drm: Add linux/vmalloc.h
[dragonfly.git] / sys / net / netisr.c
blob7fd018a89bf612a813124a5d808b4e51025ba824
1 /*
2 * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
4 * Copyright (c) 2003 Jonathan Lemon. All rights reserved.
5 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
7 * This code is derived from software contributed to The DragonFly Project
8 * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
10 * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11 * into this one around July 8 2004.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr2.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58 #include <sys/mplock2.h>
60 static void netmsg_service_loop(void *arg);
61 static void netisr_hashfn0(struct mbuf **mp, int hoff);
62 static void netisr_nohashck(struct mbuf *, const struct pktinfo *);
64 struct netmsg_port_registration {
65 TAILQ_ENTRY(netmsg_port_registration) npr_entry;
66 lwkt_port_t npr_port;
69 struct netmsg_rollup {
70 TAILQ_ENTRY(netmsg_rollup) ru_entry;
71 netisr_ru_t ru_func;
72 int ru_prio;
75 struct netmsg_barrier {
76 struct netmsg_base base;
77 volatile cpumask_t *br_cpumask;
78 volatile uint32_t br_done;
81 #define NETISR_BR_NOTDONE 0x1
82 #define NETISR_BR_WAITDONE 0x80000000
84 struct netisr_barrier {
85 struct netmsg_barrier *br_msgs[MAXCPU];
86 int br_isset;
89 static struct netisr netisrs[NETISR_MAX];
90 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
91 static TAILQ_HEAD(,netmsg_rollup) netrulist;
93 /* Per-CPU thread to handle any protocol. */
94 struct thread netisr_cpu[MAXCPU];
95 lwkt_port netisr_afree_rport;
96 lwkt_port netisr_afree_free_so_rport;
97 lwkt_port netisr_adone_rport;
98 lwkt_port netisr_apanic_rport;
99 lwkt_port netisr_sync_port;
101 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
103 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
104 static int netisr_rollup_limit = 32;
105 SYSCTL_INT(_net_netisr, OID_AUTO, rollup_limit, CTLFLAG_RW,
106 &netisr_rollup_limit, 0, "Message to process before rollup");
110 * netisr_afree_rport replymsg function, only used to handle async
111 * messages which the sender has abandoned to their fate.
113 static void
114 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
116 kfree(msg, M_LWKTMSG);
119 static void
120 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
122 sofree(((netmsg_t)msg)->base.nm_so);
123 kfree(msg, M_LWKTMSG);
127 * We need a custom putport function to handle the case where the
128 * message target is the current thread's message port. This case
129 * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
130 * then turns around and executes a network operation synchronously.
132 * To prevent deadlocking, we must execute these self-referential messages
133 * synchronously, effectively turning the message into a glorified direct
134 * procedure call back into the protocol stack. The operation must be
135 * complete on return or we will deadlock, so panic if it isn't.
137 * However, the target function is under no obligation to immediately
138 * reply the message. It may forward it elsewhere.
140 static int
141 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
143 netmsg_base_t nmsg = (void *)lmsg;
145 if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
146 nmsg->nm_dispatch((netmsg_t)nmsg);
147 return(EASYNC);
148 } else {
149 return(netmsg_fwd_port_fn(port, lmsg));
154 * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
155 * because they depend on the user proc context for a number of things
156 * (like creds) which we have not yet incorporated into the message structure.
158 * However, we maintain or message/port abstraction. Having a special
159 * synchronous port which runs the commands synchronously gives us the
160 * ability to serialize operations in one place later on when we start
161 * removing the BGL.
163 static int
164 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
166 netmsg_base_t nmsg = (void *)lmsg;
168 KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
170 lmsg->ms_target_port = port; /* required for abort */
171 nmsg->nm_dispatch((netmsg_t)nmsg);
172 return(EASYNC);
175 static void
176 netisr_init(void)
178 int i;
180 TAILQ_INIT(&netreglist);
181 TAILQ_INIT(&netrulist);
184 * Create default per-cpu threads for generic protocol handling.
186 for (i = 0; i < ncpus; ++i) {
187 lwkt_create(netmsg_service_loop, NULL, NULL,
188 &netisr_cpu[i],
189 TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
190 i, "netisr_cpu %d", i);
191 netmsg_service_port_init(&netisr_cpu[i].td_msgport);
192 lwkt_schedule(&netisr_cpu[i]);
196 * The netisr_afree_rport is a special reply port which automatically
197 * frees the replied message. The netisr_adone_rport simply marks
198 * the message as being done. The netisr_apanic_rport panics if
199 * the message is replied to.
201 lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
202 lwkt_initport_replyonly(&netisr_afree_free_so_rport,
203 netisr_autofree_free_so_reply);
204 lwkt_initport_replyonly_null(&netisr_adone_rport);
205 lwkt_initport_panic(&netisr_apanic_rport);
208 * The netisr_syncport is a special port which executes the message
209 * synchronously and waits for it if EASYNC is returned.
211 lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
214 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
217 * Finish initializing the message port for a netmsg service. This also
218 * registers the port for synchronous cleanup operations such as when an
219 * ifnet is being destroyed. There is no deregistration API yet.
221 void
222 netmsg_service_port_init(lwkt_port_t port)
224 struct netmsg_port_registration *reg;
227 * Override the putport function. Our custom function checks for
228 * self-references and executes such commands synchronously.
230 if (netmsg_fwd_port_fn == NULL)
231 netmsg_fwd_port_fn = port->mp_putport;
232 KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
233 port->mp_putport = netmsg_put_port;
236 * Keep track of ports using the netmsg API so we can synchronize
237 * certain operations (such as freeing an ifnet structure) across all
238 * consumers.
240 reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
241 reg->npr_port = port;
242 TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
246 * This function synchronizes the caller with all netmsg services. For
247 * example, if an interface is being removed we must make sure that all
248 * packets related to that interface complete processing before the structure
249 * can actually be freed. This sort of synchronization is an alternative to
250 * ref-counting the netif, removing the ref counting overhead in favor of
251 * placing additional overhead in the netif freeing sequence (where it is
252 * inconsequential).
254 void
255 netmsg_service_sync(void)
257 struct netmsg_port_registration *reg;
258 struct netmsg_base smsg;
260 netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler);
262 TAILQ_FOREACH(reg, &netreglist, npr_entry) {
263 lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
268 * The netmsg function simply replies the message. API semantics require
269 * EASYNC to be returned if the netmsg function disposes of the message.
271 void
272 netmsg_sync_handler(netmsg_t msg)
274 lwkt_replymsg(&msg->lmsg, 0);
278 * Generic netmsg service loop. Some protocols may roll their own but all
279 * must do the basic command dispatch function call done here.
281 static void
282 netmsg_service_loop(void *arg)
284 struct netmsg_rollup *ru;
285 netmsg_base_t msg;
286 thread_t td = curthread;
287 int limit;
289 td->td_type = TD_TYPE_NETISR;
291 while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
293 * Run up to 512 pending netmsgs.
295 limit = netisr_rollup_limit;
296 do {
297 KASSERT(msg->nm_dispatch != NULL,
298 ("netmsg_service isr %d badmsg",
299 msg->lmsg.u.ms_result));
301 * Don't match so_port, if the msg explicitly
302 * asks us to ignore its so_port.
304 if ((msg->lmsg.ms_flags & MSGF_IGNSOPORT) == 0 &&
305 msg->nm_so &&
306 msg->nm_so->so_port != &td->td_msgport) {
308 * Sockets undergoing connect or disconnect
309 * ops can change ports on us. Chase the
310 * port.
312 #ifdef foo
314 * This could be quite common for protocols
315 * which support asynchronous pru_connect,
316 * e.g. TCP, so kprintf socket port chasing
317 * could be too verbose for the console.
319 kprintf("%s: Warning, port changed so=%p\n",
320 __func__, msg->nm_so);
321 #endif
322 lwkt_forwardmsg(msg->nm_so->so_port,
323 &msg->lmsg);
324 } else {
326 * We are on the correct port, dispatch it.
328 msg->nm_dispatch((netmsg_t)msg);
330 if (--limit == 0)
331 break;
332 } while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
335 * Run all registered rollup functions for this cpu
336 * (e.g. tcp_willblock()).
338 TAILQ_FOREACH(ru, &netrulist, ru_entry)
339 ru->ru_func();
344 * Forward a packet to a netisr service function.
346 * If the packet has not been assigned to a protocol thread we call
347 * the port characterization function to assign it. The caller must
348 * clear M_HASH (or not have set it in the first place) if the caller
349 * wishes the packet to be recharacterized.
352 netisr_queue(int num, struct mbuf *m)
354 struct netisr *ni;
355 struct netmsg_packet *pmsg;
356 lwkt_port_t port;
358 KASSERT((num > 0 && num <= NELEM(netisrs)),
359 ("Bad isr %d", num));
361 ni = &netisrs[num];
362 if (ni->ni_handler == NULL) {
363 kprintf("%s: Unregistered isr %d\n", __func__, num);
364 m_freem(m);
365 return (EIO);
369 * Figure out which protocol thread to send to. This does not
370 * have to be perfect but performance will be really good if it
371 * is correct. Major protocol inputs such as ip_input() will
372 * re-characterize the packet as necessary.
374 if ((m->m_flags & M_HASH) == 0) {
375 ni->ni_hashfn(&m, 0);
376 if (m == NULL)
377 return (EIO);
378 if ((m->m_flags & M_HASH) == 0) {
379 kprintf("%s(%d): packet hash failed\n",
380 __func__, num);
381 m_freem(m);
382 return (EIO);
387 * Get the protocol port based on the packet hash, initialize
388 * the netmsg, and send it off.
390 port = netisr_hashport(m->m_pkthdr.hash);
391 pmsg = &m->m_hdr.mh_netmsg;
392 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
393 0, ni->ni_handler);
394 pmsg->nm_packet = m;
395 pmsg->base.lmsg.u.ms_result = num;
396 lwkt_sendmsg(port, &pmsg->base.lmsg);
398 return (0);
402 * Run a netisr service function on the packet.
404 * The packet must have been correctly characterized!
407 netisr_handle(int num, struct mbuf *m)
409 struct netisr *ni;
410 struct netmsg_packet *pmsg;
411 lwkt_port_t port;
414 * Get the protocol port based on the packet hash
416 KASSERT((m->m_flags & M_HASH), ("packet not characterized"));
417 port = netisr_hashport(m->m_pkthdr.hash);
418 KASSERT(&curthread->td_msgport == port, ("wrong msgport"));
420 KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num));
421 ni = &netisrs[num];
422 if (ni->ni_handler == NULL) {
423 kprintf("%s: unregistered isr %d\n", __func__, num);
424 m_freem(m);
425 return EIO;
429 * Initialize the netmsg, and run the handler directly.
431 pmsg = &m->m_hdr.mh_netmsg;
432 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
433 0, ni->ni_handler);
434 pmsg->nm_packet = m;
435 pmsg->base.lmsg.u.ms_result = num;
436 ni->ni_handler((netmsg_t)&pmsg->base);
438 return 0;
442 * Pre-characterization of a deeper portion of the packet for the
443 * requested isr.
445 * The base of the ISR type (e.g. IP) that we want to characterize is
446 * at (hoff) relative to the beginning of the mbuf. This allows
447 * e.g. ether_characterize() to not have to adjust the m_data/m_len.
449 void
450 netisr_characterize(int num, struct mbuf **mp, int hoff)
452 struct netisr *ni;
453 struct mbuf *m;
456 * Validation
458 m = *mp;
459 KKASSERT(m != NULL);
461 if (num < 0 || num >= NETISR_MAX) {
462 if (num == NETISR_MAX) {
463 m->m_flags |= M_HASH;
464 m->m_pkthdr.hash = 0;
465 return;
467 panic("Bad isr %d", num);
471 * Valid netisr?
473 ni = &netisrs[num];
474 if (ni->ni_handler == NULL) {
475 kprintf("%s: Unregistered isr %d\n", __func__, num);
476 m_freem(m);
477 *mp = NULL;
481 * Characterize the packet
483 if ((m->m_flags & M_HASH) == 0) {
484 ni->ni_hashfn(mp, hoff);
485 m = *mp;
486 if (m && (m->m_flags & M_HASH) == 0) {
487 kprintf("%s(%d): packet hash failed\n",
488 __func__, num);
493 void
494 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn)
496 struct netisr *ni;
498 KASSERT((num > 0 && num <= NELEM(netisrs)),
499 ("netisr_register: bad isr %d", num));
500 KKASSERT(handler != NULL);
502 if (hashfn == NULL)
503 hashfn = netisr_hashfn0;
505 ni = &netisrs[num];
507 ni->ni_handler = handler;
508 ni->ni_hashck = netisr_nohashck;
509 ni->ni_hashfn = hashfn;
510 netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
513 void
514 netisr_register_hashcheck(int num, netisr_hashck_t hashck)
516 struct netisr *ni;
518 KASSERT((num > 0 && num <= NELEM(netisrs)),
519 ("netisr_register: bad isr %d", num));
521 ni = &netisrs[num];
522 ni->ni_hashck = hashck;
525 void
526 netisr_register_rollup(netisr_ru_t ru_func, int prio)
528 struct netmsg_rollup *new_ru, *ru;
530 new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO);
531 new_ru->ru_func = ru_func;
532 new_ru->ru_prio = prio;
535 * Higher priority "rollup" appears first
537 TAILQ_FOREACH(ru, &netrulist, ru_entry) {
538 if (ru->ru_prio < new_ru->ru_prio) {
539 TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry);
540 return;
543 TAILQ_INSERT_TAIL(&netrulist, new_ru, ru_entry);
547 * Return a default protocol control message processing thread port
549 lwkt_port_t
550 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
551 void *extra __unused, int *cpuid)
553 *cpuid = 0;
554 return netisr_cpuport(*cpuid);
558 * This is a default netisr packet characterization function which
559 * sets M_HASH. If a netisr is registered with a NULL hashfn function
560 * this one is assigned.
562 * This function makes no attempt to validate the packet.
564 static void
565 netisr_hashfn0(struct mbuf **mp, int hoff __unused)
567 struct mbuf *m = *mp;
569 m->m_flags |= M_HASH;
570 m->m_pkthdr.hash = 0;
574 * schednetisr() is used to call the netisr handler from the appropriate
575 * netisr thread for polling and other purposes.
577 * This function may be called from a hard interrupt or IPI and must be
578 * MP SAFE and non-blocking. We use a fixed per-cpu message instead of
579 * trying to allocate one. We must get ourselves onto the target cpu
580 * to safely check the MSGF_DONE bit on the message but since the message
581 * will be sent to that cpu anyway this does not add any extra work beyond
582 * what lwkt_sendmsg() would have already had to do to schedule the target
583 * thread.
585 static void
586 schednetisr_remote(void *data)
588 int num = (int)(intptr_t)data;
589 struct netisr *ni = &netisrs[num];
590 lwkt_port_t port = &netisr_cpu[0].td_msgport;
591 netmsg_base_t pmsg;
593 pmsg = &netisrs[num].ni_netmsg;
594 if (pmsg->lmsg.ms_flags & MSGF_DONE) {
595 netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
596 pmsg->lmsg.u.ms_result = num;
597 lwkt_sendmsg(port, &pmsg->lmsg);
601 void
602 schednetisr(int num)
604 KASSERT((num > 0 && num <= NELEM(netisrs)),
605 ("schednetisr: bad isr %d", num));
606 KKASSERT(netisrs[num].ni_handler != NULL);
607 if (mycpu->gd_cpuid != 0) {
608 lwkt_send_ipiq(globaldata_find(0),
609 schednetisr_remote, (void *)(intptr_t)num);
610 } else {
611 crit_enter();
612 schednetisr_remote((void *)(intptr_t)num);
613 crit_exit();
617 static void
618 netisr_barrier_dispatch(netmsg_t nmsg)
620 struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
622 ATOMIC_CPUMASK_NANDBIT(*msg->br_cpumask, mycpu->gd_cpuid);
623 if (CPUMASK_TESTZERO(*msg->br_cpumask))
624 wakeup(msg->br_cpumask);
626 for (;;) {
627 uint32_t done = msg->br_done;
629 cpu_ccfence();
630 if ((done & NETISR_BR_NOTDONE) == 0)
631 break;
633 tsleep_interlock(&msg->br_done, 0);
634 if (atomic_cmpset_int(&msg->br_done,
635 done, done | NETISR_BR_WAITDONE))
636 tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
639 lwkt_replymsg(&nmsg->lmsg, 0);
642 struct netisr_barrier *
643 netisr_barrier_create(void)
645 struct netisr_barrier *br;
647 br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
648 return br;
651 void
652 netisr_barrier_set(struct netisr_barrier *br)
654 volatile cpumask_t other_cpumask;
655 int i, cur_cpuid;
657 ASSERT_IN_NETISR(0);
658 KKASSERT(!br->br_isset);
660 other_cpumask = mycpu->gd_other_cpus;
661 CPUMASK_ANDMASK(other_cpumask, smp_active_mask);
662 cur_cpuid = mycpuid;
664 for (i = 0; i < ncpus; ++i) {
665 struct netmsg_barrier *msg;
667 if (i == cur_cpuid)
668 continue;
670 msg = kmalloc(sizeof(struct netmsg_barrier),
671 M_LWKTMSG, M_WAITOK);
674 * Don't use priority message here; mainly to keep
675 * it ordered w/ the previous data packets sent by
676 * the caller.
678 netmsg_init(&msg->base, NULL, &netisr_afree_rport, 0,
679 netisr_barrier_dispatch);
680 msg->br_cpumask = &other_cpumask;
681 msg->br_done = NETISR_BR_NOTDONE;
683 KKASSERT(br->br_msgs[i] == NULL);
684 br->br_msgs[i] = msg;
687 for (i = 0; i < ncpus; ++i) {
688 if (i == cur_cpuid)
689 continue;
690 lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg);
693 while (CPUMASK_TESTNZERO(other_cpumask)) {
694 tsleep_interlock(&other_cpumask, 0);
695 if (CPUMASK_TESTNZERO(other_cpumask))
696 tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
698 br->br_isset = 1;
701 void
702 netisr_barrier_rem(struct netisr_barrier *br)
704 int i, cur_cpuid;
706 ASSERT_IN_NETISR(0);
707 KKASSERT(br->br_isset);
709 cur_cpuid = mycpuid;
710 for (i = 0; i < ncpus; ++i) {
711 struct netmsg_barrier *msg = br->br_msgs[i];
712 uint32_t done;
714 msg = br->br_msgs[i];
715 br->br_msgs[i] = NULL;
717 if (i == cur_cpuid)
718 continue;
720 done = atomic_swap_int(&msg->br_done, 0);
721 if (done & NETISR_BR_WAITDONE)
722 wakeup(&msg->br_done);
724 br->br_isset = 0;
727 static void
728 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused)
730 m->m_flags &= ~M_HASH;
733 void
734 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi)
736 struct netisr *ni;
738 if (num < 0 || num >= NETISR_MAX)
739 panic("Bad isr %d", num);
742 * Valid netisr?
744 ni = &netisrs[num];
745 if (ni->ni_handler == NULL)
746 panic("Unregistered isr %d", num);
748 ni->ni_hashck(m, pi);