Remove an unused include file.
[dragonfly.git] / sys / vm / vm_object.c
blobb6f36372339ccda9402681fbabafc3053b7009b3
1 /*
2 * Copyright (c) 1991, 1993, 2013
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
50 * Carnegie Mellon requests users of this software to return to
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
60 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
64 * Virtual memory object module.
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h> /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
92 #include <vm/vm_page2.h>
94 #include <machine/specialreg.h>
96 #define EASY_SCAN_FACTOR 8
98 static void vm_object_qcollapse(vm_object_t object,
99 vm_object_t backing_object);
100 static void vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 int pagerflags);
102 static void vm_object_lock_init(vm_object_t);
105 * Virtual memory objects maintain the actual data
106 * associated with allocated virtual memory. A given
107 * page of memory exists within exactly one object.
109 * An object is only deallocated when all "references"
110 * are given up. Only one "reference" to a given
111 * region of an object should be writeable.
113 * Associated with each object is a list of all resident
114 * memory pages belonging to that object; this list is
115 * maintained by the "vm_page" module, and locked by the object's
116 * lock.
118 * Each object also records a "pager" routine which is
119 * used to retrieve (and store) pages to the proper backing
120 * storage. In addition, objects may be backed by other
121 * objects from which they were virtual-copied.
123 * The only items within the object structure which are
124 * modified after time of creation are:
125 * reference count locked by object's lock
126 * pager routine locked by object's lock
130 struct vm_object kernel_object;
132 static long object_collapses;
133 static long object_bypasses;
135 struct vm_object_hash vm_object_hash[VMOBJ_HSIZE];
137 MALLOC_DEFINE(M_VM_OBJECT, "vm_object", "vm_object structures");
139 #define VMOBJ_HASH_PRIME1 66555444443333333ULL
140 #define VMOBJ_HASH_PRIME2 989042931893ULL
142 static __inline
143 struct vm_object_hash *
144 vmobj_hash(vm_object_t obj)
146 uintptr_t hash1;
147 uintptr_t hash2;
149 hash1 = (uintptr_t)obj + ((uintptr_t)obj >> 18);
150 hash1 %= VMOBJ_HASH_PRIME1;
151 hash2 = ((uintptr_t)obj >> 8) + ((uintptr_t)obj >> 24);
152 hash2 %= VMOBJ_HASH_PRIME2;
153 return (&vm_object_hash[(hash1 ^ hash2) & VMOBJ_HMASK]);
156 #if defined(DEBUG_LOCKS)
158 #define vm_object_vndeallocate(obj, vpp) \
159 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
162 * Debug helper to track hold/drop/ref/deallocate calls.
164 static void
165 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
167 int i;
169 i = atomic_fetchadd_int(&obj->debug_index, 1);
170 i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
171 ksnprintf(obj->debug_hold_thrs[i],
172 sizeof(obj->debug_hold_thrs[i]),
173 "%c%d:(%d):%s",
174 (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
175 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
176 obj->ref_count,
177 curthread->td_comm);
178 obj->debug_hold_file[i] = file;
179 obj->debug_hold_line[i] = line;
180 #if 0
181 /* Uncomment for debugging obj refs/derefs in reproducable cases */
182 if (strcmp(curthread->td_comm, "sshd") == 0) {
183 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
184 (curthread->td_proc ? curthread->td_proc->p_pid : -1),
185 obj, obj->ref_count, addrem, file, line);
187 #endif
190 #endif
193 * Misc low level routines
195 static void
196 vm_object_lock_init(vm_object_t obj)
198 #if defined(DEBUG_LOCKS)
199 int i;
201 obj->debug_index = 0;
202 for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
203 obj->debug_hold_thrs[i][0] = 0;
204 obj->debug_hold_file[i] = NULL;
205 obj->debug_hold_line[i] = 0;
207 #endif
210 void
211 vm_object_lock_swap(void)
213 lwkt_token_swap();
216 void
217 vm_object_lock(vm_object_t obj)
219 lwkt_gettoken(&obj->token);
223 * Returns TRUE on sucesss
225 static int
226 vm_object_lock_try(vm_object_t obj)
228 return(lwkt_trytoken(&obj->token));
231 void
232 vm_object_lock_shared(vm_object_t obj)
234 lwkt_gettoken_shared(&obj->token);
237 void
238 vm_object_unlock(vm_object_t obj)
240 lwkt_reltoken(&obj->token);
243 void
244 vm_object_upgrade(vm_object_t obj)
246 lwkt_reltoken(&obj->token);
247 lwkt_gettoken(&obj->token);
250 void
251 vm_object_downgrade(vm_object_t obj)
253 lwkt_reltoken(&obj->token);
254 lwkt_gettoken_shared(&obj->token);
257 static __inline void
258 vm_object_assert_held(vm_object_t obj)
260 ASSERT_LWKT_TOKEN_HELD(&obj->token);
263 static __inline int
264 vm_quickcolor(void)
266 globaldata_t gd = mycpu;
267 int pg_color;
269 pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
270 pg_color += gd->gd_quick_color;
271 gd->gd_quick_color += PQ_PRIME2;
273 return pg_color;
276 void
277 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
279 KKASSERT(obj != NULL);
282 * Object must be held (object allocation is stable due to callers
283 * context, typically already holding the token on a parent object)
284 * prior to potentially blocking on the lock, otherwise the object
285 * can get ripped away from us.
287 refcount_acquire(&obj->hold_count);
288 vm_object_lock(obj);
290 #if defined(DEBUG_LOCKS)
291 debugvm_object_add(obj, file, line, 1);
292 #endif
296 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
298 KKASSERT(obj != NULL);
301 * Object must be held (object allocation is stable due to callers
302 * context, typically already holding the token on a parent object)
303 * prior to potentially blocking on the lock, otherwise the object
304 * can get ripped away from us.
306 refcount_acquire(&obj->hold_count);
307 if (vm_object_lock_try(obj) == 0) {
308 if (refcount_release(&obj->hold_count)) {
309 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
310 kfree(obj, M_VM_OBJECT);
312 return(0);
315 #if defined(DEBUG_LOCKS)
316 debugvm_object_add(obj, file, line, 1);
317 #endif
318 return(1);
321 void
322 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
324 KKASSERT(obj != NULL);
327 * Object must be held (object allocation is stable due to callers
328 * context, typically already holding the token on a parent object)
329 * prior to potentially blocking on the lock, otherwise the object
330 * can get ripped away from us.
332 refcount_acquire(&obj->hold_count);
333 vm_object_lock_shared(obj);
335 #if defined(DEBUG_LOCKS)
336 debugvm_object_add(obj, file, line, 1);
337 #endif
341 * Drop the token and hold_count on the object.
343 * WARNING! Token might be shared.
345 void
346 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
348 if (obj == NULL)
349 return;
352 * No new holders should be possible once we drop hold_count 1->0 as
353 * there is no longer any way to reference the object.
355 KKASSERT(obj->hold_count > 0);
356 if (refcount_release(&obj->hold_count)) {
357 #if defined(DEBUG_LOCKS)
358 debugvm_object_add(obj, file, line, -1);
359 #endif
361 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
362 vm_object_unlock(obj);
363 kfree(obj, M_VM_OBJECT);
364 } else {
365 vm_object_unlock(obj);
367 } else {
368 #if defined(DEBUG_LOCKS)
369 debugvm_object_add(obj, file, line, -1);
370 #endif
371 vm_object_unlock(obj);
376 * Initialize a freshly allocated object, returning a held object.
378 * Used only by vm_object_allocate(), zinitna() and vm_object_init().
380 * No requirements.
382 void
383 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
385 struct vm_object_hash *hash;
387 RB_INIT(&object->rb_memq);
388 LIST_INIT(&object->shadow_head);
389 lwkt_token_init(&object->token, "vmobj");
391 object->type = type;
392 object->size = size;
393 object->ref_count = 1;
394 object->memattr = VM_MEMATTR_DEFAULT;
395 object->hold_count = 0;
396 object->flags = 0;
397 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
398 vm_object_set_flag(object, OBJ_ONEMAPPING);
399 object->paging_in_progress = 0;
400 object->resident_page_count = 0;
401 object->shadow_count = 0;
402 /* cpu localization twist */
403 object->pg_color = vm_quickcolor();
404 object->handle = NULL;
405 object->backing_object = NULL;
406 object->backing_object_offset = (vm_ooffset_t)0;
408 atomic_add_int(&object->generation, 1);
409 object->swblock_count = 0;
410 RB_INIT(&object->swblock_root);
411 vm_object_lock_init(object);
412 pmap_object_init(object);
414 vm_object_hold(object);
416 hash = vmobj_hash(object);
417 lwkt_gettoken(&hash->token);
418 TAILQ_INSERT_TAIL(&hash->list, object, object_list);
419 lwkt_reltoken(&hash->token);
423 * Initialize a VM object.
425 void
426 vm_object_init(vm_object_t object, vm_pindex_t size)
428 _vm_object_allocate(OBJT_DEFAULT, size, object);
429 vm_object_drop(object);
433 * Initialize the VM objects module.
435 * Called from the low level boot code only. Note that this occurs before
436 * kmalloc is initialized so we cannot allocate any VM objects.
438 void
439 vm_object_init1(void)
441 int i;
443 for (i = 0; i < VMOBJ_HSIZE; ++i) {
444 TAILQ_INIT(&vm_object_hash[i].list);
445 lwkt_token_init(&vm_object_hash[i].token, "vmobjlst");
448 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
449 &kernel_object);
450 vm_object_drop(&kernel_object);
453 void
454 vm_object_init2(void)
456 kmalloc_set_unlimited(M_VM_OBJECT);
460 * Allocate and return a new object of the specified type and size.
462 * No requirements.
464 vm_object_t
465 vm_object_allocate(objtype_t type, vm_pindex_t size)
467 vm_object_t obj;
469 obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
470 _vm_object_allocate(type, size, obj);
471 vm_object_drop(obj);
473 return (obj);
477 * This version returns a held object, allowing further atomic initialization
478 * of the object.
480 vm_object_t
481 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
483 vm_object_t obj;
485 obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
486 _vm_object_allocate(type, size, obj);
488 return (obj);
492 * Add an additional reference to a vm_object. The object must already be
493 * held. The original non-lock version is no longer supported. The object
494 * must NOT be chain locked by anyone at the time the reference is added.
496 * Referencing a chain-locked object can blow up the fairly sensitive
497 * ref_count and shadow_count tests in the deallocator. Most callers
498 * will call vm_object_chain_wait() prior to calling
499 * vm_object_reference_locked() to avoid the case. The held token
500 * allows the caller to pair the wait and ref.
502 * The object must be held, but may be held shared if desired (hence why
503 * we use an atomic op).
505 void
506 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
508 KKASSERT(object != NULL);
509 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
510 KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
511 atomic_add_int(&object->ref_count, 1);
512 if (object->type == OBJT_VNODE) {
513 vref(object->handle);
514 /* XXX what if the vnode is being destroyed? */
516 #if defined(DEBUG_LOCKS)
517 debugvm_object_add(object, file, line, 1);
518 #endif
522 * This version explicitly allows the chain to be held (i.e. by the
523 * caller). The token must also be held.
525 void
526 VMOBJDEBUG(vm_object_reference_locked_chain_held)(vm_object_t object
527 VMOBJDBARGS)
529 KKASSERT(object != NULL);
530 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
531 atomic_add_int(&object->ref_count, 1);
532 if (object->type == OBJT_VNODE) {
533 vref(object->handle);
534 /* XXX what if the vnode is being destroyed? */
536 #if defined(DEBUG_LOCKS)
537 debugvm_object_add(object, file, line, 1);
538 #endif
542 * This version is only allowed for vnode objects.
544 void
545 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
547 KKASSERT(object->type == OBJT_VNODE);
548 atomic_add_int(&object->ref_count, 1);
549 vref(object->handle);
550 #if defined(DEBUG_LOCKS)
551 debugvm_object_add(object, file, line, 1);
552 #endif
556 * Object OBJ_CHAINLOCK lock handling.
558 * The caller can chain-lock backing objects recursively and then
559 * use vm_object_chain_release_all() to undo the whole chain.
561 * Chain locks are used to prevent collapses and are only applicable
562 * to OBJT_DEFAULT and OBJT_SWAP objects. Chain locking operations
563 * on other object types are ignored. This is also important because
564 * it allows e.g. the vnode underlying a memory mapping to take concurrent
565 * faults.
567 * The object must usually be held on entry, though intermediate
568 * objects need not be held on release. The object must be held exclusively,
569 * NOT shared. Note that the prefault path checks the shared state and
570 * avoids using the chain functions.
572 void
573 vm_object_chain_wait(vm_object_t object, int shared)
575 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
576 for (;;) {
577 uint32_t chainlk = object->chainlk;
579 cpu_ccfence();
580 if (shared) {
581 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
582 tsleep_interlock(object, 0);
583 if (atomic_cmpset_int(&object->chainlk,
584 chainlk,
585 chainlk | CHAINLK_WAIT)) {
586 tsleep(object, PINTERLOCKED,
587 "objchns", 0);
589 /* retry */
590 } else {
591 break;
593 /* retry */
594 } else {
595 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
596 tsleep_interlock(object, 0);
597 if (atomic_cmpset_int(&object->chainlk,
598 chainlk,
599 chainlk | CHAINLK_WAIT))
601 tsleep(object, PINTERLOCKED,
602 "objchnx", 0);
604 /* retry */
605 } else {
606 if (atomic_cmpset_int(&object->chainlk,
607 chainlk,
608 chainlk & ~CHAINLK_WAIT))
610 if (chainlk & CHAINLK_WAIT)
611 wakeup(object);
612 break;
614 /* retry */
617 /* retry */
621 void
622 vm_object_chain_acquire(vm_object_t object, int shared)
624 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
625 return;
626 if (vm_shared_fault == 0)
627 shared = 0;
629 for (;;) {
630 uint32_t chainlk = object->chainlk;
632 cpu_ccfence();
633 if (shared) {
634 if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
635 tsleep_interlock(object, 0);
636 if (atomic_cmpset_int(&object->chainlk,
637 chainlk,
638 chainlk | CHAINLK_WAIT)) {
639 tsleep(object, PINTERLOCKED,
640 "objchns", 0);
642 /* retry */
643 } else if (atomic_cmpset_int(&object->chainlk,
644 chainlk, chainlk + 1)) {
645 break;
647 /* retry */
648 } else {
649 if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
650 tsleep_interlock(object, 0);
651 if (atomic_cmpset_int(&object->chainlk,
652 chainlk,
653 chainlk |
654 CHAINLK_WAIT |
655 CHAINLK_EXCLREQ)) {
656 tsleep(object, PINTERLOCKED,
657 "objchnx", 0);
659 /* retry */
660 } else {
661 if (atomic_cmpset_int(&object->chainlk,
662 chainlk,
663 (chainlk | CHAINLK_EXCL) &
664 ~(CHAINLK_EXCLREQ |
665 CHAINLK_WAIT))) {
666 if (chainlk & CHAINLK_WAIT)
667 wakeup(object);
668 break;
670 /* retry */
673 /* retry */
677 void
678 vm_object_chain_release(vm_object_t object)
680 /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
681 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
682 return;
683 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
684 for (;;) {
685 uint32_t chainlk = object->chainlk;
687 cpu_ccfence();
688 if (chainlk & CHAINLK_MASK) {
689 if ((chainlk & CHAINLK_MASK) == 1 &&
690 atomic_cmpset_int(&object->chainlk,
691 chainlk,
692 (chainlk - 1) & ~CHAINLK_WAIT)) {
693 if (chainlk & CHAINLK_WAIT)
694 wakeup(object);
695 break;
697 if ((chainlk & CHAINLK_MASK) > 1 &&
698 atomic_cmpset_int(&object->chainlk,
699 chainlk, chainlk - 1)) {
700 break;
702 /* retry */
703 } else {
704 KKASSERT(chainlk & CHAINLK_EXCL);
705 if (atomic_cmpset_int(&object->chainlk,
706 chainlk,
707 chainlk & ~(CHAINLK_EXCL |
708 CHAINLK_WAIT))) {
709 if (chainlk & CHAINLK_WAIT)
710 wakeup(object);
711 break;
718 * Release the chain from first_object through and including stopobj.
719 * The caller is typically holding the first and last object locked
720 * (shared or exclusive) to prevent destruction races.
722 * We release stopobj first as an optimization as this object is most
723 * likely to be shared across multiple processes.
725 void
726 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
728 vm_object_t backing_object;
729 vm_object_t object;
731 vm_object_chain_release(stopobj);
732 object = first_object;
734 while (object != stopobj) {
735 KKASSERT(object);
736 backing_object = object->backing_object;
737 vm_object_chain_release(object);
738 object = backing_object;
743 * Dereference an object and its underlying vnode. The object may be
744 * held shared. On return the object will remain held.
746 * This function may return a vnode in *vpp which the caller must release
747 * after the caller drops its own lock. If vpp is NULL, we assume that
748 * the caller was holding an exclusive lock on the object and we vrele()
749 * the vp ourselves.
751 static void
752 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
753 VMOBJDBARGS)
755 struct vnode *vp = (struct vnode *) object->handle;
757 KASSERT(object->type == OBJT_VNODE,
758 ("vm_object_vndeallocate: not a vnode object"));
759 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
760 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
761 #ifdef INVARIANTS
762 if (object->ref_count == 0) {
763 vprint("vm_object_vndeallocate", vp);
764 panic("vm_object_vndeallocate: bad object reference count");
766 #endif
767 for (;;) {
768 int count = object->ref_count;
769 cpu_ccfence();
770 if (count == 1) {
771 vm_object_upgrade(object);
772 if (atomic_cmpset_int(&object->ref_count, count, 0)) {
773 vclrflags(vp, VTEXT);
774 break;
776 } else {
777 if (atomic_cmpset_int(&object->ref_count,
778 count, count - 1)) {
779 break;
782 /* retry */
784 #if defined(DEBUG_LOCKS)
785 debugvm_object_add(object, file, line, -1);
786 #endif
789 * vrele or return the vp to vrele. We can only safely vrele(vp)
790 * if the object was locked exclusively. But there are two races
791 * here.
793 * We had to upgrade the object above to safely clear VTEXT
794 * but the alternative path where the shared lock is retained
795 * can STILL race to 0 in other paths and cause our own vrele()
796 * to terminate the vnode. We can't allow that if the VM object
797 * is still locked shared.
799 if (vpp)
800 *vpp = vp;
801 else
802 vrele(vp);
806 * Release a reference to the specified object, gained either through a
807 * vm_object_allocate or a vm_object_reference call. When all references
808 * are gone, storage associated with this object may be relinquished.
810 * The caller does not have to hold the object locked but must have control
811 * over the reference in question in order to guarantee that the object
812 * does not get ripped out from under us.
814 * XXX Currently all deallocations require an exclusive lock.
816 void
817 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
819 struct vnode *vp;
820 int count;
822 if (object == NULL)
823 return;
825 for (;;) {
826 count = object->ref_count;
827 cpu_ccfence();
830 * If decrementing the count enters into special handling
831 * territory (0, 1, or 2) we have to do it the hard way.
832 * Fortunate though, objects with only a few refs like this
833 * are not likely to be heavily contended anyway.
835 * For vnode objects we only care about 1->0 transitions.
837 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
838 #if defined(DEBUG_LOCKS)
839 debugvm_object_add(object, file, line, 0);
840 #endif
841 vm_object_hold(object);
842 vm_object_deallocate_locked(object);
843 vm_object_drop(object);
844 break;
848 * Try to decrement ref_count without acquiring a hold on
849 * the object. This is particularly important for the exec*()
850 * and exit*() code paths because the program binary may
851 * have a great deal of sharing and an exclusive lock will
852 * crowbar performance in those circumstances.
854 if (object->type == OBJT_VNODE) {
855 vp = (struct vnode *)object->handle;
856 if (atomic_cmpset_int(&object->ref_count,
857 count, count - 1)) {
858 #if defined(DEBUG_LOCKS)
859 debugvm_object_add(object, file, line, -1);
860 #endif
862 vrele(vp);
863 break;
865 /* retry */
866 } else {
867 if (atomic_cmpset_int(&object->ref_count,
868 count, count - 1)) {
869 #if defined(DEBUG_LOCKS)
870 debugvm_object_add(object, file, line, -1);
871 #endif
872 break;
874 /* retry */
876 /* retry */
880 void
881 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
883 struct vm_object_dealloc_list *dlist = NULL;
884 struct vm_object_dealloc_list *dtmp;
885 vm_object_t temp;
886 int must_drop = 0;
889 * We may chain deallocate object, but additional objects may
890 * collect on the dlist which also have to be deallocated. We
891 * must avoid a recursion, vm_object chains can get deep.
894 again:
895 while (object != NULL) {
897 * vnode case, caller either locked the object exclusively
898 * or this is a recursion with must_drop != 0 and the vnode
899 * object will be locked shared.
901 * If locked shared we have to drop the object before we can
902 * call vrele() or risk a shared/exclusive livelock.
904 if (object->type == OBJT_VNODE) {
905 ASSERT_LWKT_TOKEN_HELD(&object->token);
906 if (must_drop) {
907 struct vnode *tmp_vp;
909 vm_object_vndeallocate(object, &tmp_vp);
910 vm_object_drop(object);
911 must_drop = 0;
912 object = NULL;
913 vrele(tmp_vp);
914 } else {
915 vm_object_vndeallocate(object, NULL);
917 break;
919 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
922 * Normal case (object is locked exclusively)
924 if (object->ref_count == 0) {
925 panic("vm_object_deallocate: object deallocated "
926 "too many times: %d", object->type);
928 if (object->ref_count > 2) {
929 atomic_add_int(&object->ref_count, -1);
930 #if defined(DEBUG_LOCKS)
931 debugvm_object_add(object, file, line, -1);
932 #endif
933 break;
937 * Here on ref_count of one or two, which are special cases for
938 * objects.
940 * Nominal ref_count > 1 case if the second ref is not from
941 * a shadow.
943 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
945 if (object->ref_count == 2 && object->shadow_count == 0) {
946 if (object->type == OBJT_DEFAULT ||
947 object->type == OBJT_SWAP) {
948 vm_object_set_flag(object, OBJ_ONEMAPPING);
950 atomic_add_int(&object->ref_count, -1);
951 #if defined(DEBUG_LOCKS)
952 debugvm_object_add(object, file, line, -1);
953 #endif
954 break;
958 * If the second ref is from a shadow we chain along it
959 * upwards if object's handle is exhausted.
961 * We have to decrement object->ref_count before potentially
962 * collapsing the first shadow object or the collapse code
963 * will not be able to handle the degenerate case to remove
964 * object. However, if we do it too early the object can
965 * get ripped out from under us.
967 if (object->ref_count == 2 && object->shadow_count == 1 &&
968 object->handle == NULL && (object->type == OBJT_DEFAULT ||
969 object->type == OBJT_SWAP)) {
970 temp = LIST_FIRST(&object->shadow_head);
971 KKASSERT(temp != NULL);
972 vm_object_hold(temp);
975 * Wait for any paging to complete so the collapse
976 * doesn't (or isn't likely to) qcollapse. pip
977 * waiting must occur before we acquire the
978 * chainlock.
980 while (
981 temp->paging_in_progress ||
982 object->paging_in_progress
984 vm_object_pip_wait(temp, "objde1");
985 vm_object_pip_wait(object, "objde2");
989 * If the parent is locked we have to give up, as
990 * otherwise we would be acquiring locks in the
991 * wrong order and potentially deadlock.
993 if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
994 vm_object_drop(temp);
995 goto skip;
997 vm_object_chain_acquire(temp, 0);
1000 * Recheck/retry after the hold and the paging
1001 * wait, both of which can block us.
1003 if (object->ref_count != 2 ||
1004 object->shadow_count != 1 ||
1005 object->handle ||
1006 LIST_FIRST(&object->shadow_head) != temp ||
1007 (object->type != OBJT_DEFAULT &&
1008 object->type != OBJT_SWAP)) {
1009 vm_object_chain_release(temp);
1010 vm_object_drop(temp);
1011 continue;
1015 * We can safely drop object's ref_count now.
1017 KKASSERT(object->ref_count == 2);
1018 atomic_add_int(&object->ref_count, -1);
1019 #if defined(DEBUG_LOCKS)
1020 debugvm_object_add(object, file, line, -1);
1021 #endif
1024 * If our single parent is not collapseable just
1025 * decrement ref_count (2->1) and stop.
1027 if (temp->handle || (temp->type != OBJT_DEFAULT &&
1028 temp->type != OBJT_SWAP)) {
1029 vm_object_chain_release(temp);
1030 vm_object_drop(temp);
1031 break;
1035 * At this point we have already dropped object's
1036 * ref_count so it is possible for a race to
1037 * deallocate obj out from under us. Any collapse
1038 * will re-check the situation. We must not block
1039 * until we are able to collapse.
1041 * Bump temp's ref_count to avoid an unwanted
1042 * degenerate recursion (can't call
1043 * vm_object_reference_locked() because it asserts
1044 * that CHAINLOCK is not set).
1046 atomic_add_int(&temp->ref_count, 1);
1047 KKASSERT(temp->ref_count > 1);
1050 * Collapse temp, then deallocate the extra ref
1051 * formally.
1053 vm_object_collapse(temp, &dlist);
1054 vm_object_chain_release(temp);
1055 if (must_drop) {
1056 vm_object_lock_swap();
1057 vm_object_drop(object);
1059 object = temp;
1060 must_drop = 1;
1061 continue;
1065 * Drop the ref and handle termination on the 1->0 transition.
1066 * We may have blocked above so we have to recheck.
1068 skip:
1069 KKASSERT(object->ref_count != 0);
1070 if (object->ref_count >= 2) {
1071 atomic_add_int(&object->ref_count, -1);
1072 #if defined(DEBUG_LOCKS)
1073 debugvm_object_add(object, file, line, -1);
1074 #endif
1075 break;
1077 KKASSERT(object->ref_count == 1);
1080 * 1->0 transition. Chain through the backing_object.
1081 * Maintain the ref until we've located the backing object,
1082 * then re-check.
1084 while ((temp = object->backing_object) != NULL) {
1085 if (temp->type == OBJT_VNODE)
1086 vm_object_hold_shared(temp);
1087 else
1088 vm_object_hold(temp);
1089 if (temp == object->backing_object)
1090 break;
1091 vm_object_drop(temp);
1095 * 1->0 transition verified, retry if ref_count is no longer
1096 * 1. Otherwise disconnect the backing_object (temp) and
1097 * clean up.
1099 if (object->ref_count != 1) {
1100 vm_object_drop(temp);
1101 continue;
1105 * It shouldn't be possible for the object to be chain locked
1106 * if we're removing the last ref on it.
1108 * Removing object from temp's shadow list requires dropping
1109 * temp, which we will do on loop.
1111 * NOTE! vnodes do not use the shadow list, but still have
1112 * the backing_object reference.
1114 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1116 if (temp) {
1117 if (object->flags & OBJ_ONSHADOW) {
1118 LIST_REMOVE(object, shadow_list);
1119 temp->shadow_count--;
1120 atomic_add_int(&temp->generation, 1);
1121 vm_object_clear_flag(object, OBJ_ONSHADOW);
1123 object->backing_object = NULL;
1126 atomic_add_int(&object->ref_count, -1);
1127 if ((object->flags & OBJ_DEAD) == 0)
1128 vm_object_terminate(object);
1129 if (must_drop && temp)
1130 vm_object_lock_swap();
1131 if (must_drop)
1132 vm_object_drop(object);
1133 object = temp;
1134 must_drop = 1;
1137 if (must_drop && object)
1138 vm_object_drop(object);
1141 * Additional tail recursion on dlist. Avoid a recursion. Objects
1142 * on the dlist have a hold count but are not locked.
1144 if ((dtmp = dlist) != NULL) {
1145 dlist = dtmp->next;
1146 object = dtmp->object;
1147 kfree(dtmp, M_TEMP);
1149 vm_object_lock(object); /* already held, add lock */
1150 must_drop = 1; /* and we're responsible for it */
1151 goto again;
1156 * Destroy the specified object, freeing up related resources.
1158 * The object must have zero references.
1160 * The object must held. The caller is responsible for dropping the object
1161 * after terminate returns. Terminate does NOT drop the object.
1163 static int vm_object_terminate_callback(vm_page_t p, void *data);
1165 void
1166 vm_object_terminate(vm_object_t object)
1168 struct rb_vm_page_scan_info info;
1169 struct vm_object_hash *hash;
1172 * Make sure no one uses us. Once we set OBJ_DEAD we should be
1173 * able to safely block.
1175 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1176 KKASSERT((object->flags & OBJ_DEAD) == 0);
1177 vm_object_set_flag(object, OBJ_DEAD);
1180 * Wait for the pageout daemon to be done with the object
1182 vm_object_pip_wait(object, "objtrm1");
1184 KASSERT(!object->paging_in_progress,
1185 ("vm_object_terminate: pageout in progress"));
1188 * Clean and free the pages, as appropriate. All references to the
1189 * object are gone, so we don't need to lock it.
1191 if (object->type == OBJT_VNODE) {
1192 struct vnode *vp;
1195 * Clean pages and flush buffers.
1197 * NOTE! TMPFS buffer flushes do not typically flush the
1198 * actual page to swap as this would be highly
1199 * inefficient, and normal filesystems usually wrap
1200 * page flushes with buffer cache buffers.
1202 * To deal with this we have to call vinvalbuf() both
1203 * before and after the vm_object_page_clean().
1205 vp = (struct vnode *) object->handle;
1206 vinvalbuf(vp, V_SAVE, 0, 0);
1207 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1208 vinvalbuf(vp, V_SAVE, 0, 0);
1212 * Wait for any I/O to complete, after which there had better not
1213 * be any references left on the object.
1215 vm_object_pip_wait(object, "objtrm2");
1217 if (object->ref_count != 0) {
1218 panic("vm_object_terminate: object with references, "
1219 "ref_count=%d", object->ref_count);
1223 * Cleanup any shared pmaps associated with this object.
1225 pmap_object_free(object);
1228 * Now free any remaining pages. For internal objects, this also
1229 * removes them from paging queues. Don't free wired pages, just
1230 * remove them from the object.
1232 info.count = 0;
1233 info.object = object;
1234 do {
1235 info.error = 0;
1236 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1237 vm_object_terminate_callback, &info);
1238 } while (info.error);
1241 * Let the pager know object is dead.
1243 vm_pager_deallocate(object);
1246 * Wait for the object hold count to hit 1, clean out pages as
1247 * we go. vmobj_token interlocks any race conditions that might
1248 * pick the object up from the vm_object_list after we have cleared
1249 * rb_memq.
1251 for (;;) {
1252 if (RB_ROOT(&object->rb_memq) == NULL)
1253 break;
1254 kprintf("vm_object_terminate: Warning, object %p "
1255 "still has %ld pages\n",
1256 object, object->resident_page_count);
1257 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1258 vm_object_terminate_callback, &info);
1262 * There had better not be any pages left
1264 KKASSERT(object->resident_page_count == 0);
1267 * Remove the object from the global object list.
1269 hash = vmobj_hash(object);
1270 lwkt_gettoken(&hash->token);
1271 TAILQ_REMOVE(&hash->list, object, object_list);
1272 lwkt_reltoken(&hash->token);
1274 if (object->ref_count != 0) {
1275 panic("vm_object_terminate2: object with references, "
1276 "ref_count=%d", object->ref_count);
1280 * NOTE: The object hold_count is at least 1, so we cannot kfree()
1281 * the object here. See vm_object_drop().
1286 * The caller must hold the object.
1288 static int
1289 vm_object_terminate_callback(vm_page_t p, void *data)
1291 struct rb_vm_page_scan_info *info = data;
1292 vm_object_t object;
1294 object = p->object;
1295 KKASSERT(object == info->object);
1296 if (vm_page_busy_try(p, TRUE)) {
1297 vm_page_sleep_busy(p, TRUE, "vmotrm");
1298 info->error = 1;
1299 return 0;
1301 if (object != p->object) {
1302 /* XXX remove once we determine it can't happen */
1303 kprintf("vm_object_terminate: Warning: Encountered "
1304 "busied page %p on queue %d\n", p, p->queue);
1305 vm_page_wakeup(p);
1306 info->error = 1;
1307 } else if (p->wire_count == 0) {
1309 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1311 vm_page_free(p);
1312 mycpu->gd_cnt.v_pfree++;
1313 } else {
1314 if (p->queue != PQ_NONE)
1315 kprintf("vm_object_terminate: Warning: Encountered "
1316 "wired page %p on queue %d\n", p, p->queue);
1317 vm_page_remove(p);
1318 vm_page_wakeup(p);
1322 * Must be at end to avoid SMP races, caller holds object token
1324 if ((++info->count & 63) == 0)
1325 lwkt_user_yield();
1326 return(0);
1330 * Clean all dirty pages in the specified range of object. Leaves page
1331 * on whatever queue it is currently on. If NOSYNC is set then do not
1332 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1333 * leaving the object dirty.
1335 * When stuffing pages asynchronously, allow clustering. XXX we need a
1336 * synchronous clustering mode implementation.
1338 * Odd semantics: if start == end, we clean everything.
1340 * The object must be locked? XXX
1342 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1343 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1345 void
1346 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1347 int flags)
1349 struct rb_vm_page_scan_info info;
1350 struct vnode *vp;
1351 int wholescan;
1352 int pagerflags;
1353 int generation;
1355 vm_object_hold(object);
1356 if (object->type != OBJT_VNODE ||
1357 (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1358 vm_object_drop(object);
1359 return;
1362 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1363 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1364 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1366 vp = object->handle;
1369 * Interlock other major object operations. This allows us to
1370 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1372 vm_object_set_flag(object, OBJ_CLEANING);
1375 * Handle 'entire object' case
1377 info.start_pindex = start;
1378 if (end == 0) {
1379 info.end_pindex = object->size - 1;
1380 } else {
1381 info.end_pindex = end - 1;
1383 wholescan = (start == 0 && info.end_pindex == object->size - 1);
1384 info.limit = flags;
1385 info.pagerflags = pagerflags;
1386 info.object = object;
1389 * If cleaning the entire object do a pass to mark the pages read-only.
1390 * If everything worked out ok, clear OBJ_WRITEABLE and
1391 * OBJ_MIGHTBEDIRTY.
1393 if (wholescan) {
1394 info.error = 0;
1395 info.count = 0;
1396 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1397 vm_object_page_clean_pass1, &info);
1398 if (info.error == 0) {
1399 vm_object_clear_flag(object,
1400 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1401 if (object->type == OBJT_VNODE &&
1402 (vp = (struct vnode *)object->handle) != NULL) {
1404 * Use new-style interface to clear VISDIRTY
1405 * because the vnode is not necessarily removed
1406 * from the syncer list(s) as often as it was
1407 * under the old interface, which can leave
1408 * the vnode on the syncer list after reclaim.
1410 vclrobjdirty(vp);
1416 * Do a pass to clean all the dirty pages we find.
1418 do {
1419 info.error = 0;
1420 info.count = 0;
1421 generation = object->generation;
1422 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1423 vm_object_page_clean_pass2, &info);
1424 } while (info.error || generation != object->generation);
1426 vm_object_clear_flag(object, OBJ_CLEANING);
1427 vm_object_drop(object);
1431 * The caller must hold the object.
1433 static
1435 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1437 struct rb_vm_page_scan_info *info = data;
1439 KKASSERT(p->object == info->object);
1441 vm_page_flag_set(p, PG_CLEANCHK);
1442 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1443 info->error = 1;
1444 } else if (vm_page_busy_try(p, FALSE)) {
1445 info->error = 1;
1446 } else {
1447 KKASSERT(p->object == info->object);
1448 vm_page_protect(p, VM_PROT_READ);
1449 vm_page_wakeup(p);
1453 * Must be at end to avoid SMP races, caller holds object token
1455 if ((++info->count & 63) == 0)
1456 lwkt_user_yield();
1457 return(0);
1461 * The caller must hold the object
1463 static
1465 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1467 struct rb_vm_page_scan_info *info = data;
1468 int generation;
1470 KKASSERT(p->object == info->object);
1473 * Do not mess with pages that were inserted after we started
1474 * the cleaning pass.
1476 if ((p->flags & PG_CLEANCHK) == 0)
1477 goto done;
1479 generation = info->object->generation;
1481 if (vm_page_busy_try(p, TRUE)) {
1482 vm_page_sleep_busy(p, TRUE, "vpcwai");
1483 info->error = 1;
1484 goto done;
1487 KKASSERT(p->object == info->object &&
1488 info->object->generation == generation);
1491 * Before wasting time traversing the pmaps, check for trivial
1492 * cases where the page cannot be dirty.
1494 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1495 KKASSERT((p->dirty & p->valid) == 0 &&
1496 (p->flags & PG_NEED_COMMIT) == 0);
1497 vm_page_wakeup(p);
1498 goto done;
1502 * Check whether the page is dirty or not. The page has been set
1503 * to be read-only so the check will not race a user dirtying the
1504 * page.
1506 vm_page_test_dirty(p);
1507 if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1508 vm_page_flag_clear(p, PG_CLEANCHK);
1509 vm_page_wakeup(p);
1510 goto done;
1514 * If we have been asked to skip nosync pages and this is a
1515 * nosync page, skip it. Note that the object flags were
1516 * not cleared in this case (because pass1 will have returned an
1517 * error), so we do not have to set them.
1519 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1520 vm_page_flag_clear(p, PG_CLEANCHK);
1521 vm_page_wakeup(p);
1522 goto done;
1526 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
1527 * the pages that get successfully flushed. Set info->error if
1528 * we raced an object modification.
1530 vm_object_page_collect_flush(info->object, p, info->pagerflags);
1531 /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1534 * Must be at end to avoid SMP races, caller holds object token
1536 done:
1537 if ((++info->count & 63) == 0)
1538 lwkt_user_yield();
1539 return(0);
1543 * Collect the specified page and nearby pages and flush them out.
1544 * The number of pages flushed is returned. The passed page is busied
1545 * by the caller and we are responsible for its disposition.
1547 * The caller must hold the object.
1549 static void
1550 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1552 int error;
1553 int is;
1554 int ib;
1555 int i;
1556 int page_base;
1557 vm_pindex_t pi;
1558 vm_page_t ma[BLIST_MAX_ALLOC];
1560 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1562 pi = p->pindex;
1563 page_base = pi % BLIST_MAX_ALLOC;
1564 ma[page_base] = p;
1565 ib = page_base - 1;
1566 is = page_base + 1;
1568 while (ib >= 0) {
1569 vm_page_t tp;
1571 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1572 TRUE, &error);
1573 if (error)
1574 break;
1575 if (tp == NULL)
1576 break;
1577 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1578 (tp->flags & PG_CLEANCHK) == 0) {
1579 vm_page_wakeup(tp);
1580 break;
1582 if ((tp->queue - tp->pc) == PQ_CACHE) {
1583 vm_page_flag_clear(tp, PG_CLEANCHK);
1584 vm_page_wakeup(tp);
1585 break;
1587 vm_page_test_dirty(tp);
1588 if ((tp->dirty & tp->valid) == 0 &&
1589 (tp->flags & PG_NEED_COMMIT) == 0) {
1590 vm_page_flag_clear(tp, PG_CLEANCHK);
1591 vm_page_wakeup(tp);
1592 break;
1594 ma[ib] = tp;
1595 --ib;
1597 ++ib; /* fixup */
1599 while (is < BLIST_MAX_ALLOC &&
1600 pi - page_base + is < object->size) {
1601 vm_page_t tp;
1603 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1604 TRUE, &error);
1605 if (error)
1606 break;
1607 if (tp == NULL)
1608 break;
1609 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1610 (tp->flags & PG_CLEANCHK) == 0) {
1611 vm_page_wakeup(tp);
1612 break;
1614 if ((tp->queue - tp->pc) == PQ_CACHE) {
1615 vm_page_flag_clear(tp, PG_CLEANCHK);
1616 vm_page_wakeup(tp);
1617 break;
1619 vm_page_test_dirty(tp);
1620 if ((tp->dirty & tp->valid) == 0 &&
1621 (tp->flags & PG_NEED_COMMIT) == 0) {
1622 vm_page_flag_clear(tp, PG_CLEANCHK);
1623 vm_page_wakeup(tp);
1624 break;
1626 ma[is] = tp;
1627 ++is;
1631 * All pages in the ma[] array are busied now
1633 for (i = ib; i < is; ++i) {
1634 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1635 vm_page_hold(ma[i]); /* XXX need this any more? */
1637 vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1638 for (i = ib; i < is; ++i) /* XXX need this any more? */
1639 vm_page_unhold(ma[i]);
1643 * Same as vm_object_pmap_copy, except range checking really
1644 * works, and is meant for small sections of an object.
1646 * This code protects resident pages by making them read-only
1647 * and is typically called on a fork or split when a page
1648 * is converted to copy-on-write.
1650 * NOTE: If the page is already at VM_PROT_NONE, calling
1651 * vm_page_protect will have no effect.
1653 void
1654 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1656 vm_pindex_t idx;
1657 vm_page_t p;
1659 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1660 return;
1662 vm_object_hold(object);
1663 for (idx = start; idx < end; idx++) {
1664 p = vm_page_lookup(object, idx);
1665 if (p == NULL)
1666 continue;
1667 vm_page_protect(p, VM_PROT_READ);
1669 vm_object_drop(object);
1673 * Removes all physical pages in the specified object range from all
1674 * physical maps.
1676 * The object must *not* be locked.
1679 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1681 void
1682 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1684 struct rb_vm_page_scan_info info;
1686 if (object == NULL)
1687 return;
1688 if (start == end)
1689 return;
1690 info.start_pindex = start;
1691 info.end_pindex = end - 1;
1692 info.count = 0;
1693 info.object = object;
1695 vm_object_hold(object);
1696 do {
1697 info.error = 0;
1698 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1699 vm_object_pmap_remove_callback, &info);
1700 } while (info.error);
1701 if (start == 0 && end == object->size)
1702 vm_object_clear_flag(object, OBJ_WRITEABLE);
1703 vm_object_drop(object);
1707 * The caller must hold the object
1709 static int
1710 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1712 struct rb_vm_page_scan_info *info = data;
1714 if (info->object != p->object ||
1715 p->pindex < info->start_pindex ||
1716 p->pindex > info->end_pindex) {
1717 kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1718 info->object, p);
1719 info->error = 1;
1720 return(0);
1723 vm_page_protect(p, VM_PROT_NONE);
1726 * Must be at end to avoid SMP races, caller holds object token
1728 if ((++info->count & 63) == 0)
1729 lwkt_user_yield();
1730 return(0);
1734 * Implements the madvise function at the object/page level.
1736 * MADV_WILLNEED (any object)
1738 * Activate the specified pages if they are resident.
1740 * MADV_DONTNEED (any object)
1742 * Deactivate the specified pages if they are resident.
1744 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1746 * Deactivate and clean the specified pages if they are
1747 * resident. This permits the process to reuse the pages
1748 * without faulting or the kernel to reclaim the pages
1749 * without I/O.
1751 * No requirements.
1753 void
1754 vm_object_madvise(vm_object_t object, vm_pindex_t pindex,
1755 vm_pindex_t count, int advise)
1757 vm_pindex_t end, tpindex;
1758 vm_object_t tobject;
1759 vm_object_t xobj;
1760 vm_page_t m;
1761 int error;
1763 if (object == NULL)
1764 return;
1766 end = pindex + count;
1768 vm_object_hold(object);
1769 tobject = object;
1772 * Locate and adjust resident pages
1774 for (; pindex < end; pindex += 1) {
1775 relookup:
1776 if (tobject != object)
1777 vm_object_drop(tobject);
1778 tobject = object;
1779 tpindex = pindex;
1780 shadowlookup:
1782 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1783 * and those pages must be OBJ_ONEMAPPING.
1785 if (advise == MADV_FREE) {
1786 if ((tobject->type != OBJT_DEFAULT &&
1787 tobject->type != OBJT_SWAP) ||
1788 (tobject->flags & OBJ_ONEMAPPING) == 0) {
1789 continue;
1793 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1795 if (error) {
1796 vm_page_sleep_busy(m, TRUE, "madvpo");
1797 goto relookup;
1799 if (m == NULL) {
1801 * There may be swap even if there is no backing page
1803 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1804 swap_pager_freespace(tobject, tpindex, 1);
1807 * next object
1809 while ((xobj = tobject->backing_object) != NULL) {
1810 KKASSERT(xobj != object);
1811 vm_object_hold(xobj);
1812 if (xobj == tobject->backing_object)
1813 break;
1814 vm_object_drop(xobj);
1816 if (xobj == NULL)
1817 continue;
1818 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1819 if (tobject != object) {
1820 vm_object_lock_swap();
1821 vm_object_drop(tobject);
1823 tobject = xobj;
1824 goto shadowlookup;
1828 * If the page is not in a normal active state, we skip it.
1829 * If the page is not managed there are no page queues to
1830 * mess with. Things can break if we mess with pages in
1831 * any of the below states.
1833 if (m->wire_count ||
1834 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1835 m->valid != VM_PAGE_BITS_ALL
1837 vm_page_wakeup(m);
1838 continue;
1842 * Theoretically once a page is known not to be busy, an
1843 * interrupt cannot come along and rip it out from under us.
1846 if (advise == MADV_WILLNEED) {
1847 vm_page_activate(m);
1848 } else if (advise == MADV_DONTNEED) {
1849 vm_page_dontneed(m);
1850 } else if (advise == MADV_FREE) {
1852 * Mark the page clean. This will allow the page
1853 * to be freed up by the system. However, such pages
1854 * are often reused quickly by malloc()/free()
1855 * so we do not do anything that would cause
1856 * a page fault if we can help it.
1858 * Specifically, we do not try to actually free
1859 * the page now nor do we try to put it in the
1860 * cache (which would cause a page fault on reuse).
1862 * But we do make the page is freeable as we
1863 * can without actually taking the step of unmapping
1864 * it.
1866 pmap_clear_modify(m);
1867 m->dirty = 0;
1868 m->act_count = 0;
1869 vm_page_dontneed(m);
1870 if (tobject->type == OBJT_SWAP)
1871 swap_pager_freespace(tobject, tpindex, 1);
1873 vm_page_wakeup(m);
1875 if (tobject != object)
1876 vm_object_drop(tobject);
1877 vm_object_drop(object);
1881 * Create a new object which is backed by the specified existing object
1882 * range. Replace the pointer and offset that was pointing at the existing
1883 * object with the pointer/offset for the new object.
1885 * If addref is non-zero the returned object is given an additional reference.
1886 * This mechanic exists to avoid the situation where refs might be 1 and
1887 * race against a collapse when the caller intends to bump it. So the
1888 * caller cannot add the ref after the fact. Used when the caller is
1889 * duplicating a vm_map_entry.
1891 * No other requirements.
1893 void
1894 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1895 int addref)
1897 vm_object_t source;
1898 vm_object_t result;
1899 int useshadowlist;
1901 source = *objectp;
1904 * Don't create the new object if the old object isn't shared.
1905 * We have to chain wait before adding the reference to avoid
1906 * racing a collapse or deallocation.
1908 * Clear OBJ_ONEMAPPING flag when shadowing.
1910 * The caller owns a ref on source via *objectp which we are going
1911 * to replace. This ref is inherited by the backing_object assignment.
1912 * from nobject and does not need to be incremented here.
1914 * However, we add a temporary extra reference to the original source
1915 * prior to holding nobject in case we block, to avoid races where
1916 * someone else might believe that the source can be collapsed.
1918 useshadowlist = 0;
1919 if (source) {
1920 if (source->type != OBJT_VNODE) {
1921 useshadowlist = 1;
1922 vm_object_hold(source);
1923 vm_object_chain_wait(source, 0);
1924 if (source->ref_count == 1 &&
1925 source->handle == NULL &&
1926 (source->type == OBJT_DEFAULT ||
1927 source->type == OBJT_SWAP)) {
1928 if (addref) {
1929 vm_object_reference_locked(source);
1930 vm_object_clear_flag(source,
1931 OBJ_ONEMAPPING);
1933 vm_object_drop(source);
1934 return;
1936 vm_object_reference_locked(source);
1937 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1938 } else {
1939 vm_object_reference_quick(source);
1940 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1945 * Allocate a new object with the given length. The new object
1946 * is returned referenced but we may have to add another one.
1947 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1948 * (typically because the caller is about to clone a vm_map_entry).
1950 * The source object currently has an extra reference to prevent
1951 * collapses into it while we mess with its shadow list, which
1952 * we will remove later in this routine.
1954 * The target object may require a second reference if asked for one
1955 * by the caller.
1957 result = vm_object_allocate(OBJT_DEFAULT, length);
1958 if (result == NULL)
1959 panic("vm_object_shadow: no object for shadowing");
1960 vm_object_hold(result);
1961 if (addref) {
1962 vm_object_reference_locked(result);
1963 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1967 * The new object shadows the source object. Chain wait before
1968 * adjusting shadow_count or the shadow list to avoid races.
1970 * Try to optimize the result object's page color when shadowing
1971 * in order to maintain page coloring consistency in the combined
1972 * shadowed object.
1974 * The backing_object reference to source requires adding a ref to
1975 * source. We simply inherit the ref from the original *objectp
1976 * (which we are replacing) so no additional refs need to be added.
1977 * (we must still clean up the extra ref we had to prevent collapse
1978 * races).
1980 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1982 KKASSERT(result->backing_object == NULL);
1983 result->backing_object = source;
1984 if (source) {
1985 if (useshadowlist) {
1986 vm_object_chain_wait(source, 0);
1987 LIST_INSERT_HEAD(&source->shadow_head,
1988 result, shadow_list);
1989 source->shadow_count++;
1990 atomic_add_int(&source->generation, 1);
1991 vm_object_set_flag(result, OBJ_ONSHADOW);
1993 /* cpu localization twist */
1994 result->pg_color = vm_quickcolor();
1998 * Adjust the return storage. Drop the ref on source before
1999 * returning.
2001 result->backing_object_offset = *offset;
2002 vm_object_drop(result);
2003 *offset = 0;
2004 if (source) {
2005 if (useshadowlist) {
2006 vm_object_deallocate_locked(source);
2007 vm_object_drop(source);
2008 } else {
2009 vm_object_deallocate(source);
2014 * Return the new things
2016 *objectp = result;
2019 #define OBSC_TEST_ALL_SHADOWED 0x0001
2020 #define OBSC_COLLAPSE_NOWAIT 0x0002
2021 #define OBSC_COLLAPSE_WAIT 0x0004
2023 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
2026 * The caller must hold the object.
2028 static __inline int
2029 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
2031 struct rb_vm_page_scan_info info;
2032 struct vm_object_hash *hash;
2034 vm_object_assert_held(object);
2035 vm_object_assert_held(backing_object);
2037 KKASSERT(backing_object == object->backing_object);
2038 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
2041 * Initial conditions
2043 if (op & OBSC_TEST_ALL_SHADOWED) {
2045 * We do not want to have to test for the existence of
2046 * swap pages in the backing object. XXX but with the
2047 * new swapper this would be pretty easy to do.
2049 * XXX what about anonymous MAP_SHARED memory that hasn't
2050 * been ZFOD faulted yet? If we do not test for this, the
2051 * shadow test may succeed! XXX
2053 if (backing_object->type != OBJT_DEFAULT)
2054 return(0);
2056 if (op & OBSC_COLLAPSE_WAIT) {
2057 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2058 vm_object_set_flag(backing_object, OBJ_DEAD);
2060 hash = vmobj_hash(backing_object);
2061 lwkt_gettoken(&hash->token);
2062 TAILQ_REMOVE(&hash->list, backing_object, object_list);
2063 lwkt_reltoken(&hash->token);
2067 * Our scan. We have to retry if a negative error code is returned,
2068 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
2069 * the scan had to be stopped because the parent does not completely
2070 * shadow the child.
2072 info.object = object;
2073 info.backing_object = backing_object;
2074 info.limit = op;
2075 info.count = 0;
2076 do {
2077 info.error = 1;
2078 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2079 vm_object_backing_scan_callback,
2080 &info);
2081 } while (info.error < 0);
2083 return(info.error);
2087 * The caller must hold the object.
2089 static int
2090 vm_object_backing_scan_callback(vm_page_t p, void *data)
2092 struct rb_vm_page_scan_info *info = data;
2093 vm_object_t backing_object;
2094 vm_object_t object;
2095 vm_pindex_t pindex;
2096 vm_pindex_t new_pindex;
2097 vm_pindex_t backing_offset_index;
2098 int op;
2100 pindex = p->pindex;
2101 new_pindex = pindex - info->backing_offset_index;
2102 op = info->limit;
2103 object = info->object;
2104 backing_object = info->backing_object;
2105 backing_offset_index = info->backing_offset_index;
2107 if (op & OBSC_TEST_ALL_SHADOWED) {
2108 vm_page_t pp;
2111 * Ignore pages outside the parent object's range
2112 * and outside the parent object's mapping of the
2113 * backing object.
2115 * note that we do not busy the backing object's
2116 * page.
2118 if (pindex < backing_offset_index ||
2119 new_pindex >= object->size
2121 return(0);
2125 * See if the parent has the page or if the parent's
2126 * object pager has the page. If the parent has the
2127 * page but the page is not valid, the parent's
2128 * object pager must have the page.
2130 * If this fails, the parent does not completely shadow
2131 * the object and we might as well give up now.
2133 pp = vm_page_lookup(object, new_pindex);
2134 if ((pp == NULL || pp->valid == 0) &&
2135 !vm_pager_has_page(object, new_pindex)
2137 info->error = 0; /* problemo */
2138 return(-1); /* stop the scan */
2143 * Check for busy page. Note that we may have lost (p) when we
2144 * possibly blocked above.
2146 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2147 vm_page_t pp;
2149 if (vm_page_busy_try(p, TRUE)) {
2150 if (op & OBSC_COLLAPSE_NOWAIT) {
2151 return(0);
2152 } else {
2154 * If we slept, anything could have
2155 * happened. Ask that the scan be restarted.
2157 * Since the object is marked dead, the
2158 * backing offset should not have changed.
2160 vm_page_sleep_busy(p, TRUE, "vmocol");
2161 info->error = -1;
2162 return(-1);
2167 * If (p) is no longer valid restart the scan.
2169 if (p->object != backing_object || p->pindex != pindex) {
2170 kprintf("vm_object_backing_scan: Warning: page "
2171 "%p ripped out from under us\n", p);
2172 vm_page_wakeup(p);
2173 info->error = -1;
2174 return(-1);
2177 if (op & OBSC_COLLAPSE_NOWAIT) {
2178 if (p->valid == 0 ||
2179 p->wire_count ||
2180 (p->flags & PG_NEED_COMMIT)) {
2181 vm_page_wakeup(p);
2182 return(0);
2184 } else {
2185 /* XXX what if p->valid == 0 , hold_count, etc? */
2188 KASSERT(
2189 p->object == backing_object,
2190 ("vm_object_qcollapse(): object mismatch")
2194 * Destroy any associated swap
2196 if (backing_object->type == OBJT_SWAP)
2197 swap_pager_freespace(backing_object, p->pindex, 1);
2199 if (
2200 p->pindex < backing_offset_index ||
2201 new_pindex >= object->size
2204 * Page is out of the parent object's range, we
2205 * can simply destroy it.
2207 vm_page_protect(p, VM_PROT_NONE);
2208 vm_page_free(p);
2209 return(0);
2212 pp = vm_page_lookup(object, new_pindex);
2213 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2215 * page already exists in parent OR swap exists
2216 * for this location in the parent. Destroy
2217 * the original page from the backing object.
2219 * Leave the parent's page alone
2221 vm_page_protect(p, VM_PROT_NONE);
2222 vm_page_free(p);
2223 return(0);
2227 * Page does not exist in parent, rename the
2228 * page from the backing object to the main object.
2230 * If the page was mapped to a process, it can remain
2231 * mapped through the rename.
2233 if ((p->queue - p->pc) == PQ_CACHE)
2234 vm_page_deactivate(p);
2236 vm_page_rename(p, object, new_pindex);
2237 vm_page_wakeup(p);
2238 /* page automatically made dirty by rename */
2240 return(0);
2244 * This version of collapse allows the operation to occur earlier and
2245 * when paging_in_progress is true for an object... This is not a complete
2246 * operation, but should plug 99.9% of the rest of the leaks.
2248 * The caller must hold the object and backing_object and both must be
2249 * chainlocked.
2251 * (only called from vm_object_collapse)
2253 static void
2254 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2256 if (backing_object->ref_count == 1) {
2257 atomic_add_int(&backing_object->ref_count, 2);
2258 #if defined(DEBUG_LOCKS)
2259 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2260 #endif
2261 vm_object_backing_scan(object, backing_object,
2262 OBSC_COLLAPSE_NOWAIT);
2263 atomic_add_int(&backing_object->ref_count, -2);
2264 #if defined(DEBUG_LOCKS)
2265 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2266 #endif
2271 * Collapse an object with the object backing it. Pages in the backing
2272 * object are moved into the parent, and the backing object is deallocated.
2273 * Any conflict is resolved in favor of the parent's existing pages.
2275 * object must be held and chain-locked on call.
2277 * The caller must have an extra ref on object to prevent a race from
2278 * destroying it during the collapse.
2280 void
2281 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2283 struct vm_object_dealloc_list *dlist = NULL;
2284 vm_object_t backing_object;
2287 * Only one thread is attempting a collapse at any given moment.
2288 * There are few restrictions for (object) that callers of this
2289 * function check so reentrancy is likely.
2291 KKASSERT(object != NULL);
2292 vm_object_assert_held(object);
2293 KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2295 for (;;) {
2296 vm_object_t bbobj;
2297 int dodealloc;
2300 * We can only collapse a DEFAULT/SWAP object with a
2301 * DEFAULT/SWAP object.
2303 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2304 backing_object = NULL;
2305 break;
2308 backing_object = object->backing_object;
2309 if (backing_object == NULL)
2310 break;
2311 if (backing_object->type != OBJT_DEFAULT &&
2312 backing_object->type != OBJT_SWAP) {
2313 backing_object = NULL;
2314 break;
2318 * Hold (token lock) the backing_object and retest conditions.
2320 vm_object_hold(backing_object);
2321 if (backing_object != object->backing_object ||
2322 (backing_object->type != OBJT_DEFAULT &&
2323 backing_object->type != OBJT_SWAP)) {
2324 vm_object_drop(backing_object);
2325 continue;
2329 * Chain-lock the backing object too because if we
2330 * successfully merge its pages into the top object we
2331 * will collapse backing_object->backing_object as the
2332 * new backing_object. Re-check that it is still our
2333 * backing object.
2335 vm_object_chain_acquire(backing_object, 0);
2336 if (backing_object != object->backing_object) {
2337 vm_object_chain_release(backing_object);
2338 vm_object_drop(backing_object);
2339 continue;
2343 * We check the backing object first, because it is most
2344 * likely not collapsable.
2346 if (backing_object->handle != NULL ||
2347 (backing_object->type != OBJT_DEFAULT &&
2348 backing_object->type != OBJT_SWAP) ||
2349 (backing_object->flags & OBJ_DEAD) ||
2350 object->handle != NULL ||
2351 (object->type != OBJT_DEFAULT &&
2352 object->type != OBJT_SWAP) ||
2353 (object->flags & OBJ_DEAD)) {
2354 break;
2358 * If paging is in progress we can't do a normal collapse.
2360 if (object->paging_in_progress != 0 ||
2361 backing_object->paging_in_progress != 0
2363 vm_object_qcollapse(object, backing_object);
2364 break;
2368 * We know that we can either collapse the backing object (if
2369 * the parent is the only reference to it) or (perhaps) have
2370 * the parent bypass the object if the parent happens to shadow
2371 * all the resident pages in the entire backing object.
2373 * This is ignoring pager-backed pages such as swap pages.
2374 * vm_object_backing_scan fails the shadowing test in this
2375 * case.
2377 if (backing_object->ref_count == 1) {
2379 * If there is exactly one reference to the backing
2380 * object, we can collapse it into the parent.
2382 KKASSERT(object->backing_object == backing_object);
2383 vm_object_backing_scan(object, backing_object,
2384 OBSC_COLLAPSE_WAIT);
2387 * Move the pager from backing_object to object.
2389 if (backing_object->type == OBJT_SWAP) {
2390 vm_object_pip_add(backing_object, 1);
2393 * scrap the paging_offset junk and do a
2394 * discrete copy. This also removes major
2395 * assumptions about how the swap-pager
2396 * works from where it doesn't belong. The
2397 * new swapper is able to optimize the
2398 * destroy-source case.
2400 vm_object_pip_add(object, 1);
2401 swap_pager_copy(backing_object, object,
2402 OFF_TO_IDX(object->backing_object_offset),
2403 TRUE);
2404 vm_object_pip_wakeup(object);
2405 vm_object_pip_wakeup(backing_object);
2409 * Object now shadows whatever backing_object did.
2410 * Remove object from backing_object's shadow_list.
2412 * Removing object from backing_objects shadow list
2413 * requires releasing object, which we will do below.
2415 KKASSERT(object->backing_object == backing_object);
2416 if (object->flags & OBJ_ONSHADOW) {
2417 LIST_REMOVE(object, shadow_list);
2418 backing_object->shadow_count--;
2419 atomic_add_int(&backing_object->generation, 1);
2420 vm_object_clear_flag(object, OBJ_ONSHADOW);
2424 * backing_object->backing_object moves from within
2425 * backing_object to within object.
2427 * OBJT_VNODE bbobj's should have empty shadow lists.
2429 while ((bbobj = backing_object->backing_object) != NULL) {
2430 if (bbobj->type == OBJT_VNODE)
2431 vm_object_hold_shared(bbobj);
2432 else
2433 vm_object_hold(bbobj);
2434 if (bbobj == backing_object->backing_object)
2435 break;
2436 vm_object_drop(bbobj);
2440 * We are removing backing_object from bbobj's
2441 * shadow list and adding object to bbobj's shadow
2442 * list, so the ref_count on bbobj is unchanged.
2444 if (bbobj) {
2445 if (backing_object->flags & OBJ_ONSHADOW) {
2446 /* not locked exclusively if vnode */
2447 KKASSERT(bbobj->type != OBJT_VNODE);
2448 LIST_REMOVE(backing_object,
2449 shadow_list);
2450 bbobj->shadow_count--;
2451 atomic_add_int(&bbobj->generation, 1);
2452 vm_object_clear_flag(backing_object,
2453 OBJ_ONSHADOW);
2455 backing_object->backing_object = NULL;
2457 object->backing_object = bbobj;
2458 if (bbobj) {
2459 if (bbobj->type != OBJT_VNODE) {
2460 LIST_INSERT_HEAD(&bbobj->shadow_head,
2461 object, shadow_list);
2462 bbobj->shadow_count++;
2463 atomic_add_int(&bbobj->generation, 1);
2464 vm_object_set_flag(object,
2465 OBJ_ONSHADOW);
2469 object->backing_object_offset +=
2470 backing_object->backing_object_offset;
2472 vm_object_drop(bbobj);
2475 * Discard the old backing_object. Nothing should be
2476 * able to ref it, other than a vm_map_split(),
2477 * and vm_map_split() will stall on our chain lock.
2478 * And we control the parent so it shouldn't be
2479 * possible for it to go away either.
2481 * Since the backing object has no pages, no pager
2482 * left, and no object references within it, all
2483 * that is necessary is to dispose of it.
2485 KASSERT(backing_object->ref_count == 1,
2486 ("backing_object %p was somehow "
2487 "re-referenced during collapse!",
2488 backing_object));
2489 KASSERT(RB_EMPTY(&backing_object->rb_memq),
2490 ("backing_object %p somehow has left "
2491 "over pages during collapse!",
2492 backing_object));
2495 * The object can be destroyed.
2497 * XXX just fall through and dodealloc instead
2498 * of forcing destruction?
2500 atomic_add_int(&backing_object->ref_count, -1);
2501 #if defined(DEBUG_LOCKS)
2502 debugvm_object_add(backing_object, "collapse", 1, -1);
2503 #endif
2504 if ((backing_object->flags & OBJ_DEAD) == 0)
2505 vm_object_terminate(backing_object);
2506 object_collapses++;
2507 dodealloc = 0;
2508 } else {
2510 * If we do not entirely shadow the backing object,
2511 * there is nothing we can do so we give up.
2513 if (vm_object_backing_scan(object, backing_object,
2514 OBSC_TEST_ALL_SHADOWED) == 0) {
2515 break;
2519 * bbobj is backing_object->backing_object. Since
2520 * object completely shadows backing_object we can
2521 * bypass it and become backed by bbobj instead.
2523 * The shadow list for vnode backing objects is not
2524 * used and a shared hold is allowed.
2526 while ((bbobj = backing_object->backing_object) != NULL) {
2527 if (bbobj->type == OBJT_VNODE)
2528 vm_object_hold_shared(bbobj);
2529 else
2530 vm_object_hold(bbobj);
2531 if (bbobj == backing_object->backing_object)
2532 break;
2533 vm_object_drop(bbobj);
2537 * Make object shadow bbobj instead of backing_object.
2538 * Remove object from backing_object's shadow list.
2540 * Deallocating backing_object will not remove
2541 * it, since its reference count is at least 2.
2543 * Removing object from backing_object's shadow
2544 * list requires releasing a ref, which we do
2545 * below by setting dodealloc to 1.
2547 KKASSERT(object->backing_object == backing_object);
2548 if (object->flags & OBJ_ONSHADOW) {
2549 LIST_REMOVE(object, shadow_list);
2550 backing_object->shadow_count--;
2551 atomic_add_int(&backing_object->generation, 1);
2552 vm_object_clear_flag(object, OBJ_ONSHADOW);
2556 * Add a ref to bbobj, bbobj now shadows object.
2558 * NOTE: backing_object->backing_object still points
2559 * to bbobj. That relationship remains intact
2560 * because backing_object has > 1 ref, so
2561 * someone else is pointing to it (hence why
2562 * we can't collapse it into object and can
2563 * only handle the all-shadowed bypass case).
2565 if (bbobj) {
2566 if (bbobj->type != OBJT_VNODE) {
2567 vm_object_chain_wait(bbobj, 0);
2568 vm_object_reference_locked(bbobj);
2569 LIST_INSERT_HEAD(&bbobj->shadow_head,
2570 object, shadow_list);
2571 bbobj->shadow_count++;
2572 atomic_add_int(&bbobj->generation, 1);
2573 vm_object_set_flag(object,
2574 OBJ_ONSHADOW);
2575 } else {
2576 vm_object_reference_quick(bbobj);
2578 object->backing_object_offset +=
2579 backing_object->backing_object_offset;
2580 object->backing_object = bbobj;
2581 vm_object_drop(bbobj);
2582 } else {
2583 object->backing_object = NULL;
2587 * Drop the reference count on backing_object. To
2588 * handle ref_count races properly we can't assume
2589 * that the ref_count is still at least 2 so we
2590 * have to actually call vm_object_deallocate()
2591 * (after clearing the chainlock).
2593 object_bypasses++;
2594 dodealloc = 1;
2598 * Ok, we want to loop on the new object->bbobj association,
2599 * possibly collapsing it further. However if dodealloc is
2600 * non-zero we have to deallocate the backing_object which
2601 * itself can potentially undergo a collapse, creating a
2602 * recursion depth issue with the LWKT token subsystem.
2604 * In the case where we must deallocate the backing_object
2605 * it is possible now that the backing_object has a single
2606 * shadow count on some other object (not represented here
2607 * as yet), since it no longer shadows us. Thus when we
2608 * call vm_object_deallocate() it may attempt to collapse
2609 * itself into its remaining parent.
2611 if (dodealloc) {
2612 struct vm_object_dealloc_list *dtmp;
2614 vm_object_chain_release(backing_object);
2615 vm_object_unlock(backing_object);
2616 /* backing_object remains held */
2619 * Auto-deallocation list for caller convenience.
2621 if (dlistp == NULL)
2622 dlistp = &dlist;
2624 dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2625 dtmp->object = backing_object;
2626 dtmp->next = *dlistp;
2627 *dlistp = dtmp;
2628 } else {
2629 vm_object_chain_release(backing_object);
2630 vm_object_drop(backing_object);
2632 /* backing_object = NULL; not needed */
2633 /* loop */
2637 * Clean up any left over backing_object
2639 if (backing_object) {
2640 vm_object_chain_release(backing_object);
2641 vm_object_drop(backing_object);
2645 * Clean up any auto-deallocation list. This is a convenience
2646 * for top-level callers so they don't have to pass &dlist.
2647 * Do not clean up any caller-passed dlistp, the caller will
2648 * do that.
2650 if (dlist)
2651 vm_object_deallocate_list(&dlist);
2656 * vm_object_collapse() may collect additional objects in need of
2657 * deallocation. This routine deallocates these objects. The
2658 * deallocation itself can trigger additional collapses (which the
2659 * deallocate function takes care of). This procedure is used to
2660 * reduce procedural recursion since these vm_object shadow chains
2661 * can become quite long.
2663 void
2664 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2666 struct vm_object_dealloc_list *dlist;
2668 while ((dlist = *dlistp) != NULL) {
2669 *dlistp = dlist->next;
2670 vm_object_lock(dlist->object);
2671 vm_object_deallocate_locked(dlist->object);
2672 vm_object_drop(dlist->object);
2673 kfree(dlist, M_TEMP);
2678 * Removes all physical pages in the specified object range from the
2679 * object's list of pages.
2681 * No requirements.
2683 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2685 void
2686 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2687 boolean_t clean_only)
2689 struct rb_vm_page_scan_info info;
2690 int all;
2693 * Degenerate cases and assertions
2695 vm_object_hold(object);
2696 if (object == NULL ||
2697 (object->resident_page_count == 0 && object->swblock_count == 0)) {
2698 vm_object_drop(object);
2699 return;
2701 KASSERT(object->type != OBJT_PHYS,
2702 ("attempt to remove pages from a physical object"));
2705 * Indicate that paging is occuring on the object
2707 vm_object_pip_add(object, 1);
2710 * Figure out the actual removal range and whether we are removing
2711 * the entire contents of the object or not. If removing the entire
2712 * contents, be sure to get all pages, even those that might be
2713 * beyond the end of the object.
2715 info.object = object;
2716 info.start_pindex = start;
2717 if (end == 0)
2718 info.end_pindex = (vm_pindex_t)-1;
2719 else
2720 info.end_pindex = end - 1;
2721 info.limit = clean_only;
2722 info.count = 0;
2723 all = (start == 0 && info.end_pindex >= object->size - 1);
2726 * Loop until we are sure we have gotten them all.
2728 do {
2729 info.error = 0;
2730 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2731 vm_object_page_remove_callback, &info);
2732 } while (info.error);
2735 * Remove any related swap if throwing away pages, or for
2736 * non-swap objects (the swap is a clean copy in that case).
2738 if (object->type != OBJT_SWAP || clean_only == FALSE) {
2739 if (all)
2740 swap_pager_freespace_all(object);
2741 else
2742 swap_pager_freespace(object, info.start_pindex,
2743 info.end_pindex - info.start_pindex + 1);
2747 * Cleanup
2749 vm_object_pip_wakeup(object);
2750 vm_object_drop(object);
2754 * The caller must hold the object.
2756 * NOTE: User yields are allowed when removing more than one page, but not
2757 * allowed if only removing one page (the path for single page removals
2758 * might hold a spinlock).
2760 static int
2761 vm_object_page_remove_callback(vm_page_t p, void *data)
2763 struct rb_vm_page_scan_info *info = data;
2765 if (info->object != p->object ||
2766 p->pindex < info->start_pindex ||
2767 p->pindex > info->end_pindex) {
2768 kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2769 info->object, p);
2770 return(0);
2772 if (vm_page_busy_try(p, TRUE)) {
2773 vm_page_sleep_busy(p, TRUE, "vmopar");
2774 info->error = 1;
2775 return(0);
2777 if (info->object != p->object) {
2778 /* this should never happen */
2779 kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2780 info->object, p);
2781 vm_page_wakeup(p);
2782 return(0);
2786 * Wired pages cannot be destroyed, but they can be invalidated
2787 * and we do so if clean_only (limit) is not set.
2789 * WARNING! The page may be wired due to being part of a buffer
2790 * cache buffer, and the buffer might be marked B_CACHE.
2791 * This is fine as part of a truncation but VFSs must be
2792 * sure to fix the buffer up when re-extending the file.
2794 * NOTE! PG_NEED_COMMIT is ignored.
2796 if (p->wire_count != 0) {
2797 vm_page_protect(p, VM_PROT_NONE);
2798 if (info->limit == 0)
2799 p->valid = 0;
2800 vm_page_wakeup(p);
2801 goto done;
2805 * limit is our clean_only flag. If set and the page is dirty or
2806 * requires a commit, do not free it. If set and the page is being
2807 * held by someone, do not free it.
2809 if (info->limit && p->valid) {
2810 vm_page_test_dirty(p);
2811 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2812 vm_page_wakeup(p);
2813 goto done;
2818 * Destroy the page
2820 vm_page_protect(p, VM_PROT_NONE);
2821 vm_page_free(p);
2824 * Must be at end to avoid SMP races, caller holds object token
2826 done:
2827 if ((++info->count & 63) == 0)
2828 lwkt_user_yield();
2830 return(0);
2834 * Try to extend prev_object into an adjoining region of virtual
2835 * memory, return TRUE on success.
2837 * The caller does not need to hold (prev_object) but must have a stable
2838 * pointer to it (typically by holding the vm_map locked).
2840 * This function only works for anonymous memory objects which either
2841 * have (a) one reference or (b) we are extending the object's size.
2842 * Otherwise the related VM pages we want to use for the object might
2843 * be in use by another mapping.
2845 boolean_t
2846 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2847 vm_size_t prev_size, vm_size_t next_size)
2849 vm_pindex_t next_pindex;
2851 if (prev_object == NULL)
2852 return (TRUE);
2854 vm_object_hold(prev_object);
2856 if (prev_object->type != OBJT_DEFAULT &&
2857 prev_object->type != OBJT_SWAP) {
2858 vm_object_drop(prev_object);
2859 return (FALSE);
2863 * Try to collapse the object first
2865 vm_object_chain_acquire(prev_object, 0);
2866 vm_object_collapse(prev_object, NULL);
2869 * We can't coalesce if we shadow another object (figuring out the
2870 * relationships become too complex).
2872 if (prev_object->backing_object != NULL) {
2873 vm_object_chain_release(prev_object);
2874 vm_object_drop(prev_object);
2875 return (FALSE);
2878 prev_size >>= PAGE_SHIFT;
2879 next_size >>= PAGE_SHIFT;
2880 next_pindex = prev_pindex + prev_size;
2883 * We can't if the object has more than one ref count unless we
2884 * are extending it into newly minted space.
2886 if (prev_object->ref_count > 1 &&
2887 prev_object->size != next_pindex) {
2888 vm_object_chain_release(prev_object);
2889 vm_object_drop(prev_object);
2890 return (FALSE);
2894 * Remove any pages that may still be in the object from a previous
2895 * deallocation.
2897 if (next_pindex < prev_object->size) {
2898 vm_object_page_remove(prev_object,
2899 next_pindex,
2900 next_pindex + next_size, FALSE);
2901 if (prev_object->type == OBJT_SWAP)
2902 swap_pager_freespace(prev_object,
2903 next_pindex, next_size);
2907 * Extend the object if necessary.
2909 if (next_pindex + next_size > prev_object->size)
2910 prev_object->size = next_pindex + next_size;
2911 vm_object_chain_release(prev_object);
2912 vm_object_drop(prev_object);
2914 return (TRUE);
2918 * Make the object writable and flag is being possibly dirty.
2920 * The object might not be held (or might be held but held shared),
2921 * the related vnode is probably not held either. Object and vnode are
2922 * stable by virtue of the vm_page busied by the caller preventing
2923 * destruction.
2925 * If the related mount is flagged MNTK_THR_SYNC we need to call
2926 * vsetobjdirty(). Filesystems using this option usually shortcut
2927 * synchronization by only scanning the syncer list.
2929 void
2930 vm_object_set_writeable_dirty(vm_object_t object)
2932 struct vnode *vp;
2934 /*vm_object_assert_held(object);*/
2936 * Avoid contention in vm fault path by checking the state before
2937 * issuing an atomic op on it.
2939 if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2940 (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2941 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2943 if (object->type == OBJT_VNODE &&
2944 (vp = (struct vnode *)object->handle) != NULL) {
2945 if ((vp->v_flag & VOBJDIRTY) == 0) {
2946 if (vp->v_mount &&
2947 (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2949 * New style THR_SYNC places vnodes on the
2950 * syncer list more deterministically.
2952 vsetobjdirty(vp);
2953 } else {
2955 * Old style scan would not necessarily place
2956 * a vnode on the syncer list when possibly
2957 * modified via mmap.
2959 vsetflags(vp, VOBJDIRTY);
2965 #include "opt_ddb.h"
2966 #ifdef DDB
2967 #include <sys/cons.h>
2969 #include <ddb/ddb.h>
2971 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
2972 vm_map_entry_t entry);
2973 static int vm_object_in_map (vm_object_t object);
2976 * The caller must hold the object.
2978 static int
2979 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2981 vm_map_t tmpm;
2982 vm_map_entry_t tmpe;
2983 vm_object_t obj, nobj;
2984 int entcount;
2986 if (map == 0)
2987 return 0;
2988 if (entry == 0) {
2989 tmpe = map->header.next;
2990 entcount = map->nentries;
2991 while (entcount-- && (tmpe != &map->header)) {
2992 if( _vm_object_in_map(map, object, tmpe)) {
2993 return 1;
2995 tmpe = tmpe->next;
2997 return (0);
2999 switch(entry->maptype) {
3000 case VM_MAPTYPE_SUBMAP:
3001 tmpm = entry->object.sub_map;
3002 tmpe = tmpm->header.next;
3003 entcount = tmpm->nentries;
3004 while (entcount-- && tmpe != &tmpm->header) {
3005 if( _vm_object_in_map(tmpm, object, tmpe)) {
3006 return 1;
3008 tmpe = tmpe->next;
3010 break;
3011 case VM_MAPTYPE_NORMAL:
3012 case VM_MAPTYPE_VPAGETABLE:
3013 obj = entry->object.vm_object;
3014 while (obj) {
3015 if (obj == object) {
3016 if (obj != entry->object.vm_object)
3017 vm_object_drop(obj);
3018 return 1;
3020 while ((nobj = obj->backing_object) != NULL) {
3021 vm_object_hold(nobj);
3022 if (nobj == obj->backing_object)
3023 break;
3024 vm_object_drop(nobj);
3026 if (obj != entry->object.vm_object) {
3027 if (nobj)
3028 vm_object_lock_swap();
3029 vm_object_drop(obj);
3031 obj = nobj;
3033 break;
3034 default:
3035 break;
3037 return 0;
3040 static int vm_object_in_map_callback(struct proc *p, void *data);
3042 struct vm_object_in_map_info {
3043 vm_object_t object;
3044 int rv;
3048 * Debugging only
3050 static int
3051 vm_object_in_map(vm_object_t object)
3053 struct vm_object_in_map_info info;
3055 info.rv = 0;
3056 info.object = object;
3058 allproc_scan(vm_object_in_map_callback, &info, 0);
3059 if (info.rv)
3060 return 1;
3061 if( _vm_object_in_map(&kernel_map, object, 0))
3062 return 1;
3063 if( _vm_object_in_map(&pager_map, object, 0))
3064 return 1;
3065 if( _vm_object_in_map(&buffer_map, object, 0))
3066 return 1;
3067 return 0;
3071 * Debugging only
3073 static int
3074 vm_object_in_map_callback(struct proc *p, void *data)
3076 struct vm_object_in_map_info *info = data;
3078 if (p->p_vmspace) {
3079 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3080 info->rv = 1;
3081 return -1;
3084 return (0);
3087 DB_SHOW_COMMAND(vmochk, vm_object_check)
3089 struct vm_object_hash *hash;
3090 vm_object_t object;
3091 int n;
3094 * make sure that internal objs are in a map somewhere
3095 * and none have zero ref counts.
3097 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3098 hash = &vm_object_hash[n];
3099 for (object = TAILQ_FIRST(&hash->list);
3100 object != NULL;
3101 object = TAILQ_NEXT(object, object_list)) {
3102 if (object->type == OBJT_MARKER)
3103 continue;
3104 if (object->handle != NULL ||
3105 (object->type != OBJT_DEFAULT &&
3106 object->type != OBJT_SWAP)) {
3107 continue;
3109 if (object->ref_count == 0) {
3110 db_printf("vmochk: internal obj has "
3111 "zero ref count: %ld\n",
3112 (long)object->size);
3114 if (vm_object_in_map(object))
3115 continue;
3116 db_printf("vmochk: internal obj is not in a map: "
3117 "ref: %d, size: %lu: 0x%lx, "
3118 "backing_object: %p\n",
3119 object->ref_count, (u_long)object->size,
3120 (u_long)object->size,
3121 (void *)object->backing_object);
3127 * Debugging only
3129 DB_SHOW_COMMAND(object, vm_object_print_static)
3131 /* XXX convert args. */
3132 vm_object_t object = (vm_object_t)addr;
3133 boolean_t full = have_addr;
3135 vm_page_t p;
3137 /* XXX count is an (unused) arg. Avoid shadowing it. */
3138 #define count was_count
3140 int count;
3142 if (object == NULL)
3143 return;
3145 db_iprintf(
3146 "Object %p: type=%d, size=0x%lx, res=%ld, ref=%d, flags=0x%x\n",
3147 object, (int)object->type, (u_long)object->size,
3148 object->resident_page_count, object->ref_count, object->flags);
3150 * XXX no %qd in kernel. Truncate object->backing_object_offset.
3152 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3153 object->shadow_count,
3154 object->backing_object ? object->backing_object->ref_count : 0,
3155 object->backing_object, (long)object->backing_object_offset);
3157 if (!full)
3158 return;
3160 db_indent += 2;
3161 count = 0;
3162 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3163 if (count == 0)
3164 db_iprintf("memory:=");
3165 else if (count == 6) {
3166 db_printf("\n");
3167 db_iprintf(" ...");
3168 count = 0;
3169 } else
3170 db_printf(",");
3171 count++;
3173 db_printf("(off=0x%lx,page=0x%lx)",
3174 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3176 if (count != 0)
3177 db_printf("\n");
3178 db_indent -= 2;
3181 /* XXX. */
3182 #undef count
3185 * XXX need this non-static entry for calling from vm_map_print.
3187 * Debugging only
3189 void
3190 vm_object_print(/* db_expr_t */ long addr,
3191 boolean_t have_addr,
3192 /* db_expr_t */ long count,
3193 char *modif)
3195 vm_object_print_static(addr, have_addr, count, modif);
3199 * Debugging only
3201 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3203 struct vm_object_hash *hash;
3204 vm_object_t object;
3205 int nl = 0;
3206 int c;
3207 int n;
3209 for (n = 0; n < VMOBJ_HSIZE; ++n) {
3210 hash = &vm_object_hash[n];
3211 for (object = TAILQ_FIRST(&hash->list);
3212 object != NULL;
3213 object = TAILQ_NEXT(object, object_list)) {
3214 vm_pindex_t idx, fidx;
3215 vm_pindex_t osize;
3216 vm_paddr_t pa = -1, padiff;
3217 int rcount;
3218 vm_page_t m;
3220 if (object->type == OBJT_MARKER)
3221 continue;
3222 db_printf("new object: %p\n", (void *)object);
3223 if ( nl > 18) {
3224 c = cngetc();
3225 if (c != ' ')
3226 return;
3227 nl = 0;
3229 nl++;
3230 rcount = 0;
3231 fidx = 0;
3232 osize = object->size;
3233 if (osize > 128)
3234 osize = 128;
3235 for (idx = 0; idx < osize; idx++) {
3236 m = vm_page_lookup(object, idx);
3237 if (m == NULL) {
3238 if (rcount) {
3239 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3240 (long)fidx, rcount, (long)pa);
3241 if ( nl > 18) {
3242 c = cngetc();
3243 if (c != ' ')
3244 return;
3245 nl = 0;
3247 nl++;
3248 rcount = 0;
3250 continue;
3253 if (rcount &&
3254 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3255 ++rcount;
3256 continue;
3258 if (rcount) {
3259 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3260 padiff >>= PAGE_SHIFT;
3261 padiff &= PQ_L2_MASK;
3262 if (padiff == 0) {
3263 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3264 ++rcount;
3265 continue;
3267 db_printf(" index(%ld)run(%d)pa(0x%lx)",
3268 (long)fidx, rcount, (long)pa);
3269 db_printf("pd(%ld)\n", (long)padiff);
3270 if ( nl > 18) {
3271 c = cngetc();
3272 if (c != ' ')
3273 return;
3274 nl = 0;
3276 nl++;
3278 fidx = idx;
3279 pa = VM_PAGE_TO_PHYS(m);
3280 rcount = 1;
3282 if (rcount) {
3283 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3284 (long)fidx, rcount, (long)pa);
3285 if ( nl > 18) {
3286 c = cngetc();
3287 if (c != ' ')
3288 return;
3289 nl = 0;
3291 nl++;
3296 #endif /* DDB */