libpam: Play some 4D chess for static pam modules support.
[dragonfly.git] / sys / kern / kern_exit.c
blob69703f39b20538fa908c8839282de2f677c88c42
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
34 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94
35 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
38 #include "opt_ktrace.h"
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h> /* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/spinlock2.h>
76 #include <sys/mplock2.h>
78 #include <machine/vmm.h>
80 static void reaplwps(void *context, int dummy);
81 static void reaplwp(struct lwp *lp);
82 static void killlwps(struct lwp *lp);
84 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
87 * callout list for things to do at exit time
89 struct exitlist {
90 exitlist_fn function;
91 TAILQ_ENTRY(exitlist) next;
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
98 * LWP reaper data
100 static struct task *deadlwp_task[MAXCPU];
101 static struct lwplist deadlwp_list[MAXCPU];
102 static struct lwkt_token deadlwp_token[MAXCPU];
105 * exit --
106 * Death of process.
108 * SYS_EXIT_ARGS(int rval)
111 sys_exit(struct exit_args *uap)
113 exit1(W_EXITCODE(uap->rval, 0));
114 /* NOTREACHED */
118 * Extended exit --
119 * Death of a lwp or process with optional bells and whistles.
122 sys_extexit(struct extexit_args *uap)
124 struct proc *p = curproc;
125 int action, who;
126 int error;
128 action = EXTEXIT_ACTION(uap->how);
129 who = EXTEXIT_WHO(uap->how);
131 /* Check parameters before we might perform some action */
132 switch (who) {
133 case EXTEXIT_PROC:
134 case EXTEXIT_LWP:
135 break;
136 default:
137 return (EINVAL);
140 switch (action) {
141 case EXTEXIT_SIMPLE:
142 break;
143 case EXTEXIT_SETINT:
144 error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 if (error)
146 return (error);
147 break;
148 default:
149 return (EINVAL);
152 lwkt_gettoken(&p->p_token);
154 switch (who) {
155 case EXTEXIT_LWP:
157 * Be sure only to perform a simple lwp exit if there is at
158 * least one more lwp in the proc, which will call exit1()
159 * later, otherwise the proc will be an UNDEAD and not even a
160 * SZOMB!
162 if (p->p_nthreads > 1) {
163 lwp_exit(0, NULL); /* called w/ p_token held */
164 /* NOT REACHED */
166 /* else last lwp in proc: do the real thing */
167 /* FALLTHROUGH */
168 default: /* to help gcc */
169 case EXTEXIT_PROC:
170 lwkt_reltoken(&p->p_token);
171 exit1(W_EXITCODE(uap->status, 0));
172 /* NOTREACHED */
175 /* NOTREACHED */
176 lwkt_reltoken(&p->p_token); /* safety */
180 * Kill all lwps associated with the current process except the
181 * current lwp. Return an error if we race another thread trying to
182 * do the same thing and lose the race.
184 * If forexec is non-zero the current thread and process flags are
185 * cleaned up so they can be reused.
187 * Caller must hold curproc->p_token
190 killalllwps(int forexec)
192 struct lwp *lp = curthread->td_lwp;
193 struct proc *p = lp->lwp_proc;
194 int fakestop;
197 * Interlock against P_WEXIT. Only one of the process's thread
198 * is allowed to do the master exit.
200 if (p->p_flags & P_WEXIT)
201 return (EALREADY);
202 p->p_flags |= P_WEXIT;
205 * Set temporary stopped state in case we are racing a coredump.
206 * Otherwise the coredump may hang forever.
208 if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 fakestop = 0;
210 } else {
211 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 ++p->p_nstopped;
213 fakestop = 1;
214 wakeup(&p->p_nstopped);
218 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
220 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 if (p->p_nthreads > 1)
222 killlwps(lp);
225 * Undo temporary stopped state
227 if (fakestop) {
228 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 --p->p_nstopped;
233 * If doing this for an exec, clean up the remaining thread
234 * (us) for continuing operation after all the other threads
235 * have been killed.
237 if (forexec) {
238 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 p->p_flags &= ~P_WEXIT;
241 return(0);
245 * Kill all LWPs except the current one. Do not try to signal
246 * LWPs which have exited on their own or have already been
247 * signaled.
249 static void
250 killlwps(struct lwp *lp)
252 struct proc *p = lp->lwp_proc;
253 struct lwp *tlp;
256 * Kill the remaining LWPs. We must send the signal before setting
257 * LWP_MP_WEXIT. The setting of WEXIT is optional but helps reduce
258 * races. tlp must be held across the call as it might block and
259 * allow the target lwp to rip itself out from under our loop.
261 FOREACH_LWP_IN_PROC(tlp, p) {
262 LWPHOLD(tlp);
263 lwkt_gettoken(&tlp->lwp_token);
264 if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
265 atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
266 lwpsignal(p, tlp, SIGKILL);
268 lwkt_reltoken(&tlp->lwp_token);
269 LWPRELE(tlp);
273 * Wait for everything to clear out. Also make sure any tstop()s
274 * are signalled (we are holding p_token for the interlock).
276 wakeup(p);
277 while (p->p_nthreads > 1)
278 tsleep(&p->p_nthreads, 0, "killlwps", 0);
282 * Exit: deallocate address space and other resources, change proc state
283 * to zombie, and unlink proc from allproc and parent's lists. Save exit
284 * status and rusage for wait(). Check for child processes and orphan them.
286 void
287 exit1(int rv)
289 struct thread *td = curthread;
290 struct proc *p = td->td_proc;
291 struct lwp *lp = td->td_lwp;
292 struct proc *q;
293 struct proc *pp;
294 struct proc *reproc;
295 struct sysreaper *reap;
296 struct vmspace *vm;
297 struct vnode *vtmp;
298 struct exitlist *ep;
299 int error;
301 lwkt_gettoken(&p->p_token);
303 if (p->p_pid == 1) {
304 kprintf("init died (signal %d, exit %d)\n",
305 WTERMSIG(rv), WEXITSTATUS(rv));
306 panic("Going nowhere without my init!");
308 varsymset_clean(&p->p_varsymset);
309 lockuninit(&p->p_varsymset.vx_lock);
312 * Kill all lwps associated with the current process, return an
313 * error if we race another thread trying to do the same thing
314 * and lose the race.
316 error = killalllwps(0);
317 if (error) {
318 lwp_exit(0, NULL);
319 /* NOT REACHED */
322 /* are we a task leader? */
323 if (p == p->p_leader) {
324 struct kill_args killArgs;
325 killArgs.signum = SIGKILL;
326 q = p->p_peers;
327 while(q) {
328 killArgs.pid = q->p_pid;
330 * The interface for kill is better
331 * than the internal signal
333 sys_kill(&killArgs);
334 q = q->p_peers;
336 while (p->p_peers)
337 tsleep((caddr_t)p, 0, "exit1", 0);
340 #ifdef PGINPROF
341 vmsizmon();
342 #endif
343 STOPEVENT(p, S_EXIT, rv);
344 p->p_flags |= P_POSTEXIT; /* stop procfs stepping */
347 * Check if any loadable modules need anything done at process exit.
348 * e.g. SYSV IPC stuff
349 * XXX what if one of these generates an error?
351 p->p_xstat = rv;
354 * XXX: imho, the eventhandler stuff is much cleaner than this.
355 * Maybe we should move everything to use eventhandler.
357 TAILQ_FOREACH(ep, &exit_list, next)
358 (*ep->function)(td);
360 if (p->p_flags & P_PROFIL)
361 stopprofclock(p);
363 SIGEMPTYSET(p->p_siglist);
364 SIGEMPTYSET(lp->lwp_siglist);
365 if (timevalisset(&p->p_realtimer.it_value))
366 callout_stop_sync(&p->p_ithandle);
369 * Reset any sigio structures pointing to us as a result of
370 * F_SETOWN with our pid.
372 funsetownlst(&p->p_sigiolst);
375 * Close open files and release open-file table.
376 * This may block!
378 fdfree(p, NULL);
380 if (p->p_leader->p_peers) {
381 q = p->p_leader;
382 while(q->p_peers != p)
383 q = q->p_peers;
384 q->p_peers = p->p_peers;
385 wakeup((caddr_t)p->p_leader);
389 * XXX Shutdown SYSV semaphores
391 semexit(p);
393 KKASSERT(p->p_numposixlocks == 0);
395 /* The next two chunks should probably be moved to vmspace_exit. */
396 vm = p->p_vmspace;
399 * Clean up data related to virtual kernel operation. Clean up
400 * any vkernel context related to the current lwp now so we can
401 * destroy p_vkernel.
403 if (p->p_vkernel) {
404 vkernel_lwp_exit(lp);
405 vkernel_exit(p);
409 * Release the user portion of address space. The exitbump prevents
410 * the vmspace from being completely eradicated (using holdcnt).
411 * This releases references to vnodes, which could cause I/O if the
412 * file has been unlinked. We need to do this early enough that
413 * we can still sleep.
415 * We can't free the entire vmspace as the kernel stack may be mapped
416 * within that space also.
418 * Processes sharing the same vmspace may exit in one order, and
419 * get cleaned up by vmspace_exit() in a different order. The
420 * last exiting process to reach this point releases as much of
421 * the environment as it can, and the last process cleaned up
422 * by vmspace_exit() (which decrements exitingcnt) cleans up the
423 * remainder.
425 * NOTE: Releasing p_token around this call is helpful if the
426 * vmspace had a huge RSS. Otherwise some other process
427 * trying to do an allproc or other scan (like 'ps') may
428 * stall for a long time.
430 lwkt_reltoken(&p->p_token);
431 vmspace_relexit(vm);
432 lwkt_gettoken(&p->p_token);
434 if (SESS_LEADER(p)) {
435 struct session *sp = p->p_session;
437 if (sp->s_ttyvp) {
439 * We are the controlling process. Signal the
440 * foreground process group, drain the controlling
441 * terminal, and revoke access to the controlling
442 * terminal.
444 * NOTE: while waiting for the process group to exit
445 * it is possible that one of the processes in the
446 * group will revoke the tty, so the ttyclosesession()
447 * function will re-check sp->s_ttyvp.
449 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
450 if (sp->s_ttyp->t_pgrp)
451 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
452 ttywait(sp->s_ttyp);
453 ttyclosesession(sp, 1); /* also revoke */
456 * Release the tty. If someone has it open via
457 * /dev/tty then close it (since they no longer can
458 * once we've NULL'd it out).
460 ttyclosesession(sp, 0);
463 * s_ttyp is not zero'd; we use this to indicate
464 * that the session once had a controlling terminal.
465 * (for logging and informational purposes)
468 sp->s_leader = NULL;
470 fixjobc(p, p->p_pgrp, 0);
471 (void)acct_process(p);
472 #ifdef KTRACE
474 * release trace file
476 if (p->p_tracenode)
477 ktrdestroy(&p->p_tracenode);
478 p->p_traceflag = 0;
479 #endif
481 * Release reference to text vnode
483 if ((vtmp = p->p_textvp) != NULL) {
484 p->p_textvp = NULL;
485 vrele(vtmp);
488 /* Release namecache handle to text file */
489 if (p->p_textnch.ncp)
490 cache_drop(&p->p_textnch);
493 * We have to handle PPWAIT here or proc_move_allproc_zombie()
494 * will block on the PHOLD() the parent is doing.
496 * We are using the flag as an interlock so an atomic op is
497 * necessary to synchronize with the parent's cpu.
499 if (p->p_flags & P_PPWAIT) {
500 if (p->p_pptr && p->p_pptr->p_upmap)
501 atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
502 atomic_clear_int(&p->p_flags, P_PPWAIT);
503 wakeup(p->p_pptr);
507 * Move the process to the zombie list. This will block
508 * until the process p_lock count reaches 0. The process will
509 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
510 * which is called from cpu_proc_exit().
512 * Interlock against waiters using p_waitgen. We increment
513 * p_waitgen after completing the move of our process to the
514 * zombie list.
516 * WARNING: pp becomes stale when we block, clear it now as a
517 * reminder.
519 proc_move_allproc_zombie(p);
520 pp = p->p_pptr;
521 atomic_add_long(&pp->p_waitgen, 1);
522 pp = NULL;
525 * release controlled reaper for exit if we own it and return the
526 * remaining reaper (the one for us), which we will drop after we
527 * are done.
529 reap = reaper_exit(p);
532 * Reparent all of this process's children to the init process or
533 * to the designated reaper. We must hold the reaper's p_token in
534 * order to safely mess with p_children.
536 * We already hold p->p_token (to remove the children from our list).
538 reproc = NULL;
539 q = LIST_FIRST(&p->p_children);
540 if (q) {
541 reproc = reaper_get(reap);
542 lwkt_gettoken(&reproc->p_token);
543 while ((q = LIST_FIRST(&p->p_children)) != NULL) {
544 PHOLD(q);
545 lwkt_gettoken(&q->p_token);
546 if (q != LIST_FIRST(&p->p_children)) {
547 lwkt_reltoken(&q->p_token);
548 PRELE(q);
549 continue;
551 LIST_REMOVE(q, p_sibling);
552 LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
553 q->p_pptr = reproc;
554 q->p_ppid = reproc->p_pid;
555 q->p_sigparent = SIGCHLD;
558 * Traced processes are killed
559 * since their existence means someone is screwing up.
561 if (q->p_flags & P_TRACED) {
562 q->p_flags &= ~P_TRACED;
563 ksignal(q, SIGKILL);
565 lwkt_reltoken(&q->p_token);
566 PRELE(q);
568 lwkt_reltoken(&reproc->p_token);
569 wakeup(reproc);
573 * Save exit status and final rusage info, adding in child rusage
574 * info and self times.
576 calcru_proc(p, &p->p_ru);
577 ruadd(&p->p_ru, &p->p_cru);
580 * notify interested parties of our demise.
582 KNOTE(&p->p_klist, NOTE_EXIT);
585 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT
586 * flag set, or if the handler is set to SIG_IGN, notify the reaper
587 * instead (it will handle this situation).
589 * NOTE: The reaper can still be the parent process.
591 * (must reload pp)
593 if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
594 if (reproc == NULL)
595 reproc = reaper_get(reap);
596 proc_reparent(p, reproc);
598 if (reproc)
599 PRELE(reproc);
600 if (reap)
601 reaper_drop(reap);
604 * Signal (possibly new) parent.
606 pp = p->p_pptr;
607 PHOLD(pp);
608 if (p->p_sigparent && pp != initproc) {
609 int sig = p->p_sigparent;
611 if (sig != SIGUSR1 && sig != SIGCHLD)
612 sig = SIGCHLD;
613 ksignal(pp, sig);
614 } else {
615 ksignal(pp, SIGCHLD);
617 p->p_flags &= ~P_TRACED;
618 PRELE(pp);
621 * cpu_exit is responsible for clearing curproc, since
622 * it is heavily integrated with the thread/switching sequence.
624 * Other substructures are freed from wait().
626 if (p->p_limit) {
627 struct plimit *rlimit;
629 rlimit = p->p_limit;
630 p->p_limit = NULL;
631 plimit_free(rlimit);
635 * Finally, call machine-dependent code to release as many of the
636 * lwp's resources as we can and halt execution of this thread.
638 * pp is a wild pointer now but still the correct wakeup() target.
639 * lwp_exit() only uses it to send the wakeup() signal to the likely
640 * parent. Any reparenting race that occurs will get a signal
641 * automatically and not be an issue.
643 lwp_exit(1, pp);
647 * Eventually called by every exiting LWP
649 * p->p_token must be held. mplock may be held and will be released.
651 void
652 lwp_exit(int masterexit, void *waddr)
654 struct thread *td = curthread;
655 struct lwp *lp = td->td_lwp;
656 struct proc *p = lp->lwp_proc;
657 int dowake = 0;
660 * Release the current user process designation on the process so
661 * the userland scheduler can work in someone else.
663 p->p_usched->release_curproc(lp);
666 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
667 * make sure it is set here.
669 ASSERT_LWKT_TOKEN_HELD(&p->p_token);
670 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
673 * Clean up any virtualization
675 if (lp->lwp_vkernel)
676 vkernel_lwp_exit(lp);
678 if (td->td_vmm)
679 vmm_vmdestroy();
682 * Clean up select/poll support
684 kqueue_terminate(&lp->lwp_kqueue);
687 * Clean up any syscall-cached ucred
689 if (td->td_ucred) {
690 crfree(td->td_ucred);
691 td->td_ucred = NULL;
695 * Nobody actually wakes us when the lock
696 * count reaches zero, so just wait one tick.
698 while (lp->lwp_lock > 0)
699 tsleep(lp, 0, "lwpexit", 1);
701 /* Hand down resource usage to our proc */
702 ruadd(&p->p_ru, &lp->lwp_ru);
705 * If we don't hold the process until the LWP is reaped wait*()
706 * may try to dispose of its vmspace before all the LWPs have
707 * actually terminated.
709 PHOLD(p);
712 * Do any remaining work that might block on us. We should be
713 * coded such that further blocking is ok after decrementing
714 * p_nthreads but don't take the chance.
716 dsched_exit_thread(td);
717 biosched_done(curthread);
720 * We have to use the reaper for all the LWPs except the one doing
721 * the master exit. The LWP doing the master exit can just be
722 * left on p_lwps and the process reaper will deal with it
723 * synchronously, which is much faster.
725 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
727 * The process is left held until the reaper calls lwp_dispose() on
728 * the lp (after calling lwp_wait()).
730 if (masterexit == 0) {
731 int cpu = mycpuid;
733 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
734 --p->p_nthreads;
735 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
736 dowake = 1;
737 lwkt_gettoken(&deadlwp_token[cpu]);
738 LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
739 taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
740 lwkt_reltoken(&deadlwp_token[cpu]);
741 } else {
742 --p->p_nthreads;
743 if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
744 dowake = 1;
748 * We no longer need p_token.
750 * Tell the userland scheduler that we are going away
752 lwkt_reltoken(&p->p_token);
753 p->p_usched->heuristic_exiting(lp, p);
756 * Issue late wakeups after releasing our token to give us a chance
757 * to deschedule and switch away before another cpu in a wait*()
758 * reaps us. This is done as late as possible to reduce contention.
760 if (dowake)
761 wakeup(&p->p_nthreads);
762 if (waddr)
763 wakeup(waddr);
765 cpu_lwp_exit();
769 * Wait until a lwp is completely dead. The final interlock in this drama
770 * is when TDF_EXITING is set in cpu_thread_exit() just before the final
771 * switchout.
773 * At the point TDF_EXITING is set a complete exit is accomplished when
774 * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear. td_mpflags has two
775 * post-switch interlock flags that can be used to wait for the TDF_
776 * flags to clear.
778 * Returns non-zero on success, and zero if the caller needs to retry
779 * the lwp_wait().
781 static int
782 lwp_wait(struct lwp *lp)
784 struct thread *td = lp->lwp_thread;
785 u_int mpflags;
787 KKASSERT(lwkt_preempted_proc() != lp);
790 * This bit of code uses the thread destruction interlock
791 * managed by lwkt_switch_return() to wait for the lwp's
792 * thread to completely disengage.
794 * It is possible for us to race another cpu core so we
795 * have to do this correctly.
797 for (;;) {
798 mpflags = td->td_mpflags;
799 cpu_ccfence();
800 if (mpflags & TDF_MP_EXITSIG)
801 break;
802 tsleep_interlock(td, 0);
803 if (atomic_cmpset_int(&td->td_mpflags, mpflags,
804 mpflags | TDF_MP_EXITWAIT)) {
805 tsleep(td, PINTERLOCKED, "lwpxt", 0);
810 * We've already waited for the core exit but there can still
811 * be other refs from e.g. process scans and such.
813 if (lp->lwp_lock > 0) {
814 tsleep(lp, 0, "lwpwait1", 1);
815 return(0);
817 if (td->td_refs) {
818 tsleep(td, 0, "lwpwait2", 1);
819 return(0);
823 * Now that we have the thread destruction interlock these flags
824 * really should already be cleaned up, keep a check for safety.
826 * We can't rip its stack out from under it until TDF_EXITING is
827 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
828 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
829 * will be cleared temporarily if a thread gets preempted.
831 while ((td->td_flags & (TDF_RUNNING |
832 TDF_RUNQ |
833 TDF_PREEMPT_LOCK |
834 TDF_EXITING)) != TDF_EXITING) {
835 tsleep(lp, 0, "lwpwait3", 1);
836 return (0);
839 KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
840 ("lwp_wait: td %p (%s) still on run or sleep queue",
841 td, td->td_comm));
842 return (1);
846 * Release the resources associated with a lwp.
847 * The lwp must be completely dead.
849 void
850 lwp_dispose(struct lwp *lp)
852 struct thread *td = lp->lwp_thread;
854 KKASSERT(lwkt_preempted_proc() != lp);
855 KKASSERT(lp->lwp_lock == 0);
856 KKASSERT(td->td_refs == 0);
857 KKASSERT((td->td_flags & (TDF_RUNNING |
858 TDF_RUNQ |
859 TDF_PREEMPT_LOCK |
860 TDF_EXITING)) == TDF_EXITING);
862 PRELE(lp->lwp_proc);
863 lp->lwp_proc = NULL;
864 if (td != NULL) {
865 td->td_proc = NULL;
866 td->td_lwp = NULL;
867 lp->lwp_thread = NULL;
868 lwkt_free_thread(td);
870 kfree(lp, M_LWP);
874 sys_wait4(struct wait_args *uap)
876 struct rusage rusage;
877 int error, status;
879 error = kern_wait(uap->pid, (uap->status ? &status : NULL),
880 uap->options, (uap->rusage ? &rusage : NULL),
881 &uap->sysmsg_result);
883 if (error == 0 && uap->status)
884 error = copyout(&status, uap->status, sizeof(*uap->status));
885 if (error == 0 && uap->rusage)
886 error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
887 return (error);
891 * wait1()
893 * wait_args(int pid, int *status, int options, struct rusage *rusage)
896 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
898 struct thread *td = curthread;
899 struct lwp *lp;
900 struct proc *q = td->td_proc;
901 struct proc *p, *t;
902 struct ucred *cr;
903 struct pargs *pa;
904 struct sigacts *ps;
905 int nfound, error;
906 long waitgen;
908 if (pid == 0)
909 pid = -q->p_pgid;
910 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
911 return (EINVAL);
914 * Protect the q->p_children list
916 lwkt_gettoken(&q->p_token);
917 loop:
919 * All sorts of things can change due to blocking so we have to loop
920 * all the way back up here.
922 * The problem is that if a process group is stopped and the parent
923 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
924 * of the child and then stop itself when it tries to return from the
925 * system call. When the process group is resumed the parent will
926 * then get the STOP status even though the child has now resumed
927 * (a followup wait*() will get the CONT status).
929 * Previously the CONT would overwrite the STOP because the tstop
930 * was handled within tsleep(), and the parent would only see
931 * the CONT when both are stopped and continued together. This little
932 * two-line hack restores this effect.
934 if (STOPLWP(q, td->td_lwp))
935 tstop();
937 nfound = 0;
940 * Loop on children.
942 * NOTE: We don't want to break q's p_token in the loop for the
943 * case where no children are found or we risk breaking the
944 * interlock between child and parent.
946 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
947 LIST_FOREACH(p, &q->p_children, p_sibling) {
948 if (pid != WAIT_ANY &&
949 p->p_pid != pid && p->p_pgid != -pid) {
950 continue;
954 * This special case handles a kthread spawned by linux_clone
955 * (see linux_misc.c). The linux_wait4 and linux_waitpid
956 * functions need to be able to distinguish between waiting
957 * on a process and waiting on a thread. It is a thread if
958 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
959 * signifies we want to wait for threads and not processes.
961 if ((p->p_sigparent != SIGCHLD) ^
962 ((options & WLINUXCLONE) != 0)) {
963 continue;
966 nfound++;
967 if (p->p_stat == SZOMB) {
969 * We may go into SZOMB with threads still present.
970 * We must wait for them to exit before we can reap
971 * the master thread, otherwise we may race reaping
972 * non-master threads.
974 * Only this routine can remove a process from
975 * the zombie list and destroy it, use PACQUIREZOMB()
976 * to serialize us and loop if it blocks (interlocked
977 * by the parent's q->p_token).
979 * WARNING! (p) can be invalid when PHOLDZOMB(p)
980 * returns non-zero. Be sure not to
981 * mess with it.
983 if (PHOLDZOMB(p))
984 goto loop;
985 lwkt_gettoken(&p->p_token);
986 if (p->p_pptr != q) {
987 lwkt_reltoken(&p->p_token);
988 PRELEZOMB(p);
989 goto loop;
991 while (p->p_nthreads > 0) {
992 tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
996 * Reap any LWPs left in p->p_lwps. This is usually
997 * just the last LWP. This must be done before
998 * we loop on p_lock since the lwps hold a ref on
999 * it as a vmspace interlock.
1001 * Once that is accomplished p_nthreads had better
1002 * be zero.
1004 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1006 * Make sure no one is using this lwp, before
1007 * it is removed from the tree. If we didn't
1008 * wait it here, lwp tree iteration with
1009 * blocking operation would be broken.
1011 while (lp->lwp_lock > 0)
1012 tsleep(lp, 0, "zomblwp", 1);
1013 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1014 reaplwp(lp);
1016 KKASSERT(p->p_nthreads == 0);
1019 * Don't do anything really bad until all references
1020 * to the process go away. This may include other
1021 * LWPs which are still in the process of being
1022 * reaped. We can't just pull the rug out from under
1023 * them because they may still be using the VM space.
1025 * Certain kernel facilities such as /proc will also
1026 * put a hold on the process for short periods of
1027 * time.
1029 PRELE(p);
1030 PSTALL(p, "reap3", 0);
1032 /* Take care of our return values. */
1033 *res = p->p_pid;
1035 if (status)
1036 *status = p->p_xstat;
1037 if (rusage)
1038 *rusage = p->p_ru;
1041 * If we got the child via a ptrace 'attach',
1042 * we need to give it back to the old parent.
1044 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1045 PHOLD(p);
1046 p->p_oppid = 0;
1047 proc_reparent(p, t);
1048 ksignal(t, SIGCHLD);
1049 wakeup((caddr_t)t);
1050 error = 0;
1051 PRELE(t);
1052 lwkt_reltoken(&p->p_token);
1053 PRELEZOMB(p);
1054 goto done;
1058 * Unlink the proc from its process group so that
1059 * the following operations won't lead to an
1060 * inconsistent state for processes running down
1061 * the zombie list.
1063 proc_remove_zombie(p);
1064 proc_userunmap(p);
1065 lwkt_reltoken(&p->p_token);
1066 leavepgrp(p);
1068 p->p_xstat = 0;
1069 ruadd(&q->p_cru, &p->p_ru);
1072 * Decrement the count of procs running with this uid.
1074 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1077 * Free up credentials. p_spin is required to
1078 * avoid races against allproc scans.
1080 spin_lock(&p->p_spin);
1081 cr = p->p_ucred;
1082 p->p_ucred = NULL;
1083 spin_unlock(&p->p_spin);
1084 crfree(cr);
1087 * Remove unused arguments
1089 pa = p->p_args;
1090 p->p_args = NULL;
1091 if (pa && refcount_release(&pa->ar_ref)) {
1092 kfree(pa, M_PARGS);
1093 pa = NULL;
1096 ps = p->p_sigacts;
1097 p->p_sigacts = NULL;
1098 if (ps && refcount_release(&ps->ps_refcnt)) {
1099 kfree(ps, M_SUBPROC);
1100 ps = NULL;
1104 * Our exitingcount was incremented when the process
1105 * became a zombie, now that the process has been
1106 * removed from (almost) all lists we should be able
1107 * to safely destroy its vmspace. Wait for any current
1108 * holders to go away (so the vmspace remains stable),
1109 * then scrap it.
1111 * NOTE: Releasing the parent process (q) p_token
1112 * across the vmspace_exitfree() call is
1113 * important here to reduce stalls on
1114 * interactions with (q) (such as
1115 * fork/exec/wait or 'ps').
1117 PSTALL(p, "reap4", 0);
1118 lwkt_reltoken(&q->p_token);
1119 vmspace_exitfree(p);
1120 lwkt_gettoken(&q->p_token);
1121 PSTALL(p, "reap5", 0);
1124 * NOTE: We have to officially release ZOMB in order
1125 * to ensure that a racing thread in kern_wait()
1126 * which blocked on ZOMB is woken up.
1128 PHOLD(p);
1129 PRELEZOMB(p);
1130 kfree(p, M_PROC);
1131 atomic_add_int(&nprocs, -1);
1132 error = 0;
1133 goto done;
1135 if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1136 (p->p_flags & P_WAITED) == 0 &&
1137 ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1138 PHOLD(p);
1139 lwkt_gettoken(&p->p_token);
1140 if (p->p_pptr != q) {
1141 lwkt_reltoken(&p->p_token);
1142 PRELE(p);
1143 goto loop;
1145 if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1146 (p->p_flags & P_WAITED) != 0 ||
1147 ((p->p_flags & P_TRACED) == 0 &&
1148 (options & WUNTRACED) == 0)) {
1149 lwkt_reltoken(&p->p_token);
1150 PRELE(p);
1151 goto loop;
1154 p->p_flags |= P_WAITED;
1156 *res = p->p_pid;
1157 if (status)
1158 *status = W_STOPCODE(p->p_xstat);
1159 /* Zero rusage so we get something consistent. */
1160 if (rusage)
1161 bzero(rusage, sizeof(*rusage));
1162 error = 0;
1163 lwkt_reltoken(&p->p_token);
1164 PRELE(p);
1165 goto done;
1167 if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1168 PHOLD(p);
1169 lwkt_gettoken(&p->p_token);
1170 if (p->p_pptr != q) {
1171 lwkt_reltoken(&p->p_token);
1172 PRELE(p);
1173 goto loop;
1175 if ((p->p_flags & P_CONTINUED) == 0) {
1176 lwkt_reltoken(&p->p_token);
1177 PRELE(p);
1178 goto loop;
1181 *res = p->p_pid;
1182 p->p_flags &= ~P_CONTINUED;
1184 if (status)
1185 *status = SIGCONT;
1186 error = 0;
1187 lwkt_reltoken(&p->p_token);
1188 PRELE(p);
1189 goto done;
1192 if (nfound == 0) {
1193 error = ECHILD;
1194 goto done;
1196 if (options & WNOHANG) {
1197 *res = 0;
1198 error = 0;
1199 goto done;
1203 * Wait for signal - interlocked using q->p_waitgen.
1205 error = 0;
1206 while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1207 tsleep_interlock(q, PCATCH);
1208 waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1209 if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1210 error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1211 break;
1214 if (error) {
1215 done:
1216 lwkt_reltoken(&q->p_token);
1217 return (error);
1219 goto loop;
1223 * Change child's parent process to parent.
1225 * p_children/p_sibling requires the parent's token, and
1226 * changing pptr requires the child's token, so we have to
1227 * get three tokens to do this operation. We also need to
1228 * hold pointers that might get ripped out from under us to
1229 * preserve structural integrity.
1231 * It is possible to race another reparent or disconnect or other
1232 * similar operation. We must retry when this situation occurs.
1233 * Once we successfully reparent the process we no longer care
1234 * about any races.
1236 void
1237 proc_reparent(struct proc *child, struct proc *parent)
1239 struct proc *opp;
1241 PHOLD(parent);
1242 while ((opp = child->p_pptr) != parent) {
1243 PHOLD(opp);
1244 lwkt_gettoken(&opp->p_token);
1245 lwkt_gettoken(&child->p_token);
1246 lwkt_gettoken(&parent->p_token);
1247 if (child->p_pptr != opp) {
1248 lwkt_reltoken(&parent->p_token);
1249 lwkt_reltoken(&child->p_token);
1250 lwkt_reltoken(&opp->p_token);
1251 PRELE(opp);
1252 continue;
1254 LIST_REMOVE(child, p_sibling);
1255 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1256 child->p_pptr = parent;
1257 child->p_ppid = parent->p_pid;
1258 lwkt_reltoken(&parent->p_token);
1259 lwkt_reltoken(&child->p_token);
1260 lwkt_reltoken(&opp->p_token);
1261 if (LIST_EMPTY(&opp->p_children))
1262 wakeup(opp);
1263 PRELE(opp);
1264 break;
1266 PRELE(parent);
1270 * The next two functions are to handle adding/deleting items on the
1271 * exit callout list
1273 * at_exit():
1274 * Take the arguments given and put them onto the exit callout list,
1275 * However first make sure that it's not already there.
1276 * returns 0 on success.
1280 at_exit(exitlist_fn function)
1282 struct exitlist *ep;
1284 #ifdef INVARIANTS
1285 /* Be noisy if the programmer has lost track of things */
1286 if (rm_at_exit(function))
1287 kprintf("WARNING: exit callout entry (%p) already present\n",
1288 function);
1289 #endif
1290 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1291 if (ep == NULL)
1292 return (ENOMEM);
1293 ep->function = function;
1294 TAILQ_INSERT_TAIL(&exit_list, ep, next);
1295 return (0);
1299 * Scan the exit callout list for the given item and remove it.
1300 * Returns the number of items removed (0 or 1)
1303 rm_at_exit(exitlist_fn function)
1305 struct exitlist *ep;
1307 TAILQ_FOREACH(ep, &exit_list, next) {
1308 if (ep->function == function) {
1309 TAILQ_REMOVE(&exit_list, ep, next);
1310 kfree(ep, M_ATEXIT);
1311 return(1);
1314 return (0);
1318 * LWP reaper related code.
1320 static void
1321 reaplwps(void *context, int dummy)
1323 struct lwplist *lwplist = context;
1324 struct lwp *lp;
1325 int cpu = mycpuid;
1327 lwkt_gettoken(&deadlwp_token[cpu]);
1328 while ((lp = LIST_FIRST(lwplist))) {
1329 LIST_REMOVE(lp, u.lwp_reap_entry);
1330 reaplwp(lp);
1332 lwkt_reltoken(&deadlwp_token[cpu]);
1335 static void
1336 reaplwp(struct lwp *lp)
1338 while (lwp_wait(lp) == 0)
1340 lwp_dispose(lp);
1343 static void
1344 deadlwp_init(void)
1346 int cpu;
1348 for (cpu = 0; cpu < ncpus; cpu++) {
1349 lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1350 LIST_INIT(&deadlwp_list[cpu]);
1351 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1352 M_DEVBUF, M_WAITOK);
1353 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1357 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);