usr.sbin/makefs: Sync with sys/vfs/hammer2
[dragonfly.git] / usr.bin / localedef / wide.c
blobc31aeeaba9b7fbbee11d27d4c99d47d53d860e9a
1 /*
2 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
3 * Copyright 2012 Garrett D'Amore <garrett@damore.org> All rights reserved.
4 * Copyright 2015 John Marino <draco@marino.st>
6 * This source code is derived from the illumos localedef command, and
7 * provided under BSD-style license terms by Nexenta Systems, Inc.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * The functions in this file convert from the standard multibyte forms
34 * to the wide character forms used internally by libc. Unfortunately,
35 * this approach means that we need a method for each and every encoding.
38 #include <ctype.h>
39 #include <stdint.h>
40 #include <stdlib.h>
41 #include <wchar.h>
42 #include <string.h>
43 #include <sys/types.h>
44 #include "localedef.h"
46 static int towide_none(wchar_t *, const char *, unsigned);
47 static int towide_utf8(wchar_t *, const char *, unsigned);
48 static int towide_big5(wchar_t *, const char *, unsigned);
49 static int towide_gbk(wchar_t *, const char *, unsigned);
50 static int towide_gb2312(wchar_t *, const char *, unsigned);
51 static int towide_gb18030(wchar_t *, const char *, unsigned);
52 static int towide_mskanji(wchar_t *, const char *, unsigned);
53 static int towide_euccn(wchar_t *, const char *, unsigned);
54 static int towide_eucjp(wchar_t *, const char *, unsigned);
55 static int towide_euckr(wchar_t *, const char *, unsigned);
56 static int towide_euctw(wchar_t *, const char *, unsigned);
58 static int tomb_none(char *, wchar_t);
59 static int tomb_utf8(char *, wchar_t);
60 static int tomb_mbs(char *, wchar_t);
62 static int (*_towide)(wchar_t *, const char *, unsigned) = towide_none;
63 static int (*_tomb)(char *, wchar_t) = tomb_none;
64 static char _encoding_buffer[20] = {'N','O','N','E'};
65 static const char *_encoding = _encoding_buffer;
66 static int _nbits = 7;
69 * Table of supported encodings. We only bother to list the multibyte
70 * encodings here, because single byte locales are handed by "NONE".
72 static struct {
73 const char *name;
74 /* the name that the underlying libc implemenation uses */
75 const char *cname;
76 /* the maximum number of bits required for priorities */
77 int nbits;
78 int (*towide)(wchar_t *, const char *, unsigned);
79 int (*tomb)(char *, wchar_t);
80 } mb_encodings[] = {
82 * UTF8 values max out at 0x1fffff (although in theory there could
83 * be later extensions, but it won't happen.) This means we only need
84 * 21 bits to be able to encode the entire range of priorities.
86 { "UTF-8", "UTF-8", 21, towide_utf8, tomb_utf8 },
87 { "UTF8", "UTF-8", 21, towide_utf8, tomb_utf8 },
88 { "utf8", "UTF-8", 21, towide_utf8, tomb_utf8 },
89 { "utf-8", "UTF-8", 21, towide_utf8, tomb_utf8 },
91 { "EUC-CN", "EUC-CN", 16, towide_euccn, tomb_mbs },
92 { "eucCN", "EUC-CN", 16, towide_euccn, tomb_mbs },
94 * Becuase the 3-byte form of EUC-JP use the same leading byte,
95 * only 17 bits required to provide unique priorities. (The low
96 * bit of that first byte is set.) By setting this value low,
97 * we can get by with only 3 bytes in the strxfrm expansion.
99 { "EUC-JP", "EUC-JP", 17, towide_eucjp, tomb_mbs },
100 { "eucJP", "EUC-JP", 17, towide_eucjp, tomb_mbs },
102 { "EUC-KR", "EUC-KR", 16, towide_euckr, tomb_mbs },
103 { "eucKR", "EUC-KR", 16, towide_euckr, tomb_mbs },
105 * EUC-TW uses 2 bytes most of the time, but 4 bytes if the
106 * high order byte is 0x8E. However, with 4 byte encodings,
107 * the third byte will be A0-B0. So we only need to consider
108 * the lower order 24 bits for collation.
110 { "EUC-TW", "EUC-TW", 24, towide_euctw, tomb_mbs },
111 { "eucTW", "EUC-TW", 24, towide_euctw, tomb_mbs },
113 { "MS_Kanji", "MSKanji", 16, towide_mskanji, tomb_mbs },
114 { "MSKanji", "MSKanji", 16, towide_mskanji, tomb_mbs },
115 { "PCK", "MSKanji", 16, towide_mskanji, tomb_mbs },
116 { "SJIS", "MSKanji", 16, towide_mskanji, tomb_mbs },
117 { "Shift_JIS", "MSKanji", 16, towide_mskanji, tomb_mbs },
119 { "BIG5", "BIG5", 16, towide_big5, tomb_mbs },
120 { "big5", "BIG5", 16, towide_big5, tomb_mbs },
121 { "Big5", "BIG5", 16, towide_big5, tomb_mbs },
123 { "GBK", "GBK", 16, towide_gbk, tomb_mbs },
126 * GB18030 can get away with just 31 bits. This is because the
127 * high order bit is always set for 4 byte values, and the
128 * at least one of the other bits in that 4 byte value will
129 * be non-zero.
131 { "GB18030", "GB18030", 31, towide_gb18030, tomb_mbs },
134 * This should probably be an aliase for euc-cn, or vice versa.
136 { "GB2312", "GB2312", 16, towide_gb2312, tomb_mbs },
138 { NULL, NULL, 0, 0, 0 },
141 static char *
142 show_mb(const char *mb)
144 static char buf[64];
146 /* ASCII stuff we just print */
147 if (isascii(*mb) && isgraph(*mb)) {
148 buf[0] = *mb;
149 buf[1] = 0;
150 return (buf);
152 buf[0] = 0;
153 while (*mb != 0) {
154 char scr[8];
155 (void) snprintf(scr, sizeof (scr), "\\x%02x", *mb);
156 (void) strlcat(buf, scr, sizeof (buf));
157 mb++;
159 return (buf);
162 static char *widemsg;
164 __printflike(1, 2) void
165 werr(const char *fmt, ...)
167 char *msg;
169 va_list va;
170 va_start(va, fmt);
171 (void) vasprintf(&msg, fmt, va);
172 va_end(va);
174 free(widemsg);
175 widemsg = msg;
179 * This is used for 8-bit encodings.
182 towide_none(wchar_t *c, const char *mb, unsigned n __unused)
184 if (mb_cur_max != 1) {
185 werr("invalid or unsupported multibyte locale");
186 return (-1);
188 *c = (uint8_t)*mb;
189 return (1);
193 tomb_none(char *mb, wchar_t wc)
195 if (mb_cur_max != 1) {
196 werr("invalid or unsupported multibyte locale");
197 return (-1);
199 *(uint8_t *)mb = (wc & 0xff);
200 mb[1] = 0;
201 return (1);
205 * UTF-8 stores wide characters in UTF-32 form.
208 towide_utf8(wchar_t *wc, const char *mb, unsigned n)
210 wchar_t c;
211 int nb;
212 wchar_t lv; /* lowest legal value */
213 int i;
214 const uint8_t *s = (const uint8_t *)mb;
216 c = *s;
218 if ((c & 0x80) == 0) {
219 /* 7-bit ASCII */
220 *wc = c;
221 return (1);
222 } else if ((c & 0xe0) == 0xc0) {
223 /* u80-u7ff - two bytes encoded */
224 nb = 2;
225 lv = 0x80;
226 c &= ~0xe0;
227 } else if ((c & 0xf0) == 0xe0) {
228 /* u800-uffff - three bytes encoded */
229 nb = 3;
230 lv = 0x800;
231 c &= ~0xf0;
232 } else if ((c & 0xf8) == 0xf0) {
233 /* u1000-u1fffff - four bytes encoded */
234 nb = 4;
235 lv = 0x1000;
236 c &= ~0xf8;
237 } else {
238 /* 5 and 6 byte encodings are not legal unicode */
239 werr("utf8 encoding too large (%s)", show_mb(mb));
240 return (-1);
242 if (nb > (int)n) {
243 werr("incomplete utf8 sequence (%s)", show_mb(mb));
244 return (-1);
247 for (i = 1; i < nb; i++) {
248 if (((s[i]) & 0xc0) != 0x80) {
249 werr("illegal utf8 byte (%x)", s[i]);
250 return (-1);
252 c <<= 6;
253 c |= (s[i] & 0x3f);
256 if (c < lv) {
257 werr("illegal redundant utf8 encoding (%s)", show_mb(mb));
258 return (-1);
260 *wc = c;
261 return (nb);
265 tomb_utf8(char *mb, wchar_t wc)
267 uint8_t *s = (uint8_t *)mb;
268 uint8_t msk;
269 int cnt;
270 int i;
272 if (wc <= 0x7f) {
273 s[0] = wc & 0x7f;
274 s[1] = 0;
275 return (1);
277 if (wc <= 0x7ff) {
278 cnt = 2;
279 msk = 0xc0;
280 } else if (wc <= 0xffff) {
281 cnt = 3;
282 msk = 0xe0;
283 } else if (wc <= 0x1fffff) {
284 cnt = 4;
285 msk = 0xf0;
286 } else {
287 werr("illegal uf8 char (%x)", wc);
288 return (-1);
290 for (i = cnt - 1; i; i--) {
291 s[i] = (wc & 0x3f) | 0x80;
292 wc >>= 6;
294 s[0] = (msk) | wc;
295 s[cnt] = 0;
296 return (cnt);
300 * Several encodings share a simplistic dual byte encoding. In these
301 * forms, they all indicate that a two byte sequence is to be used if
302 * the first byte has its high bit set. They all store this simple
303 * encoding as a 16-bit value, although a great many of the possible
304 * code points are not used in most character sets. This gives a possible
305 * set of just over 32,000 valid code points.
307 * 0x00 - 0x7f - 1 byte encoding
308 * 0x80 - 0x7fff - illegal
309 * 0x8000 - 0xffff - 2 byte encoding
312 static int
313 towide_dbcs(wchar_t *wc, const char *mb, unsigned n)
315 wchar_t c;
317 c = *(const uint8_t *)mb;
319 if ((c & 0x80) == 0) {
320 /* 7-bit */
321 *wc = c;
322 return (1);
324 if (n < 2) {
325 werr("incomplete character sequence (%s)", show_mb(mb));
326 return (-1);
329 /* Store both bytes as a single 16-bit wide. */
330 c <<= 8;
331 c |= (uint8_t)(mb[1]);
332 *wc = c;
333 return (2);
337 * Most multibyte locales just convert the wide character to the multibyte
338 * form by stripping leading null bytes, and writing the 32-bit quantity
339 * in big-endian order.
342 tomb_mbs(char *mb, wchar_t wc)
344 uint8_t *s = (uint8_t *)mb;
345 int n = 0, c;
347 if ((wc & 0xff000000U) != 0) {
348 n = 4;
349 } else if ((wc & 0x00ff0000U) != 0) {
350 n = 3;
351 } else if ((wc & 0x0000ff00U) != 0) {
352 n = 2;
353 } else {
354 n = 1;
356 c = n;
357 while (n) {
358 n--;
359 s[n] = wc & 0xff;
360 wc >>= 8;
362 /* ensure null termination */
363 s[c] = 0;
364 return (c);
369 * big5 is a simple dual byte character set.
372 towide_big5(wchar_t *wc, const char *mb, unsigned n)
374 return (towide_dbcs(wc, mb, n));
378 * GBK encodes wides in the same way that big5 does, the high order
379 * bit of the first byte indicates a double byte character.
382 towide_gbk(wchar_t *wc, const char *mb, unsigned n)
384 return (towide_dbcs(wc, mb, n));
388 * GB2312 is another DBCS. Its cleaner than others in that the second
389 * byte does not encode ASCII, but it supports characters.
392 towide_gb2312(wchar_t *wc, const char *mb, unsigned n)
394 return (towide_dbcs(wc, mb, n));
398 * GB18030. This encodes as 8, 16, or 32-bits.
399 * 7-bit values are in 1 byte, 4 byte sequences are used when
400 * the second byte encodes 0x30-39 and all other sequences are 2 bytes.
403 towide_gb18030(wchar_t *wc, const char *mb, unsigned n)
405 wchar_t c;
407 c = *(const uint8_t *)mb;
409 if ((c & 0x80) == 0) {
410 /* 7-bit */
411 *wc = c;
412 return (1);
414 if (n < 2) {
415 werr("incomplete character sequence (%s)", show_mb(mb));
416 return (-1);
419 /* pull in the second byte */
420 c <<= 8;
421 c |= (uint8_t)(mb[1]);
423 if (((c & 0xff) >= 0x30) && ((c & 0xff) <= 0x39)) {
424 if (n < 4) {
425 werr("incomplete 4-byte character sequence (%s)",
426 show_mb(mb));
427 return (-1);
429 c <<= 8;
430 c |= (uint8_t)(mb[2]);
431 c <<= 8;
432 c |= (uint8_t)(mb[3]);
433 *wc = c;
434 return (4);
437 *wc = c;
438 return (2);
442 * MS-Kanji (aka SJIS) is almost a clean DBCS like the others, but it
443 * also has a range of single byte characters above 0x80. (0xa1-0xdf).
446 towide_mskanji(wchar_t *wc, const char *mb, unsigned n)
448 wchar_t c;
450 c = *(const uint8_t *)mb;
452 if ((c < 0x80) || ((c > 0xa0) && (c < 0xe0))) {
453 /* 7-bit */
454 *wc = c;
455 return (1);
458 if (n < 2) {
459 werr("incomplete character sequence (%s)", show_mb(mb));
460 return (-1);
463 /* Store both bytes as a single 16-bit wide. */
464 c <<= 8;
465 c |= (uint8_t)(mb[1]);
466 *wc = c;
467 return (2);
471 * EUC forms. EUC encodings are "variable". FreeBSD carries some additional
472 * variable data to encode these, but we're going to treat each as independent
473 * instead. Its the only way we can sensibly move forward.
475 * Note that the way in which the different EUC forms vary is how wide
476 * CS2 and CS3 are and what the first byte of them is.
478 static int
479 towide_euc_impl(wchar_t *wc, const char *mb, unsigned n,
480 uint8_t cs2, uint8_t cs2width, uint8_t cs3, uint8_t cs3width)
482 int i;
483 int width = 2;
484 wchar_t c;
486 c = *(const uint8_t *)mb;
489 * All variations of EUC encode 7-bit ASCII as one byte, and use
490 * additional bytes for more than that.
492 if ((c & 0x80) == 0) {
493 /* 7-bit */
494 *wc = c;
495 return (1);
499 * All EUC variants reserve 0xa1-0xff to identify CS1, which
500 * is always two bytes wide. Note that unused CS will be zero,
501 * and that cannot be true because we know that the high order
502 * bit must be set.
504 if (c >= 0xa1) {
505 width = 2;
506 } else if (c == cs2) {
507 width = cs2width;
508 } else if (c == cs3) {
509 width = cs3width;
512 if ((int)n < width) {
513 werr("incomplete character sequence (%s)", show_mb(mb));
514 return (-1);
517 for (i = 1; i < width; i++) {
518 /* pull in the next byte */
519 c <<= 8;
520 c |= (uint8_t)(mb[i]);
523 *wc = c;
524 return (width);
528 * EUC-CN encodes as follows:
530 * Code set 0 (ASCII): 0x21-0x7E
531 * Code set 1 (CNS 11643-1992 Plane 1): 0xA1A1-0xFEFE
532 * Code set 2: unused
533 * Code set 3: unused
536 towide_euccn(wchar_t *wc, const char *mb, unsigned n)
538 return (towide_euc_impl(wc, mb, n, 0x8e, 4, 0, 0));
542 * EUC-JP encodes as follows:
544 * Code set 0 (ASCII or JIS X 0201-1976 Roman): 0x21-0x7E
545 * Code set 1 (JIS X 0208): 0xA1A1-0xFEFE
546 * Code set 2 (half-width katakana): 0x8EA1-0x8EDF
547 * Code set 3 (JIS X 0212-1990): 0x8FA1A1-0x8FFEFE
550 towide_eucjp(wchar_t *wc, const char *mb, unsigned n)
552 return (towide_euc_impl(wc, mb, n, 0x8e, 2, 0x8f, 3));
556 * EUC-KR encodes as follows:
558 * Code set 0 (ASCII or KS C 5636-1993): 0x21-0x7E
559 * Code set 1 (KS C 5601-1992): 0xA1A1-0xFEFE
560 * Code set 2: unused
561 * Code set 3: unused
564 towide_euckr(wchar_t *wc, const char *mb, unsigned n)
566 return (towide_euc_impl(wc, mb, n, 0, 0, 0, 0));
570 * EUC-TW encodes as follows:
572 * Code set 0 (ASCII): 0x21-0x7E
573 * Code set 1 (CNS 11643-1992 Plane 1): 0xA1A1-0xFEFE
574 * Code set 2 (CNS 11643-1992 Planes 1-16): 0x8EA1A1A1-0x8EB0FEFE
575 * Code set 3: unused
578 towide_euctw(wchar_t *wc, const char *mb, unsigned n)
580 return (towide_euc_impl(wc, mb, n, 0x8e, 4, 0, 0));
584 * Public entry points.
588 to_wide(wchar_t *wc, const char *mb)
590 /* this won't fail hard */
591 return (_towide(wc, mb, strlen(mb)));
595 to_mb(char *mb, wchar_t wc)
597 int rv;
599 if ((rv = _tomb(mb, wc)) < 0) {
600 errf(widemsg);
601 free(widemsg);
602 widemsg = NULL;
604 return (rv);
607 char *
608 to_mb_string(const wchar_t *wcs)
610 char *mbs;
611 char *ptr;
612 int len;
614 mbs = malloc((wcslen(wcs) * mb_cur_max) + 1);
615 if (mbs == NULL) {
616 errf("out of memory");
617 return (NULL);
619 ptr = mbs;
620 while (*wcs) {
621 if ((len = to_mb(ptr, *wcs)) < 0) {
622 INTERR;
623 free(mbs);
624 return (NULL);
626 wcs++;
627 ptr += len;
629 *ptr = 0;
630 return (mbs);
633 void
634 set_wide_encoding(const char *encoding)
636 int i;
638 _towide = towide_none;
639 _tomb = tomb_none;
640 _nbits = 8;
642 snprintf(_encoding_buffer, sizeof(_encoding_buffer), "NONE:%s",
643 encoding);
644 for (i = 0; mb_encodings[i].name; i++) {
645 if (strcasecmp(encoding, mb_encodings[i].name) == 0) {
646 _towide = mb_encodings[i].towide;
647 _tomb = mb_encodings[i].tomb;
648 _encoding = mb_encodings[i].cname;
649 _nbits = mb_encodings[i].nbits;
650 break;
655 const char *
656 get_wide_encoding(void)
658 return (_encoding);
662 max_wide(void)
664 return ((int)((1U << _nbits) - 1));