_token);
664 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
667 * Clean up any virtualization
669 if (lp->lwp_vkernel)
670 vkernel_lwp_exit(lp);
672 if (td->td_vmm)
673 vmm_vmdestroy();
676 * Clean up select/poll support
678 kqueue_terminate(&lp->lwp_kqueue);
681 * Clean up any syscall-cached ucred
683 if (td->td_ucred) {
684 crfree(td->td_ucred);
685 td->td_ucred = NULL;
689 * Nobody actually wakes us when the lock
690 * count reaches zero, so just wait one tick.
692 while (lp->lwp_lock > 0)
693 tsleep(lp, 0, "lwpexit", 1);
695 /* Hand down resource usage to our proc */
696 ruadd(&p->p_ru, &lp->lwp_ru);
699 * If we don't hold the process until the LWP is reaped wait*()
700 * may try to dispose of its vmspace before all the LWPs have
701 * actually terminated.
703 PHOLD(p);
706 * Do any remaining work that might block on us. We should be
707 * coded such that further blocking is ok after decrementing
708 * p_nthreads but don't take the chance.
710 dsched_exit_thread(td);
711 biosched_done(curthread);
714 * We have to use the reaper for all the LWPs except the one doing
715 * the master exit. The LWP doing the master exit can just be
716 * left on p_lwps and the process reaper will deal with it
717 * synchronously, which is much faster.
719 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
721 * The process is left held until the reaper calls lwp_dispose() on
722 * the lp (after calling lwp_wait()).
724 if (masterexit == 0) {
725 int cpu = mycpuid;
727 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
728 --p->p_nthreads;
729 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
730 dowake = 1;
731 lwkt_gettoken(&deadlwp_token[cpu]);
732 LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
733 taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
734 lwkt_reltoken(&deadlwp_token[cpu]);
735 } else {
736 --p->p_nthreads;
737 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
738 dowake = 1;
742 * We no longer need p_token.
744 * Tell the userland scheduler that we are going away
746 lwkt_reltoken(&p->p_token);
747 p->p_usched->heuristic_exiting(lp, p);
750 * Issue late wakeups after releasing our token to give us a chance
751 * to deschedule and switch away before another cpu in a wait*()
752 * reaps us. This is done as late as possible to reduce contention.
754 if (dowake)
755 wakeup(&p->p_nthreads);
756 if (waddr)
757 wakeup(waddr);
759 cpu_lwp_exit();
763 * Wait until a lwp is completely dead. The final interlock in this drama
764 * is when TDF_EXITING is set in cpu_thread_exit() just before the final
765 * switchout.
767 * At the point TDF_EXITING is set a complete exit is accomplished when
768 * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear. td_mpflags has two
769 * post-switch interlock flags that can be used to wait for the TDF_
770 * flags to clear.
772 * Returns non-zero on success, and zero if the caller needs to retry
773 * the lwp_wait().
775 static int
776 lwp_wait(struct lwp *lp)
778 struct thread *td = lp->lwp_thread;
779 u_int mpflags;
781 KKASSERT(lwkt_preempted_proc() != lp);
784 * This bit of code uses the thread destruction interlock
785 * managed by lwkt_switch_return() to wait for the lwp's
786 * thread to completely disengage.
788 * It is possible for us to race another cpu core so we
789 * have to do this correctly.
791 for (;;) {
792 mpflags = td->td_mpflags;
793 cpu_ccfence();
794 if (mpflags & TDF_MP_EXITSIG)
795 break;
796 tsleep_interlock(td, 0);
797 if (atomic_cmpset_int(&td->td_mpflags, mpflags,
798 mpflags | TDF_MP_EXITWAIT)) {
799 tsleep(td, PINTERLOCKED, "lwpxt", 0);
804 * We've already waited for the core exit but there can still
805 * be other refs from e.g. process scans and such.
807 if (lp->lwp_lock > 0) {
808 tsleep(lp, 0, "lwpwait1", 1);
809 return(0);
811 if (td->td_refs) {
812 tsleep(td, 0, "lwpwait2", 1);
813 return(0);
817 * Now that we have the thread destruction interlock these flags
818 * really should already be cleaned up, keep a check for safety.
820 * We can't rip its stack out from under it until TDF_EXITING is
821 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
822 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
823 * will be cleared temporarily if a thread gets preempted.
825 while ((td->td_flags & (TDF_RUNNING |
826 TDF_RUNQ |
827 TDF_PREEMPT_LOCK |
828 TDF_EXITING)) != TDF_EXITING) {
829 tsleep(lp, 0, "lwpwait3", 1);
830 return (0);
833 KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
834 ("lwp_wait: td %p (%s) still on run or sleep queue",
835 td, td->td_comm));
836 return (1);
840 * Release the resources associated with a lwp.
841 * The lwp must be completely dead.
843 void
844 lwp_dispose(struct lwp *lp)
846 struct thread *td = lp->lwp_thread;
848 KKASSERT(lwkt_preempted_proc() != lp);
849 KKASSERT(lp->lwp_lock == 0);
850 KKASSERT(td->td_refs == 0);
851 KKASSERT((td->td_flags & (TDF_RUNNING |
852 TDF_RUNQ |
853 TDF_PREEMPT_LOCK |
854 TDF_EXITING)) == TDF_EXITING);
856 PRELE(lp->lwp_proc);
857 lp->lwp_proc = NULL;
858 if (td != NULL) {
859 td->td_proc = NULL;
860 td->td_lwp = NULL;
861 lp->lwp_thread = NULL;
862 lwkt_free_thread(td);
864 kfree(lp, M_LWP);
868 sys_wait4(struct wait_args *uap)
870 struct rusage rusage;
871 int error, status;
873 error = kern_wait(uap->pid, (uap->status ? &status : NULL),
874 uap->options, (uap->rusage ? &rusage : NULL),
875 &uap->sysmsg_result);
877 if (error == 0 && uap->status)
878 error = copyout(&status, uap->status, sizeof(*uap->status));
879 if (error == 0 && uap->rusage)
880 error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
881 return (error);
885 * wait1()
887 * wait_args(int pid, int *status, int options, struct rusage *rusage)
890 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
892 struct thread *td = curthread;
893 struct lwp *lp;
894 struct proc *q = td->td_proc;
895 struct proc *p, *t;
896 struct pargs *pa;
897 struct sigacts *ps;
898 int nfound, error;
899 long waitgen;
901 if (pid == 0)
902 pid = -q->p_pgid;
903 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
904 return (EINVAL);
907 * Protect the q->p_children list
909 lwkt_gettoken(&q->p_token);
910 loop:
912 * All sorts of things can change due to blocking so we have to loop
913 * all the way back up here.
915 * The problem is that if a process group is stopped and the parent
916 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
917 * of the child and then stop itself when it tries to return from the
918 * system call. When the process group is resumed the parent will
919 * then get the STOP status even though the child has now resumed
920 * (a followup wait*() will get the CONT status).
922 * Previously the CONT would overwrite the STOP because the tstop
923 * was handled within tsleep(), and the parent would only see
924 * the CONT when both are stopped and continued together. This little
925 * two-line hack restores this effect.
927 if (STOPLWP(q, td->td_lwp))
928 tstop();
930 nfound = 0;
933 * Loop on children.
935 * NOTE: We don't want to break q's p_token in the loop for the
936 * case where no children are found or we risk breaking the
937 * interlock between child and parent.
939 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
940 LIST_FOREACH(p, &q->p_children, p_sibling) {
941 if (pid != WAIT_ANY &&
942 p->p_pid != pid && p->p_pgid != -pid) {
943 continue;
947 * This special case handles a kthread spawned by linux_clone
948 * (see linux_misc.c). The linux_wait4 and linux_waitpid
949 * functions need to be able to distinguish between waiting
950 * on a process and waiting on a thread. It is a thread if
951 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
952 * signifies we want to wait for threads and not processes.
954 if ((p->p_sigparent != SIGCHLD) ^
955 ((options & WLINUXCLONE) != 0)) {
956 continue;
959 nfound++;
960 if (p->p_stat == SZOMB) {
962 * We may go into SZOMB with threads still present.
963 * We must wait for them to exit before we can reap
964 * the master thread, otherwise we may race reaping
965 * non-master threads.
967 * Only this routine can remove a process from
968 * the zombie list and destroy it, use PACQUIREZOMB()
969 * to serialize us and loop if it blocks (interlocked
970 * by the parent's q->p_token).
972 * WARNING! (p) can be invalid when PHOLDZOMB(p)
973 * returns non-zero. Be sure not to
974 * mess with it.
976 if (PHOLDZOMB(p))
977 goto loop;
978 lwkt_gettoken(&p->p_token);
979 if (p->p_pptr != q) {
980 lwkt_reltoken(&p->p_token);
981 PRELEZOMB(p);
982 goto loop;
984 while (p->p_nthreads > 0) {
985 tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
989 * Reap any LWPs left in p->p_lwps. This is usually
990 * just the last LWP. This must be done before
991 * we loop on p_lock since the lwps hold a ref on
992 * it as a vmspace interlock.
994 * Once that is accomplished p_nthreads had better
995 * be zero.
997 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
999 * Make sure no one is using this lwp, before
1000 * it is removed from the tree. If we didn't
1001 * wait it here, lwp tree iteration with
1002 * blocking operation would be broken.
1004 while (lp->lwp_lock > 0)
1005 tsleep(lp, 0, "zomblwp", 1);
1006 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1007 reaplwp(lp);
1009 KKASSERT(p->p_nthreads == 0);
1012 * Don't do anything really bad until all references
1013 * to the process go away. This may include other
1014 * LWPs which are still in the process of being
1015 * reaped. We can't just pull the rug out from under
1016 * them because they may still be using the VM space.
1018 * Certain kernel facilities such as /proc will also
1019 * put a hold on the process for short periods of
1020 * time.
1022 PRELE(p);
1023 PSTALL(p, "reap3", 0);
1025 /* Take care of our return values. */
1026 *res = p->p_pid;
1028 if (status)
1029 *status = p->p_xstat;
1030 if (rusage)
1031 *rusage = p->p_ru;
1034 * If we got the child via a ptrace 'attach',
1035 * we need to give it back to the old parent.
1037 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1038 PHOLD(p);
1039 p->p_oppid = 0;
1040 proc_reparent(p, t);
1041 ksignal(t, SIGCHLD);
1042 wakeup((caddr_t)t);
1043 error = 0;
1044 PRELE(t);
1045 lwkt_reltoken(&p->p_token);
1046 PRELEZOMB(p);
1047 goto done;
1051 * Unlink the proc from its process group so that
1052 * the following operations won't lead to an
1053 * inconsistent state for processes running down
1054 * the zombie list.
1056 proc_remove_zombie(p);
1057 proc_userunmap(p);
1058 lwkt_reltoken(&p->p_token);
1059 leavepgrp(p);
1061 p->p_xstat = 0;
1062 ruadd(&q->p_cru, &p->p_ru);
1065 * Decrement the count of procs running with this uid.
1067 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1070 * Free up credentials.
1072 crfree(p->p_ucred);
1073 p->p_ucred = NULL;
1076 * Remove unused arguments
1078 pa = p->p_args;
1079 p->p_args = NULL;
1080 if (pa && refcount_release(&pa->ar_ref)) {
1081 kfree(pa, M_PARGS);
1082 pa = NULL;
1085 ps = p->p_sigacts;
1086 p->p_sigacts = NULL;
1087 if (ps && refcount_release(&ps->ps_refcnt)) {
1088 kfree(ps, M_SUBPROC);
1089 ps = NULL;
1093 * Our exitingcount was incremented when the process
1094 * became a zombie, now that the process has been
1095 * removed from (almost) all lists we should be able
1096 * to safely destroy its vmspace. Wait for any current
1097 * holders to go away (so the vmspace remains stable),
1098 * then scrap it.
1100 * NOTE: Releasing the parent process (q) p_token
1101 * across the vmspace_exitfree() call is
1102 * important here to reduce stalls on
1103 * interactions with (q) (such as
1104 * fork/exec/wait or 'ps').
1106 PSTALL(p, "reap4", 0);
1107 lwkt_reltoken(&q->p_token);
1108 vmspace_exitfree(p);
1109 lwkt_gettoken(&q->p_token);
1110 PSTALL(p, "reap5", 0);
1113 * NOTE: We have to officially release ZOMB in order
1114 * to ensure that a racing thread in kern_wait()
1115 * which blocked on ZOMB is woken up.
1117 PHOLD(p);
1118 PRELEZOMB(p);
1119 kfree(p, M_PROC);
1120 atomic_add_int(&nprocs, -1);
1121 error = 0;
1122 goto done;
1124 if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1125 (p->p_flags & P_WAITED) == 0 &&
1126 ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1127 PHOLD(p);
1128 lwkt_gettoken(&p->p_token);
1129 if (p->p_pptr != q) {
1130 lwkt_reltoken(&p->p_token);
1131 PRELE(p);
1132 goto loop;
1134 if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1135 (p->p_flags & P_WAITED) != 0 ||
1136 ((p->p_flags & P_TRACED) == 0 &&
1137 (options & WUNTRACED) == 0)) {
1138 lwkt_reltoken(&p->p_token);
1139 PRELE(p);
1140 goto loop;
1143 p->p_flags |= P_WAITED;
1145 *res = p->p_pid;
1146 if (status)
1147 *status = W_STOPCODE(p->p_xstat);
1148 /* Zero rusage so we get something consistent. */
1149 if (rusage)
1150 bzero(rusage, sizeof(*rusage));
1151 error = 0;
1152 lwkt_reltoken(&p->p_token);
1153 PRELE(p);
1154 goto done;
1156 if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1157 PHOLD(p);
1158 lwkt_gettoken(&p->p_token);
1159 if (p->p_pptr != q) {
1160 lwkt_reltoken(&p->p_token);
1161 PRELE(p);
1162 goto loop;
1164 if ((p->p_flags & P_CONTINUED) == 0) {
1165 lwkt_reltoken(&p->p_token);
1166 PRELE(p);
1167 goto loop;
1170 *res = p->p_pid;
1171 p->p_flags &= ~P_CONTINUED;
1173 if (status)
1174 *status = SIGCONT;
1175 error = 0;
1176 lwkt_reltoken(&p->p_token);
1177 PRELE(p);
1178 goto done;
1181 if (nfound == 0) {
1182 error = ECHILD;
1183 goto done;
1185 if (options & WNOHANG) {
1186 *res = 0;
1187 error = 0;
1188 goto done;
1192 * Wait for signal - interlocked using q->p_waitgen.
1194 error = 0;
1195 while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1196 tsleep_interlock(q, PCATCH);
1197 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1198 if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1199 error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1200 break;
1203 if (error) {
1204 done:
1205 lwkt_reltoken(&q->p_token);
1206 return (error);
1208 goto loop;
1212 * Change child's parent process to parent.
1214 * p_children/p_sibling requires the parent's token, and
1215 * changing pptr requires the child's token, so we have to
1216 * get three tokens to do this operation. We also need to
1217 * hold pointers that might get ripped out from under us to
1218 * preserve structural integrity.
1220 * It is possible to race another reparent or disconnect or other
1221 * similar operation. We must retry when this situation occurs.
1222 * Once we successfully reparent the process we no longer care
1223 * about any races.
1225 void
1226 proc_reparent(struct proc *child, struct proc *parent)
1228 struct proc *opp;
1230 PHOLD(parent);
1231 while ((opp = child->p_pptr) != parent) {
1232 PHOLD(opp);
1233 lwkt_gettoken(&opp->p_token);
1234 lwkt_gettoken(&child->p_token);
1235 lwkt_gettoken(&parent->p_token);
1236 if (child->p_pptr != opp) {
1237 lwkt_reltoken(&parent->p_token);
1238 lwkt_reltoken(&child->p_token);
1239 lwkt_reltoken(&opp->p_token);
1240 PRELE(opp);
1241 continue;
1243 LIST_REMOVE(child, p_sibling);
1244 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1245 child->p_pptr = parent;
1246 lwkt_reltoken(&parent->p_token);
1247 lwkt_reltoken(&child->p_token);
1248 lwkt_reltoken(&opp->p_token);
1249 if (LIST_EMPTY(&opp->p_children))
1250 wakeup(opp);
1251 PRELE(opp);
1252 break;
1254 PRELE(parent);
1258 * The next two functions are to handle adding/deleting items on the
1259 * exit callout list
1261 * at_exit():
1262 * Take the arguments given and put them onto the exit callout list,
1263 * However first make sure that it's not already there.
1264 * returns 0 on success.
1268 at_exit(exitlist_fn function)
1270 struct exitlist *ep;
1272 #ifdef INVARIANTS
1273 /* Be noisy if the programmer has lost track of things */
1274 if (rm_at_exit(function))
1275 kprintf("WARNING: exit callout entry (%p) already present\n",
1276 function);
1277 #endif
1278 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1279 if (ep == NULL)
1280 return (ENOMEM);
1281 ep->function = function;
1282 TAILQ_INSERT_TAIL(&exit_list, ep, next);
1283 return (0);
1287 * Scan the exit callout list for the given item and remove it.
1288 * Returns the number of items removed (0 or 1)
1291 rm_at_exit(exitlist_fn function)
1293 struct exitlist *ep;
1295 TAILQ_FOREACH(ep, &exit_list, next) {
1296 if (ep->function == function) {
1297 TAILQ_REMOVE(&exit_list, ep, next);
1298 kfree(ep, M_ATEXIT);
1299 return(1);
1302 return (0);
1306 * LWP reaper related code.
1308 static void
1309 reaplwps(void *context, int dummy)
1311 struct lwplist *lwplist = context;
1312 struct lwp *lp;
1313 int cpu = mycpuid;
1315 lwkt_gettoken(&deadlwp_token[cpu]);
1316 while ((lp = LIST_FIRST(lwplist))) {
1317 LIST_REMOVE(lp, u.lwp_reap_entry);
1318 reaplwp(lp);
1320 lwkt_reltoken(&deadlwp_token[cpu]);
1323 static void
1324 reaplwp(struct lwp *lp)
1326 while (lwp_wait(lp) == 0)
1328 lwp_dispose(lp);
1331 static void
1332 deadlwp_init(void)
1334 int cpu;
1336 for (cpu = 0; cpu < ncpus; cpu++) {
1337 lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1338 LIST_INIT(&deadlwp_list[cpu]);
1339 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1340 M_DEVBUF, M_WAITOK);
1341 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1345 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);