kernel - Uninline crit_exit()
[dragonfly.git] / sys / kern / lwkt_thread.c
blob1b61e8fc2c26f57fb4e4d860181dbb1fac02312b
1 /*
2 * Copyright (c) 2003-2010 The DragonFly Project. All rights reserved.
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
36 * Each cpu in a system has its own self-contained light weight kernel
37 * thread scheduler, which means that generally speaking we only need
38 * to use a critical section to avoid problems. Foreign thread
39 * scheduling is queued via (async) IPIs.
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
61 #include <sys/dsched.h>
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80 sizeof(int) + sizeof(struct thread *));
81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82 sizeof(int) + sizeof(struct thread *));
83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84 sizeof (struct thread *) + sizeof(char *));
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
89 #ifdef INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static __int64_t token_contention_count __debugvar = 0;
97 static int lwkt_use_spin_port;
98 static struct objcache *thread_cache;
100 #ifdef SMP
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 #endif
103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td);
105 extern void cpu_heavy_restore(void);
106 extern void cpu_lwkt_restore(void);
107 extern void cpu_kthread_restore(void);
108 extern void cpu_idle_restore(void);
110 #ifdef __x86_64__
112 static int
113 jg_tos_ok(struct thread *td)
115 void *tos;
116 int tos_ok;
118 if (td == NULL) {
119 return 1;
121 KKASSERT(td->td_sp != NULL);
122 tos = ((void **)td->td_sp)[0];
123 tos_ok = 0;
124 if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
125 (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
126 tos_ok = 1;
128 return tos_ok;
131 #endif
134 * We can make all thread ports use the spin backend instead of the thread
135 * backend. This should only be set to debug the spin backend.
137 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
139 #ifdef INVARIANTS
140 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
141 #endif
142 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
143 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0,
144 "Successful preemption events");
145 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0,
146 "Failed preemption events");
147 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
148 #ifdef INVARIANTS
149 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
150 &token_contention_count, 0, "spinning due to token contention");
151 #endif
152 static int fairq_enable = 1;
153 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW, &fairq_enable, 0, "");
154 static int user_pri_sched = 0;
155 SYSCTL_INT(_lwkt, OID_AUTO, user_pri_sched, CTLFLAG_RW, &user_pri_sched, 0, "");
158 * These helper procedures handle the runq, they can only be called from
159 * within a critical section.
161 * WARNING! Prior to SMP being brought up it is possible to enqueue and
162 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
163 * instead of 'mycpu' when referencing the globaldata structure. Once
164 * SMP live enqueuing and dequeueing only occurs on the current cpu.
166 static __inline
167 void
168 _lwkt_dequeue(thread_t td)
170 if (td->td_flags & TDF_RUNQ) {
171 struct globaldata *gd = td->td_gd;
173 td->td_flags &= ~TDF_RUNQ;
174 TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
175 gd->gd_fairq_total_pri -= td->td_pri;
176 if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
177 atomic_clear_int_nonlocked(&gd->gd_reqflags, RQF_RUNNING);
182 * Priority enqueue.
184 * NOTE: There are a limited number of lwkt threads runnable since user
185 * processes only schedule one at a time per cpu.
187 static __inline
188 void
189 _lwkt_enqueue(thread_t td)
191 thread_t xtd;
193 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
194 struct globaldata *gd = td->td_gd;
196 td->td_flags |= TDF_RUNQ;
197 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
198 if (xtd == NULL) {
199 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
200 atomic_set_int_nonlocked(&gd->gd_reqflags, RQF_RUNNING);
201 } else {
202 while (xtd && xtd->td_pri > td->td_pri)
203 xtd = TAILQ_NEXT(xtd, td_threadq);
204 if (xtd)
205 TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
206 else
207 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
209 gd->gd_fairq_total_pri += td->td_pri;
213 static __boolean_t
214 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
216 struct thread *td = (struct thread *)obj;
218 td->td_kstack = NULL;
219 td->td_kstack_size = 0;
220 td->td_flags = TDF_ALLOCATED_THREAD;
221 return (1);
224 static void
225 _lwkt_thread_dtor(void *obj, void *privdata)
227 struct thread *td = (struct thread *)obj;
229 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
230 ("_lwkt_thread_dtor: not allocated from objcache"));
231 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
232 td->td_kstack_size > 0,
233 ("_lwkt_thread_dtor: corrupted stack"));
234 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
238 * Initialize the lwkt s/system.
240 void
241 lwkt_init(void)
243 /* An objcache has 2 magazines per CPU so divide cache size by 2. */
244 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
245 NULL, CACHE_NTHREADS/2,
246 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
250 * Schedule a thread to run. As the current thread we can always safely
251 * schedule ourselves, and a shortcut procedure is provided for that
252 * function.
254 * (non-blocking, self contained on a per cpu basis)
256 void
257 lwkt_schedule_self(thread_t td)
259 crit_enter_quick(td);
260 KASSERT(td != &td->td_gd->gd_idlethread,
261 ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
262 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
263 _lwkt_enqueue(td);
264 crit_exit_quick(td);
268 * Deschedule a thread.
270 * (non-blocking, self contained on a per cpu basis)
272 void
273 lwkt_deschedule_self(thread_t td)
275 crit_enter_quick(td);
276 _lwkt_dequeue(td);
277 crit_exit_quick(td);
281 * LWKTs operate on a per-cpu basis
283 * WARNING! Called from early boot, 'mycpu' may not work yet.
285 void
286 lwkt_gdinit(struct globaldata *gd)
288 TAILQ_INIT(&gd->gd_tdrunq);
289 TAILQ_INIT(&gd->gd_tdallq);
293 * Create a new thread. The thread must be associated with a process context
294 * or LWKT start address before it can be scheduled. If the target cpu is
295 * -1 the thread will be created on the current cpu.
297 * If you intend to create a thread without a process context this function
298 * does everything except load the startup and switcher function.
300 thread_t
301 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
303 globaldata_t gd = mycpu;
304 void *stack;
307 * If static thread storage is not supplied allocate a thread. Reuse
308 * a cached free thread if possible. gd_freetd is used to keep an exiting
309 * thread intact through the exit.
311 if (td == NULL) {
312 if ((td = gd->gd_freetd) != NULL)
313 gd->gd_freetd = NULL;
314 else
315 td = objcache_get(thread_cache, M_WAITOK);
316 KASSERT((td->td_flags &
317 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
318 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
319 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
323 * Try to reuse cached stack.
325 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
326 if (flags & TDF_ALLOCATED_STACK) {
327 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
328 stack = NULL;
331 if (stack == NULL) {
332 stack = (void *)kmem_alloc(&kernel_map, stksize);
333 flags |= TDF_ALLOCATED_STACK;
335 if (cpu < 0)
336 lwkt_init_thread(td, stack, stksize, flags, gd);
337 else
338 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
339 return(td);
343 * Initialize a preexisting thread structure. This function is used by
344 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
346 * All threads start out in a critical section at a priority of
347 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
348 * appropriate. This function may send an IPI message when the
349 * requested cpu is not the current cpu and consequently gd_tdallq may
350 * not be initialized synchronously from the point of view of the originating
351 * cpu.
353 * NOTE! we have to be careful in regards to creating threads for other cpus
354 * if SMP has not yet been activated.
356 #ifdef SMP
358 static void
359 lwkt_init_thread_remote(void *arg)
361 thread_t td = arg;
364 * Protected by critical section held by IPI dispatch
366 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
369 #endif
372 * lwkt core thread structural initialization.
374 * NOTE: All threads are initialized as mpsafe threads.
376 void
377 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
378 struct globaldata *gd)
380 globaldata_t mygd = mycpu;
382 bzero(td, sizeof(struct thread));
383 td->td_kstack = stack;
384 td->td_kstack_size = stksize;
385 td->td_flags = flags;
386 td->td_gd = gd;
387 td->td_pri = TDPRI_KERN_DAEMON;
388 td->td_critcount = 1;
389 td->td_toks_stop = &td->td_toks_base;
390 if (lwkt_use_spin_port)
391 lwkt_initport_spin(&td->td_msgport);
392 else
393 lwkt_initport_thread(&td->td_msgport, td);
394 pmap_init_thread(td);
395 #ifdef SMP
397 * Normally initializing a thread for a remote cpu requires sending an
398 * IPI. However, the idlethread is setup before the other cpus are
399 * activated so we have to treat it as a special case. XXX manipulation
400 * of gd_tdallq requires the BGL.
402 if (gd == mygd || td == &gd->gd_idlethread) {
403 crit_enter_gd(mygd);
404 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
405 crit_exit_gd(mygd);
406 } else {
407 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
409 #else
410 crit_enter_gd(mygd);
411 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
412 crit_exit_gd(mygd);
413 #endif
415 dsched_new_thread(td);
418 void
419 lwkt_set_comm(thread_t td, const char *ctl, ...)
421 __va_list va;
423 __va_start(va, ctl);
424 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
425 __va_end(va);
426 KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
429 void
430 lwkt_hold(thread_t td)
432 ++td->td_refs;
435 void
436 lwkt_rele(thread_t td)
438 KKASSERT(td->td_refs > 0);
439 --td->td_refs;
442 void
443 lwkt_wait_free(thread_t td)
445 while (td->td_refs)
446 tsleep(td, 0, "tdreap", hz);
449 void
450 lwkt_free_thread(thread_t td)
452 KASSERT((td->td_flags & TDF_RUNNING) == 0,
453 ("lwkt_free_thread: did not exit! %p", td));
455 if (td->td_flags & TDF_ALLOCATED_THREAD) {
456 objcache_put(thread_cache, td);
457 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
458 /* client-allocated struct with internally allocated stack */
459 KASSERT(td->td_kstack && td->td_kstack_size > 0,
460 ("lwkt_free_thread: corrupted stack"));
461 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
462 td->td_kstack = NULL;
463 td->td_kstack_size = 0;
465 KTR_LOG(ctxsw_deadtd, td);
470 * Switch to the next runnable lwkt. If no LWKTs are runnable then
471 * switch to the idlethread. Switching must occur within a critical
472 * section to avoid races with the scheduling queue.
474 * We always have full control over our cpu's run queue. Other cpus
475 * that wish to manipulate our queue must use the cpu_*msg() calls to
476 * talk to our cpu, so a critical section is all that is needed and
477 * the result is very, very fast thread switching.
479 * The LWKT scheduler uses a fixed priority model and round-robins at
480 * each priority level. User process scheduling is a totally
481 * different beast and LWKT priorities should not be confused with
482 * user process priorities.
484 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch()
485 * cleans it up. Note that the td_switch() function cannot do anything that
486 * requires the MP lock since the MP lock will have already been setup for
487 * the target thread (not the current thread). It's nice to have a scheduler
488 * that does not need the MP lock to work because it allows us to do some
489 * really cool high-performance MP lock optimizations.
491 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
492 * is not called by the current thread in the preemption case, only when
493 * the preempting thread blocks (in order to return to the original thread).
495 void
496 lwkt_switch(void)
498 globaldata_t gd = mycpu;
499 thread_t td = gd->gd_curthread;
500 thread_t ntd;
501 thread_t xtd;
502 thread_t nlast;
503 int nquserok;
504 #ifdef SMP
505 int mpheld;
506 #endif
507 int didaccumulate;
508 const char *lmsg; /* diagnostic - 'systat -pv 1' */
509 const void *laddr;
512 * Switching from within a 'fast' (non thread switched) interrupt or IPI
513 * is illegal. However, we may have to do it anyway if we hit a fatal
514 * kernel trap or we have paniced.
516 * If this case occurs save and restore the interrupt nesting level.
518 if (gd->gd_intr_nesting_level) {
519 int savegdnest;
520 int savegdtrap;
522 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
523 panic("lwkt_switch: Attempt to switch from a "
524 "a fast interrupt, ipi, or hard code section, "
525 "td %p\n",
526 td);
527 } else {
528 savegdnest = gd->gd_intr_nesting_level;
529 savegdtrap = gd->gd_trap_nesting_level;
530 gd->gd_intr_nesting_level = 0;
531 gd->gd_trap_nesting_level = 0;
532 if ((td->td_flags & TDF_PANICWARN) == 0) {
533 td->td_flags |= TDF_PANICWARN;
534 kprintf("Warning: thread switch from interrupt, IPI, "
535 "or hard code section.\n"
536 "thread %p (%s)\n", td, td->td_comm);
537 print_backtrace(-1);
539 lwkt_switch();
540 gd->gd_intr_nesting_level = savegdnest;
541 gd->gd_trap_nesting_level = savegdtrap;
542 return;
547 * Passive release (used to transition from user to kernel mode
548 * when we block or switch rather then when we enter the kernel).
549 * This function is NOT called if we are switching into a preemption
550 * or returning from a preemption. Typically this causes us to lose
551 * our current process designation (if we have one) and become a true
552 * LWKT thread, and may also hand the current process designation to
553 * another process and schedule thread.
555 if (td->td_release)
556 td->td_release(td);
558 crit_enter_gd(gd);
559 if (TD_TOKS_HELD(td))
560 lwkt_relalltokens(td);
563 * We had better not be holding any spin locks, but don't get into an
564 * endless panic loop.
566 KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
567 ("lwkt_switch: still holding a shared spinlock %p!",
568 gd->gd_spinlock_rd));
569 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
570 ("lwkt_switch: still holding %d exclusive spinlocks!",
571 gd->gd_spinlocks_wr));
574 #ifdef SMP
576 * td_mpcount cannot be used to determine if we currently hold the
577 * MP lock because get_mplock() will increment it prior to attempting
578 * to get the lock, and switch out if it can't. Our ownership of
579 * the actual lock will remain stable while we are in a critical section
580 * (but, of course, another cpu may own or release the lock so the
581 * actual value of mp_lock is not stable).
583 mpheld = MP_LOCK_HELD(gd);
584 #ifdef INVARIANTS
585 if (td->td_cscount) {
586 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
587 td);
588 if (panic_on_cscount)
589 panic("switching while mastering cpusync");
591 #endif
592 #endif
595 * If we had preempted another thread on this cpu, resume the preempted
596 * thread. This occurs transparently, whether the preempted thread
597 * was scheduled or not (it may have been preempted after descheduling
598 * itself).
600 * We have to setup the MP lock for the original thread after backing
601 * out the adjustment that was made to curthread when the original
602 * was preempted.
604 if ((ntd = td->td_preempted) != NULL) {
605 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
606 #ifdef SMP
607 if (ntd->td_mpcount && mpheld == 0) {
608 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
609 td, ntd, td->td_mpcount, ntd->td_mpcount);
611 if (ntd->td_mpcount) {
612 td->td_mpcount -= ntd->td_mpcount;
613 KKASSERT(td->td_mpcount >= 0);
615 #endif
616 ntd->td_flags |= TDF_PREEMPT_DONE;
619 * The interrupt may have woken a thread up, we need to properly
620 * set the reschedule flag if the originally interrupted thread is
621 * at a lower priority.
623 if (TAILQ_FIRST(&gd->gd_tdrunq) &&
624 TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) {
625 need_lwkt_resched();
627 /* YYY release mp lock on switchback if original doesn't need it */
628 goto havethread_preempted;
632 * Implement round-robin fairq with priority insertion. The priority
633 * insertion is handled by _lwkt_enqueue()
635 * We have to adjust the MP lock for the target thread. If we
636 * need the MP lock and cannot obtain it we try to locate a
637 * thread that does not need the MP lock. If we cannot, we spin
638 * instead of HLT.
640 * A similar issue exists for the tokens held by the target thread.
641 * If we cannot obtain ownership of the tokens we cannot immediately
642 * schedule the thread.
644 for (;;) {
645 clear_lwkt_resched();
646 didaccumulate = 0;
647 ntd = TAILQ_FIRST(&gd->gd_tdrunq);
650 * Hotpath if we can get all necessary resources.
652 * If nothing is runnable switch to the idle thread
654 if (ntd == NULL) {
655 ntd = &gd->gd_idlethread;
656 if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
657 ntd->td_flags |= TDF_IDLE_NOHLT;
658 #ifdef SMP
659 if (ntd->td_mpcount) {
660 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
661 panic("Idle thread %p was holding the BGL!", ntd);
662 if (mpheld == 0) {
663 set_cpu_contention_mask(gd);
664 handle_cpu_contention_mask();
665 cpu_try_mplock();
666 mpheld = MP_LOCK_HELD(gd);
667 cpu_pause();
668 continue;
671 clr_cpu_contention_mask(gd);
672 #endif
673 cpu_time.cp_msg[0] = 0;
674 cpu_time.cp_stallpc = 0;
675 goto haveidle;
679 * Hotpath schedule
681 * NOTE: For UP there is no mplock and lwkt_getalltokens()
682 * always succeeds.
684 if (ntd->td_fairq_accum >= 0 &&
685 #ifdef SMP
686 (ntd->td_mpcount == 0 || mpheld || cpu_try_mplock()) &&
687 #endif
688 (!TD_TOKS_HELD(ntd) || lwkt_getalltokens(ntd, &lmsg, &laddr))
690 #ifdef SMP
691 clr_cpu_contention_mask(gd);
692 #endif
693 goto havethread;
696 lmsg = NULL;
697 laddr = NULL;
699 #ifdef SMP
700 if (ntd->td_fairq_accum >= 0)
701 set_cpu_contention_mask(gd);
702 /* Reload mpheld (it become stale after mplock/token ops) */
703 mpheld = MP_LOCK_HELD(gd);
704 if (ntd->td_mpcount && mpheld == 0) {
705 lmsg = "mplock";
706 laddr = ntd->td_mplock_stallpc;
708 #endif
711 * Coldpath - unable to schedule ntd, continue looking for threads
712 * to schedule. This is only allowed of the (presumably) kernel
713 * thread exhausted its fair share. A kernel thread stuck on
714 * resources does not currently allow a user thread to get in
715 * front of it.
717 #ifdef SMP
718 nquserok = ((ntd->td_pri < TDPRI_KERN_LPSCHED) ||
719 (ntd->td_fairq_accum < 0));
720 #else
721 nquserok = 1;
722 #endif
723 nlast = NULL;
725 for (;;) {
727 * If the fair-share scheduler ran out ntd gets moved to the
728 * end and its accumulator will be bumped, if it didn't we
729 * maintain the same queue position.
731 * nlast keeps track of the last element prior to any moves.
733 if (ntd->td_fairq_accum < 0) {
734 lwkt_fairq_accumulate(gd, ntd);
735 didaccumulate = 1;
738 * Move to end
740 xtd = TAILQ_NEXT(ntd, td_threadq);
741 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
742 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq);
745 * Set terminal element (nlast)
747 if (nlast == NULL) {
748 nlast = ntd;
749 if (xtd == NULL)
750 xtd = ntd;
752 ntd = xtd;
753 } else {
754 ntd = TAILQ_NEXT(ntd, td_threadq);
758 * If we exhausted the run list switch to the idle thread.
759 * Since one or more threads had resource acquisition issues
760 * we do not allow the idle thread to halt.
762 * NOTE: nlast can be NULL.
764 if (ntd == nlast) {
765 cpu_pause();
766 ntd = &gd->gd_idlethread;
767 ntd->td_flags |= TDF_IDLE_NOHLT;
768 #ifdef SMP
769 if (ntd->td_mpcount) {
770 mpheld = MP_LOCK_HELD(gd);
771 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
772 panic("Idle thread %p was holding the BGL!", ntd);
773 if (mpheld == 0) {
774 set_cpu_contention_mask(gd);
775 handle_cpu_contention_mask();
776 cpu_try_mplock();
777 mpheld = MP_LOCK_HELD(gd);
778 cpu_pause();
779 break; /* try again from the top, almost */
782 #endif
785 * If fairq accumulations occured we do not schedule the
786 * idle thread. This will cause us to try again from
787 * the (almost) top.
789 if (didaccumulate)
790 break; /* try again from the top, almost */
791 if (lmsg)
792 strlcpy(cpu_time.cp_msg, lmsg, sizeof(cpu_time.cp_msg));
793 cpu_time.cp_stallpc = (uintptr_t)laddr;
794 goto haveidle;
798 * Try to switch to this thread.
800 * NOTE: For UP there is no mplock and lwkt_getalltokens()
801 * always succeeds.
803 if ((ntd->td_pri >= TDPRI_KERN_LPSCHED || nquserok ||
804 user_pri_sched) && ntd->td_fairq_accum >= 0 &&
805 #ifdef SMP
806 (ntd->td_mpcount == 0 || mpheld || cpu_try_mplock()) &&
807 #endif
808 (!TD_TOKS_HELD(ntd) || lwkt_getalltokens(ntd, &lmsg, &laddr))
810 #ifdef SMP
811 clr_cpu_contention_mask(gd);
812 #endif
813 goto havethread;
815 #ifdef SMP
816 if (ntd->td_fairq_accum >= 0)
817 set_cpu_contention_mask(gd);
819 * Reload mpheld (it become stale after mplock/token ops).
821 mpheld = MP_LOCK_HELD(gd);
822 if (ntd->td_mpcount && mpheld == 0) {
823 lmsg = "mplock";
824 laddr = ntd->td_mplock_stallpc;
826 if (ntd->td_pri >= TDPRI_KERN_LPSCHED && ntd->td_fairq_accum >= 0)
827 nquserok = 0;
828 #endif
832 * All threads exhausted but we can loop due to a negative
833 * accumulator.
835 * While we are looping in the scheduler be sure to service
836 * any interrupts which were made pending due to our critical
837 * section, otherwise we could livelock (e.g.) IPIs.
839 * NOTE: splz can enter and exit the mplock so mpheld is
840 * stale after this call.
842 splz_check();
844 #ifdef SMP
846 * Our mplock can be cached and cause other cpus to livelock
847 * if we loop due to e.g. not being able to acquire tokens.
849 if (MP_LOCK_HELD(gd))
850 cpu_rel_mplock(gd->gd_cpuid);
851 mpheld = 0;
852 #endif
856 * Do the actual switch. WARNING: mpheld is stale here.
858 * We must always decrement td_fairq_accum on non-idle threads just
859 * in case a thread never gets a tick due to being in a continuous
860 * critical section. The page-zeroing code does that.
862 * If the thread we came up with is a higher or equal priority verses
863 * the thread at the head of the queue we move our thread to the
864 * front. This way we can always check the front of the queue.
866 havethread:
867 ++gd->gd_cnt.v_swtch;
868 --ntd->td_fairq_accum;
869 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
870 if (ntd != xtd && ntd->td_pri >= xtd->td_pri) {
871 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
872 TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq);
874 havethread_preempted:
877 * If the new target does not need the MP lock and we are holding it,
878 * release the MP lock. If the new target requires the MP lock we have
879 * already acquired it for the target.
881 * WARNING: mpheld is stale here.
883 haveidle:
884 KASSERT(ntd->td_critcount,
885 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
886 #ifdef SMP
887 if (ntd->td_mpcount == 0 ) {
888 if (MP_LOCK_HELD(gd))
889 cpu_rel_mplock(gd->gd_cpuid);
890 } else {
891 ASSERT_MP_LOCK_HELD(ntd);
893 #endif
894 if (td != ntd) {
895 ++switch_count;
896 #ifdef __x86_64__
898 int tos_ok __debugvar = jg_tos_ok(ntd);
899 KKASSERT(tos_ok);
901 #endif
902 KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
903 td->td_switch(ntd);
905 /* NOTE: current cpu may have changed after switch */
906 crit_exit_quick(td);
910 * Request that the target thread preempt the current thread. Preemption
911 * only works under a specific set of conditions:
913 * - We are not preempting ourselves
914 * - The target thread is owned by the current cpu
915 * - We are not currently being preempted
916 * - The target is not currently being preempted
917 * - We are not holding any spin locks
918 * - The target thread is not holding any tokens
919 * - We are able to satisfy the target's MP lock requirements (if any).
921 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
922 * this is called via lwkt_schedule() through the td_preemptable callback.
923 * critcount is the managed critical priority that we should ignore in order
924 * to determine whether preemption is possible (aka usually just the crit
925 * priority of lwkt_schedule() itself).
927 * XXX at the moment we run the target thread in a critical section during
928 * the preemption in order to prevent the target from taking interrupts
929 * that *WE* can't. Preemption is strictly limited to interrupt threads
930 * and interrupt-like threads, outside of a critical section, and the
931 * preempted source thread will be resumed the instant the target blocks
932 * whether or not the source is scheduled (i.e. preemption is supposed to
933 * be as transparent as possible).
935 * The target thread inherits our MP count (added to its own) for the
936 * duration of the preemption in order to preserve the atomicy of the
937 * MP lock during the preemption. Therefore, any preempting targets must be
938 * careful in regards to MP assertions. Note that the MP count may be
939 * out of sync with the physical mp_lock, but we do not have to preserve
940 * the original ownership of the lock if it was out of synch (that is, we
941 * can leave it synchronized on return).
943 void
944 lwkt_preempt(thread_t ntd, int critcount)
946 struct globaldata *gd = mycpu;
947 thread_t td;
948 #ifdef SMP
949 int mpheld;
950 int savecnt;
951 #endif
954 * The caller has put us in a critical section. We can only preempt
955 * if the caller of the caller was not in a critical section (basically
956 * a local interrupt), as determined by the 'critcount' parameter. We
957 * also can't preempt if the caller is holding any spinlocks (even if
958 * he isn't in a critical section). This also handles the tokens test.
960 * YYY The target thread must be in a critical section (else it must
961 * inherit our critical section? I dunno yet).
963 * Set need_lwkt_resched() unconditionally for now YYY.
965 KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
967 td = gd->gd_curthread;
968 if (ntd->td_pri <= td->td_pri) {
969 ++preempt_miss;
970 return;
972 if (td->td_critcount > critcount) {
973 ++preempt_miss;
974 need_lwkt_resched();
975 return;
977 #ifdef SMP
978 if (ntd->td_gd != gd) {
979 ++preempt_miss;
980 need_lwkt_resched();
981 return;
983 #endif
985 * We don't have to check spinlocks here as they will also bump
986 * td_critcount.
988 * Do not try to preempt if the target thread is holding any tokens.
989 * We could try to acquire the tokens but this case is so rare there
990 * is no need to support it.
992 KKASSERT(gd->gd_spinlock_rd == NULL);
993 KKASSERT(gd->gd_spinlocks_wr == 0);
995 if (TD_TOKS_HELD(ntd)) {
996 ++preempt_miss;
997 need_lwkt_resched();
998 return;
1000 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1001 ++preempt_weird;
1002 need_lwkt_resched();
1003 return;
1005 if (ntd->td_preempted) {
1006 ++preempt_hit;
1007 need_lwkt_resched();
1008 return;
1010 #ifdef SMP
1012 * note: an interrupt might have occured just as we were transitioning
1013 * to or from the MP lock. In this case td_mpcount will be pre-disposed
1014 * (non-zero) but not actually synchronized with the actual state of the
1015 * lock. We can use it to imply an MP lock requirement for the
1016 * preemption but we cannot use it to test whether we hold the MP lock
1017 * or not.
1019 savecnt = td->td_mpcount;
1020 mpheld = MP_LOCK_HELD(gd);
1021 ntd->td_mpcount += td->td_mpcount;
1022 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
1023 ntd->td_mpcount -= td->td_mpcount;
1024 ++preempt_miss;
1025 need_lwkt_resched();
1026 return;
1028 #endif
1031 * Since we are able to preempt the current thread, there is no need to
1032 * call need_lwkt_resched().
1034 ++preempt_hit;
1035 ntd->td_preempted = td;
1036 td->td_flags |= TDF_PREEMPT_LOCK;
1037 KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1038 td->td_switch(ntd);
1040 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1041 #ifdef SMP
1042 KKASSERT(savecnt == td->td_mpcount);
1043 mpheld = MP_LOCK_HELD(gd);
1044 if (mpheld && td->td_mpcount == 0)
1045 cpu_rel_mplock(gd->gd_cpuid);
1046 else if (mpheld == 0 && td->td_mpcount)
1047 panic("lwkt_preempt(): MP lock was not held through");
1048 #endif
1049 ntd->td_preempted = NULL;
1050 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1054 * Conditionally call splz() if gd_reqflags indicates work is pending.
1055 * This will work inside a critical section but not inside a hard code
1056 * section.
1058 * (self contained on a per cpu basis)
1060 void
1061 splz_check(void)
1063 globaldata_t gd = mycpu;
1064 thread_t td = gd->gd_curthread;
1066 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1067 gd->gd_intr_nesting_level == 0 &&
1068 td->td_nest_count < 2)
1070 splz();
1075 * This version is integrated into crit_exit, reqflags has already
1076 * been tested but td_critcount has not.
1078 * We only want to execute the splz() on the 1->0 transition of
1079 * critcount and not in a hard code section or if too deeply nested.
1081 void
1082 lwkt_maybe_splz(thread_t td)
1084 globaldata_t gd = td->td_gd;
1086 if (td->td_critcount == 0 &&
1087 gd->gd_intr_nesting_level == 0 &&
1088 td->td_nest_count < 2)
1090 splz();
1095 * This function is used to negotiate a passive release of the current
1096 * process/lwp designation with the user scheduler, allowing the user
1097 * scheduler to schedule another user thread. The related kernel thread
1098 * (curthread) continues running in the released state.
1100 void
1101 lwkt_passive_release(struct thread *td)
1103 struct lwp *lp = td->td_lwp;
1105 td->td_release = NULL;
1106 lwkt_setpri_self(TDPRI_KERN_USER);
1107 lp->lwp_proc->p_usched->release_curproc(lp);
1112 * This implements a normal yield. This routine is virtually a nop if
1113 * there is nothing to yield to but it will always run any pending interrupts
1114 * if called from a critical section.
1116 * This yield is designed for kernel threads without a user context.
1118 * (self contained on a per cpu basis)
1120 void
1121 lwkt_yield(void)
1123 globaldata_t gd = mycpu;
1124 thread_t td = gd->gd_curthread;
1125 thread_t xtd;
1127 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1128 splz();
1129 if (td->td_fairq_accum < 0) {
1130 lwkt_schedule_self(curthread);
1131 lwkt_switch();
1132 } else {
1133 xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1134 if (xtd && xtd->td_pri > td->td_pri) {
1135 lwkt_schedule_self(curthread);
1136 lwkt_switch();
1142 * This yield is designed for kernel threads with a user context.
1144 * The kernel acting on behalf of the user is potentially cpu-bound,
1145 * this function will efficiently allow other threads to run and also
1146 * switch to other processes by releasing.
1148 * The lwkt_user_yield() function is designed to have very low overhead
1149 * if no yield is determined to be needed.
1151 void
1152 lwkt_user_yield(void)
1154 globaldata_t gd = mycpu;
1155 thread_t td = gd->gd_curthread;
1158 * Always run any pending interrupts in case we are in a critical
1159 * section.
1161 if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1162 splz();
1164 #ifdef SMP
1166 * XXX SEVERE TEMPORARY HACK. A cpu-bound operation running in the
1167 * kernel can prevent other cpus from servicing interrupt threads
1168 * which still require the MP lock (which is a lot of them). This
1169 * has a chaining effect since if the interrupt is blocked, so is
1170 * the event, so normal scheduling will not pick up on the problem.
1172 if (cpu_contention_mask && td->td_mpcount) {
1173 yield_mplock(td);
1175 #endif
1178 * Switch (which forces a release) if another kernel thread needs
1179 * the cpu, if userland wants us to resched, or if our kernel
1180 * quantum has run out.
1182 if (lwkt_resched_wanted() ||
1183 user_resched_wanted() ||
1184 td->td_fairq_accum < 0)
1186 lwkt_switch();
1189 #if 0
1191 * Reacquire the current process if we are released.
1193 * XXX not implemented atm. The kernel may be holding locks and such,
1194 * so we want the thread to continue to receive cpu.
1196 if (td->td_release == NULL && lp) {
1197 lp->lwp_proc->p_usched->acquire_curproc(lp);
1198 td->td_release = lwkt_passive_release;
1199 lwkt_setpri_self(TDPRI_USER_NORM);
1201 #endif
1205 * Generic schedule. Possibly schedule threads belonging to other cpus and
1206 * deal with threads that might be blocked on a wait queue.
1208 * We have a little helper inline function which does additional work after
1209 * the thread has been enqueued, including dealing with preemption and
1210 * setting need_lwkt_resched() (which prevents the kernel from returning
1211 * to userland until it has processed higher priority threads).
1213 * It is possible for this routine to be called after a failed _enqueue
1214 * (due to the target thread migrating, sleeping, or otherwise blocked).
1215 * We have to check that the thread is actually on the run queue!
1217 * reschedok is an optimized constant propagated from lwkt_schedule() or
1218 * lwkt_schedule_noresched(). By default it is non-zero, causing a
1219 * reschedule to be requested if the target thread has a higher priority.
1220 * The port messaging code will set MSG_NORESCHED and cause reschedok to
1221 * be 0, prevented undesired reschedules.
1223 static __inline
1224 void
1225 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok)
1227 thread_t otd;
1229 if (ntd->td_flags & TDF_RUNQ) {
1230 if (ntd->td_preemptable && reschedok) {
1231 ntd->td_preemptable(ntd, ccount); /* YYY +token */
1232 } else if (reschedok) {
1233 otd = curthread;
1234 if (ntd->td_pri > otd->td_pri)
1235 need_lwkt_resched();
1239 * Give the thread a little fair share scheduler bump if it
1240 * has been asleep for a while. This is primarily to avoid
1241 * a degenerate case for interrupt threads where accumulator
1242 * crosses into negative territory unnecessarily.
1244 if (ntd->td_fairq_lticks != ticks) {
1245 ntd->td_fairq_lticks = ticks;
1246 ntd->td_fairq_accum += gd->gd_fairq_total_pri;
1247 if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd))
1248 ntd->td_fairq_accum = TDFAIRQ_MAX(gd);
1253 static __inline
1254 void
1255 _lwkt_schedule(thread_t td, int reschedok)
1257 globaldata_t mygd = mycpu;
1259 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1260 crit_enter_gd(mygd);
1261 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1262 if (td == mygd->gd_curthread) {
1263 _lwkt_enqueue(td);
1264 } else {
1266 * If we own the thread, there is no race (since we are in a
1267 * critical section). If we do not own the thread there might
1268 * be a race but the target cpu will deal with it.
1270 #ifdef SMP
1271 if (td->td_gd == mygd) {
1272 _lwkt_enqueue(td);
1273 _lwkt_schedule_post(mygd, td, 1, reschedok);
1274 } else {
1275 lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1277 #else
1278 _lwkt_enqueue(td);
1279 _lwkt_schedule_post(mygd, td, 1, reschedok);
1280 #endif
1282 crit_exit_gd(mygd);
1285 void
1286 lwkt_schedule(thread_t td)
1288 _lwkt_schedule(td, 1);
1291 void
1292 lwkt_schedule_noresched(thread_t td)
1294 _lwkt_schedule(td, 0);
1297 #ifdef SMP
1300 * When scheduled remotely if frame != NULL the IPIQ is being
1301 * run via doreti or an interrupt then preemption can be allowed.
1303 * To allow preemption we have to drop the critical section so only
1304 * one is present in _lwkt_schedule_post.
1306 static void
1307 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1309 thread_t td = curthread;
1310 thread_t ntd = arg;
1312 if (frame && ntd->td_preemptable) {
1313 crit_exit_noyield(td);
1314 _lwkt_schedule(ntd, 1);
1315 crit_enter_quick(td);
1316 } else {
1317 _lwkt_schedule(ntd, 1);
1322 * Thread migration using a 'Pull' method. The thread may or may not be
1323 * the current thread. It MUST be descheduled and in a stable state.
1324 * lwkt_giveaway() must be called on the cpu owning the thread.
1326 * At any point after lwkt_giveaway() is called, the target cpu may
1327 * 'pull' the thread by calling lwkt_acquire().
1329 * We have to make sure the thread is not sitting on a per-cpu tsleep
1330 * queue or it will blow up when it moves to another cpu.
1332 * MPSAFE - must be called under very specific conditions.
1334 void
1335 lwkt_giveaway(thread_t td)
1337 globaldata_t gd = mycpu;
1339 crit_enter_gd(gd);
1340 if (td->td_flags & TDF_TSLEEPQ)
1341 tsleep_remove(td);
1342 KKASSERT(td->td_gd == gd);
1343 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1344 td->td_flags |= TDF_MIGRATING;
1345 crit_exit_gd(gd);
1348 void
1349 lwkt_acquire(thread_t td)
1351 globaldata_t gd;
1352 globaldata_t mygd;
1354 KKASSERT(td->td_flags & TDF_MIGRATING);
1355 gd = td->td_gd;
1356 mygd = mycpu;
1357 if (gd != mycpu) {
1358 cpu_lfence();
1359 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1360 crit_enter_gd(mygd);
1361 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1362 #ifdef SMP
1363 lwkt_process_ipiq();
1364 #endif
1365 cpu_lfence();
1367 td->td_gd = mygd;
1368 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1369 td->td_flags &= ~TDF_MIGRATING;
1370 crit_exit_gd(mygd);
1371 } else {
1372 crit_enter_gd(mygd);
1373 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1374 td->td_flags &= ~TDF_MIGRATING;
1375 crit_exit_gd(mygd);
1379 #endif
1382 * Generic deschedule. Descheduling threads other then your own should be
1383 * done only in carefully controlled circumstances. Descheduling is
1384 * asynchronous.
1386 * This function may block if the cpu has run out of messages.
1388 void
1389 lwkt_deschedule(thread_t td)
1391 crit_enter();
1392 #ifdef SMP
1393 if (td == curthread) {
1394 _lwkt_dequeue(td);
1395 } else {
1396 if (td->td_gd == mycpu) {
1397 _lwkt_dequeue(td);
1398 } else {
1399 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1402 #else
1403 _lwkt_dequeue(td);
1404 #endif
1405 crit_exit();
1409 * Set the target thread's priority. This routine does not automatically
1410 * switch to a higher priority thread, LWKT threads are not designed for
1411 * continuous priority changes. Yield if you want to switch.
1413 void
1414 lwkt_setpri(thread_t td, int pri)
1416 KKASSERT(td->td_gd == mycpu);
1417 if (td->td_pri != pri) {
1418 KKASSERT(pri >= 0);
1419 crit_enter();
1420 if (td->td_flags & TDF_RUNQ) {
1421 _lwkt_dequeue(td);
1422 td->td_pri = pri;
1423 _lwkt_enqueue(td);
1424 } else {
1425 td->td_pri = pri;
1427 crit_exit();
1432 * Set the initial priority for a thread prior to it being scheduled for
1433 * the first time. The thread MUST NOT be scheduled before or during
1434 * this call. The thread may be assigned to a cpu other then the current
1435 * cpu.
1437 * Typically used after a thread has been created with TDF_STOPPREQ,
1438 * and before the thread is initially scheduled.
1440 void
1441 lwkt_setpri_initial(thread_t td, int pri)
1443 KKASSERT(pri >= 0);
1444 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1445 td->td_pri = pri;
1448 void
1449 lwkt_setpri_self(int pri)
1451 thread_t td = curthread;
1453 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1454 crit_enter();
1455 if (td->td_flags & TDF_RUNQ) {
1456 _lwkt_dequeue(td);
1457 td->td_pri = pri;
1458 _lwkt_enqueue(td);
1459 } else {
1460 td->td_pri = pri;
1462 crit_exit();
1466 * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle.
1468 * Example: two competing threads, same priority N. decrement by (2*N)
1469 * increment by N*8, each thread will get 4 ticks.
1471 void
1472 lwkt_fairq_schedulerclock(thread_t td)
1474 if (fairq_enable) {
1475 while (td) {
1476 if (td != &td->td_gd->gd_idlethread) {
1477 td->td_fairq_accum -= td->td_gd->gd_fairq_total_pri;
1478 if (td->td_fairq_accum < -TDFAIRQ_MAX(td->td_gd))
1479 td->td_fairq_accum = -TDFAIRQ_MAX(td->td_gd);
1480 if (td->td_fairq_accum < 0)
1481 need_lwkt_resched();
1482 td->td_fairq_lticks = ticks;
1484 td = td->td_preempted;
1489 static void
1490 lwkt_fairq_accumulate(globaldata_t gd, thread_t td)
1492 td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE;
1493 if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd))
1494 td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd);
1498 * Migrate the current thread to the specified cpu.
1500 * This is accomplished by descheduling ourselves from the current cpu,
1501 * moving our thread to the tdallq of the target cpu, IPI messaging the
1502 * target cpu, and switching out. TDF_MIGRATING prevents scheduling
1503 * races while the thread is being migrated.
1505 * We must be sure to remove ourselves from the current cpu's tsleepq
1506 * before potentially moving to another queue. The thread can be on
1507 * a tsleepq due to a left-over tsleep_interlock().
1509 #ifdef SMP
1510 static void lwkt_setcpu_remote(void *arg);
1511 #endif
1513 void
1514 lwkt_setcpu_self(globaldata_t rgd)
1516 #ifdef SMP
1517 thread_t td = curthread;
1519 if (td->td_gd != rgd) {
1520 crit_enter_quick(td);
1521 if (td->td_flags & TDF_TSLEEPQ)
1522 tsleep_remove(td);
1523 td->td_flags |= TDF_MIGRATING;
1524 lwkt_deschedule_self(td);
1525 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1526 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1527 lwkt_switch();
1528 /* we are now on the target cpu */
1529 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1530 crit_exit_quick(td);
1532 #endif
1535 void
1536 lwkt_migratecpu(int cpuid)
1538 #ifdef SMP
1539 globaldata_t rgd;
1541 rgd = globaldata_find(cpuid);
1542 lwkt_setcpu_self(rgd);
1543 #endif
1547 * Remote IPI for cpu migration (called while in a critical section so we
1548 * do not have to enter another one). The thread has already been moved to
1549 * our cpu's allq, but we must wait for the thread to be completely switched
1550 * out on the originating cpu before we schedule it on ours or the stack
1551 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD
1552 * change to main memory.
1554 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1555 * against wakeups. It is best if this interface is used only when there
1556 * are no pending events that might try to schedule the thread.
1558 #ifdef SMP
1559 static void
1560 lwkt_setcpu_remote(void *arg)
1562 thread_t td = arg;
1563 globaldata_t gd = mycpu;
1565 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1566 #ifdef SMP
1567 lwkt_process_ipiq();
1568 #endif
1569 cpu_lfence();
1571 td->td_gd = gd;
1572 cpu_sfence();
1573 td->td_flags &= ~TDF_MIGRATING;
1574 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1575 _lwkt_enqueue(td);
1577 #endif
1579 struct lwp *
1580 lwkt_preempted_proc(void)
1582 thread_t td = curthread;
1583 while (td->td_preempted)
1584 td = td->td_preempted;
1585 return(td->td_lwp);
1589 * Create a kernel process/thread/whatever. It shares it's address space
1590 * with proc0 - ie: kernel only.
1592 * NOTE! By default new threads are created with the MP lock held. A
1593 * thread which does not require the MP lock should release it by calling
1594 * rel_mplock() at the start of the new thread.
1597 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1598 thread_t template, int tdflags, int cpu, const char *fmt, ...)
1600 thread_t td;
1601 __va_list ap;
1603 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1604 tdflags);
1605 if (tdp)
1606 *tdp = td;
1607 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1610 * Set up arg0 for 'ps' etc
1612 __va_start(ap, fmt);
1613 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1614 __va_end(ap);
1617 * Schedule the thread to run
1619 if ((td->td_flags & TDF_STOPREQ) == 0)
1620 lwkt_schedule(td);
1621 else
1622 td->td_flags &= ~TDF_STOPREQ;
1623 return 0;
1627 * Destroy an LWKT thread. Warning! This function is not called when
1628 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1629 * uses a different reaping mechanism.
1631 void
1632 lwkt_exit(void)
1634 thread_t td = curthread;
1635 thread_t std;
1636 globaldata_t gd;
1638 if (td->td_flags & TDF_VERBOSE)
1639 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1640 caps_exit(td);
1643 * Get us into a critical section to interlock gd_freetd and loop
1644 * until we can get it freed.
1646 * We have to cache the current td in gd_freetd because objcache_put()ing
1647 * it would rip it out from under us while our thread is still active.
1649 gd = mycpu;
1650 crit_enter_quick(td);
1651 while ((std = gd->gd_freetd) != NULL) {
1652 gd->gd_freetd = NULL;
1653 objcache_put(thread_cache, std);
1657 * Remove thread resources from kernel lists and deschedule us for
1658 * the last time.
1660 if (td->td_flags & TDF_TSLEEPQ)
1661 tsleep_remove(td);
1662 biosched_done(td);
1663 dsched_exit_thread(td);
1664 lwkt_deschedule_self(td);
1665 lwkt_remove_tdallq(td);
1666 if (td->td_flags & TDF_ALLOCATED_THREAD)
1667 gd->gd_freetd = td;
1668 cpu_thread_exit();
1671 void
1672 lwkt_remove_tdallq(thread_t td)
1674 KKASSERT(td->td_gd == mycpu);
1675 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1679 * Code reduction and branch prediction improvements. Call/return
1680 * overhead on modern cpus often degenerates into 0 cycles due to
1681 * the cpu's branch prediction hardware and return pc cache. We
1682 * can take advantage of this by not inlining medium-complexity
1683 * functions and we can also reduce the branch prediction impact
1684 * by collapsing perfectly predictable branches into a single
1685 * procedure instead of duplicating it.
1687 * Is any of this noticeable? Probably not, so I'll take the
1688 * smaller code size.
1690 void
1691 crit_exit_wrapper(void)
1693 _crit_exit(mycpu);
1696 void
1697 crit_panic(void)
1699 thread_t td = curthread;
1700 int lcrit = td->td_critcount;
1702 td->td_critcount = 0;
1703 panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1704 /* NOT REACHED */
1707 #ifdef SMP
1710 * Called from debugger/panic on cpus which have been stopped. We must still
1711 * process the IPIQ while stopped, even if we were stopped while in a critical
1712 * section (XXX).
1714 * If we are dumping also try to process any pending interrupts. This may
1715 * or may not work depending on the state of the cpu at the point it was
1716 * stopped.
1718 void
1719 lwkt_smp_stopped(void)
1721 globaldata_t gd = mycpu;
1723 crit_enter_gd(gd);
1724 if (dumping) {
1725 lwkt_process_ipiq();
1726 splz();
1727 } else {
1728 lwkt_process_ipiq();
1730 crit_exit_gd(gd);
1733 #endif