kernel: Remove unused DIRECTIO option (see 12b70cea73eef6a67).
[dragonfly.git] / sys / platform / pc64 / x86_64 / machdep.c
blob2b810fa76f3626fdbc5224b4fb63465150dcd7e4
1 /*-
2 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3 * Copyright (c) 1992 Terrence R. Lambert.
4 * Copyright (c) 2003 Peter Wemm.
5 * Copyright (c) 2008 The DragonFly Project.
6 * All rights reserved.
8 * This code is derived from software contributed to Berkeley by
9 * William Jolitz.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
39 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
40 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
93 #include <sys/efi.h>
95 #include <ddb/ddb.h>
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h> /* CPU_prvspace */
108 #include <machine/smp.h>
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 #include <machine/framebuffer.h>
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
130 #define PHYSMAP_ENTRIES 10
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
134 extern void printcpuinfo(void); /* XXX header file */
135 extern void identify_cpu(void);
136 #if 0 /* JG */
137 extern void finishidentcpu(void);
138 #endif
139 extern void panicifcpuunsupported(void);
141 static void cpu_startup(void *);
142 static void pic_finish(void *);
143 static void cpu_finish(void *);
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 static void init_locks(void);
149 extern void pcpu_timer_always(struct intrframe *);
151 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
152 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
153 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
155 #ifdef DDB
156 extern vm_offset_t ksym_start, ksym_end;
157 #endif
159 struct privatespace CPU_prvspace_bsp __aligned(4096);
160 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
162 vm_paddr_t efi_systbl_phys;
163 int _udatasel, _ucodesel, _ucode32sel;
164 u_long atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 cpumask_t smp_idleinvl_mask;
167 cpumask_t smp_idleinvl_reqs;
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181 "monitor/mwait target state");
183 #define CPU_MWAIT_HAS_CX \
184 ((cpu_feature2 & CPUID2_MON) && \
185 (cpu_mwait_feature & CPUID_MWAIT_EXT))
187 #define CPU_MWAIT_CX_NAMELEN 16
189 #define CPU_MWAIT_C1 1
190 #define CPU_MWAIT_C2 2
191 #define CPU_MWAIT_C3 3
192 #define CPU_MWAIT_CX_MAX 8
194 #define CPU_MWAIT_HINT_AUTO -1 /* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP -2 /* C3+ */
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
200 struct cpu_mwait_cx {
201 int subcnt;
202 char name[4];
203 struct sysctl_ctx_list sysctl_ctx;
204 struct sysctl_oid *sysctl_tree;
206 static struct cpu_mwait_cx cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char cpu_mwait_cx_supported[256];
209 static int cpu_mwait_c1_hints_cnt;
210 static int cpu_mwait_hints_cnt;
211 static int *cpu_mwait_hints;
213 static int cpu_mwait_deep_hints_cnt;
214 static int *cpu_mwait_deep_hints;
216 #define CPU_IDLE_REPEAT_DEFAULT 750
218 static u_int cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int cpu_mwait_repeat_shift = 1;
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB 0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS 0x2
225 static int cpu_mwait_c3_preamble =
226 CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 CPU_MWAIT_C3_PREAMBLE_BM_STS;
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230 cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232 &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
234 static int cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 int *, boolean_t);
236 static int cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241 NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243 NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245 &cpu_mwait_repeat_shift, 0, "");
247 long physmem = 0;
249 u_long ebda_addr = 0;
251 int imcr_present = 0;
253 int naps = 0; /* # of Applications processors */
255 u_int base_memory;
256 struct mtx dt_lock; /* lock for GDT and LDT */
258 static int
259 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
261 u_long pmem = ctob(physmem);
263 int error = sysctl_handle_long(oidp, &pmem, 0, req);
264 return (error);
267 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
268 0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
270 static int
271 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
273 int error = sysctl_handle_int(oidp, 0,
274 ctob(physmem - vmstats.v_wire_count), req);
275 return (error);
278 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
279 0, 0, sysctl_hw_usermem, "IU", "");
281 static int
282 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
284 int error = sysctl_handle_int(oidp, 0,
285 x86_64_btop(avail_end - avail_start), req);
286 return (error);
289 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
290 0, 0, sysctl_hw_availpages, "I", "");
292 vm_paddr_t Maxmem;
293 vm_paddr_t Realmem;
296 * The number of PHYSMAP entries must be one less than the number of
297 * PHYSSEG entries because the PHYSMAP entry that spans the largest
298 * physical address that is accessible by ISA DMA is split into two
299 * PHYSSEG entries.
301 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
302 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
304 /* must be 1 less so 0 0 can signal end of chunks */
305 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
306 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
308 static vm_offset_t buffer_sva, buffer_eva;
309 vm_offset_t clean_sva, clean_eva;
310 static vm_offset_t pager_sva, pager_eva;
311 static struct trapframe proc0_tf;
313 static void
314 cpu_startup(void *dummy)
316 caddr_t v;
317 vm_size_t size = 0;
318 vm_offset_t firstaddr;
321 * Good {morning,afternoon,evening,night}.
323 kprintf("%s", version);
324 startrtclock();
325 printcpuinfo();
326 panicifcpuunsupported();
327 kprintf("real memory = %ju (%ju MB)\n",
328 (intmax_t)Realmem,
329 (intmax_t)Realmem / 1024 / 1024);
331 * Display any holes after the first chunk of extended memory.
333 if (bootverbose) {
334 int indx;
336 kprintf("Physical memory chunk(s):\n");
337 for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
338 vm_paddr_t size1;
340 size1 = phys_avail[indx].phys_end -
341 phys_avail[indx].phys_beg;
343 kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
344 (intmax_t)phys_avail[indx].phys_beg,
345 (intmax_t)phys_avail[indx].phys_end - 1,
346 (intmax_t)size1,
347 (intmax_t)(size1 / PAGE_SIZE));
352 * Allocate space for system data structures.
353 * The first available kernel virtual address is in "v".
354 * As pages of kernel virtual memory are allocated, "v" is incremented.
355 * As pages of memory are allocated and cleared,
356 * "firstaddr" is incremented.
357 * An index into the kernel page table corresponding to the
358 * virtual memory address maintained in "v" is kept in "mapaddr".
362 * Make two passes. The first pass calculates how much memory is
363 * needed and allocates it. The second pass assigns virtual
364 * addresses to the various data structures.
366 firstaddr = 0;
367 again:
368 v = (caddr_t)firstaddr;
370 #define valloc(name, type, num) \
371 (name) = (type *)v; v = (caddr_t)((name)+(num))
372 #define valloclim(name, type, num, lim) \
373 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
376 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
377 * For the first 64MB of ram nominally allocate sufficient buffers to
378 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
379 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
380 * the buffer cache we limit the eventual kva reservation to
381 * maxbcache bytes.
383 * factor represents the 1/4 x ram conversion.
385 if (nbuf == 0) {
386 long factor = 4 * NBUFCALCSIZE / 1024;
387 long kbytes = physmem * (PAGE_SIZE / 1024);
389 nbuf = 50;
390 if (kbytes > 4096)
391 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
392 if (kbytes > 65536)
393 nbuf += (kbytes - 65536) * 2 / (factor * 5);
394 if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
395 nbuf = maxbcache / NBUFCALCSIZE;
399 * Do not allow the buffer_map to be more then 1/2 the size of the
400 * kernel_map.
402 if (nbuf > (virtual_end - virtual_start +
403 virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
404 nbuf = (virtual_end - virtual_start +
405 virtual2_end - virtual2_start) / (MAXBSIZE * 2);
406 kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
410 * Do not allow the buffer_map to use more than 50% of available
411 * physical-equivalent memory. Since the VM pages which back
412 * individual buffers are typically wired, having too many bufs
413 * can prevent the system from paging properly.
415 if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
416 nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
417 kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
421 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
422 * the valloc space which is just the virtual_end - virtual_start
423 * section. We use valloc() to allocate the buf header array.
425 if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
426 nbuf = (virtual_end - virtual_start) /
427 sizeof(struct buf) / 2;
428 kprintf("Warning: nbufs capped at %ld due to valloc "
429 "considerations\n", nbuf);
432 nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
433 #ifdef NSWBUF_MIN
434 if (nswbuf_mem < NSWBUF_MIN)
435 nswbuf_mem = NSWBUF_MIN;
436 #endif
437 nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
438 #ifdef NSWBUF_MIN
439 if (nswbuf_kva < NSWBUF_MIN)
440 nswbuf_kva = NSWBUF_MIN;
441 #endif
443 valloc(swbuf_mem, struct buf, nswbuf_mem);
444 valloc(swbuf_kva, struct buf, nswbuf_kva);
445 valloc(buf, struct buf, nbuf);
448 * End of first pass, size has been calculated so allocate memory
450 if (firstaddr == 0) {
451 size = (vm_size_t)(v - firstaddr);
452 firstaddr = kmem_alloc(&kernel_map, round_page(size),
453 VM_SUBSYS_BUF);
454 if (firstaddr == 0)
455 panic("startup: no room for tables");
456 goto again;
460 * End of second pass, addresses have been assigned
462 * nbuf is an int, make sure we don't overflow the field.
464 * On 64-bit systems we always reserve maximal allocations for
465 * buffer cache buffers and there are no fragmentation issues,
466 * so the KVA segment does not have to be excessively oversized.
468 if ((vm_size_t)(v - firstaddr) != size)
469 panic("startup: table size inconsistency");
471 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
472 ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
473 ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
474 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
475 ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
476 buffer_map.system_map = 1;
477 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
478 ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
479 pager_map_size);
480 pager_map.system_map = 1;
481 kprintf("avail memory = %ju (%ju MB)\n",
482 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
483 (uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
484 1024 / 1024);
487 struct cpu_idle_stat {
488 int hint;
489 int reserved;
490 u_long halt;
491 u_long spin;
492 u_long repeat;
493 u_long repeat_last;
494 u_long repeat_delta;
495 u_long mwait_cx[CPU_MWAIT_CX_MAX];
496 } __cachealign;
498 #define CPU_IDLE_STAT_HALT -1
499 #define CPU_IDLE_STAT_SPIN -2
501 static struct cpu_idle_stat cpu_idle_stats[MAXCPU];
503 static int
504 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
506 int idx = arg2, cpu, error;
507 u_long val = 0;
509 if (idx == CPU_IDLE_STAT_HALT) {
510 for (cpu = 0; cpu < ncpus; ++cpu)
511 val += cpu_idle_stats[cpu].halt;
512 } else if (idx == CPU_IDLE_STAT_SPIN) {
513 for (cpu = 0; cpu < ncpus; ++cpu)
514 val += cpu_idle_stats[cpu].spin;
515 } else {
516 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
517 ("invalid index %d", idx));
518 for (cpu = 0; cpu < ncpus; ++cpu)
519 val += cpu_idle_stats[cpu].mwait_cx[idx];
522 error = sysctl_handle_quad(oidp, &val, 0, req);
523 if (error || req->newptr == NULL)
524 return error;
526 if (idx == CPU_IDLE_STAT_HALT) {
527 for (cpu = 0; cpu < ncpus; ++cpu)
528 cpu_idle_stats[cpu].halt = 0;
529 cpu_idle_stats[0].halt = val;
530 } else if (idx == CPU_IDLE_STAT_SPIN) {
531 for (cpu = 0; cpu < ncpus; ++cpu)
532 cpu_idle_stats[cpu].spin = 0;
533 cpu_idle_stats[0].spin = val;
534 } else {
535 KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
536 ("invalid index %d", idx));
537 for (cpu = 0; cpu < ncpus; ++cpu)
538 cpu_idle_stats[cpu].mwait_cx[idx] = 0;
539 cpu_idle_stats[0].mwait_cx[idx] = val;
541 return 0;
544 static void
545 cpu_mwait_attach(void)
547 struct sbuf sb;
548 int hint_idx, i;
550 if (!CPU_MWAIT_HAS_CX)
551 return;
553 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
554 (CPUID_TO_FAMILY(cpu_id) > 0xf ||
555 (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
556 CPUID_TO_MODEL(cpu_id) >= 0xf))) {
557 int bm_sts = 1;
560 * Pentium dual-core, Core 2 and beyond do not need any
561 * additional activities to enter deep C-state, i.e. C3(+).
563 cpu_mwait_cx_no_bmarb();
565 TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
566 if (!bm_sts)
567 cpu_mwait_cx_no_bmsts();
570 sbuf_new(&sb, cpu_mwait_cx_supported,
571 sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
573 for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
574 struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
575 int sub;
577 ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
579 sysctl_ctx_init(&cx->sysctl_ctx);
580 cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
581 SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
582 cx->name, CTLFLAG_RW, NULL, "Cx control/info");
583 if (cx->sysctl_tree == NULL)
584 continue;
586 cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
587 SYSCTL_ADD_INT(&cx->sysctl_ctx,
588 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
589 "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
590 "sub-state count");
591 SYSCTL_ADD_PROC(&cx->sysctl_ctx,
592 SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
593 "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
594 i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
596 for (sub = 0; sub < cx->subcnt; ++sub)
597 sbuf_printf(&sb, "C%d/%d ", i, sub);
599 sbuf_trim(&sb);
600 sbuf_finish(&sb);
603 * Non-deep C-states
605 cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
606 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
607 cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
608 cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
609 M_DEVBUF, M_WAITOK);
611 hint_idx = 0;
612 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
613 int j, subcnt;
615 subcnt = cpu_mwait_cx_info[i].subcnt;
616 for (j = 0; j < subcnt; ++j) {
617 KASSERT(hint_idx < cpu_mwait_hints_cnt,
618 ("invalid mwait hint index %d", hint_idx));
619 cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
620 ++hint_idx;
623 KASSERT(hint_idx == cpu_mwait_hints_cnt,
624 ("mwait hint count %d != index %d",
625 cpu_mwait_hints_cnt, hint_idx));
627 if (bootverbose) {
628 kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
629 for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
630 int hint = cpu_mwait_hints[i];
632 kprintf(" C%d/%d hint 0x%04x\n",
633 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
634 hint);
639 * Deep C-states
641 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
642 cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
643 cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
644 M_DEVBUF, M_WAITOK);
646 hint_idx = 0;
647 for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
648 int j, subcnt;
650 subcnt = cpu_mwait_cx_info[i].subcnt;
651 for (j = 0; j < subcnt; ++j) {
652 KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
653 ("invalid mwait deep hint index %d", hint_idx));
654 cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
655 ++hint_idx;
658 KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
659 ("mwait deep hint count %d != index %d",
660 cpu_mwait_deep_hints_cnt, hint_idx));
662 if (bootverbose) {
663 kprintf("MWAIT deep hints:\n");
664 for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
665 int hint = cpu_mwait_deep_hints[i];
667 kprintf(" C%d/%d hint 0x%04x\n",
668 MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
669 hint);
672 cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
674 for (i = 0; i < ncpus; ++i) {
675 char name[16];
677 ksnprintf(name, sizeof(name), "idle%d", i);
678 SYSCTL_ADD_PROC(NULL,
679 SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
680 name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
681 0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
685 static void
686 cpu_finish(void *dummy __unused)
688 cpu_setregs();
689 cpu_mwait_attach();
692 static void
693 pic_finish(void *dummy __unused)
695 /* Log ELCR information */
696 elcr_dump();
698 /* Log MPTABLE information */
699 mptable_pci_int_dump();
701 /* Finalize PCI */
702 MachIntrABI.finalize();
706 * Send an interrupt to process.
708 * Stack is set up to allow sigcode stored
709 * at top to call routine, followed by kcall
710 * to sigreturn routine below. After sigreturn
711 * resets the signal mask, the stack, and the
712 * frame pointer, it returns to the user
713 * specified pc, psl.
715 void
716 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
718 struct lwp *lp = curthread->td_lwp;
719 struct proc *p = lp->lwp_proc;
720 struct trapframe *regs;
721 struct sigacts *psp = p->p_sigacts;
722 struct sigframe sf, *sfp;
723 int oonstack;
724 char *sp;
726 regs = lp->lwp_md.md_regs;
727 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
729 /* Save user context */
730 bzero(&sf, sizeof(struct sigframe));
731 sf.sf_uc.uc_sigmask = *mask;
732 sf.sf_uc.uc_stack = lp->lwp_sigstk;
733 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
734 KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
735 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
737 /* Make the size of the saved context visible to userland */
738 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
740 /* Allocate and validate space for the signal handler context. */
741 if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
742 SIGISMEMBER(psp->ps_sigonstack, sig)) {
743 sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
744 sizeof(struct sigframe));
745 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
746 } else {
747 /* We take red zone into account */
748 sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
752 * XXX AVX needs 64-byte alignment but sigframe has other fields and
753 * the embedded ucontext is not at the front, so aligning this won't
754 * help us. Fortunately we bcopy in/out of the sigframe, so the
755 * kernel is ok.
757 * The problem though is if userland winds up trying to use the
758 * context directly.
760 sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
762 /* Translate the signal is appropriate */
763 if (p->p_sysent->sv_sigtbl) {
764 if (sig <= p->p_sysent->sv_sigsize)
765 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
769 * Build the argument list for the signal handler.
771 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
773 regs->tf_rdi = sig; /* argument 1 */
774 regs->tf_rdx = (register_t)&sfp->sf_uc; /* argument 3 */
776 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
778 * Signal handler installed with SA_SIGINFO.
780 * action(signo, siginfo, ucontext)
782 regs->tf_rsi = (register_t)&sfp->sf_si; /* argument 2 */
783 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
784 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
786 /* fill siginfo structure */
787 sf.sf_si.si_signo = sig;
788 sf.sf_si.si_code = code;
789 sf.sf_si.si_addr = (void *)regs->tf_addr;
790 } else {
792 * Old FreeBSD-style arguments.
794 * handler (signo, code, [uc], addr)
796 regs->tf_rsi = (register_t)code; /* argument 2 */
797 regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
798 sf.sf_ahu.sf_handler = catcher;
802 * If we're a vm86 process, we want to save the segment registers.
803 * We also change eflags to be our emulated eflags, not the actual
804 * eflags.
806 #if 0 /* JG */
807 if (regs->tf_eflags & PSL_VM) {
808 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
809 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
811 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
812 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
813 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
814 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
816 if (vm86->vm86_has_vme == 0)
817 sf.sf_uc.uc_mcontext.mc_eflags =
818 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
819 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
822 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
823 * syscalls made by the signal handler. This just avoids
824 * wasting time for our lazy fixup of such faults. PSL_NT
825 * does nothing in vm86 mode, but vm86 programs can set it
826 * almost legitimately in probes for old cpu types.
828 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
830 #endif
833 * Save the FPU state and reinit the FP unit
835 npxpush(&sf.sf_uc.uc_mcontext);
838 * Copy the sigframe out to the user's stack.
840 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
842 * Something is wrong with the stack pointer.
843 * ...Kill the process.
845 sigexit(lp, SIGILL);
848 regs->tf_rsp = (register_t)sfp;
849 regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
852 * i386 abi specifies that the direction flag must be cleared
853 * on function entry
855 regs->tf_rflags &= ~(PSL_T|PSL_D);
858 * 64 bit mode has a code and stack selector but
859 * no data or extra selector. %fs and %gs are not
860 * stored in-context.
862 regs->tf_cs = _ucodesel;
863 regs->tf_ss = _udatasel;
864 clear_quickret();
868 * Sanitize the trapframe for a virtual kernel passing control to a custom
869 * VM context. Remove any items that would otherwise create a privilage
870 * issue.
872 * XXX at the moment we allow userland to set the resume flag. Is this a
873 * bad idea?
876 cpu_sanitize_frame(struct trapframe *frame)
878 frame->tf_cs = _ucodesel;
879 frame->tf_ss = _udatasel;
880 /* XXX VM (8086) mode not supported? */
881 frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
882 frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
884 return(0);
888 * Sanitize the tls so loading the descriptor does not blow up
889 * on us. For x86_64 we don't have to do anything.
892 cpu_sanitize_tls(struct savetls *tls)
894 return(0);
898 * sigreturn(ucontext_t *sigcntxp)
900 * System call to cleanup state after a signal
901 * has been taken. Reset signal mask and
902 * stack state from context left by sendsig (above).
903 * Return to previous pc and psl as specified by
904 * context left by sendsig. Check carefully to
905 * make sure that the user has not modified the
906 * state to gain improper privileges.
908 * MPSAFE
910 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
911 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
914 sys_sigreturn(struct sigreturn_args *uap)
916 struct lwp *lp = curthread->td_lwp;
917 struct trapframe *regs;
918 ucontext_t uc;
919 ucontext_t *ucp;
920 register_t rflags;
921 int cs;
922 int error;
925 * We have to copy the information into kernel space so userland
926 * can't modify it while we are sniffing it.
928 regs = lp->lwp_md.md_regs;
929 error = copyin(uap->sigcntxp, &uc, sizeof(uc));
930 if (error)
931 return (error);
932 ucp = &uc;
933 rflags = ucp->uc_mcontext.mc_rflags;
935 /* VM (8086) mode not supported */
936 rflags &= ~PSL_VM_UNSUPP;
938 #if 0 /* JG */
939 if (eflags & PSL_VM) {
940 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
941 struct vm86_kernel *vm86;
944 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
945 * set up the vm86 area, and we can't enter vm86 mode.
947 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
948 return (EINVAL);
949 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
950 if (vm86->vm86_inited == 0)
951 return (EINVAL);
953 /* go back to user mode if both flags are set */
954 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
955 trapsignal(lp, SIGBUS, 0);
957 if (vm86->vm86_has_vme) {
958 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
959 (eflags & VME_USERCHANGE) | PSL_VM;
960 } else {
961 vm86->vm86_eflags = eflags; /* save VIF, VIP */
962 eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
963 (eflags & VM_USERCHANGE) | PSL_VM;
965 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
966 tf->tf_eflags = eflags;
967 tf->tf_vm86_ds = tf->tf_ds;
968 tf->tf_vm86_es = tf->tf_es;
969 tf->tf_vm86_fs = tf->tf_fs;
970 tf->tf_vm86_gs = tf->tf_gs;
971 tf->tf_ds = _udatasel;
972 tf->tf_es = _udatasel;
973 tf->tf_fs = _udatasel;
974 tf->tf_gs = _udatasel;
975 } else
976 #endif
979 * Don't allow users to change privileged or reserved flags.
982 * XXX do allow users to change the privileged flag PSL_RF.
983 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
984 * should sometimes set it there too. tf_eflags is kept in
985 * the signal context during signal handling and there is no
986 * other place to remember it, so the PSL_RF bit may be
987 * corrupted by the signal handler without us knowing.
988 * Corruption of the PSL_RF bit at worst causes one more or
989 * one less debugger trap, so allowing it is fairly harmless.
991 if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
992 kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
993 return(EINVAL);
997 * Don't allow users to load a valid privileged %cs. Let the
998 * hardware check for invalid selectors, excess privilege in
999 * other selectors, invalid %eip's and invalid %esp's.
1001 cs = ucp->uc_mcontext.mc_cs;
1002 if (!CS_SECURE(cs)) {
1003 kprintf("sigreturn: cs = 0x%x\n", cs);
1004 trapsignal(lp, SIGBUS, T_PROTFLT);
1005 return(EINVAL);
1007 bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1011 * Restore the FPU state from the frame
1013 crit_enter();
1014 npxpop(&ucp->uc_mcontext);
1016 if (ucp->uc_mcontext.mc_onstack & 1)
1017 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1018 else
1019 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1021 lp->lwp_sigmask = ucp->uc_sigmask;
1022 SIG_CANTMASK(lp->lwp_sigmask);
1023 clear_quickret();
1024 crit_exit();
1025 return(EJUSTRETURN);
1029 * Machine dependent boot() routine
1031 * I haven't seen anything to put here yet
1032 * Possibly some stuff might be grafted back here from boot()
1034 void
1035 cpu_boot(int howto)
1040 * Shutdown the CPU as much as possible
1042 void
1043 cpu_halt(void)
1045 for (;;)
1046 __asm__ __volatile("hlt");
1050 * cpu_idle() represents the idle LWKT. You cannot return from this function
1051 * (unless you want to blow things up!). Instead we look for runnable threads
1052 * and loop or halt as appropriate. Giant is not held on entry to the thread.
1054 * The main loop is entered with a critical section held, we must release
1055 * the critical section before doing anything else. lwkt_switch() will
1056 * check for pending interrupts due to entering and exiting its own
1057 * critical section.
1059 * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1060 * However, there are cases where the idlethread will be entered with
1061 * the possibility that no IPI will occur and in such cases
1062 * lwkt_switch() sets TDF_IDLE_NOHLT.
1064 * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1065 * must occur before it starts using ACPI halt.
1067 * NOTE: Value overridden in hammer_time().
1069 static int cpu_idle_hlt = 2;
1070 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1071 &cpu_idle_hlt, 0, "Idle loop HLT enable");
1072 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1073 &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1075 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1076 0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1077 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1078 0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1080 static void
1081 cpu_idle_default_hook(void)
1084 * We must guarentee that hlt is exactly the instruction
1085 * following the sti.
1087 __asm __volatile("sti; hlt");
1090 /* Other subsystems (e.g., ACPI) can hook this later. */
1091 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1093 static __inline int
1094 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1096 int hint, cx_idx;
1097 u_int idx;
1099 hint = stat->hint;
1100 if (hint >= 0)
1101 goto done;
1103 idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1104 cpu_mwait_repeat_shift;
1105 if (idx >= cpu_mwait_c1_hints_cnt) {
1106 /* Step up faster, once we walked through all C1 states */
1107 stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1109 if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1110 if (idx >= cpu_mwait_deep_hints_cnt)
1111 idx = cpu_mwait_deep_hints_cnt - 1;
1112 hint = cpu_mwait_deep_hints[idx];
1113 } else {
1114 if (idx >= cpu_mwait_hints_cnt)
1115 idx = cpu_mwait_hints_cnt - 1;
1116 hint = cpu_mwait_hints[idx];
1118 done:
1119 cx_idx = MWAIT_EAX_TO_CX(hint);
1120 if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1121 stat->mwait_cx[cx_idx]++;
1122 return hint;
1125 void
1126 cpu_idle(void)
1128 globaldata_t gd = mycpu;
1129 struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1130 struct thread *td __debugvar = gd->gd_curthread;
1131 int reqflags;
1132 int quick;
1134 stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1136 crit_exit();
1137 KKASSERT(td->td_critcount == 0);
1139 for (;;) {
1141 * See if there are any LWKTs ready to go.
1143 lwkt_switch();
1146 * When halting inside a cli we must check for reqflags
1147 * races, particularly [re]schedule requests. Running
1148 * splz() does the job.
1150 * cpu_idle_hlt:
1151 * 0 Never halt, just spin
1153 * 1 Always use HLT (or MONITOR/MWAIT if avail).
1155 * Better default for modern (Haswell+) Intel
1156 * cpus.
1158 * 2 Use HLT/MONITOR/MWAIT up to a point and then
1159 * use the ACPI halt (default). This is a hybrid
1160 * approach. See machdep.cpu_idle_repeat.
1162 * Better default for modern AMD cpus and older
1163 * Intel cpus.
1165 * 3 Always use the ACPI halt. This typically
1166 * eats the least amount of power but the cpu
1167 * will be slow waking up. Slows down e.g.
1168 * compiles and other pipe/event oriented stuff.
1170 * 4 Always use HLT.
1172 * NOTE: Interrupts are enabled and we are not in a critical
1173 * section.
1175 * NOTE: Preemptions do not reset gd_idle_repeat. Also we
1176 * don't bother capping gd_idle_repeat, it is ok if
1177 * it overflows.
1179 * Implement optimized invltlb operations when halted
1180 * in idle. By setting the bit in smp_idleinvl_mask
1181 * we inform other cpus that they can set _reqs to
1182 * request an invltlb. Current the code to do that
1183 * sets the bits in _reqs anyway, but then check _mask
1184 * to determine if they can assume the invltlb will execute.
1186 * A critical section is required to ensure that interrupts
1187 * do not fully run until after we've had a chance to execute
1188 * the request.
1190 if (gd->gd_idle_repeat == 0) {
1191 stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1192 if (stat->repeat > cpu_idle_repeat_max)
1193 stat->repeat = cpu_idle_repeat_max;
1194 stat->repeat_last = 0;
1195 stat->repeat_delta = 0;
1197 ++stat->repeat_last;
1199 ++gd->gd_idle_repeat;
1200 reqflags = gd->gd_reqflags;
1201 quick = (cpu_idle_hlt == 1) ||
1202 (cpu_idle_hlt < 3 &&
1203 gd->gd_idle_repeat < cpu_idle_repeat);
1205 if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1206 (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1207 splz(); /* XXX */
1208 crit_enter_gd(gd);
1209 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1210 cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1211 cpu_mwait_cx_hint(stat), 0);
1212 stat->halt++;
1213 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1214 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1215 gd->gd_cpuid)) {
1216 cpu_invltlb();
1217 cpu_mfence();
1219 crit_exit_gd(gd);
1220 } else if (cpu_idle_hlt) {
1221 __asm __volatile("cli");
1222 splz();
1223 crit_enter_gd(gd);
1224 ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1225 if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1226 if (quick)
1227 cpu_idle_default_hook();
1228 else
1229 cpu_idle_hook();
1231 __asm __volatile("sti");
1232 stat->halt++;
1233 ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1234 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1235 gd->gd_cpuid)) {
1236 cpu_invltlb();
1237 cpu_mfence();
1239 crit_exit_gd(gd);
1240 } else {
1241 splz();
1242 __asm __volatile("sti");
1243 stat->spin++;
1249 * Called in a loop indirectly via Xcpustop
1251 void
1252 cpu_smp_stopped(void)
1254 globaldata_t gd = mycpu;
1255 volatile __uint64_t *ptr;
1256 __uint64_t ovalue;
1258 ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1259 ovalue = *ptr;
1260 if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1261 if (cpu_mi_feature & CPU_MI_MONITOR) {
1262 cpu_mmw_pause_long(__DEVOLATILE(void *, ptr), ovalue,
1263 cpu_mwait_hints[CPU_MWAIT_C1], 0);
1264 } else {
1265 cpu_halt(); /* depend on lapic timer */
1271 * This routine is called if a spinlock has been held through the
1272 * exponential backoff period and is seriously contested. On a real cpu
1273 * we let it spin.
1275 void
1276 cpu_spinlock_contested(void)
1278 cpu_pause();
1282 * Clear registers on exec
1284 void
1285 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1287 struct thread *td = curthread;
1288 struct lwp *lp = td->td_lwp;
1289 struct pcb *pcb = td->td_pcb;
1290 struct trapframe *regs = lp->lwp_md.md_regs;
1292 /* was i386_user_cleanup() in NetBSD */
1293 user_ldt_free(pcb);
1295 clear_quickret();
1296 bzero((char *)regs, sizeof(struct trapframe));
1297 regs->tf_rip = entry;
1298 regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1299 regs->tf_rdi = stack; /* argv */
1300 regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1301 regs->tf_ss = _udatasel;
1302 regs->tf_cs = _ucodesel;
1303 regs->tf_rbx = ps_strings;
1306 * Reset the hardware debug registers if they were in use.
1307 * They won't have any meaning for the newly exec'd process.
1309 if (pcb->pcb_flags & PCB_DBREGS) {
1310 pcb->pcb_dr0 = 0;
1311 pcb->pcb_dr1 = 0;
1312 pcb->pcb_dr2 = 0;
1313 pcb->pcb_dr3 = 0;
1314 pcb->pcb_dr6 = 0;
1315 pcb->pcb_dr7 = 0; /* JG set bit 10? */
1316 if (pcb == td->td_pcb) {
1318 * Clear the debug registers on the running
1319 * CPU, otherwise they will end up affecting
1320 * the next process we switch to.
1322 reset_dbregs();
1324 pcb->pcb_flags &= ~PCB_DBREGS;
1328 * Initialize the math emulator (if any) for the current process.
1329 * Actually, just clear the bit that says that the emulator has
1330 * been initialized. Initialization is delayed until the process
1331 * traps to the emulator (if it is done at all) mainly because
1332 * emulators don't provide an entry point for initialization.
1334 pcb->pcb_flags &= ~FP_SOFTFP;
1337 * NOTE: do not set CR0_TS here. npxinit() must do it after clearing
1338 * gd_npxthread. Otherwise a preemptive interrupt thread
1339 * may panic in npxdna().
1341 crit_enter();
1342 load_cr0(rcr0() | CR0_MP);
1345 * NOTE: The MSR values must be correct so we can return to
1346 * userland. gd_user_fs/gs must be correct so the switch
1347 * code knows what the current MSR values are.
1349 pcb->pcb_fsbase = 0; /* Values loaded from PCB on switch */
1350 pcb->pcb_gsbase = 0;
1351 mdcpu->gd_user_fs = 0; /* Cache of current MSR values */
1352 mdcpu->gd_user_gs = 0;
1353 wrmsr(MSR_FSBASE, 0); /* Set MSR values for return to userland */
1354 wrmsr(MSR_KGSBASE, 0);
1356 /* Initialize the npx (if any) for the current process. */
1357 npxinit();
1358 crit_exit();
1360 pcb->pcb_ds = _udatasel;
1361 pcb->pcb_es = _udatasel;
1362 pcb->pcb_fs = _udatasel;
1363 pcb->pcb_gs = _udatasel;
1366 void
1367 cpu_setregs(void)
1369 register_t cr0;
1371 cr0 = rcr0();
1372 cr0 |= CR0_NE; /* Done by npxinit() */
1373 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1374 cr0 |= CR0_WP | CR0_AM;
1375 load_cr0(cr0);
1376 load_gs(_udatasel);
1379 static int
1380 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1382 int error;
1383 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1384 req);
1385 if (!error && req->newptr)
1386 resettodr();
1387 return (error);
1390 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1391 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1393 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1394 CTLFLAG_RW, &disable_rtc_set, 0, "");
1396 #if 0 /* JG */
1397 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1398 CTLFLAG_RD, &bootinfo, bootinfo, "");
1399 #endif
1401 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1402 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1404 extern u_long bootdev; /* not a cdev_t - encoding is different */
1405 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1406 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1408 static int
1409 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1411 struct efi_map_header *efihdr;
1412 caddr_t kmdp;
1413 uint32_t efisize;
1415 kmdp = preload_search_by_type("elf kernel");
1416 if (kmdp == NULL)
1417 kmdp = preload_search_by_type("elf64 kernel");
1418 efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1419 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1420 if (efihdr == NULL)
1421 return (0);
1422 efisize = *((uint32_t *)efihdr - 1);
1423 return (SYSCTL_OUT(req, efihdr, efisize));
1425 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1426 efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1429 * Initialize 386 and configure to run kernel
1433 * Initialize segments & interrupt table
1436 int _default_ldt;
1437 struct user_segment_descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1438 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1439 #if 0 /* JG */
1440 union descriptor ldt[NLDT]; /* local descriptor table */
1441 #endif
1443 /* table descriptors - used to load tables by cpu */
1444 struct region_descriptor r_gdt;
1445 struct region_descriptor r_idt_arr[MAXCPU];
1447 /* JG proc0paddr is a virtual address */
1448 void *proc0paddr;
1449 /* JG alignment? */
1450 char proc0paddr_buff[LWKT_THREAD_STACK];
1453 /* software prototypes -- in more palatable form */
1454 struct soft_segment_descriptor gdt_segs[] = {
1455 /* GNULL_SEL 0 Null Descriptor */
1456 { 0x0, /* segment base address */
1457 0x0, /* length */
1458 0, /* segment type */
1459 0, /* segment descriptor priority level */
1460 0, /* segment descriptor present */
1461 0, /* long */
1462 0, /* default 32 vs 16 bit size */
1463 0 /* limit granularity (byte/page units)*/ },
1464 /* GCODE_SEL 1 Code Descriptor for kernel */
1465 { 0x0, /* segment base address */
1466 0xfffff, /* length - all address space */
1467 SDT_MEMERA, /* segment type */
1468 SEL_KPL, /* segment descriptor priority level */
1469 1, /* segment descriptor present */
1470 1, /* long */
1471 0, /* default 32 vs 16 bit size */
1472 1 /* limit granularity (byte/page units)*/ },
1473 /* GDATA_SEL 2 Data Descriptor for kernel */
1474 { 0x0, /* segment base address */
1475 0xfffff, /* length - all address space */
1476 SDT_MEMRWA, /* segment type */
1477 SEL_KPL, /* segment descriptor priority level */
1478 1, /* segment descriptor present */
1479 1, /* long */
1480 0, /* default 32 vs 16 bit size */
1481 1 /* limit granularity (byte/page units)*/ },
1482 /* GUCODE32_SEL 3 32 bit Code Descriptor for user */
1483 { 0x0, /* segment base address */
1484 0xfffff, /* length - all address space */
1485 SDT_MEMERA, /* segment type */
1486 SEL_UPL, /* segment descriptor priority level */
1487 1, /* segment descriptor present */
1488 0, /* long */
1489 1, /* default 32 vs 16 bit size */
1490 1 /* limit granularity (byte/page units)*/ },
1491 /* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
1492 { 0x0, /* segment base address */
1493 0xfffff, /* length - all address space */
1494 SDT_MEMRWA, /* segment type */
1495 SEL_UPL, /* segment descriptor priority level */
1496 1, /* segment descriptor present */
1497 0, /* long */
1498 1, /* default 32 vs 16 bit size */
1499 1 /* limit granularity (byte/page units)*/ },
1500 /* GUCODE_SEL 5 64 bit Code Descriptor for user */
1501 { 0x0, /* segment base address */
1502 0xfffff, /* length - all address space */
1503 SDT_MEMERA, /* segment type */
1504 SEL_UPL, /* segment descriptor priority level */
1505 1, /* segment descriptor present */
1506 1, /* long */
1507 0, /* default 32 vs 16 bit size */
1508 1 /* limit granularity (byte/page units)*/ },
1509 /* GPROC0_SEL 6 Proc 0 Tss Descriptor */
1511 0x0, /* segment base address */
1512 sizeof(struct x86_64tss)-1,/* length - all address space */
1513 SDT_SYSTSS, /* segment type */
1514 SEL_KPL, /* segment descriptor priority level */
1515 1, /* segment descriptor present */
1516 0, /* long */
1517 0, /* unused - default 32 vs 16 bit size */
1518 0 /* limit granularity (byte/page units)*/ },
1519 /* Actually, the TSS is a system descriptor which is double size */
1520 { 0x0, /* segment base address */
1521 0x0, /* length */
1522 0, /* segment type */
1523 0, /* segment descriptor priority level */
1524 0, /* segment descriptor present */
1525 0, /* long */
1526 0, /* default 32 vs 16 bit size */
1527 0 /* limit granularity (byte/page units)*/ },
1528 /* GUGS32_SEL 8 32 bit GS Descriptor for user */
1529 { 0x0, /* segment base address */
1530 0xfffff, /* length - all address space */
1531 SDT_MEMRWA, /* segment type */
1532 SEL_UPL, /* segment descriptor priority level */
1533 1, /* segment descriptor present */
1534 0, /* long */
1535 1, /* default 32 vs 16 bit size */
1536 1 /* limit granularity (byte/page units)*/ },
1539 void
1540 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1542 int cpu;
1544 for (cpu = 0; cpu < MAXCPU; ++cpu) {
1545 struct gate_descriptor *ip = &idt_arr[cpu][idx];
1547 ip->gd_looffset = (uintptr_t)func;
1548 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1549 ip->gd_ist = ist;
1550 ip->gd_xx = 0;
1551 ip->gd_type = typ;
1552 ip->gd_dpl = dpl;
1553 ip->gd_p = 1;
1554 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1558 void
1559 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1561 struct gate_descriptor *ip;
1563 KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1565 ip = &idt_arr[cpu][idx];
1566 ip->gd_looffset = (uintptr_t)func;
1567 ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1568 ip->gd_ist = ist;
1569 ip->gd_xx = 0;
1570 ip->gd_type = typ;
1571 ip->gd_dpl = dpl;
1572 ip->gd_p = 1;
1573 ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1576 #define IDTVEC(name) __CONCAT(X,name)
1578 extern inthand_t
1579 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1580 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1581 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1582 IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1583 IDTVEC(xmm), IDTVEC(dblfault),
1584 IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1586 void
1587 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1589 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1590 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1591 ssd->ssd_type = sd->sd_type;
1592 ssd->ssd_dpl = sd->sd_dpl;
1593 ssd->ssd_p = sd->sd_p;
1594 ssd->ssd_def32 = sd->sd_def32;
1595 ssd->ssd_gran = sd->sd_gran;
1598 void
1599 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1602 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1603 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1604 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1605 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1606 sd->sd_type = ssd->ssd_type;
1607 sd->sd_dpl = ssd->ssd_dpl;
1608 sd->sd_p = ssd->ssd_p;
1609 sd->sd_long = ssd->ssd_long;
1610 sd->sd_def32 = ssd->ssd_def32;
1611 sd->sd_gran = ssd->ssd_gran;
1614 void
1615 ssdtosyssd(struct soft_segment_descriptor *ssd,
1616 struct system_segment_descriptor *sd)
1619 sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1620 sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1621 sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1622 sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1623 sd->sd_type = ssd->ssd_type;
1624 sd->sd_dpl = ssd->ssd_dpl;
1625 sd->sd_p = ssd->ssd_p;
1626 sd->sd_gran = ssd->ssd_gran;
1630 * Populate the (physmap) array with base/bound pairs describing the
1631 * available physical memory in the system, then test this memory and
1632 * build the phys_avail array describing the actually-available memory.
1634 * If we cannot accurately determine the physical memory map, then use
1635 * value from the 0xE801 call, and failing that, the RTC.
1637 * Total memory size may be set by the kernel environment variable
1638 * hw.physmem or the compile-time define MAXMEM.
1640 * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1641 * of PAGE_SIZE. This also greatly reduces the memory test time
1642 * which would otherwise be excessive on machines with > 8G of ram.
1644 * XXX first should be vm_paddr_t.
1647 #define PHYSMAP_ALIGN (vm_paddr_t)(128 * 1024)
1648 #define PHYSMAP_ALIGN_MASK (vm_paddr_t)(PHYSMAP_ALIGN - 1)
1649 #define PHYSMAP_SIZE VM_PHYSSEG_MAX
1651 vm_paddr_t physmap[PHYSMAP_SIZE];
1652 struct bios_smap *smapbase, *smap, *smapend;
1653 struct efi_map_header *efihdrbase;
1654 u_int32_t smapsize;
1656 #define PHYSMAP_HANDWAVE (vm_paddr_t)(2 * 1024 * 1024)
1657 #define PHYSMAP_HANDWAVE_MASK (PHYSMAP_HANDWAVE - 1)
1659 static void
1660 add_smap_entries(int *physmap_idx)
1662 int i;
1664 smapsize = *((u_int32_t *)smapbase - 1);
1665 smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1667 for (smap = smapbase; smap < smapend; smap++) {
1668 if (boothowto & RB_VERBOSE)
1669 kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1670 smap->type, smap->base, smap->length);
1672 if (smap->type != SMAP_TYPE_MEMORY)
1673 continue;
1675 if (smap->length == 0)
1676 continue;
1678 for (i = 0; i <= *physmap_idx; i += 2) {
1679 if (smap->base < physmap[i + 1]) {
1680 if (boothowto & RB_VERBOSE) {
1681 kprintf("Overlapping or non-monotonic "
1682 "memory region, ignoring "
1683 "second region\n");
1685 break;
1688 if (i <= *physmap_idx)
1689 continue;
1691 Realmem += smap->length;
1693 if (smap->base == physmap[*physmap_idx + 1]) {
1694 physmap[*physmap_idx + 1] += smap->length;
1695 continue;
1698 *physmap_idx += 2;
1699 if (*physmap_idx == PHYSMAP_SIZE) {
1700 kprintf("Too many segments in the physical "
1701 "address map, giving up\n");
1702 break;
1704 physmap[*physmap_idx] = smap->base;
1705 physmap[*physmap_idx + 1] = smap->base + smap->length;
1709 static void
1710 add_efi_map_entries(int *physmap_idx)
1712 struct efi_md *map, *p;
1713 const char *type;
1714 size_t efisz;
1715 int i, ndesc;
1717 static const char *types[] = {
1718 "Reserved",
1719 "LoaderCode",
1720 "LoaderData",
1721 "BootServicesCode",
1722 "BootServicesData",
1723 "RuntimeServicesCode",
1724 "RuntimeServicesData",
1725 "ConventionalMemory",
1726 "UnusableMemory",
1727 "ACPIReclaimMemory",
1728 "ACPIMemoryNVS",
1729 "MemoryMappedIO",
1730 "MemoryMappedIOPortSpace",
1731 "PalCode"
1735 * Memory map data provided by UEFI via the GetMemoryMap
1736 * Boot Services API.
1738 efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1739 map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1741 if (efihdrbase->descriptor_size == 0)
1742 return;
1743 ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1745 if (boothowto & RB_VERBOSE)
1746 kprintf("%23s %12s %12s %8s %4s\n",
1747 "Type", "Physical", "Virtual", "#Pages", "Attr");
1749 for (i = 0, p = map; i < ndesc; i++,
1750 p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1751 if (boothowto & RB_VERBOSE) {
1752 if (p->md_type <= EFI_MD_TYPE_PALCODE)
1753 type = types[p->md_type];
1754 else
1755 type = "<INVALID>";
1756 kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1757 p->md_virt, p->md_pages);
1758 if (p->md_attr & EFI_MD_ATTR_UC)
1759 kprintf("UC ");
1760 if (p->md_attr & EFI_MD_ATTR_WC)
1761 kprintf("WC ");
1762 if (p->md_attr & EFI_MD_ATTR_WT)
1763 kprintf("WT ");
1764 if (p->md_attr & EFI_MD_ATTR_WB)
1765 kprintf("WB ");
1766 if (p->md_attr & EFI_MD_ATTR_UCE)
1767 kprintf("UCE ");
1768 if (p->md_attr & EFI_MD_ATTR_WP)
1769 kprintf("WP ");
1770 if (p->md_attr & EFI_MD_ATTR_RP)
1771 kprintf("RP ");
1772 if (p->md_attr & EFI_MD_ATTR_XP)
1773 kprintf("XP ");
1774 if (p->md_attr & EFI_MD_ATTR_RT)
1775 kprintf("RUNTIME");
1776 kprintf("\n");
1779 switch (p->md_type) {
1780 case EFI_MD_TYPE_CODE:
1781 case EFI_MD_TYPE_DATA:
1782 case EFI_MD_TYPE_BS_CODE:
1783 case EFI_MD_TYPE_BS_DATA:
1784 case EFI_MD_TYPE_FREE:
1786 * We're allowed to use any entry with these types.
1788 break;
1789 default:
1790 continue;
1793 Realmem += p->md_pages * PAGE_SIZE;
1795 if (p->md_phys == physmap[*physmap_idx + 1]) {
1796 physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1797 continue;
1800 *physmap_idx += 2;
1801 if (*physmap_idx == PHYSMAP_SIZE) {
1802 kprintf("Too many segments in the physical "
1803 "address map, giving up\n");
1804 break;
1806 physmap[*physmap_idx] = p->md_phys;
1807 physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1811 struct fb_info efi_fb_info;
1812 static int have_efi_framebuffer = 0;
1814 static void
1815 efi_fb_init_vaddr(int direct_map)
1817 uint64_t sz;
1818 vm_offset_t addr, v;
1820 v = efi_fb_info.vaddr;
1821 sz = efi_fb_info.stride * efi_fb_info.height;
1823 if (direct_map) {
1824 addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1825 if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1826 efi_fb_info.vaddr = addr;
1827 } else {
1828 efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1829 efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1834 probe_efi_fb(int early)
1836 struct efi_fb *efifb;
1837 caddr_t kmdp;
1839 if (have_efi_framebuffer) {
1840 if (!early &&
1841 (efi_fb_info.vaddr == 0 ||
1842 efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1843 efi_fb_init_vaddr(0);
1844 return 0;
1847 kmdp = preload_search_by_type("elf kernel");
1848 if (kmdp == NULL)
1849 kmdp = preload_search_by_type("elf64 kernel");
1850 efifb = (struct efi_fb *)preload_search_info(kmdp,
1851 MODINFO_METADATA | MODINFOMD_EFI_FB);
1852 if (efifb == NULL)
1853 return 1;
1855 have_efi_framebuffer = 1;
1857 efi_fb_info.is_vga_boot_display = 1;
1858 efi_fb_info.width = efifb->fb_width;
1859 efi_fb_info.height = efifb->fb_height;
1860 efi_fb_info.stride = efifb->fb_stride * 4;
1861 efi_fb_info.depth = 32;
1862 efi_fb_info.paddr = efifb->fb_addr;
1863 if (early) {
1864 efi_fb_info.vaddr = 0;
1865 } else {
1866 efi_fb_init_vaddr(0);
1868 efi_fb_info.fbops.fb_set_par = NULL;
1869 efi_fb_info.fbops.fb_blank = NULL;
1870 efi_fb_info.fbops.fb_debug_enter = NULL;
1871 efi_fb_info.device = NULL;
1873 return 0;
1876 static void
1877 efifb_startup(void *arg)
1879 probe_efi_fb(0);
1882 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1884 static void
1885 getmemsize(caddr_t kmdp, u_int64_t first)
1887 int off, physmap_idx, pa_indx, da_indx;
1888 int i, j;
1889 vm_paddr_t pa;
1890 vm_paddr_t msgbuf_size;
1891 u_long physmem_tunable;
1892 pt_entry_t *pte;
1893 quad_t dcons_addr, dcons_size;
1895 bzero(physmap, sizeof(physmap));
1896 physmap_idx = 0;
1899 * get memory map from INT 15:E820, kindly supplied by the loader.
1901 * subr_module.c says:
1902 * "Consumer may safely assume that size value precedes data."
1903 * ie: an int32_t immediately precedes smap.
1905 efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1906 MODINFO_METADATA | MODINFOMD_EFI_MAP);
1907 smapbase = (struct bios_smap *)preload_search_info(kmdp,
1908 MODINFO_METADATA | MODINFOMD_SMAP);
1909 if (smapbase == NULL && efihdrbase == NULL)
1910 panic("No BIOS smap or EFI map info from loader!");
1912 if (efihdrbase == NULL)
1913 add_smap_entries(&physmap_idx);
1914 else
1915 add_efi_map_entries(&physmap_idx);
1917 base_memory = physmap[1] / 1024;
1918 /* make hole for AP bootstrap code */
1919 physmap[1] = mp_bootaddress(base_memory);
1921 /* Save EBDA address, if any */
1922 ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1923 ebda_addr <<= 4;
1926 * Maxmem isn't the "maximum memory", it's one larger than the
1927 * highest page of the physical address space. It should be
1928 * called something like "Maxphyspage". We may adjust this
1929 * based on ``hw.physmem'' and the results of the memory test.
1931 Maxmem = atop(physmap[physmap_idx + 1]);
1933 #ifdef MAXMEM
1934 Maxmem = MAXMEM / 4;
1935 #endif
1937 if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1938 Maxmem = atop(physmem_tunable);
1941 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1942 * in the system.
1944 if (Maxmem > atop(physmap[physmap_idx + 1]))
1945 Maxmem = atop(physmap[physmap_idx + 1]);
1948 * Blowing out the DMAP will blow up the system.
1950 if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1951 kprintf("Limiting Maxmem due to DMAP size\n");
1952 Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1955 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1956 (boothowto & RB_VERBOSE)) {
1957 kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1961 * Call pmap initialization to make new kernel address space
1963 * Mask off page 0.
1965 pmap_bootstrap(&first);
1966 physmap[0] = PAGE_SIZE;
1969 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1970 * exceeding Maxmem.
1972 for (i = j = 0; i <= physmap_idx; i += 2) {
1973 if (physmap[i+1] > ptoa(Maxmem))
1974 physmap[i+1] = ptoa(Maxmem);
1975 physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1976 ~PHYSMAP_ALIGN_MASK;
1977 physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1979 physmap[j] = physmap[i];
1980 physmap[j+1] = physmap[i+1];
1982 if (physmap[i] < physmap[i+1])
1983 j += 2;
1985 physmap_idx = j - 2;
1988 * Align anything else used in the validation loop.
1990 first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1993 * Size up each available chunk of physical memory.
1995 pa_indx = 0;
1996 da_indx = 0;
1997 phys_avail[pa_indx].phys_beg = physmap[0];
1998 phys_avail[pa_indx].phys_end = physmap[0];
1999 dump_avail[da_indx].phys_beg = 0;
2000 dump_avail[da_indx].phys_end = physmap[0];
2001 pte = CMAP1;
2004 * Get dcons buffer address
2006 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2007 kgetenv_quad("dcons.size", &dcons_size) == 0)
2008 dcons_addr = 0;
2011 * Validate the physical memory. The physical memory segments
2012 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2013 * of PAGE_SIZE.
2015 for (i = 0; i <= physmap_idx; i += 2) {
2016 vm_paddr_t end;
2017 vm_paddr_t incr = PHYSMAP_ALIGN;
2019 end = physmap[i + 1];
2021 for (pa = physmap[i]; pa < end; pa += incr) {
2022 int page_bad, full;
2023 volatile uint64_t *ptr = (uint64_t *)CADDR1;
2024 uint64_t tmp;
2026 incr = PHYSMAP_ALIGN;
2027 full = FALSE;
2030 * block out kernel memory as not available.
2032 if (pa >= 0x200000 && pa < first)
2033 goto do_dump_avail;
2036 * block out dcons buffer
2038 if (dcons_addr > 0
2039 && pa >= trunc_page(dcons_addr)
2040 && pa < dcons_addr + dcons_size) {
2041 goto do_dump_avail;
2044 page_bad = FALSE;
2047 * Always test the first and last block supplied in
2048 * the map entry, but it just takes too long to run
2049 * the test these days and we already have to skip
2050 * pages. Handwave it on PHYSMAP_HANDWAVE boundaries.
2052 if (pa != physmap[i]) {
2053 vm_paddr_t bytes = end - pa;
2054 if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2055 bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2056 incr = PHYSMAP_HANDWAVE;
2057 goto handwaved;
2062 * map page into kernel: valid, read/write,non-cacheable
2064 *pte = pa |
2065 kernel_pmap.pmap_bits[PG_V_IDX] |
2066 kernel_pmap.pmap_bits[PG_RW_IDX] |
2067 kernel_pmap.pmap_bits[PG_N_IDX];
2068 cpu_invlpg(__DEVOLATILE(void *, ptr));
2069 cpu_mfence();
2071 tmp = *ptr;
2073 * Test for alternating 1's and 0's
2075 *ptr = 0xaaaaaaaaaaaaaaaaLLU;
2076 cpu_mfence();
2077 if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2078 page_bad = TRUE;
2080 * Test for alternating 0's and 1's
2082 *ptr = 0x5555555555555555LLU;
2083 cpu_mfence();
2084 if (*ptr != 0x5555555555555555LLU)
2085 page_bad = TRUE;
2087 * Test for all 1's
2089 *ptr = 0xffffffffffffffffLLU;
2090 cpu_mfence();
2091 if (*ptr != 0xffffffffffffffffLLU)
2092 page_bad = TRUE;
2094 * Test for all 0's
2096 *ptr = 0x0;
2097 cpu_mfence();
2098 if (*ptr != 0x0)
2099 page_bad = TRUE;
2101 * Restore original value.
2103 *ptr = tmp;
2104 handwaved:
2107 * Adjust array of valid/good pages.
2109 if (page_bad == TRUE)
2110 continue;
2113 * If this good page is a continuation of the
2114 * previous set of good pages, then just increase
2115 * the end pointer. Otherwise start a new chunk.
2116 * Note that "end" points one higher than end,
2117 * making the range >= start and < end.
2118 * If we're also doing a speculative memory
2119 * test and we at or past the end, bump up Maxmem
2120 * so that we keep going. The first bad page
2121 * will terminate the loop.
2123 if (phys_avail[pa_indx].phys_end == pa) {
2124 phys_avail[pa_indx].phys_end += incr;
2125 } else {
2126 ++pa_indx;
2127 if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2128 kprintf(
2129 "Too many holes in the physical address space, giving up\n");
2130 --pa_indx;
2131 full = TRUE;
2132 goto do_dump_avail;
2134 phys_avail[pa_indx].phys_beg = pa;
2135 phys_avail[pa_indx].phys_end = pa + incr;
2137 physmem += incr / PAGE_SIZE;
2138 do_dump_avail:
2139 if (dump_avail[da_indx].phys_end == pa) {
2140 dump_avail[da_indx].phys_end += incr;
2141 } else {
2142 ++da_indx;
2143 if (da_indx == DUMP_AVAIL_ARRAY_END) {
2144 --da_indx;
2145 goto do_next;
2147 dump_avail[da_indx].phys_beg = pa;
2148 dump_avail[da_indx].phys_end = pa + incr;
2150 do_next:
2151 if (full)
2152 break;
2155 *pte = 0;
2156 cpu_invltlb();
2157 cpu_mfence();
2160 * The last chunk must contain at least one page plus the message
2161 * buffer to avoid complicating other code (message buffer address
2162 * calculation, etc.).
2164 msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2166 while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2167 phys_avail[pa_indx].phys_end) {
2168 physmem -= atop(phys_avail[pa_indx].phys_end -
2169 phys_avail[pa_indx].phys_beg);
2170 phys_avail[pa_indx].phys_beg = 0;
2171 phys_avail[pa_indx].phys_end = 0;
2172 --pa_indx;
2175 Maxmem = atop(phys_avail[pa_indx].phys_end);
2177 /* Trim off space for the message buffer. */
2178 phys_avail[pa_indx].phys_end -= msgbuf_size;
2180 avail_end = phys_avail[pa_indx].phys_end;
2182 /* Map the message buffer. */
2183 for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2184 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2186 /* Try to get EFI framebuffer working as early as possible */
2187 if (have_efi_framebuffer)
2188 efi_fb_init_vaddr(1);
2191 struct machintr_abi MachIntrABI;
2194 * IDT VECTORS:
2195 * 0 Divide by zero
2196 * 1 Debug
2197 * 2 NMI
2198 * 3 BreakPoint
2199 * 4 OverFlow
2200 * 5 Bound-Range
2201 * 6 Invalid OpCode
2202 * 7 Device Not Available (x87)
2203 * 8 Double-Fault
2204 * 9 Coprocessor Segment overrun (unsupported, reserved)
2205 * 10 Invalid-TSS
2206 * 11 Segment not present
2207 * 12 Stack
2208 * 13 General Protection
2209 * 14 Page Fault
2210 * 15 Reserved
2211 * 16 x87 FP Exception pending
2212 * 17 Alignment Check
2213 * 18 Machine Check
2214 * 19 SIMD floating point
2215 * 20-31 reserved
2216 * 32-255 INTn/external sources
2218 u_int64_t
2219 hammer_time(u_int64_t modulep, u_int64_t physfree)
2221 caddr_t kmdp;
2222 int gsel_tss, x, cpu;
2223 #if 0 /* JG */
2224 int metadata_missing, off;
2225 #endif
2226 struct mdglobaldata *gd;
2227 u_int64_t msr;
2230 * Prevent lowering of the ipl if we call tsleep() early.
2232 gd = &CPU_prvspace[0]->mdglobaldata;
2233 bzero(gd, sizeof(*gd));
2236 * Note: on both UP and SMP curthread must be set non-NULL
2237 * early in the boot sequence because the system assumes
2238 * that 'curthread' is never NULL.
2241 gd->mi.gd_curthread = &thread0;
2242 thread0.td_gd = &gd->mi;
2244 atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2246 #if 0 /* JG */
2247 metadata_missing = 0;
2248 if (bootinfo.bi_modulep) {
2249 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2250 preload_bootstrap_relocate(KERNBASE);
2251 } else {
2252 metadata_missing = 1;
2254 if (bootinfo.bi_envp)
2255 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2256 #endif
2258 preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2259 preload_bootstrap_relocate(PTOV_OFFSET);
2260 kmdp = preload_search_by_type("elf kernel");
2261 if (kmdp == NULL)
2262 kmdp = preload_search_by_type("elf64 kernel");
2263 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2264 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2265 #ifdef DDB
2266 ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2267 ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2268 #endif
2269 efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2271 if (boothowto & RB_VERBOSE)
2272 bootverbose++;
2275 * Default MachIntrABI to ICU
2277 MachIntrABI = MachIntrABI_ICU;
2280 * start with one cpu. Note: with one cpu, ncpus2_shift, ncpus2_mask,
2281 * and ncpus_fit_mask remain 0.
2283 ncpus = 1;
2284 ncpus2 = 1;
2285 ncpus_fit = 1;
2286 /* Init basic tunables, hz etc */
2287 init_param1();
2290 * make gdt memory segments
2292 gdt_segs[GPROC0_SEL].ssd_base =
2293 (uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2295 gd->mi.gd_prvspace = CPU_prvspace[0];
2297 for (x = 0; x < NGDT; x++) {
2298 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2299 ssdtosd(&gdt_segs[x], &gdt[x]);
2301 ssdtosyssd(&gdt_segs[GPROC0_SEL],
2302 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2304 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2305 r_gdt.rd_base = (long) gdt;
2306 lgdt(&r_gdt);
2308 wrmsr(MSR_FSBASE, 0); /* User value */
2309 wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2310 wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
2312 mi_gdinit(&gd->mi, 0);
2313 cpu_gdinit(gd, 0);
2314 proc0paddr = proc0paddr_buff;
2315 mi_proc0init(&gd->mi, proc0paddr);
2316 safepri = TDPRI_MAX;
2318 /* spinlocks and the BGL */
2319 init_locks();
2321 /* exceptions */
2322 for (x = 0; x < NIDT; x++)
2323 setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2324 setidt_global(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
2325 setidt_global(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
2326 setidt_global(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 1);
2327 setidt_global(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
2328 setidt_global(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
2329 setidt_global(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
2330 setidt_global(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
2331 setidt_global(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
2332 setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2333 setidt_global(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
2334 setidt_global(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
2335 setidt_global(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
2336 setidt_global(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
2337 setidt_global(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
2338 setidt_global(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
2339 setidt_global(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
2340 setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2341 setidt_global(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
2342 setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2344 for (cpu = 0; cpu < MAXCPU; ++cpu) {
2345 r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2346 r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2349 lidt(&r_idt_arr[0]);
2352 * Initialize the console before we print anything out.
2354 cninit();
2356 #if 0 /* JG */
2357 if (metadata_missing)
2358 kprintf("WARNING: loader(8) metadata is missing!\n");
2359 #endif
2361 #if NISA >0
2362 elcr_probe();
2363 isa_defaultirq();
2364 #endif
2365 rand_initialize();
2368 * Initialize IRQ mapping
2370 * NOTE:
2371 * SHOULD be after elcr_probe()
2373 MachIntrABI_ICU.initmap();
2374 MachIntrABI_IOAPIC.initmap();
2376 #ifdef DDB
2377 kdb_init();
2378 if (boothowto & RB_KDB)
2379 Debugger("Boot flags requested debugger");
2380 #endif
2382 #if 0 /* JG */
2383 finishidentcpu(); /* Final stage of CPU initialization */
2384 setidt(6, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2385 setidt(13, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2386 #endif
2387 identify_cpu(); /* Final stage of CPU initialization */
2388 initializecpu(0); /* Initialize CPU registers */
2391 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2392 * because the cpu does significant power management in MWAIT
2393 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2395 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2396 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2397 * would try to use MWAIT).
2399 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2400 * is needed to reduce power consumption, but wakeup times are often
2401 * longer.
2403 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2404 CPUID_TO_MODEL(cpu_id) >= 0x3C) { /* Haswell or later */
2405 cpu_idle_hlt = 1;
2407 if (cpu_vendor_id == CPU_VENDOR_AMD &&
2408 CPUID_TO_FAMILY(cpu_id) >= 0x14) { /* Bobcat or later */
2409 cpu_idle_hlt = 3;
2412 TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2413 TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2414 TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2415 TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2418 * Some of the virtual machines do not work w/ I/O APIC
2419 * enabled. If the user does not explicitly enable or
2420 * disable the I/O APIC (ioapic_enable < 0), then we
2421 * disable I/O APIC on all virtual machines.
2423 * NOTE:
2424 * This must be done after identify_cpu(), which sets
2425 * 'cpu_feature2'
2427 if (ioapic_enable < 0) {
2428 if (cpu_feature2 & CPUID2_VMM)
2429 ioapic_enable = 0;
2430 else
2431 ioapic_enable = 1;
2434 /* make an initial tss so cpu can get interrupt stack on syscall! */
2435 gd->gd_common_tss.tss_rsp0 =
2436 (register_t)(thread0.td_kstack +
2437 KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2438 /* Ensure the stack is aligned to 16 bytes */
2439 gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2441 /* double fault stack */
2442 gd->gd_common_tss.tss_ist1 =
2443 (long)&gd->mi.gd_prvspace->idlestack[
2444 sizeof(gd->mi.gd_prvspace->idlestack)];
2446 /* Set the IO permission bitmap (empty due to tss seg limit) */
2447 gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2449 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2450 gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2451 gd->gd_common_tssd = *gd->gd_tss_gdt;
2452 ltr(gsel_tss);
2454 /* Set up the fast syscall stuff */
2455 msr = rdmsr(MSR_EFER) | EFER_SCE;
2456 wrmsr(MSR_EFER, msr);
2457 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2458 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2459 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2460 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2461 wrmsr(MSR_STAR, msr);
2462 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2464 getmemsize(kmdp, physfree);
2465 init_param2(physmem);
2467 /* now running on new page tables, configured,and u/iom is accessible */
2469 /* Map the message buffer. */
2470 #if 0 /* JG */
2471 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2472 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2473 #endif
2475 msgbufinit(msgbufp, MSGBUF_SIZE);
2478 /* transfer to user mode */
2480 _ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2481 _udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2482 _ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2484 load_ds(_udatasel);
2485 load_es(_udatasel);
2486 load_fs(_udatasel);
2488 /* setup proc 0's pcb */
2489 thread0.td_pcb->pcb_flags = 0;
2490 thread0.td_pcb->pcb_cr3 = KPML4phys;
2491 thread0.td_pcb->pcb_ext = NULL;
2492 lwp0.lwp_md.md_regs = &proc0_tf; /* XXX needed? */
2494 /* Location of kernel stack for locore */
2495 return ((u_int64_t)thread0.td_pcb);
2499 * Initialize machine-dependant portions of the global data structure.
2500 * Note that the global data area and cpu0's idlestack in the private
2501 * data space were allocated in locore.
2503 * Note: the idlethread's cpl is 0
2505 * WARNING! Called from early boot, 'mycpu' may not work yet.
2507 void
2508 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2510 if (cpu)
2511 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2513 lwkt_init_thread(&gd->mi.gd_idlethread,
2514 gd->mi.gd_prvspace->idlestack,
2515 sizeof(gd->mi.gd_prvspace->idlestack),
2516 0, &gd->mi);
2517 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2518 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2519 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2520 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2524 * We only have to check for DMAP bounds, the globaldata space is
2525 * actually part of the kernel_map so we don't have to waste time
2526 * checking CPU_prvspace[*].
2529 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2531 #if 0
2532 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2533 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2534 return (TRUE);
2536 #endif
2537 if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2538 return (TRUE);
2539 return (FALSE);
2542 struct globaldata *
2543 globaldata_find(int cpu)
2545 KKASSERT(cpu >= 0 && cpu < ncpus);
2546 return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2550 * This path should be safe from the SYSRET issue because only stopped threads
2551 * can have their %rip adjusted this way (and all heavy weight thread switches
2552 * clear QUICKREF and thus do not use SYSRET). However, the code path is
2553 * convoluted so add a safety by forcing %rip to be cannonical.
2556 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2558 if (addr & 0x0000800000000000LLU)
2559 lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2560 else
2561 lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2562 return (0);
2566 ptrace_single_step(struct lwp *lp)
2568 lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2569 return (0);
2573 fill_regs(struct lwp *lp, struct reg *regs)
2575 struct trapframe *tp;
2577 if ((tp = lp->lwp_md.md_regs) == NULL)
2578 return EINVAL;
2579 bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2580 return (0);
2584 set_regs(struct lwp *lp, struct reg *regs)
2586 struct trapframe *tp;
2588 tp = lp->lwp_md.md_regs;
2589 if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2590 !CS_SECURE(regs->r_cs))
2591 return (EINVAL);
2592 bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2593 clear_quickret();
2594 return (0);
2597 static void
2598 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2600 struct env87 *penv_87 = &sv_87->sv_env;
2601 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2602 int i;
2604 /* FPU control/status */
2605 penv_87->en_cw = penv_xmm->en_cw;
2606 penv_87->en_sw = penv_xmm->en_sw;
2607 penv_87->en_tw = penv_xmm->en_tw;
2608 penv_87->en_fip = penv_xmm->en_fip;
2609 penv_87->en_fcs = penv_xmm->en_fcs;
2610 penv_87->en_opcode = penv_xmm->en_opcode;
2611 penv_87->en_foo = penv_xmm->en_foo;
2612 penv_87->en_fos = penv_xmm->en_fos;
2614 /* FPU registers */
2615 for (i = 0; i < 8; ++i)
2616 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2619 static void
2620 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2622 struct env87 *penv_87 = &sv_87->sv_env;
2623 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2624 int i;
2626 /* FPU control/status */
2627 penv_xmm->en_cw = penv_87->en_cw;
2628 penv_xmm->en_sw = penv_87->en_sw;
2629 penv_xmm->en_tw = penv_87->en_tw;
2630 penv_xmm->en_fip = penv_87->en_fip;
2631 penv_xmm->en_fcs = penv_87->en_fcs;
2632 penv_xmm->en_opcode = penv_87->en_opcode;
2633 penv_xmm->en_foo = penv_87->en_foo;
2634 penv_xmm->en_fos = penv_87->en_fos;
2636 /* FPU registers */
2637 for (i = 0; i < 8; ++i)
2638 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2642 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2644 if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2645 return EINVAL;
2646 if (cpu_fxsr) {
2647 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2648 (struct save87 *)fpregs);
2649 return (0);
2651 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2652 return (0);
2656 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2658 if (cpu_fxsr) {
2659 set_fpregs_xmm((struct save87 *)fpregs,
2660 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2661 return (0);
2663 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2664 return (0);
2668 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2670 struct pcb *pcb;
2672 if (lp == NULL) {
2673 dbregs->dr[0] = rdr0();
2674 dbregs->dr[1] = rdr1();
2675 dbregs->dr[2] = rdr2();
2676 dbregs->dr[3] = rdr3();
2677 dbregs->dr[4] = rdr4();
2678 dbregs->dr[5] = rdr5();
2679 dbregs->dr[6] = rdr6();
2680 dbregs->dr[7] = rdr7();
2681 return (0);
2683 if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2684 return EINVAL;
2685 dbregs->dr[0] = pcb->pcb_dr0;
2686 dbregs->dr[1] = pcb->pcb_dr1;
2687 dbregs->dr[2] = pcb->pcb_dr2;
2688 dbregs->dr[3] = pcb->pcb_dr3;
2689 dbregs->dr[4] = 0;
2690 dbregs->dr[5] = 0;
2691 dbregs->dr[6] = pcb->pcb_dr6;
2692 dbregs->dr[7] = pcb->pcb_dr7;
2693 return (0);
2697 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2699 if (lp == NULL) {
2700 load_dr0(dbregs->dr[0]);
2701 load_dr1(dbregs->dr[1]);
2702 load_dr2(dbregs->dr[2]);
2703 load_dr3(dbregs->dr[3]);
2704 load_dr4(dbregs->dr[4]);
2705 load_dr5(dbregs->dr[5]);
2706 load_dr6(dbregs->dr[6]);
2707 load_dr7(dbregs->dr[7]);
2708 } else {
2709 struct pcb *pcb;
2710 struct ucred *ucred;
2711 int i;
2712 uint64_t mask1, mask2;
2715 * Don't let an illegal value for dr7 get set. Specifically,
2716 * check for undefined settings. Setting these bit patterns
2717 * result in undefined behaviour and can lead to an unexpected
2718 * TRCTRAP.
2720 /* JG this loop looks unreadable */
2721 /* Check 4 2-bit fields for invalid patterns.
2722 * These fields are R/Wi, for i = 0..3
2724 /* Is 10 in LENi allowed when running in compatibility mode? */
2725 /* Pattern 10 in R/Wi might be used to indicate
2726 * breakpoint on I/O. Further analysis should be
2727 * carried to decide if it is safe and useful to
2728 * provide access to that capability
2730 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2731 i++, mask1 <<= 4, mask2 <<= 4)
2732 if ((dbregs->dr[7] & mask1) == mask2)
2733 return (EINVAL);
2735 pcb = lp->lwp_thread->td_pcb;
2736 ucred = lp->lwp_proc->p_ucred;
2739 * Don't let a process set a breakpoint that is not within the
2740 * process's address space. If a process could do this, it
2741 * could halt the system by setting a breakpoint in the kernel
2742 * (if ddb was enabled). Thus, we need to check to make sure
2743 * that no breakpoints are being enabled for addresses outside
2744 * process's address space, unless, perhaps, we were called by
2745 * uid 0.
2747 * XXX - what about when the watched area of the user's
2748 * address space is written into from within the kernel
2749 * ... wouldn't that still cause a breakpoint to be generated
2750 * from within kernel mode?
2753 if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2754 if (dbregs->dr[7] & 0x3) {
2755 /* dr0 is enabled */
2756 if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2757 return (EINVAL);
2760 if (dbregs->dr[7] & (0x3<<2)) {
2761 /* dr1 is enabled */
2762 if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2763 return (EINVAL);
2766 if (dbregs->dr[7] & (0x3<<4)) {
2767 /* dr2 is enabled */
2768 if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2769 return (EINVAL);
2772 if (dbregs->dr[7] & (0x3<<6)) {
2773 /* dr3 is enabled */
2774 if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2775 return (EINVAL);
2779 pcb->pcb_dr0 = dbregs->dr[0];
2780 pcb->pcb_dr1 = dbregs->dr[1];
2781 pcb->pcb_dr2 = dbregs->dr[2];
2782 pcb->pcb_dr3 = dbregs->dr[3];
2783 pcb->pcb_dr6 = dbregs->dr[6];
2784 pcb->pcb_dr7 = dbregs->dr[7];
2786 pcb->pcb_flags |= PCB_DBREGS;
2789 return (0);
2793 * Return > 0 if a hardware breakpoint has been hit, and the
2794 * breakpoint was in user space. Return 0, otherwise.
2797 user_dbreg_trap(void)
2799 u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2800 u_int64_t bp; /* breakpoint bits extracted from dr6 */
2801 int nbp; /* number of breakpoints that triggered */
2802 caddr_t addr[4]; /* breakpoint addresses */
2803 int i;
2805 dr7 = rdr7();
2806 if ((dr7 & 0xff) == 0) {
2808 * all GE and LE bits in the dr7 register are zero,
2809 * thus the trap couldn't have been caused by the
2810 * hardware debug registers
2812 return 0;
2815 nbp = 0;
2816 dr6 = rdr6();
2817 bp = dr6 & 0xf;
2819 if (bp == 0) {
2821 * None of the breakpoint bits are set meaning this
2822 * trap was not caused by any of the debug registers
2824 return 0;
2828 * at least one of the breakpoints were hit, check to see
2829 * which ones and if any of them are user space addresses
2832 if (bp & 0x01) {
2833 addr[nbp++] = (caddr_t)rdr0();
2835 if (bp & 0x02) {
2836 addr[nbp++] = (caddr_t)rdr1();
2838 if (bp & 0x04) {
2839 addr[nbp++] = (caddr_t)rdr2();
2841 if (bp & 0x08) {
2842 addr[nbp++] = (caddr_t)rdr3();
2845 for (i=0; i<nbp; i++) {
2846 if (addr[i] <
2847 (caddr_t)VM_MAX_USER_ADDRESS) {
2849 * addr[i] is in user space
2851 return nbp;
2856 * None of the breakpoints are in user space.
2858 return 0;
2862 #ifndef DDB
2863 void
2864 Debugger(const char *msg)
2866 kprintf("Debugger(\"%s\") called.\n", msg);
2868 #endif /* no DDB */
2870 #ifdef DDB
2873 * Provide inb() and outb() as functions. They are normally only
2874 * available as macros calling inlined functions, thus cannot be
2875 * called inside DDB.
2877 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2880 #undef inb
2881 #undef outb
2883 /* silence compiler warnings */
2884 u_char inb(u_int);
2885 void outb(u_int, u_char);
2887 u_char
2888 inb(u_int port)
2890 u_char data;
2892 * We use %%dx and not %1 here because i/o is done at %dx and not at
2893 * %edx, while gcc generates inferior code (movw instead of movl)
2894 * if we tell it to load (u_short) port.
2896 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2897 return (data);
2900 void
2901 outb(u_int port, u_char data)
2903 u_char al;
2905 * Use an unnecessary assignment to help gcc's register allocator.
2906 * This make a large difference for gcc-1.40 and a tiny difference
2907 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2908 * best results. gcc-2.6.0 can't handle this.
2910 al = data;
2911 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2914 #endif /* DDB */
2919 * initialize all the SMP locks
2922 /* critical region when masking or unmasking interupts */
2923 struct spinlock_deprecated imen_spinlock;
2925 /* lock region used by kernel profiling */
2926 struct spinlock_deprecated mcount_spinlock;
2928 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2929 struct spinlock_deprecated com_spinlock;
2931 /* lock regions around the clock hardware */
2932 struct spinlock_deprecated clock_spinlock;
2934 static void
2935 init_locks(void)
2938 * Get the initial mplock with a count of 1 for the BSP.
2939 * This uses a LOGICAL cpu ID, ie BSP == 0.
2941 cpu_get_initial_mplock();
2942 /* DEPRECATED */
2943 spin_init_deprecated(&mcount_spinlock);
2944 spin_init_deprecated(&imen_spinlock);
2945 spin_init_deprecated(&com_spinlock);
2946 spin_init_deprecated(&clock_spinlock);
2948 /* our token pool needs to work early */
2949 lwkt_token_pool_init();
2952 boolean_t
2953 cpu_mwait_hint_valid(uint32_t hint)
2955 int cx_idx, sub;
2957 cx_idx = MWAIT_EAX_TO_CX(hint);
2958 if (cx_idx >= CPU_MWAIT_CX_MAX)
2959 return FALSE;
2961 sub = MWAIT_EAX_TO_CX_SUB(hint);
2962 if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2963 return FALSE;
2965 return TRUE;
2968 void
2969 cpu_mwait_cx_no_bmsts(void)
2971 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2974 void
2975 cpu_mwait_cx_no_bmarb(void)
2977 atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2980 static int
2981 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2983 int old_cx_idx, sub = 0;
2985 if (hint >= 0) {
2986 old_cx_idx = MWAIT_EAX_TO_CX(hint);
2987 sub = MWAIT_EAX_TO_CX_SUB(hint);
2988 } else if (hint == CPU_MWAIT_HINT_AUTO) {
2989 old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2990 } else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2991 old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2992 } else {
2993 old_cx_idx = CPU_MWAIT_CX_MAX;
2996 if (!CPU_MWAIT_HAS_CX)
2997 strlcpy(name, "NONE", namelen);
2998 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2999 strlcpy(name, "AUTO", namelen);
3000 else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3001 strlcpy(name, "AUTODEEP", namelen);
3002 else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3003 sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3004 strlcpy(name, "INVALID", namelen);
3005 else
3006 ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3008 return old_cx_idx;
3011 static int
3012 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3014 int cx_idx, sub, hint;
3015 char *ptr, *start;
3017 if (allow_auto && strcmp(name, "AUTO") == 0) {
3018 hint = CPU_MWAIT_HINT_AUTO;
3019 cx_idx = CPU_MWAIT_C2;
3020 goto done;
3022 if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3023 hint = CPU_MWAIT_HINT_AUTODEEP;
3024 cx_idx = CPU_MWAIT_C3;
3025 goto done;
3028 if (strlen(name) < 4 || toupper(name[0]) != 'C')
3029 return -1;
3030 start = &name[1];
3031 ptr = NULL;
3033 cx_idx = strtol(start, &ptr, 10);
3034 if (ptr == start || *ptr != '/')
3035 return -1;
3036 if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3037 return -1;
3039 start = ptr + 1;
3040 ptr = NULL;
3042 sub = strtol(start, &ptr, 10);
3043 if (*ptr != '\0')
3044 return -1;
3045 if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3046 return -1;
3048 hint = MWAIT_EAX_HINT(cx_idx, sub);
3049 done:
3050 *hint0 = hint;
3051 return cx_idx;
3054 static int
3055 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3057 if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3058 return EOPNOTSUPP;
3059 if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3060 int error;
3062 error = cputimer_intr_powersave_addreq();
3063 if (error)
3064 return error;
3065 } else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3066 cputimer_intr_powersave_remreq();
3068 return 0;
3071 static int
3072 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3073 boolean_t allow_auto)
3075 int error, cx_idx, old_cx_idx, hint;
3076 char name[CPU_MWAIT_CX_NAMELEN];
3078 hint = *hint0;
3079 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3080 allow_auto);
3082 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3083 if (error != 0 || req->newptr == NULL)
3084 return error;
3086 if (!CPU_MWAIT_HAS_CX)
3087 return EOPNOTSUPP;
3089 cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3090 if (cx_idx < 0)
3091 return EINVAL;
3093 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3094 if (error)
3095 return error;
3097 *hint0 = hint;
3098 return 0;
3101 static int
3102 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3104 int error, cx_idx, old_cx_idx, hint;
3105 char name[CPU_MWAIT_CX_NAMELEN];
3107 KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3109 hint = stat->hint;
3110 old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3112 strlcpy(name, cx_name, sizeof(name));
3113 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3114 if (cx_idx < 0)
3115 return EINVAL;
3117 error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3118 if (error)
3119 return error;
3121 stat->hint = hint;
3122 return 0;
3125 static int
3126 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3128 int hint = cpu_mwait_halt_global;
3129 int error, cx_idx, cpu;
3130 char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3132 cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3134 error = sysctl_handle_string(oidp, name, sizeof(name), req);
3135 if (error != 0 || req->newptr == NULL)
3136 return error;
3138 if (!CPU_MWAIT_HAS_CX)
3139 return EOPNOTSUPP;
3141 /* Save name for later per-cpu CX configuration */
3142 strlcpy(cx_name, name, sizeof(cx_name));
3144 cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3145 if (cx_idx < 0)
3146 return EINVAL;
3148 /* Change per-cpu CX configuration */
3149 for (cpu = 0; cpu < ncpus; ++cpu) {
3150 error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3151 if (error)
3152 return error;
3155 cpu_mwait_halt_global = hint;
3156 return 0;
3159 static int
3160 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3162 struct cpu_idle_stat *stat = arg1;
3163 int error;
3165 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3166 &stat->hint, TRUE);
3167 return error;
3170 static int
3171 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3173 int error;
3175 error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3176 &cpu_mwait_spin, FALSE);
3177 return error;
3181 * This manual debugging code is called unconditionally from Xtimer
3182 * (the per-cpu timer interrupt) whether the current thread is in a
3183 * critical section or not) and can be useful in tracking down lockups.
3185 * NOTE: MANUAL DEBUG CODE
3187 #if 0
3188 static int saveticks[SMP_MAXCPU];
3189 static int savecounts[SMP_MAXCPU];
3190 #endif
3192 void
3193 pcpu_timer_always(struct intrframe *frame)
3195 #if 0
3196 globaldata_t gd = mycpu;
3197 int cpu = gd->gd_cpuid;
3198 char buf[64];
3199 short *gptr;
3200 int i;
3202 if (cpu <= 20) {
3203 gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3204 *gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3205 ++gptr;
3207 ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3208 (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3209 gd->gd_infomsg);
3210 for (i = 0; buf[i]; ++i) {
3211 gptr[i] = 0x0700 | (unsigned char)buf[i];
3214 #if 0
3215 if (saveticks[gd->gd_cpuid] != ticks) {
3216 saveticks[gd->gd_cpuid] = ticks;
3217 savecounts[gd->gd_cpuid] = 0;
3219 ++savecounts[gd->gd_cpuid];
3220 if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3221 panic("cpud %d panicing on ticks failure",
3222 gd->gd_cpuid);
3224 for (i = 0; i < ncpus; ++i) {
3225 int delta;
3226 if (saveticks[i] && panicstr == NULL) {
3227 delta = saveticks[i] - ticks;
3228 if (delta < -10 || delta > 10) {
3229 panic("cpu %d panicing on cpu %d watchdog",
3230 gd->gd_cpuid, i);
3234 #endif
3235 #endif