sched_setaffinity.2: Small markup fix.
[dragonfly.git] / sys / dev / netif / ath / ath_hal / ar9002 / ar9287_reset.c
blob5ed4af2330f3dcf767636ca26d8beba6d9abaa71
1 /*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $FreeBSD$
20 #include "opt_ah.h"
22 #include "ah.h"
23 #include "ah_internal.h"
24 #include "ah_devid.h"
26 #include "ah_eeprom_v14.h"
27 #include "ah_eeprom_9287.h"
29 #include "ar5416/ar5416.h"
30 #include "ar5416/ar5416reg.h"
31 #include "ar5416/ar5416phy.h"
33 #include "ar9002/ar9287phy.h"
34 #include "ar9002/ar9287an.h"
36 #include "ar9002/ar9287_olc.h"
37 #include "ar9002/ar9287_reset.h"
40 * Set the TX power calibration table per-chain.
42 * This only supports open-loop TX power control for the AR9287.
44 static void
45 ar9287SetPowerCalTable(struct ath_hal *ah,
46 const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
48 struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
49 uint8_t *pCalBChans = NULL;
50 uint16_t pdGainOverlap_t2;
51 uint16_t numPiers = 0, i;
52 uint16_t numXpdGain, xpdMask;
53 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
54 uint32_t regChainOffset;
55 HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
56 struct ar9287_eeprom *pEepData = &ee->ee_base;
58 xpdMask = pEepData->modalHeader.xpdGain;
60 if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
61 AR9287_EEP_MINOR_VER_2)
62 pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
63 else
64 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
65 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
67 /* Note: Kiwi should only be 2ghz.. */
68 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
69 pCalBChans = pEepData->calFreqPier2G;
70 numPiers = AR9287_NUM_2G_CAL_PIERS;
71 pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
72 AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
74 numXpdGain = 0;
76 /* Calculate the value of xpdgains from the xpdGain Mask */
77 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
78 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
79 if (numXpdGain >= AR5416_NUM_PD_GAINS)
80 break;
81 xpdGainValues[numXpdGain] =
82 (uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
83 numXpdGain++;
87 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
88 (numXpdGain - 1) & 0x3);
89 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
90 xpdGainValues[0]);
91 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
92 xpdGainValues[1]);
93 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
94 xpdGainValues[2]);
96 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
97 regChainOffset = i * 0x1000;
99 if (pEepData->baseEepHeader.txMask & (1 << i)) {
100 int8_t txPower;
101 pRawDatasetOpenLoop =
102 (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
103 ar9287olcGetTxGainIndex(ah, chan,
104 pRawDatasetOpenLoop,
105 pCalBChans, numPiers,
106 &txPower);
107 ar9287olcSetPDADCs(ah, txPower, i);
111 *pTxPowerIndexOffset = 0;
115 /* XXX hard-coded values? */
116 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
119 * ar9287SetPowerPerRateTable
121 * Sets the transmit power in the baseband for the given
122 * operating channel and mode.
124 * This is like the v14 EEPROM table except the 5GHz code.
126 static HAL_BOOL
127 ar9287SetPowerPerRateTable(struct ath_hal *ah,
128 struct ar9287_eeprom *pEepData,
129 const struct ieee80211_channel *chan,
130 int16_t *ratesArray, uint16_t cfgCtl,
131 uint16_t AntennaReduction,
132 uint16_t twiceMaxRegulatoryPower,
133 uint16_t powerLimit)
135 #define N(a) (sizeof(a)/sizeof(a[0]))
136 /* Local defines to distinguish between extension and control CTL's */
137 #define EXT_ADDITIVE (0x8000)
138 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
139 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
140 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
142 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
143 int i;
144 int16_t twiceLargestAntenna;
145 struct cal_ctl_data_ar9287 *rep;
146 CAL_TARGET_POWER_LEG targetPowerOfdm;
147 CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
148 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
149 CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
150 CAL_TARGET_POWER_HT targetPowerHt20;
151 CAL_TARGET_POWER_HT targetPowerHt40 = {0, {0, 0, 0, 0}};
152 int16_t scaledPower, minCtlPower;
154 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
155 static const uint16_t ctlModesFor11g[] = {
156 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
158 const uint16_t *pCtlMode;
159 uint16_t numCtlModes, ctlMode, freq;
160 CHAN_CENTERS centers;
162 ar5416GetChannelCenters(ah, chan, &centers);
164 /* Compute TxPower reduction due to Antenna Gain */
166 twiceLargestAntenna = AH_MAX(
167 pEepData->modalHeader.antennaGainCh[0],
168 pEepData->modalHeader.antennaGainCh[1]);
170 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
172 /* XXX setup for 5212 use (really used?) */
173 ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
176 * scaledPower is the minimum of the user input power level and
177 * the regulatory allowed power level
179 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
181 /* Reduce scaled Power by number of chains active to get to per chain tx power level */
182 /* TODO: better value than these? */
183 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
184 case 1:
185 break;
186 case 2:
187 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
188 break;
189 default:
190 return AH_FALSE; /* Unsupported number of chains */
193 scaledPower = AH_MAX(0, scaledPower);
195 /* Get target powers from EEPROM - our baseline for TX Power */
196 /* XXX assume channel is 2ghz */
197 if (1) {
198 /* Setup for CTL modes */
199 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
200 pCtlMode = ctlModesFor11g;
202 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
203 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
204 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
205 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
206 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
207 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
209 if (IEEE80211_IS_CHAN_HT40(chan)) {
210 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
212 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
213 AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
214 /* Get target powers for extension channels */
215 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
216 AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
217 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
218 AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
223 * For MIMO, need to apply regulatory caps individually across dynamically
224 * running modes: CCK, OFDM, HT20, HT40
226 * The outer loop walks through each possible applicable runtime mode.
227 * The inner loop walks through each ctlIndex entry in EEPROM.
228 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
231 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
232 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
233 (pCtlMode[ctlMode] == CTL_2GHT40);
234 if (isHt40CtlMode) {
235 freq = centers.ctl_center;
236 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
237 freq = centers.ext_center;
238 } else {
239 freq = centers.ctl_center;
242 /* walk through each CTL index stored in EEPROM */
243 for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
244 uint16_t twiceMinEdgePower;
246 /* compare test group from regulatory channel list with test mode from pCtlMode list */
247 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
248 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
249 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
250 rep = &(pEepData->ctlData[i]);
251 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
252 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
253 IEEE80211_IS_CHAN_2GHZ(chan));
254 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
255 /* Find the minimum of all CTL edge powers that apply to this channel */
256 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
257 } else {
258 /* specific */
259 twiceMaxEdgePower = twiceMinEdgePower;
260 break;
264 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
265 /* Apply ctl mode to correct target power set */
266 switch(pCtlMode[ctlMode]) {
267 case CTL_11B:
268 for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
269 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
271 break;
272 case CTL_11A:
273 case CTL_11G:
274 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
275 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
277 break;
278 case CTL_5GHT20:
279 case CTL_2GHT20:
280 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
281 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
283 break;
284 case CTL_11B_EXT:
285 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
286 break;
287 case CTL_11A_EXT:
288 case CTL_11G_EXT:
289 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
290 break;
291 case CTL_5GHT40:
292 case CTL_2GHT40:
293 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
294 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
296 break;
297 default:
298 return AH_FALSE;
299 break;
301 } /* end ctl mode checking */
303 /* Set rates Array from collected data */
304 ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
305 &targetPowerCck,
306 &targetPowerCckExt,
307 &targetPowerOfdm,
308 &targetPowerOfdmExt,
309 &targetPowerHt20,
310 &targetPowerHt40);
311 return AH_TRUE;
312 #undef EXT_ADDITIVE
313 #undef CTL_11A_EXT
314 #undef CTL_11G_EXT
315 #undef CTL_11B_EXT
316 #undef SUB_NUM_CTL_MODES_AT_5G_40
317 #undef SUB_NUM_CTL_MODES_AT_2G_40
318 #undef N
321 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
324 * This is based off of the AR5416/AR9285 code and likely could
325 * be unified in the future.
327 HAL_BOOL
328 ar9287SetTransmitPower(struct ath_hal *ah,
329 const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
331 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
332 #define N(a) (sizeof (a) / sizeof (a[0]))
334 const struct modal_eep_ar9287_header *pModal;
335 struct ath_hal_5212 *ahp = AH5212(ah);
336 int16_t txPowerIndexOffset = 0;
337 int i;
339 uint16_t cfgCtl;
340 uint16_t powerLimit;
341 uint16_t twiceAntennaReduction;
342 uint16_t twiceMaxRegulatoryPower;
343 int16_t maxPower;
344 HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
345 struct ar9287_eeprom *pEepData = &ee->ee_base;
347 AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
349 /* Setup info for the actual eeprom */
350 OS_MEMZERO(AH5416(ah)->ah_ratesArray,
351 sizeof(AH5416(ah)->ah_ratesArray));
352 cfgCtl = ath_hal_getctl(ah, chan);
353 powerLimit = chan->ic_maxregpower * 2;
354 twiceAntennaReduction = chan->ic_maxantgain;
355 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
356 AH_PRIVATE(ah)->ah_powerLimit);
357 pModal = &pEepData->modalHeader;
358 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
359 __func__,chan->ic_freq, cfgCtl );
361 /* XXX Assume Minor is v2 or later */
362 AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
364 /* Fetch per-rate power table for the given channel */
365 if (! ar9287SetPowerPerRateTable(ah, pEepData, chan,
366 &AH5416(ah)->ah_ratesArray[0],
367 cfgCtl,
368 twiceAntennaReduction,
369 twiceMaxRegulatoryPower, powerLimit)) {
370 HALDEBUG(ah, HAL_DEBUG_ANY,
371 "%s: unable to set tx power per rate table\n", __func__);
372 return AH_FALSE;
375 /* Set TX power control calibration curves for each TX chain */
376 ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
378 /* Calculate maximum power level */
379 maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
380 AH5416(ah)->ah_ratesArray[rateHt20_0]);
381 maxPower = AH_MAX(maxPower,
382 AH5416(ah)->ah_ratesArray[rate1l]);
384 if (IEEE80211_IS_CHAN_HT40(chan))
385 maxPower = AH_MAX(maxPower,
386 AH5416(ah)->ah_ratesArray[rateHt40_0]);
388 ahp->ah_tx6PowerInHalfDbm = maxPower;
389 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
390 ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
393 * txPowerIndexOffset is set by the SetPowerTable() call -
394 * adjust the rate table (0 offset if rates EEPROM not loaded)
396 /* XXX what about the pwrTableOffset? */
397 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
398 AH5416(ah)->ah_ratesArray[i] =
399 (int16_t)(txPowerIndexOffset +
400 AH5416(ah)->ah_ratesArray[i]);
401 /* -5 dBm offset for Merlin and later; this includes Kiwi */
402 AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
403 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
404 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
405 if (AH5416(ah)->ah_ratesArray[i] < 0)
406 AH5416(ah)->ah_ratesArray[i] = 0;
409 #ifdef AH_EEPROM_DUMP
410 ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
411 #endif
414 * Adjust the HT40 power to meet the correct target TX power
415 * for 40MHz mode, based on TX power curves that are established
416 * for 20MHz mode.
418 * XXX handle overflow/too high power level?
420 if (IEEE80211_IS_CHAN_HT40(chan)) {
421 AH5416(ah)->ah_ratesArray[rateHt40_0] +=
422 AH5416(ah)->ah_ht40PowerIncForPdadc;
423 AH5416(ah)->ah_ratesArray[rateHt40_1] +=
424 AH5416(ah)->ah_ht40PowerIncForPdadc;
425 AH5416(ah)->ah_ratesArray[rateHt40_2] +=
426 AH5416(ah)->ah_ht40PowerIncForPdadc;
427 AH5416(ah)->ah_ratesArray[rateHt40_3] +=
428 AH5416(ah)->ah_ht40PowerIncForPdadc;
429 AH5416(ah)->ah_ratesArray[rateHt40_4] +=
430 AH5416(ah)->ah_ht40PowerIncForPdadc;
431 AH5416(ah)->ah_ratesArray[rateHt40_5] +=
432 AH5416(ah)->ah_ht40PowerIncForPdadc;
433 AH5416(ah)->ah_ratesArray[rateHt40_6] +=
434 AH5416(ah)->ah_ht40PowerIncForPdadc;
435 AH5416(ah)->ah_ratesArray[rateHt40_7] +=
436 AH5416(ah)->ah_ht40PowerIncForPdadc;
439 /* Write the TX power rate registers */
440 ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
442 return AH_TRUE;
443 #undef POW_SM
444 #undef N
448 * Read EEPROM header info and program the device for correct operation
449 * given the channel value.
451 HAL_BOOL
452 ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
454 const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
455 const struct ar9287_eeprom *eep = &ee->ee_base;
456 const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
457 uint16_t antWrites[AR9287_ANT_16S];
458 uint32_t regChainOffset, regval;
459 uint8_t txRxAttenLocal;
460 int i, j, offset_num;
462 pModal = &eep->modalHeader;
464 antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
465 antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
466 antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
467 antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
468 antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
469 antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
470 antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4) & 0xF);
471 antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
473 offset_num = 8;
475 for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
476 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
477 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
478 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
479 antWrites[j++] = 0;
480 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
481 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
482 antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
483 antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
486 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
488 for (i = 0; i < AR9287_MAX_CHAINS; i++) {
489 regChainOffset = i * 0x1000;
491 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
492 pModal->antCtrlChain[i]);
494 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
495 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
496 + regChainOffset)
497 & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
498 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
499 SM(pModal->iqCalICh[i],
500 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
501 SM(pModal->iqCalQCh[i],
502 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
504 txRxAttenLocal = pModal->txRxAttenCh[i];
506 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
507 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
508 pModal->bswMargin[i]);
509 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
510 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
511 pModal->bswAtten[i]);
512 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
513 AR9280_PHY_RXGAIN_TXRX_ATTEN,
514 txRxAttenLocal);
515 OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
516 AR9280_PHY_RXGAIN_TXRX_MARGIN,
517 pModal->rxTxMarginCh[i]);
520 if (IEEE80211_IS_CHAN_HT40(chan))
521 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
522 AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
523 else
524 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
525 AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
527 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
528 AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
530 OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
531 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
532 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
533 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
534 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
536 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
537 AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
539 OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
540 AR9280_PHY_CCA_THRESH62, pModal->thresh62);
541 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
542 AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
544 regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
545 regval &= ~(AR9287_AN_RF2G3_DB1 |
546 AR9287_AN_RF2G3_DB2 |
547 AR9287_AN_RF2G3_OB_CCK |
548 AR9287_AN_RF2G3_OB_PSK |
549 AR9287_AN_RF2G3_OB_QAM |
550 AR9287_AN_RF2G3_OB_PAL_OFF);
551 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
552 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
553 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
554 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
555 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
556 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
558 /* Analog write - requires a 100usec delay */
559 OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
561 regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
562 regval &= ~(AR9287_AN_RF2G3_DB1 |
563 AR9287_AN_RF2G3_DB2 |
564 AR9287_AN_RF2G3_OB_CCK |
565 AR9287_AN_RF2G3_OB_PSK |
566 AR9287_AN_RF2G3_OB_QAM |
567 AR9287_AN_RF2G3_OB_PAL_OFF);
568 regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
569 SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
570 SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
571 SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
572 SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
573 SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
575 OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
577 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
578 AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
579 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
580 AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
582 OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
583 AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
585 return AH_TRUE;