kqueue: Use wakeup_one based on # of threads sleep on kqueue
[dragonfly.git] / sys / netinet / ip_input.c
blob51ed86db1922cf81f378e0d03b757bdebdbe23c1
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
62 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
63 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
66 #define _IP_VHL
68 #include "opt_bootp.h"
69 #include "opt_ipdn.h"
70 #include "opt_ipdivert.h"
71 #include "opt_ipstealth.h"
72 #include "opt_ipsec.h"
73 #include "opt_rss.h"
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/mpipe.h>
80 #include <sys/domain.h>
81 #include <sys/protosw.h>
82 #include <sys/socket.h>
83 #include <sys/time.h>
84 #include <sys/globaldata.h>
85 #include <sys/thread.h>
86 #include <sys/kernel.h>
87 #include <sys/syslog.h>
88 #include <sys/sysctl.h>
89 #include <sys/in_cksum.h>
90 #include <sys/lock.h>
92 #include <sys/mplock2.h>
94 #include <machine/stdarg.h>
96 #include <net/if.h>
97 #include <net/if_types.h>
98 #include <net/if_var.h>
99 #include <net/if_dl.h>
100 #include <net/pfil.h>
101 #include <net/route.h>
102 #include <net/netisr2.h>
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #include <netinet/in_pcb.h>
109 #include <netinet/ip_var.h>
110 #include <netinet/ip_icmp.h>
111 #include <netinet/ip_divert.h>
112 #include <netinet/ip_flow.h>
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116 #include <net/netmsg2.h>
118 #include <sys/socketvar.h>
120 #include <net/ipfw/ip_fw.h>
121 #include <net/dummynet/ip_dummynet.h>
123 #ifdef IPSEC
124 #include <netinet6/ipsec.h>
125 #include <netproto/key/key.h>
126 #endif
128 #ifdef FAST_IPSEC
129 #include <netproto/ipsec/ipsec.h>
130 #include <netproto/ipsec/key.h>
131 #endif
133 int rsvp_on = 0;
134 static int ip_rsvp_on;
135 struct socket *ip_rsvpd;
137 int ipforwarding = 0;
138 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
139 &ipforwarding, 0, "Enable IP forwarding between interfaces");
141 static int ipsendredirects = 1; /* XXX */
142 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
143 &ipsendredirects, 0, "Enable sending IP redirects");
145 int ip_defttl = IPDEFTTL;
146 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
147 &ip_defttl, 0, "Maximum TTL on IP packets");
149 static int ip_dosourceroute = 0;
150 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
151 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
153 static int ip_acceptsourceroute = 0;
154 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
155 CTLFLAG_RW, &ip_acceptsourceroute, 0,
156 "Enable accepting source routed IP packets");
158 static int ip_keepfaith = 0;
159 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
160 &ip_keepfaith, 0,
161 "Enable packet capture for FAITH IPv4->IPv6 translator daemon");
163 static int maxnipq;
164 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
165 &maxnipq, 0,
166 "Maximum number of IPv4 fragment reassembly queue entries");
168 static int maxfragsperpacket;
169 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
170 &maxfragsperpacket, 0,
171 "Maximum number of IPv4 fragments allowed per packet");
173 static int ip_sendsourcequench = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
175 &ip_sendsourcequench, 0,
176 "Enable the transmission of source quench packets");
178 int ip_do_randomid = 1;
179 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
180 &ip_do_randomid, 0,
181 "Assign random ip_id values");
183 * XXX - Setting ip_checkinterface mostly implements the receive side of
184 * the Strong ES model described in RFC 1122, but since the routing table
185 * and transmit implementation do not implement the Strong ES model,
186 * setting this to 1 results in an odd hybrid.
188 * XXX - ip_checkinterface currently must be disabled if you use ipnat
189 * to translate the destination address to another local interface.
191 * XXX - ip_checkinterface must be disabled if you add IP aliases
192 * to the loopback interface instead of the interface where the
193 * packets for those addresses are received.
195 static int ip_checkinterface = 0;
196 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
197 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
199 static u_long ip_hash_count = 0;
200 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, hash_count, CTLFLAG_RD,
201 &ip_hash_count, 0, "Number of packets hashed by IP");
203 #ifdef RSS_DEBUG
204 static u_long ip_rehash_count = 0;
205 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, rehash_count, CTLFLAG_RD,
206 &ip_rehash_count, 0, "Number of packets rehashed by IP");
208 static u_long ip_dispatch_fast = 0;
209 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_fast_count, CTLFLAG_RD,
210 &ip_dispatch_fast, 0, "Number of packets handled on current CPU");
212 static u_long ip_dispatch_slow = 0;
213 SYSCTL_ULONG(_net_inet_ip, OID_AUTO, dispatch_slow_count, CTLFLAG_RD,
214 &ip_dispatch_slow, 0, "Number of packets messaged to another CPU");
215 #endif
217 #ifdef DIAGNOSTIC
218 static int ipprintfs = 0;
219 #endif
221 extern struct domain inetdomain;
222 extern struct protosw inetsw[];
223 u_char ip_protox[IPPROTO_MAX];
224 struct in_ifaddrhead in_ifaddrheads[MAXCPU]; /* first inet address */
225 struct in_ifaddrhashhead *in_ifaddrhashtbls[MAXCPU];
226 /* inet addr hash table */
227 u_long in_ifaddrhmask; /* mask for hash table */
229 static struct mbuf *ipforward_mtemp[MAXCPU];
231 struct ip_stats ipstats_percpu[MAXCPU] __cachealign;
233 static int
234 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
236 int cpu, error = 0;
238 for (cpu = 0; cpu < ncpus; ++cpu) {
239 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
240 sizeof(struct ip_stats))))
241 break;
242 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
243 sizeof(struct ip_stats))))
244 break;
247 return (error);
249 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
250 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
252 /* Packet reassembly stuff */
253 #define IPREASS_NHASH_LOG2 6
254 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
255 #define IPREASS_HMASK (IPREASS_NHASH - 1)
256 #define IPREASS_HASH(x,y) \
257 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
259 TAILQ_HEAD(ipqhead, ipq);
260 struct ipfrag_queue {
261 int nipq;
262 struct netmsg_base timeo_netmsg;
263 struct netmsg_base drain_netmsg;
264 struct ipqhead ipq[IPREASS_NHASH];
265 } __cachealign;
267 static struct ipfrag_queue ipfrag_queue_pcpu[MAXCPU];
269 #ifdef IPCTL_DEFMTU
270 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
271 &ip_mtu, 0, "Default MTU");
272 #endif
274 #ifdef IPSTEALTH
275 static int ipstealth = 0;
276 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
277 #else
278 static const int ipstealth = 0;
279 #endif
281 struct mbuf *(*ip_divert_p)(struct mbuf *, int, int);
283 struct pfil_head inet_pfil_hook;
286 * struct ip_srcrt_opt is used to store packet state while it travels
287 * through the stack.
289 * XXX Note that the code even makes assumptions on the size and
290 * alignment of fields inside struct ip_srcrt so e.g. adding some
291 * fields will break the code. This needs to be fixed.
293 * We need to save the IP options in case a protocol wants to respond
294 * to an incoming packet over the same route if the packet got here
295 * using IP source routing. This allows connection establishment and
296 * maintenance when the remote end is on a network that is not known
297 * to us.
299 struct ip_srcrt {
300 struct in_addr dst; /* final destination */
301 char nop; /* one NOP to align */
302 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
303 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
306 struct ip_srcrt_opt {
307 int ip_nhops;
308 struct ip_srcrt ip_srcrt;
311 #define IPFRAG_MPIPE_MAX 4096
312 #define MAXIPFRAG_MIN ((IPFRAG_MPIPE_MAX * 2) / 256)
314 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
315 static struct malloc_pipe ipq_mpipe;
317 static void save_rte(struct mbuf *, u_char *, struct in_addr);
318 static int ip_dooptions(struct mbuf *m, int, struct sockaddr_in *);
319 static void ip_freef(struct ipfrag_queue *, struct ipqhead *,
320 struct ipq *);
321 static void ip_input_handler(netmsg_t);
323 static void ipfrag_timeo_dispatch(netmsg_t);
324 static void ipfrag_drain_dispatch(netmsg_t);
327 * IP initialization: fill in IP protocol switch table.
328 * All protocols not implemented in kernel go to raw IP protocol handler.
330 void
331 ip_init(void)
333 struct protosw *pr;
334 int cpu, i;
337 * Make sure we can handle a reasonable number of fragments but
338 * cap it at IPFRAG_MPIPE_MAX.
340 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
341 IFQ_MAXLEN, IPFRAG_MPIPE_MAX, 0, NULL, NULL, NULL);
342 for (cpu = 0; cpu < ncpus; ++cpu) {
343 TAILQ_INIT(&in_ifaddrheads[cpu]);
344 in_ifaddrhashtbls[cpu] =
345 hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
347 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
348 if (pr == NULL)
349 panic("ip_init");
350 for (i = 0; i < IPPROTO_MAX; i++)
351 ip_protox[i] = pr - inetsw;
352 for (pr = inetdomain.dom_protosw;
353 pr < inetdomain.dom_protoswNPROTOSW; pr++) {
354 if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol) {
355 if (pr->pr_protocol != IPPROTO_RAW)
356 ip_protox[pr->pr_protocol] = pr - inetsw;
360 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361 inet_pfil_hook.ph_af = AF_INET;
362 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
363 kprintf("%s: WARNING: unable to register pfil hook, "
364 "error %d\n", __func__, i);
367 maxnipq = (nmbclusters / 32) / ncpus2;
368 if (maxnipq < MAXIPFRAG_MIN)
369 maxnipq = MAXIPFRAG_MIN;
370 maxfragsperpacket = 16;
372 ip_id = time_second & 0xffff; /* time_second survives reboots */
374 for (cpu = 0; cpu < ncpus; ++cpu) {
376 * Initialize IP statistics counters for each CPU.
378 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
381 * Preallocate mbuf template for forwarding
383 MGETHDR(ipforward_mtemp[cpu], M_WAITOK, MT_DATA);
386 * Initialize per-cpu ip fragments queues
388 for (i = 0; i < IPREASS_NHASH; i++) {
389 struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[cpu];
391 TAILQ_INIT(&fragq->ipq[i]);
392 netmsg_init(&fragq->timeo_netmsg, NULL,
393 &netisr_adone_rport, MSGF_PRIORITY,
394 ipfrag_timeo_dispatch);
395 netmsg_init(&fragq->drain_netmsg, NULL,
396 &netisr_adone_rport, MSGF_PRIORITY,
397 ipfrag_drain_dispatch);
401 netisr_register(NETISR_IP, ip_input_handler, ip_hashfn);
402 netisr_register_hashcheck(NETISR_IP, ip_hashcheck);
405 /* Do transport protocol processing. */
406 static void
407 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip)
409 const struct protosw *pr = &inetsw[ip_protox[ip->ip_p]];
412 * Switch out to protocol's input routine.
414 PR_GET_MPLOCK(pr);
415 pr->pr_input(&m, &hlen, ip->ip_p);
416 PR_REL_MPLOCK(pr);
419 static void
420 transport_processing_handler(netmsg_t msg)
422 struct netmsg_packet *pmsg = &msg->packet;
423 struct ip *ip;
424 int hlen;
426 ip = mtod(pmsg->nm_packet, struct ip *);
427 hlen = pmsg->base.lmsg.u.ms_result;
429 transport_processing_oncpu(pmsg->nm_packet, hlen, ip);
430 /* msg was embedded in the mbuf, do not reply! */
433 static void
434 ip_input_handler(netmsg_t msg)
436 ip_input(msg->packet.nm_packet);
437 /* msg was embedded in the mbuf, do not reply! */
441 * IP input routine. Checksum and byte swap header. If fragmented
442 * try to reassemble. Process options. Pass to next level.
444 void
445 ip_input(struct mbuf *m)
447 struct ip *ip;
448 struct in_ifaddr *ia = NULL;
449 struct in_ifaddr_container *iac;
450 int hlen, checkif;
451 u_short sum;
452 struct in_addr pkt_dst;
453 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
454 struct in_addr odst; /* original dst address(NAT) */
455 struct m_tag *mtag;
456 struct sockaddr_in *next_hop = NULL;
457 lwkt_port_t port;
458 #ifdef FAST_IPSEC
459 struct tdb_ident *tdbi;
460 struct secpolicy *sp;
461 int error;
462 #endif
464 M_ASSERTPKTHDR(m);
467 * This routine is called from numerous places which may not have
468 * characterized the packet.
470 ip = mtod(m, struct ip *);
471 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
472 ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) {
474 * Force hash recalculation for fragments and multicast
475 * packets; hardware may not do it correctly.
476 * XXX add flag to indicate the hash is from hardware
478 m->m_flags &= ~M_HASH;
480 if ((m->m_flags & M_HASH) == 0) {
481 ip_hashfn(&m, 0);
482 if (m == NULL)
483 return;
484 KKASSERT(m->m_flags & M_HASH);
486 if (&curthread->td_msgport !=
487 netisr_hashport(m->m_pkthdr.hash)) {
488 netisr_queue(NETISR_IP, m);
489 /* Requeued to other netisr msgport; done */
490 return;
493 /* mbuf could have been changed */
494 ip = mtod(m, struct ip *);
498 * Pull out certain tags
500 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
501 /* Next hop */
502 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
503 KKASSERT(mtag != NULL);
504 next_hop = m_tag_data(mtag);
507 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
508 /* dummynet already filtered us */
509 ip = mtod(m, struct ip *);
510 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
511 goto iphack;
514 ipstat.ips_total++;
516 /* length checks already done in ip_hashfn() */
517 KASSERT(m->m_len >= sizeof(struct ip), ("IP header not in one mbuf"));
519 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
520 ipstat.ips_badvers++;
521 goto bad;
524 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
525 /* length checks already done in ip_hashfn() */
526 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
527 KASSERT(m->m_len >= hlen, ("complete IP header not in one mbuf"));
529 /* 127/8 must not appear on wire - RFC1122 */
530 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
531 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
532 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
533 ipstat.ips_badaddr++;
534 goto bad;
538 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
539 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
540 } else {
541 if (hlen == sizeof(struct ip))
542 sum = in_cksum_hdr(ip);
543 else
544 sum = in_cksum(m, hlen);
546 if (sum != 0) {
547 ipstat.ips_badsum++;
548 goto bad;
551 #ifdef ALTQ
552 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
553 /* packet is dropped by traffic conditioner */
554 return;
556 #endif
558 * Convert fields to host representation.
560 ip->ip_len = ntohs(ip->ip_len);
561 ip->ip_off = ntohs(ip->ip_off);
563 /* length checks already done in ip_hashfn() */
564 KASSERT(ip->ip_len >= hlen, ("total length less then header length"));
565 KASSERT(m->m_pkthdr.len >= ip->ip_len, ("mbuf too short"));
568 * Trim mbufs if longer than the IP header would have us expect.
570 if (m->m_pkthdr.len > ip->ip_len) {
571 if (m->m_len == m->m_pkthdr.len) {
572 m->m_len = ip->ip_len;
573 m->m_pkthdr.len = ip->ip_len;
574 } else {
575 m_adj(m, ip->ip_len - m->m_pkthdr.len);
578 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
580 * Bypass packet filtering for packets from a tunnel (gif).
582 if (ipsec_gethist(m, NULL))
583 goto pass;
584 #endif
587 * IpHack's section.
588 * Right now when no processing on packet has done
589 * and it is still fresh out of network we do our black
590 * deals with it.
591 * - Firewall: deny/allow/divert
592 * - Xlate: translate packet's addr/port (NAT).
593 * - Pipe: pass pkt through dummynet.
594 * - Wrap: fake packet's addr/port <unimpl.>
595 * - Encapsulate: put it in another IP and send out. <unimp.>
598 iphack:
600 * If we've been forwarded from the output side, then
601 * skip the firewall a second time
603 if (next_hop != NULL)
604 goto ours;
606 /* No pfil hooks */
607 if (!pfil_has_hooks(&inet_pfil_hook)) {
608 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
610 * Strip dummynet tags from stranded packets
612 mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
613 KKASSERT(mtag != NULL);
614 m_tag_delete(m, mtag);
615 m->m_pkthdr.fw_flags &= ~DUMMYNET_MBUF_TAGGED;
617 goto pass;
621 * Run through list of hooks for input packets.
623 * NOTE! If the packet is rewritten pf/ipfw/whoever must
624 * clear M_HASH.
626 odst = ip->ip_dst;
627 if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN))
628 return;
629 if (m == NULL) /* consumed by filter */
630 return;
631 ip = mtod(m, struct ip *);
632 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
633 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
635 if (m->m_pkthdr.fw_flags & IPFORWARD_MBUF_TAGGED) {
636 mtag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
637 KKASSERT(mtag != NULL);
638 next_hop = m_tag_data(mtag);
640 if (m->m_pkthdr.fw_flags & DUMMYNET_MBUF_TAGGED) {
641 ip_dn_queue(m);
642 return;
644 if (m->m_pkthdr.fw_flags & FW_MBUF_REDISPATCH) {
645 m->m_pkthdr.fw_flags &= ~FW_MBUF_REDISPATCH;
647 pass:
649 * Process options and, if not destined for us,
650 * ship it on. ip_dooptions returns 1 when an
651 * error was detected (causing an icmp message
652 * to be sent and the original packet to be freed).
654 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, next_hop))
655 return;
657 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
658 * matter if it is destined to another node, or whether it is
659 * a multicast one, RSVP wants it! and prevents it from being forwarded
660 * anywhere else. Also checks if the rsvp daemon is running before
661 * grabbing the packet.
663 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
664 goto ours;
667 * Check our list of addresses, to see if the packet is for us.
668 * If we don't have any addresses, assume any unicast packet
669 * we receive might be for us (and let the upper layers deal
670 * with it).
672 if (TAILQ_EMPTY(&in_ifaddrheads[mycpuid]) &&
673 !(m->m_flags & (M_MCAST | M_BCAST)))
674 goto ours;
677 * Cache the destination address of the packet; this may be
678 * changed by use of 'ipfw fwd'.
680 pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
683 * Enable a consistency check between the destination address
684 * and the arrival interface for a unicast packet (the RFC 1122
685 * strong ES model) if IP forwarding is disabled and the packet
686 * is not locally generated and the packet is not subject to
687 * 'ipfw fwd'.
689 * XXX - Checking also should be disabled if the destination
690 * address is ipnat'ed to a different interface.
692 * XXX - Checking is incompatible with IP aliases added
693 * to the loopback interface instead of the interface where
694 * the packets are received.
696 checkif = ip_checkinterface &&
697 !ipforwarding &&
698 m->m_pkthdr.rcvif != NULL &&
699 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
700 next_hop == NULL;
703 * Check for exact addresses in the hash bucket.
705 LIST_FOREACH(iac, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
706 ia = iac->ia;
709 * If the address matches, verify that the packet
710 * arrived via the correct interface if checking is
711 * enabled.
713 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
714 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
715 goto ours;
717 ia = NULL;
720 * Check for broadcast addresses.
722 * Only accept broadcast packets that arrive via the matching
723 * interface. Reception of forwarded directed broadcasts would
724 * be handled via ip_forward() and ether_output() with the loopback
725 * into the stack for SIMPLEX interfaces handled by ether_output().
727 if (m->m_pkthdr.rcvif != NULL &&
728 m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
729 struct ifaddr_container *ifac;
731 TAILQ_FOREACH(ifac, &m->m_pkthdr.rcvif->if_addrheads[mycpuid],
732 ifa_link) {
733 struct ifaddr *ifa = ifac->ifa;
735 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
736 continue;
737 if (ifa->ifa_addr->sa_family != AF_INET)
738 continue;
739 ia = ifatoia(ifa);
740 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
741 pkt_dst.s_addr)
742 goto ours;
743 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
744 goto ours;
745 #ifdef BOOTP_COMPAT
746 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
747 goto ours;
748 #endif
751 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
752 struct in_multi *inm;
754 if (ip_mrouter != NULL) {
755 /* XXX Multicast routing is not MPSAFE yet */
756 get_mplock();
759 * If we are acting as a multicast router, all
760 * incoming multicast packets are passed to the
761 * kernel-level multicast forwarding function.
762 * The packet is returned (relatively) intact; if
763 * ip_mforward() returns a non-zero value, the packet
764 * must be discarded, else it may be accepted below.
766 if (ip_mforward != NULL &&
767 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
768 rel_mplock();
769 ipstat.ips_cantforward++;
770 m_freem(m);
771 return;
774 rel_mplock();
777 * The process-level routing daemon needs to receive
778 * all multicast IGMP packets, whether or not this
779 * host belongs to their destination groups.
781 if (ip->ip_p == IPPROTO_IGMP)
782 goto ours;
783 ipstat.ips_forward++;
786 * See if we belong to the destination multicast group on the
787 * arrival interface.
789 inm = IN_LOOKUP_MULTI(&ip->ip_dst, m->m_pkthdr.rcvif);
790 if (inm == NULL) {
791 ipstat.ips_notmember++;
792 m_freem(m);
793 return;
795 goto ours;
797 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
798 goto ours;
799 if (ip->ip_dst.s_addr == INADDR_ANY)
800 goto ours;
803 * FAITH(Firewall Aided Internet Translator)
805 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
806 if (ip_keepfaith) {
807 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
808 goto ours;
810 m_freem(m);
811 return;
815 * Not for us; forward if possible and desirable.
817 if (!ipforwarding) {
818 ipstat.ips_cantforward++;
819 m_freem(m);
820 } else {
821 #ifdef IPSEC
823 * Enforce inbound IPsec SPD.
825 if (ipsec4_in_reject(m, NULL)) {
826 ipsecstat.in_polvio++;
827 goto bad;
829 #endif
830 #ifdef FAST_IPSEC
831 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
832 crit_enter();
833 if (mtag != NULL) {
834 tdbi = (struct tdb_ident *)m_tag_data(mtag);
835 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
836 } else {
837 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
838 IP_FORWARDING, &error);
840 if (sp == NULL) { /* NB: can happen if error */
841 crit_exit();
842 /*XXX error stat???*/
843 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
844 goto bad;
848 * Check security policy against packet attributes.
850 error = ipsec_in_reject(sp, m);
851 KEY_FREESP(&sp);
852 crit_exit();
853 if (error) {
854 ipstat.ips_cantforward++;
855 goto bad;
857 #endif
858 ip_forward(m, using_srcrt, next_hop);
860 return;
862 ours:
865 * IPSTEALTH: Process non-routing options only
866 * if the packet is destined for us.
868 if (ipstealth &&
869 hlen > sizeof(struct ip) &&
870 ip_dooptions(m, 1, next_hop))
871 return;
873 /* Count the packet in the ip address stats */
874 if (ia != NULL) {
875 IFA_STAT_INC(&ia->ia_ifa, ipackets, 1);
876 IFA_STAT_INC(&ia->ia_ifa, ibytes, m->m_pkthdr.len);
880 * If offset or IP_MF are set, must reassemble.
881 * Otherwise, nothing need be done.
882 * (We could look in the reassembly queue to see
883 * if the packet was previously fragmented,
884 * but it's not worth the time; just let them time out.)
886 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
888 * Attempt reassembly; if it succeeds, proceed. ip_reass()
889 * will return a different mbuf.
891 * NOTE: ip_reass() returns m with M_HASH cleared to force
892 * us to recharacterize the packet.
894 m = ip_reass(m);
895 if (m == NULL)
896 return;
897 ip = mtod(m, struct ip *);
899 /* Get the header length of the reassembled packet */
900 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
901 } else {
902 ip->ip_len -= hlen;
905 #ifdef IPSEC
907 * enforce IPsec policy checking if we are seeing last header.
908 * note that we do not visit this with protocols with pcb layer
909 * code - like udp/tcp/raw ip.
911 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
912 ipsec4_in_reject(m, NULL)) {
913 ipsecstat.in_polvio++;
914 goto bad;
916 #endif
917 #ifdef FAST_IPSEC
919 * enforce IPsec policy checking if we are seeing last header.
920 * note that we do not visit this with protocols with pcb layer
921 * code - like udp/tcp/raw ip.
923 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
925 * Check if the packet has already had IPsec processing
926 * done. If so, then just pass it along. This tag gets
927 * set during AH, ESP, etc. input handling, before the
928 * packet is returned to the ip input queue for delivery.
930 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
931 crit_enter();
932 if (mtag != NULL) {
933 tdbi = (struct tdb_ident *)m_tag_data(mtag);
934 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
935 } else {
936 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
937 IP_FORWARDING, &error);
939 if (sp != NULL) {
941 * Check security policy against packet attributes.
943 error = ipsec_in_reject(sp, m);
944 KEY_FREESP(&sp);
945 } else {
946 /* XXX error stat??? */
947 error = EINVAL;
948 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
949 crit_exit();
950 goto bad;
952 crit_exit();
953 if (error)
954 goto bad;
956 #endif /* FAST_IPSEC */
959 * We must forward the packet to the correct protocol thread if
960 * we are not already in it.
962 * NOTE: ip_len is now in host form. ip_len is not adjusted
963 * further for protocol processing, instead we pass hlen
964 * to the protosw and let it deal with it.
966 ipstat.ips_delivered++;
968 if ((m->m_flags & M_HASH) == 0) {
969 #ifdef RSS_DEBUG
970 atomic_add_long(&ip_rehash_count, 1);
971 #endif
972 ip->ip_len = htons(ip->ip_len + hlen);
973 ip->ip_off = htons(ip->ip_off);
975 ip_hashfn(&m, 0);
976 if (m == NULL)
977 return;
979 ip = mtod(m, struct ip *);
980 ip->ip_len = ntohs(ip->ip_len) - hlen;
981 ip->ip_off = ntohs(ip->ip_off);
982 KKASSERT(m->m_flags & M_HASH);
984 port = netisr_hashport(m->m_pkthdr.hash);
986 if (port != &curthread->td_msgport) {
987 struct netmsg_packet *pmsg;
989 #ifdef RSS_DEBUG
990 atomic_add_long(&ip_dispatch_slow, 1);
991 #endif
993 pmsg = &m->m_hdr.mh_netmsg;
994 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
995 0, transport_processing_handler);
996 pmsg->nm_packet = m;
997 pmsg->base.lmsg.u.ms_result = hlen;
998 lwkt_sendmsg(port, &pmsg->base.lmsg);
999 } else {
1000 #ifdef RSS_DEBUG
1001 atomic_add_long(&ip_dispatch_fast, 1);
1002 #endif
1003 transport_processing_oncpu(m, hlen, ip);
1005 return;
1007 bad:
1008 m_freem(m);
1012 * Take incoming datagram fragment and try to reassemble it into
1013 * whole datagram. If a chain for reassembly of this datagram already
1014 * exists, then it is given as fp; otherwise have to make a chain.
1016 struct mbuf *
1017 ip_reass(struct mbuf *m)
1019 struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1020 struct ip *ip = mtod(m, struct ip *);
1021 struct mbuf *p = NULL, *q, *nq;
1022 struct mbuf *n;
1023 struct ipq *fp = NULL;
1024 struct ipqhead *head;
1025 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1026 int i, next;
1027 u_short sum;
1029 /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
1030 if (maxnipq == 0 || maxfragsperpacket == 0) {
1031 ipstat.ips_fragments++;
1032 ipstat.ips_fragdropped++;
1033 m_freem(m);
1034 return NULL;
1037 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
1039 * Look for queue of fragments of this datagram.
1041 head = &fragq->ipq[sum];
1042 TAILQ_FOREACH(fp, head, ipq_list) {
1043 if (ip->ip_id == fp->ipq_id &&
1044 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
1045 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
1046 ip->ip_p == fp->ipq_p)
1047 goto found;
1050 fp = NULL;
1053 * Enforce upper bound on number of fragmented packets
1054 * for which we attempt reassembly;
1055 * If maxnipq is -1, accept all fragments without limitation.
1057 if (fragq->nipq > maxnipq && maxnipq > 0) {
1059 * drop something from the tail of the current queue
1060 * before proceeding further
1062 struct ipq *q = TAILQ_LAST(head, ipqhead);
1063 if (q == NULL) {
1065 * The current queue is empty,
1066 * so drop from one of the others.
1068 for (i = 0; i < IPREASS_NHASH; i++) {
1069 struct ipq *r = TAILQ_LAST(&fragq->ipq[i],
1070 ipqhead);
1071 if (r) {
1072 ipstat.ips_fragtimeout += r->ipq_nfrags;
1073 ip_freef(fragq, &fragq->ipq[i], r);
1074 break;
1077 } else {
1078 ipstat.ips_fragtimeout += q->ipq_nfrags;
1079 ip_freef(fragq, head, q);
1082 found:
1084 * Adjust ip_len to not reflect header,
1085 * convert offset of this to bytes.
1087 ip->ip_len -= hlen;
1088 if (ip->ip_off & IP_MF) {
1090 * Make sure that fragments have a data length
1091 * that's a non-zero multiple of 8 bytes.
1093 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
1094 ipstat.ips_toosmall++; /* XXX */
1095 m_freem(m);
1096 goto done;
1098 m->m_flags |= M_FRAG;
1099 } else {
1100 m->m_flags &= ~M_FRAG;
1102 ip->ip_off <<= 3;
1104 ipstat.ips_fragments++;
1105 m->m_pkthdr.header = ip;
1108 * If the hardware has not done csum over this fragment
1109 * then csum_data is not valid at all.
1111 if ((m->m_pkthdr.csum_flags & (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID))
1112 == (CSUM_FRAG_NOT_CHECKED | CSUM_DATA_VALID)) {
1113 m->m_pkthdr.csum_data = 0;
1114 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1118 * Presence of header sizes in mbufs
1119 * would confuse code below.
1121 m->m_data += hlen;
1122 m->m_len -= hlen;
1125 * If first fragment to arrive, create a reassembly queue.
1127 if (fp == NULL) {
1128 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1129 goto dropfrag;
1130 TAILQ_INSERT_HEAD(head, fp, ipq_list);
1131 fragq->nipq++;
1132 fp->ipq_nfrags = 1;
1133 fp->ipq_ttl = IPFRAGTTL;
1134 fp->ipq_p = ip->ip_p;
1135 fp->ipq_id = ip->ip_id;
1136 fp->ipq_src = ip->ip_src;
1137 fp->ipq_dst = ip->ip_dst;
1138 fp->ipq_frags = m;
1139 m->m_nextpkt = NULL;
1140 goto inserted;
1141 } else {
1142 fp->ipq_nfrags++;
1145 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1148 * Find a segment which begins after this one does.
1150 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1151 if (GETIP(q)->ip_off > ip->ip_off)
1152 break;
1156 * If there is a preceding segment, it may provide some of
1157 * our data already. If so, drop the data from the incoming
1158 * segment. If it provides all of our data, drop us, otherwise
1159 * stick new segment in the proper place.
1161 * If some of the data is dropped from the the preceding
1162 * segment, then it's checksum is invalidated.
1164 if (p) {
1165 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1166 if (i > 0) {
1167 if (i >= ip->ip_len)
1168 goto dropfrag;
1169 m_adj(m, i);
1170 m->m_pkthdr.csum_flags = 0;
1171 ip->ip_off += i;
1172 ip->ip_len -= i;
1174 m->m_nextpkt = p->m_nextpkt;
1175 p->m_nextpkt = m;
1176 } else {
1177 m->m_nextpkt = fp->ipq_frags;
1178 fp->ipq_frags = m;
1182 * While we overlap succeeding segments trim them or,
1183 * if they are completely covered, dequeue them.
1185 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1186 q = nq) {
1187 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1188 if (i < GETIP(q)->ip_len) {
1189 GETIP(q)->ip_len -= i;
1190 GETIP(q)->ip_off += i;
1191 m_adj(q, i);
1192 q->m_pkthdr.csum_flags = 0;
1193 break;
1195 nq = q->m_nextpkt;
1196 m->m_nextpkt = nq;
1197 ipstat.ips_fragdropped++;
1198 fp->ipq_nfrags--;
1199 q->m_nextpkt = NULL;
1200 m_freem(q);
1203 inserted:
1205 * Check for complete reassembly and perform frag per packet
1206 * limiting.
1208 * Frag limiting is performed here so that the nth frag has
1209 * a chance to complete the packet before we drop the packet.
1210 * As a result, n+1 frags are actually allowed per packet, but
1211 * only n will ever be stored. (n = maxfragsperpacket.)
1214 next = 0;
1215 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1216 if (GETIP(q)->ip_off != next) {
1217 if (fp->ipq_nfrags > maxfragsperpacket) {
1218 ipstat.ips_fragdropped += fp->ipq_nfrags;
1219 ip_freef(fragq, head, fp);
1221 goto done;
1223 next += GETIP(q)->ip_len;
1225 /* Make sure the last packet didn't have the IP_MF flag */
1226 if (p->m_flags & M_FRAG) {
1227 if (fp->ipq_nfrags > maxfragsperpacket) {
1228 ipstat.ips_fragdropped += fp->ipq_nfrags;
1229 ip_freef(fragq, head, fp);
1231 goto done;
1235 * Reassembly is complete. Make sure the packet is a sane size.
1237 q = fp->ipq_frags;
1238 ip = GETIP(q);
1239 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1240 ipstat.ips_toolong++;
1241 ipstat.ips_fragdropped += fp->ipq_nfrags;
1242 ip_freef(fragq, head, fp);
1243 goto done;
1247 * Concatenate fragments.
1249 m = q;
1250 n = m->m_next;
1251 m->m_next = NULL;
1252 m_cat(m, n);
1253 nq = q->m_nextpkt;
1254 q->m_nextpkt = NULL;
1255 for (q = nq; q != NULL; q = nq) {
1256 nq = q->m_nextpkt;
1257 q->m_nextpkt = NULL;
1258 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1259 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1260 m_cat(m, q);
1264 * Clean up the 1's complement checksum. Carry over 16 bits must
1265 * be added back. This assumes no more then 65535 packet fragments
1266 * were reassembled. A second carry can also occur (but not a third).
1268 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
1269 (m->m_pkthdr.csum_data >> 16);
1270 if (m->m_pkthdr.csum_data > 0xFFFF)
1271 m->m_pkthdr.csum_data -= 0xFFFF;
1274 * Create header for new ip packet by
1275 * modifying header of first packet;
1276 * dequeue and discard fragment reassembly header.
1277 * Make header visible.
1279 ip->ip_len = next;
1280 ip->ip_src = fp->ipq_src;
1281 ip->ip_dst = fp->ipq_dst;
1282 TAILQ_REMOVE(head, fp, ipq_list);
1283 fragq->nipq--;
1284 mpipe_free(&ipq_mpipe, fp);
1285 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1286 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1287 /* some debugging cruft by sklower, below, will go away soon */
1288 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1289 int plen = 0;
1291 for (n = m; n; n = n->m_next)
1292 plen += n->m_len;
1293 m->m_pkthdr.len = plen;
1297 * Reassembly complete, return the next protocol.
1299 * Be sure to clear M_HASH to force the packet
1300 * to be re-characterized.
1302 * Clear M_FRAG, we are no longer a fragment.
1304 m->m_flags &= ~(M_HASH | M_FRAG);
1306 ipstat.ips_reassembled++;
1307 return (m);
1309 dropfrag:
1310 ipstat.ips_fragdropped++;
1311 if (fp != NULL)
1312 fp->ipq_nfrags--;
1313 m_freem(m);
1314 done:
1315 return (NULL);
1317 #undef GETIP
1321 * Free a fragment reassembly header and all
1322 * associated datagrams.
1324 static void
1325 ip_freef(struct ipfrag_queue *fragq, struct ipqhead *fhp, struct ipq *fp)
1327 struct mbuf *q;
1330 * Remove first to protect against blocking
1332 TAILQ_REMOVE(fhp, fp, ipq_list);
1335 * Clean out at our leisure
1337 while (fp->ipq_frags) {
1338 q = fp->ipq_frags;
1339 fp->ipq_frags = q->m_nextpkt;
1340 q->m_nextpkt = NULL;
1341 m_freem(q);
1343 mpipe_free(&ipq_mpipe, fp);
1344 fragq->nipq--;
1348 * If a timer expires on a reassembly queue, discard it.
1350 static void
1351 ipfrag_timeo_dispatch(netmsg_t nmsg)
1353 struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1354 struct ipq *fp, *fp_temp;
1355 struct ipqhead *head;
1356 int i;
1358 crit_enter();
1359 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1360 crit_exit();
1362 for (i = 0; i < IPREASS_NHASH; i++) {
1363 head = &fragq->ipq[i];
1364 TAILQ_FOREACH_MUTABLE(fp, head, ipq_list, fp_temp) {
1365 if (--fp->ipq_ttl == 0) {
1366 ipstat.ips_fragtimeout += fp->ipq_nfrags;
1367 ip_freef(fragq, head, fp);
1372 * If we are over the maximum number of fragments
1373 * (due to the limit being lowered), drain off
1374 * enough to get down to the new limit.
1376 if (maxnipq >= 0 && fragq->nipq > maxnipq) {
1377 for (i = 0; i < IPREASS_NHASH; i++) {
1378 head = &fragq->ipq[i];
1379 while (fragq->nipq > maxnipq && !TAILQ_EMPTY(head)) {
1380 ipstat.ips_fragdropped +=
1381 TAILQ_FIRST(head)->ipq_nfrags;
1382 ip_freef(fragq, head, TAILQ_FIRST(head));
1388 static void
1389 ipfrag_timeo_ipi(void *arg __unused)
1391 int cpu = mycpuid;
1392 struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].timeo_netmsg.lmsg;
1394 crit_enter();
1395 if (msg->ms_flags & MSGF_DONE)
1396 lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1397 crit_exit();
1400 static void
1401 ipfrag_slowtimo(void)
1403 cpumask_t mask;
1405 CPUMASK_ASSBMASK(mask, ncpus);
1406 CPUMASK_ANDMASK(mask, smp_active_mask);
1407 if (CPUMASK_TESTNZERO(mask))
1408 lwkt_send_ipiq_mask(mask, ipfrag_timeo_ipi, NULL);
1412 * IP timer processing
1414 void
1415 ip_slowtimo(void)
1417 ipfrag_slowtimo();
1418 ipflow_slowtimo();
1422 * Drain off all datagram fragments.
1424 static void
1425 ipfrag_drain_dispatch(netmsg_t nmsg)
1427 struct ipfrag_queue *fragq = &ipfrag_queue_pcpu[mycpuid];
1428 struct ipqhead *head;
1429 int i;
1431 crit_enter();
1432 lwkt_replymsg(&nmsg->lmsg, 0); /* reply ASAP */
1433 crit_exit();
1435 for (i = 0; i < IPREASS_NHASH; i++) {
1436 head = &fragq->ipq[i];
1437 while (!TAILQ_EMPTY(head)) {
1438 ipstat.ips_fragdropped += TAILQ_FIRST(head)->ipq_nfrags;
1439 ip_freef(fragq, head, TAILQ_FIRST(head));
1444 static void
1445 ipfrag_drain_ipi(void *arg __unused)
1447 int cpu = mycpuid;
1448 struct lwkt_msg *msg = &ipfrag_queue_pcpu[cpu].drain_netmsg.lmsg;
1450 crit_enter();
1451 if (msg->ms_flags & MSGF_DONE)
1452 lwkt_sendmsg_oncpu(netisr_cpuport(cpu), msg);
1453 crit_exit();
1456 static void
1457 ipfrag_drain(void)
1459 cpumask_t mask;
1461 CPUMASK_ASSBMASK(mask, ncpus);
1462 CPUMASK_ANDMASK(mask, smp_active_mask);
1463 if (CPUMASK_TESTNZERO(mask))
1464 lwkt_send_ipiq_mask(mask, ipfrag_drain_ipi, NULL);
1467 void
1468 ip_drain(void)
1470 ipfrag_drain();
1471 in_rtqdrain();
1475 * Do option processing on a datagram,
1476 * possibly discarding it if bad options are encountered,
1477 * or forwarding it if source-routed.
1478 * The pass argument is used when operating in the IPSTEALTH
1479 * mode to tell what options to process:
1480 * [LS]SRR (pass 0) or the others (pass 1).
1481 * The reason for as many as two passes is that when doing IPSTEALTH,
1482 * non-routing options should be processed only if the packet is for us.
1483 * Returns 1 if packet has been forwarded/freed,
1484 * 0 if the packet should be processed further.
1486 static int
1487 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1489 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1490 struct ip *ip = mtod(m, struct ip *);
1491 u_char *cp;
1492 struct in_ifaddr *ia;
1493 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1494 boolean_t forward = FALSE;
1495 struct in_addr *sin, dst;
1496 n_time ntime;
1498 dst = ip->ip_dst;
1499 cp = (u_char *)(ip + 1);
1500 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1501 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1502 opt = cp[IPOPT_OPTVAL];
1503 if (opt == IPOPT_EOL)
1504 break;
1505 if (opt == IPOPT_NOP)
1506 optlen = 1;
1507 else {
1508 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1509 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1510 goto bad;
1512 optlen = cp[IPOPT_OLEN];
1513 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1514 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1515 goto bad;
1518 switch (opt) {
1520 default:
1521 break;
1524 * Source routing with record.
1525 * Find interface with current destination address.
1526 * If none on this machine then drop if strictly routed,
1527 * or do nothing if loosely routed.
1528 * Record interface address and bring up next address
1529 * component. If strictly routed make sure next
1530 * address is on directly accessible net.
1532 case IPOPT_LSRR:
1533 case IPOPT_SSRR:
1534 if (ipstealth && pass > 0)
1535 break;
1536 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1537 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1538 goto bad;
1540 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1541 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1542 goto bad;
1544 ipaddr.sin_addr = ip->ip_dst;
1545 ia = (struct in_ifaddr *)
1546 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1547 if (ia == NULL) {
1548 if (opt == IPOPT_SSRR) {
1549 type = ICMP_UNREACH;
1550 code = ICMP_UNREACH_SRCFAIL;
1551 goto bad;
1553 if (!ip_dosourceroute)
1554 goto nosourcerouting;
1556 * Loose routing, and not at next destination
1557 * yet; nothing to do except forward.
1559 break;
1561 off--; /* 0 origin */
1562 if (off > optlen - (int)sizeof(struct in_addr)) {
1564 * End of source route. Should be for us.
1566 if (!ip_acceptsourceroute)
1567 goto nosourcerouting;
1568 save_rte(m, cp, ip->ip_src);
1569 break;
1571 if (ipstealth)
1572 goto dropit;
1573 if (!ip_dosourceroute) {
1574 if (ipforwarding) {
1575 char buf[sizeof "aaa.bbb.ccc.ddd"];
1578 * Acting as a router, so generate ICMP
1580 nosourcerouting:
1581 strcpy(buf, inet_ntoa(ip->ip_dst));
1582 log(LOG_WARNING,
1583 "attempted source route from %s to %s\n",
1584 inet_ntoa(ip->ip_src), buf);
1585 type = ICMP_UNREACH;
1586 code = ICMP_UNREACH_SRCFAIL;
1587 goto bad;
1588 } else {
1590 * Not acting as a router,
1591 * so silently drop.
1593 dropit:
1594 ipstat.ips_cantforward++;
1595 m_freem(m);
1596 return (1);
1601 * locate outgoing interface
1603 memcpy(&ipaddr.sin_addr, cp + off,
1604 sizeof ipaddr.sin_addr);
1606 if (opt == IPOPT_SSRR) {
1607 #define INA struct in_ifaddr *
1608 #define SA struct sockaddr *
1609 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1610 == NULL)
1611 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1612 } else {
1613 ia = ip_rtaddr(ipaddr.sin_addr, NULL);
1615 if (ia == NULL) {
1616 type = ICMP_UNREACH;
1617 code = ICMP_UNREACH_SRCFAIL;
1618 goto bad;
1620 ip->ip_dst = ipaddr.sin_addr;
1621 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1622 sizeof(struct in_addr));
1623 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1625 * Let ip_intr's mcast routing check handle mcast pkts
1627 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1628 break;
1630 case IPOPT_RR:
1631 if (ipstealth && pass == 0)
1632 break;
1633 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1634 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1635 goto bad;
1637 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1638 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1639 goto bad;
1642 * If no space remains, ignore.
1644 off--; /* 0 origin */
1645 if (off > optlen - (int)sizeof(struct in_addr))
1646 break;
1647 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1648 sizeof ipaddr.sin_addr);
1650 * locate outgoing interface; if we're the destination,
1651 * use the incoming interface (should be same).
1653 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1654 (ia = ip_rtaddr(ipaddr.sin_addr, NULL)) == NULL) {
1655 type = ICMP_UNREACH;
1656 code = ICMP_UNREACH_HOST;
1657 goto bad;
1659 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1660 sizeof(struct in_addr));
1661 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1662 break;
1664 case IPOPT_TS:
1665 if (ipstealth && pass == 0)
1666 break;
1667 code = cp - (u_char *)ip;
1668 if (optlen < 4 || optlen > 40) {
1669 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1670 goto bad;
1672 if ((off = cp[IPOPT_OFFSET]) < 5) {
1673 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1674 goto bad;
1676 if (off > optlen - (int)sizeof(int32_t)) {
1677 cp[IPOPT_OFFSET + 1] += (1 << 4);
1678 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1679 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1680 goto bad;
1682 break;
1684 off--; /* 0 origin */
1685 sin = (struct in_addr *)(cp + off);
1686 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1688 case IPOPT_TS_TSONLY:
1689 break;
1691 case IPOPT_TS_TSANDADDR:
1692 if (off + sizeof(n_time) +
1693 sizeof(struct in_addr) > optlen) {
1694 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1695 goto bad;
1697 ipaddr.sin_addr = dst;
1698 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1699 m->m_pkthdr.rcvif);
1700 if (ia == NULL)
1701 continue;
1702 memcpy(sin, &IA_SIN(ia)->sin_addr,
1703 sizeof(struct in_addr));
1704 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1705 off += sizeof(struct in_addr);
1706 break;
1708 case IPOPT_TS_PRESPEC:
1709 if (off + sizeof(n_time) +
1710 sizeof(struct in_addr) > optlen) {
1711 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1712 goto bad;
1714 memcpy(&ipaddr.sin_addr, sin,
1715 sizeof(struct in_addr));
1716 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1717 continue;
1718 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1719 off += sizeof(struct in_addr);
1720 break;
1722 default:
1723 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1724 goto bad;
1726 ntime = iptime();
1727 memcpy(cp + off, &ntime, sizeof(n_time));
1728 cp[IPOPT_OFFSET] += sizeof(n_time);
1731 if (forward && ipforwarding) {
1732 ip_forward(m, TRUE, next_hop);
1733 return (1);
1735 return (0);
1736 bad:
1737 icmp_error(m, type, code, 0, 0);
1738 ipstat.ips_badoptions++;
1739 return (1);
1743 * Given address of next destination (final or next hop),
1744 * return internet address info of interface to be used to get there.
1746 struct in_ifaddr *
1747 ip_rtaddr(struct in_addr dst, struct route *ro0)
1749 struct route sro, *ro;
1750 struct sockaddr_in *sin;
1751 struct in_ifaddr *ia;
1753 if (ro0 != NULL) {
1754 ro = ro0;
1755 } else {
1756 bzero(&sro, sizeof(sro));
1757 ro = &sro;
1760 sin = (struct sockaddr_in *)&ro->ro_dst;
1762 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1763 if (ro->ro_rt != NULL) {
1764 RTFREE(ro->ro_rt);
1765 ro->ro_rt = NULL;
1767 sin->sin_family = AF_INET;
1768 sin->sin_len = sizeof *sin;
1769 sin->sin_addr = dst;
1770 rtalloc_ign(ro, RTF_PRCLONING);
1773 if (ro->ro_rt == NULL)
1774 return (NULL);
1776 ia = ifatoia(ro->ro_rt->rt_ifa);
1778 if (ro == &sro)
1779 RTFREE(ro->ro_rt);
1780 return ia;
1784 * Save incoming source route for use in replies,
1785 * to be picked up later by ip_srcroute if the receiver is interested.
1787 static void
1788 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1790 struct m_tag *mtag;
1791 struct ip_srcrt_opt *opt;
1792 unsigned olen;
1794 mtag = m_tag_get(PACKET_TAG_IPSRCRT, sizeof(*opt), M_NOWAIT);
1795 if (mtag == NULL)
1796 return;
1797 opt = m_tag_data(mtag);
1799 olen = option[IPOPT_OLEN];
1800 #ifdef DIAGNOSTIC
1801 if (ipprintfs)
1802 kprintf("save_rte: olen %d\n", olen);
1803 #endif
1804 if (olen > sizeof(opt->ip_srcrt) - (1 + sizeof(dst))) {
1805 m_tag_free(mtag);
1806 return;
1808 bcopy(option, opt->ip_srcrt.srcopt, olen);
1809 opt->ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1810 opt->ip_srcrt.dst = dst;
1811 m_tag_prepend(m, mtag);
1815 * Retrieve incoming source route for use in replies,
1816 * in the same form used by setsockopt.
1817 * The first hop is placed before the options, will be removed later.
1819 struct mbuf *
1820 ip_srcroute(struct mbuf *m0)
1822 struct in_addr *p, *q;
1823 struct mbuf *m;
1824 struct m_tag *mtag;
1825 struct ip_srcrt_opt *opt;
1827 if (m0 == NULL)
1828 return NULL;
1830 mtag = m_tag_find(m0, PACKET_TAG_IPSRCRT, NULL);
1831 if (mtag == NULL)
1832 return NULL;
1833 opt = m_tag_data(mtag);
1835 if (opt->ip_nhops == 0)
1836 return (NULL);
1837 m = m_get(M_NOWAIT, MT_HEADER);
1838 if (m == NULL)
1839 return (NULL);
1841 #define OPTSIZ (sizeof(opt->ip_srcrt.nop) + sizeof(opt->ip_srcrt.srcopt))
1843 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1844 m->m_len = opt->ip_nhops * sizeof(struct in_addr) +
1845 sizeof(struct in_addr) + OPTSIZ;
1846 #ifdef DIAGNOSTIC
1847 if (ipprintfs) {
1848 kprintf("ip_srcroute: nhops %d mlen %d",
1849 opt->ip_nhops, m->m_len);
1851 #endif
1854 * First save first hop for return route
1856 p = &opt->ip_srcrt.route[opt->ip_nhops - 1];
1857 *(mtod(m, struct in_addr *)) = *p--;
1858 #ifdef DIAGNOSTIC
1859 if (ipprintfs)
1860 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1861 #endif
1864 * Copy option fields and padding (nop) to mbuf.
1866 opt->ip_srcrt.nop = IPOPT_NOP;
1867 opt->ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1868 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &opt->ip_srcrt.nop,
1869 OPTSIZ);
1870 q = (struct in_addr *)(mtod(m, caddr_t) +
1871 sizeof(struct in_addr) + OPTSIZ);
1872 #undef OPTSIZ
1874 * Record return path as an IP source route,
1875 * reversing the path (pointers are now aligned).
1877 while (p >= opt->ip_srcrt.route) {
1878 #ifdef DIAGNOSTIC
1879 if (ipprintfs)
1880 kprintf(" %x", ntohl(q->s_addr));
1881 #endif
1882 *q++ = *p--;
1885 * Last hop goes to final destination.
1887 *q = opt->ip_srcrt.dst;
1888 m_tag_delete(m0, mtag);
1889 #ifdef DIAGNOSTIC
1890 if (ipprintfs)
1891 kprintf(" %x\n", ntohl(q->s_addr));
1892 #endif
1893 return (m);
1897 * Strip out IP options.
1899 void
1900 ip_stripoptions(struct mbuf *m)
1902 int datalen;
1903 struct ip *ip = mtod(m, struct ip *);
1904 caddr_t opts;
1905 int optlen;
1907 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1908 opts = (caddr_t)(ip + 1);
1909 datalen = m->m_len - (sizeof(struct ip) + optlen);
1910 bcopy(opts + optlen, opts, datalen);
1911 m->m_len -= optlen;
1912 if (m->m_flags & M_PKTHDR)
1913 m->m_pkthdr.len -= optlen;
1914 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1917 u_char inetctlerrmap[PRC_NCMDS] = {
1918 0, 0, 0, 0,
1919 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1920 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1921 EMSGSIZE, EHOSTUNREACH, 0, 0,
1922 0, 0, 0, 0,
1923 ENOPROTOOPT, ECONNREFUSED
1927 * Forward a packet. If some error occurs return the sender
1928 * an icmp packet. Note we can't always generate a meaningful
1929 * icmp message because icmp doesn't have a large enough repertoire
1930 * of codes and types.
1932 * If not forwarding, just drop the packet. This could be confusing
1933 * if ipforwarding was zero but some routing protocol was advancing
1934 * us as a gateway to somewhere. However, we must let the routing
1935 * protocol deal with that.
1937 * The using_srcrt parameter indicates whether the packet is being forwarded
1938 * via a source route.
1940 void
1941 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1943 struct ip *ip = mtod(m, struct ip *);
1944 struct rtentry *rt;
1945 struct route fwd_ro;
1946 int error, type = 0, code = 0, destmtu = 0;
1947 struct mbuf *mcopy, *mtemp = NULL;
1948 n_long dest;
1949 struct in_addr pkt_dst;
1951 dest = INADDR_ANY;
1953 * Cache the destination address of the packet; this may be
1954 * changed by use of 'ipfw fwd'.
1956 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1958 #ifdef DIAGNOSTIC
1959 if (ipprintfs)
1960 kprintf("forward: src %x dst %x ttl %x\n",
1961 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1962 #endif
1964 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1965 ipstat.ips_cantforward++;
1966 m_freem(m);
1967 return;
1969 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1970 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1971 return;
1974 bzero(&fwd_ro, sizeof(fwd_ro));
1975 ip_rtaddr(pkt_dst, &fwd_ro);
1976 if (fwd_ro.ro_rt == NULL) {
1977 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1978 return;
1980 rt = fwd_ro.ro_rt;
1982 if (curthread->td_type == TD_TYPE_NETISR) {
1984 * Save the IP header and at most 8 bytes of the payload,
1985 * in case we need to generate an ICMP message to the src.
1987 mtemp = ipforward_mtemp[mycpuid];
1988 KASSERT((mtemp->m_flags & M_EXT) == 0 &&
1989 mtemp->m_data == mtemp->m_pktdat &&
1990 m_tag_first(mtemp) == NULL,
1991 ("ip_forward invalid mtemp1"));
1993 if (!m_dup_pkthdr(mtemp, m, M_NOWAIT)) {
1995 * It's probably ok if the pkthdr dup fails (because
1996 * the deep copy of the tag chain failed), but for now
1997 * be conservative and just discard the copy since
1998 * code below may some day want the tags.
2000 mtemp = NULL;
2001 } else {
2002 mtemp->m_type = m->m_type;
2003 mtemp->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
2004 (int)ip->ip_len);
2005 mtemp->m_pkthdr.len = mtemp->m_len;
2006 m_copydata(m, 0, mtemp->m_len, mtod(mtemp, caddr_t));
2010 if (!ipstealth)
2011 ip->ip_ttl -= IPTTLDEC;
2014 * If forwarding packet using same interface that it came in on,
2015 * perhaps should send a redirect to sender to shortcut a hop.
2016 * Only send redirect if source is sending directly to us,
2017 * and if packet was not source routed (or has any options).
2018 * Also, don't send redirect if forwarding using a default route
2019 * or a route modified by a redirect.
2021 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
2022 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
2023 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
2024 ipsendredirects && !using_srcrt && next_hop == NULL) {
2025 u_long src = ntohl(ip->ip_src.s_addr);
2026 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
2028 if (rt_ifa != NULL &&
2029 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
2030 if (rt->rt_flags & RTF_GATEWAY)
2031 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
2032 else
2033 dest = pkt_dst.s_addr;
2035 * Router requirements says to only send
2036 * host redirects.
2038 type = ICMP_REDIRECT;
2039 code = ICMP_REDIRECT_HOST;
2040 #ifdef DIAGNOSTIC
2041 if (ipprintfs)
2042 kprintf("redirect (%d) to %x\n", code, dest);
2043 #endif
2047 error = ip_output(m, NULL, &fwd_ro, IP_FORWARDING, NULL, NULL);
2048 if (error == 0) {
2049 ipstat.ips_forward++;
2050 if (type == 0) {
2051 if (mtemp)
2052 ipflow_create(&fwd_ro, mtemp);
2053 goto done;
2054 } else {
2055 ipstat.ips_redirectsent++;
2057 } else {
2058 ipstat.ips_cantforward++;
2061 if (mtemp == NULL)
2062 goto done;
2065 * Errors that do not require generating ICMP message
2067 switch (error) {
2068 case ENOBUFS:
2070 * A router should not generate ICMP_SOURCEQUENCH as
2071 * required in RFC1812 Requirements for IP Version 4 Routers.
2072 * Source quench could be a big problem under DoS attacks,
2073 * or if the underlying interface is rate-limited.
2074 * Those who need source quench packets may re-enable them
2075 * via the net.inet.ip.sendsourcequench sysctl.
2077 if (!ip_sendsourcequench)
2078 goto done;
2079 break;
2081 case EACCES: /* ipfw denied packet */
2082 goto done;
2085 KASSERT((mtemp->m_flags & M_EXT) == 0 &&
2086 mtemp->m_data == mtemp->m_pktdat,
2087 ("ip_forward invalid mtemp2"));
2088 mcopy = m_copym(mtemp, 0, mtemp->m_len, M_NOWAIT);
2089 if (mcopy == NULL)
2090 goto done;
2093 * Send ICMP message.
2095 switch (error) {
2096 case 0: /* forwarded, but need redirect */
2097 /* type, code set above */
2098 break;
2100 case ENETUNREACH: /* shouldn't happen, checked above */
2101 case EHOSTUNREACH:
2102 case ENETDOWN:
2103 case EHOSTDOWN:
2104 default:
2105 type = ICMP_UNREACH;
2106 code = ICMP_UNREACH_HOST;
2107 break;
2109 case EMSGSIZE:
2110 type = ICMP_UNREACH;
2111 code = ICMP_UNREACH_NEEDFRAG;
2112 #ifdef IPSEC
2114 * If the packet is routed over IPsec tunnel, tell the
2115 * originator the tunnel MTU.
2116 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2117 * XXX quickhack!!!
2119 if (fwd_ro.ro_rt != NULL) {
2120 struct secpolicy *sp = NULL;
2121 int ipsecerror;
2122 int ipsechdr;
2123 struct route *ro;
2125 sp = ipsec4_getpolicybyaddr(mcopy,
2126 IPSEC_DIR_OUTBOUND,
2127 IP_FORWARDING,
2128 &ipsecerror);
2130 if (sp == NULL)
2131 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2132 else {
2133 /* count IPsec header size */
2134 ipsechdr = ipsec4_hdrsiz(mcopy,
2135 IPSEC_DIR_OUTBOUND,
2136 NULL);
2139 * find the correct route for outer IPv4
2140 * header, compute tunnel MTU.
2143 if (sp->req != NULL && sp->req->sav != NULL &&
2144 sp->req->sav->sah != NULL) {
2145 ro = &sp->req->sav->sah->sa_route;
2146 if (ro->ro_rt != NULL &&
2147 ro->ro_rt->rt_ifp != NULL) {
2148 destmtu =
2149 ro->ro_rt->rt_ifp->if_mtu;
2150 destmtu -= ipsechdr;
2154 key_freesp(sp);
2157 #elif defined(FAST_IPSEC)
2159 * If the packet is routed over IPsec tunnel, tell the
2160 * originator the tunnel MTU.
2161 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2162 * XXX quickhack!!!
2164 if (fwd_ro.ro_rt != NULL) {
2165 struct secpolicy *sp = NULL;
2166 int ipsecerror;
2167 int ipsechdr;
2168 struct route *ro;
2170 sp = ipsec_getpolicybyaddr(mcopy,
2171 IPSEC_DIR_OUTBOUND,
2172 IP_FORWARDING,
2173 &ipsecerror);
2175 if (sp == NULL)
2176 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2177 else {
2178 /* count IPsec header size */
2179 ipsechdr = ipsec4_hdrsiz(mcopy,
2180 IPSEC_DIR_OUTBOUND,
2181 NULL);
2184 * find the correct route for outer IPv4
2185 * header, compute tunnel MTU.
2188 if (sp->req != NULL &&
2189 sp->req->sav != NULL &&
2190 sp->req->sav->sah != NULL) {
2191 ro = &sp->req->sav->sah->sa_route;
2192 if (ro->ro_rt != NULL &&
2193 ro->ro_rt->rt_ifp != NULL) {
2194 destmtu =
2195 ro->ro_rt->rt_ifp->if_mtu;
2196 destmtu -= ipsechdr;
2200 KEY_FREESP(&sp);
2203 #else /* !IPSEC && !FAST_IPSEC */
2204 if (fwd_ro.ro_rt != NULL)
2205 destmtu = fwd_ro.ro_rt->rt_ifp->if_mtu;
2206 #endif /*IPSEC*/
2207 ipstat.ips_cantfrag++;
2208 break;
2210 case ENOBUFS:
2211 type = ICMP_SOURCEQUENCH;
2212 code = 0;
2213 break;
2215 case EACCES: /* ipfw denied packet */
2216 panic("ip_forward EACCES should not reach");
2218 icmp_error(mcopy, type, code, dest, destmtu);
2219 done:
2220 if (mtemp != NULL)
2221 m_tag_delete_chain(mtemp);
2222 if (fwd_ro.ro_rt != NULL)
2223 RTFREE(fwd_ro.ro_rt);
2226 void
2227 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2228 struct mbuf *m)
2230 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2231 struct timeval tv;
2233 microtime(&tv);
2234 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2235 SCM_TIMESTAMP, SOL_SOCKET);
2236 if (*mp)
2237 mp = &(*mp)->m_next;
2239 if (inp->inp_flags & INP_RECVDSTADDR) {
2240 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2241 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2242 if (*mp)
2243 mp = &(*mp)->m_next;
2245 if (inp->inp_flags & INP_RECVTTL) {
2246 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2247 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2248 if (*mp)
2249 mp = &(*mp)->m_next;
2251 #ifdef notyet
2252 /* XXX
2253 * Moving these out of udp_input() made them even more broken
2254 * than they already were.
2256 /* options were tossed already */
2257 if (inp->inp_flags & INP_RECVOPTS) {
2258 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2259 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2260 if (*mp)
2261 mp = &(*mp)->m_next;
2263 /* ip_srcroute doesn't do what we want here, need to fix */
2264 if (inp->inp_flags & INP_RECVRETOPTS) {
2265 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
2266 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2267 if (*mp)
2268 mp = &(*mp)->m_next;
2270 #endif
2271 if (inp->inp_flags & INP_RECVIF) {
2272 struct ifnet *ifp;
2273 struct sdlbuf {
2274 struct sockaddr_dl sdl;
2275 u_char pad[32];
2276 } sdlbuf;
2277 struct sockaddr_dl *sdp;
2278 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2280 if (((ifp = m->m_pkthdr.rcvif)) &&
2281 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2282 sdp = IF_LLSOCKADDR(ifp);
2284 * Change our mind and don't try copy.
2286 if ((sdp->sdl_family != AF_LINK) ||
2287 (sdp->sdl_len > sizeof(sdlbuf))) {
2288 goto makedummy;
2290 bcopy(sdp, sdl2, sdp->sdl_len);
2291 } else {
2292 makedummy:
2293 sdl2->sdl_len =
2294 offsetof(struct sockaddr_dl, sdl_data[0]);
2295 sdl2->sdl_family = AF_LINK;
2296 sdl2->sdl_index = 0;
2297 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2299 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2300 IP_RECVIF, IPPROTO_IP);
2301 if (*mp)
2302 mp = &(*mp)->m_next;
2307 * XXX these routines are called from the upper part of the kernel.
2309 * They could also be moved to ip_mroute.c, since all the RSVP
2310 * handling is done there already.
2313 ip_rsvp_init(struct socket *so)
2315 if (so->so_type != SOCK_RAW ||
2316 so->so_proto->pr_protocol != IPPROTO_RSVP)
2317 return EOPNOTSUPP;
2319 if (ip_rsvpd != NULL)
2320 return EADDRINUSE;
2322 ip_rsvpd = so;
2324 * This may seem silly, but we need to be sure we don't over-increment
2325 * the RSVP counter, in case something slips up.
2327 if (!ip_rsvp_on) {
2328 ip_rsvp_on = 1;
2329 rsvp_on++;
2332 return 0;
2336 ip_rsvp_done(void)
2338 ip_rsvpd = NULL;
2340 * This may seem silly, but we need to be sure we don't over-decrement
2341 * the RSVP counter, in case something slips up.
2343 if (ip_rsvp_on) {
2344 ip_rsvp_on = 0;
2345 rsvp_on--;
2347 return 0;
2351 rsvp_input(struct mbuf **mp, int *offp, int proto)
2353 struct mbuf *m = *mp;
2355 *mp = NULL;
2357 if (rsvp_input_p) { /* call the real one if loaded */
2358 *mp = m;
2359 rsvp_input_p(mp, offp, proto);
2360 return(IPPROTO_DONE);
2363 /* Can still get packets with rsvp_on = 0 if there is a local member
2364 * of the group to which the RSVP packet is addressed. But in this
2365 * case we want to throw the packet away.
2368 if (!rsvp_on) {
2369 m_freem(m);
2370 return(IPPROTO_DONE);
2373 if (ip_rsvpd != NULL) {
2374 *mp = m;
2375 rip_input(mp, offp, proto);
2376 return(IPPROTO_DONE);
2378 /* Drop the packet */
2379 m_freem(m);
2380 return(IPPROTO_DONE);