Linux 2.4.0-test7-pre6
[davej-history.git] / net / ipv4 / tcp_input.c
blob76791d724512796ef571acc81393288509e42197
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.198 2000/08/15 20:15:23 davem Exp $
10 * Authors: Ross Biro, <bir7@leland.Stanford.Edu>
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
61 #include <linux/mm.h>
62 #include <linux/sysctl.h>
63 #include <net/tcp.h>
64 #include <net/inet_common.h>
65 #include <linux/ipsec.h>
68 /* These are on by default so the code paths get tested.
69 * For the final 2.2 this may be undone at our discretion. -DaveM
71 int sysctl_tcp_timestamps = 1;
72 int sysctl_tcp_window_scaling = 1;
73 int sysctl_tcp_sack = 1;
74 int sysctl_tcp_fack = 1;
75 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
76 int sysctl_tcp_ecn = 1;
77 int sysctl_tcp_dsack = 1;
78 int sysctl_tcp_app_win = 31;
79 int sysctl_tcp_adv_win_scale = 2;
81 int sysctl_tcp_stdurg = 0;
82 int sysctl_tcp_rfc1337 = 0;
83 int sysctl_tcp_max_orphans = NR_FILE;
85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
91 #define FLAG_ECE 0x40 /* ECE in this ACK */
92 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
96 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
97 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
98 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
100 #define IsReno(tp) ((tp)->sack_ok == 0)
101 #define IsFack(tp) ((tp)->sack_ok & 2)
103 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
105 /* Adapt the MSS value used to make delayed ack decision to the
106 * real world.
108 static __inline__ void tcp_measure_rcv_mss(struct tcp_opt *tp, struct sk_buff *skb)
110 unsigned int len, lss;
112 lss = tp->ack.last_seg_size;
113 tp->ack.last_seg_size = 0;
115 /* skb->len may jitter because of SACKs, even if peer
116 * sends good full-sized frames.
118 len = skb->len;
119 if (len >= tp->ack.rcv_mss) {
120 tp->ack.rcv_mss = len;
121 /* Dubious? Rather, it is final cut. 8) */
122 if (tcp_flag_word(skb->h.th)&TCP_REMNANT)
123 tp->ack.pending |= TCP_ACK_PUSHED;
124 } else {
125 /* Otherwise, we make more careful check taking into account,
126 * that SACKs block is variable.
128 * "len" is invariant segment length, including TCP header.
130 len = skb->tail - skb->h.raw;
131 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
132 /* If PSH is not set, packet should be
133 * full sized, provided peer TCP is not badly broken.
134 * This observation (if it is correct 8)) allows
135 * to handle super-low mtu links fairly.
137 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
138 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
139 /* Subtract also invariant (if peer is RFC compliant),
140 * tcp header plus fixed timestamp option length.
141 * Resulting "len" is MSS free of SACK jitter.
143 len -= tp->tcp_header_len;
144 tp->ack.last_seg_size = len;
145 if (len == lss) {
146 tp->ack.rcv_mss = len;
147 return;
150 tp->ack.pending |= TCP_ACK_PUSHED;
154 static void tcp_incr_quickack(struct tcp_opt *tp)
156 unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
158 if (quickacks==0)
159 quickacks=2;
160 if (quickacks > tp->ack.quick)
161 tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
164 void tcp_enter_quickack_mode(struct tcp_opt *tp)
166 tcp_incr_quickack(tp);
167 tp->ack.pingpong = 0;
168 tp->ack.ato = TCP_ATO_MIN;
171 /* Send ACKs quickly, if "quick" count is not exhausted
172 * and the session is not interactive.
175 static __inline__ int tcp_in_quickack_mode(struct tcp_opt *tp)
177 return (tp->ack.quick && !tp->ack.pingpong);
180 /* Buffer size and advertised window tuning.
182 * 1. Tuning sk->sndbuf, when connection enters established state.
185 static void tcp_fixup_sndbuf(struct sock *sk)
187 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
188 int sndmem = tp->mss_clamp+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
190 if (sk->sndbuf < 3*sndmem)
191 sk->sndbuf = min(3*sndmem, sysctl_tcp_wmem[2]);
194 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
196 * All tcp_full_space() is split to two parts: "network" buffer, allocated
197 * forward and advertised in receiver window (tp->rcv_wnd) and
198 * "application buffer", required to isolate scheduling/application
199 * latencies from network.
200 * window_clamp is maximal advertised window. It can be less than
201 * tcp_full_space(), in this case tcp_full_space() - window_clamp
202 * is reserved for "application" buffer. The less window_clamp is
203 * the smoother our behaviour from viewpoint of network, but the lower
204 * throughput and the higher sensitivity of the connection to losses. 8)
206 * rcv_ssthresh is more strict window_clamp used at "slow start"
207 * phase to predict further behaviour of this connection.
208 * It is used for two goals:
209 * - to enforce header prediction at sender, even when application
210 * requires some significant "application buffer". It is check #1.
211 * - to prevent pruning of receive queue because of misprediction
212 * of receiver window. Check #2.
214 * The scheme does not work when sender sends good segments opening
215 * window and then starts to feed us spagetti. But it should work
216 * in common situations. Otherwise, we have to rely on queue collapsing.
219 /* Slow part of check#2. */
220 static int
221 __tcp_grow_window(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
223 /* Optimize this! */
224 int truesize = tcp_win_from_space(skb->truesize)/2;
225 int window = tcp_full_space(sk)/2;
227 while (tp->rcv_ssthresh <= window) {
228 if (truesize <= skb->len)
229 return 2*tp->ack.rcv_mss;
231 truesize >>= 1;
232 window >>= 1;
234 return 0;
237 static __inline__ void
238 tcp_grow_window(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
240 /* Check #1 */
241 if (tp->rcv_ssthresh < tp->window_clamp &&
242 (int)tp->rcv_ssthresh < tcp_space(sk) &&
243 !tcp_memory_pressure) {
244 int incr;
246 /* Check #2. Increase window, if skb with such overhead
247 * will fit to rcvbuf in future.
249 if (tcp_win_from_space(skb->truesize) <= skb->len)
250 incr = 2*tp->advmss;
251 else
252 incr = __tcp_grow_window(sk, tp, skb);
254 if (incr) {
255 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
256 tp->ack.quick |= 1;
261 /* 3. Tuning rcvbuf, when connection enters established state. */
263 static void tcp_fixup_rcvbuf(struct sock *sk)
265 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
266 int rcvmem = tp->advmss+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
268 /* Try to select rcvbuf so that 4 mss-sized segments
269 * will fit to window and correspoding skbs will fit to our rcvbuf.
270 * (was 3; 4 is minimum to allow fast retransmit to work.)
272 while (tcp_win_from_space(rcvmem) < tp->advmss)
273 rcvmem += 128;
274 if (sk->rcvbuf < 4*rcvmem)
275 sk->rcvbuf = min(4*rcvmem, sysctl_tcp_rmem[2]);
278 /* 4. Try to fixup all. It is made iimediately after connection enters
279 * established state.
281 static void tcp_init_buffer_space(struct sock *sk)
283 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
284 int maxwin;
286 if (!(sk->userlocks&SOCK_RCVBUF_LOCK))
287 tcp_fixup_rcvbuf(sk);
288 if (!(sk->userlocks&SOCK_SNDBUF_LOCK))
289 tcp_fixup_sndbuf(sk);
291 maxwin = tcp_full_space(sk);
293 if (tp->window_clamp >= maxwin) {
294 tp->window_clamp = maxwin;
296 if (sysctl_tcp_app_win && maxwin>4*tp->advmss)
297 tp->window_clamp = max(maxwin-(maxwin>>sysctl_tcp_app_win), 4*tp->advmss);
300 /* Force reservation of one segment. */
301 if (sysctl_tcp_app_win &&
302 tp->window_clamp > 2*tp->advmss &&
303 tp->window_clamp + tp->advmss > maxwin)
304 tp->window_clamp = max(2*tp->advmss, maxwin-tp->advmss);
306 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
307 tp->snd_cwnd_stamp = tcp_time_stamp;
310 /* 5. Recalculate window clamp after socket hit its memory bounds. */
311 static void tcp_clamp_window(struct sock *sk, struct tcp_opt *tp)
313 struct sk_buff *skb;
314 int app_win = tp->rcv_nxt - tp->copied_seq;
315 int ofo_win = 0;
317 tp->ack.quick = 0;
319 skb_queue_walk(&tp->out_of_order_queue, skb) {
320 ofo_win += skb->len;
323 /* If overcommit is due to out of order segments,
324 * do not clamp window. Try to expand rcvbuf instead.
326 if (ofo_win) {
327 if (sk->rcvbuf < sysctl_tcp_rmem[2] &&
328 !(sk->userlocks&SOCK_RCVBUF_LOCK) &&
329 !tcp_memory_pressure &&
330 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
331 sk->rcvbuf = min(atomic_read(&sk->rmem_alloc), sysctl_tcp_rmem[2]);
333 if (atomic_read(&sk->rmem_alloc) > sk->rcvbuf) {
334 app_win += ofo_win;
335 if (atomic_read(&sk->rmem_alloc) >= 2*sk->rcvbuf)
336 app_win >>= 1;
337 if (app_win > tp->ack.rcv_mss)
338 app_win -= tp->ack.rcv_mss;
339 app_win = max(app_win, 2*tp->advmss);
341 if (!ofo_win)
342 tp->window_clamp = min(tp->window_clamp, app_win);
343 tp->rcv_ssthresh = min(tp->window_clamp, 2*tp->advmss);
347 /* There is something which you must keep in mind when you analyze the
348 * behavior of the tp->ato delayed ack timeout interval. When a
349 * connection starts up, we want to ack as quickly as possible. The
350 * problem is that "good" TCP's do slow start at the beginning of data
351 * transmission. The means that until we send the first few ACK's the
352 * sender will sit on his end and only queue most of his data, because
353 * he can only send snd_cwnd unacked packets at any given time. For
354 * each ACK we send, he increments snd_cwnd and transmits more of his
355 * queue. -DaveM
357 static void tcp_event_data_recv(struct sock *sk, struct tcp_opt *tp, struct sk_buff *skb)
359 u32 now;
361 tcp_schedule_ack(tp);
363 tcp_measure_rcv_mss(tp, skb);
365 now = tcp_time_stamp;
367 if (!tp->ack.ato) {
368 /* The _first_ data packet received, initialize
369 * delayed ACK engine.
371 tcp_enter_quickack_mode(tp);
372 } else {
373 int m = now - tp->ack.lrcvtime;
375 if (m <= TCP_ATO_MIN/2) {
376 /* The fastest case is the first. */
377 tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
378 } else if (m < tp->ack.ato) {
379 tp->ack.ato = (tp->ack.ato>>1) + m;
380 if (tp->ack.ato > tp->rto)
381 tp->ack.ato = tp->rto;
382 } else if (m > tp->rto) {
383 /* Too long gap. Apparently sender falled to
384 * restart window, so that we send ACKs quickly.
386 tcp_incr_quickack(tp);
387 tcp_mem_reclaim(sk);
390 tp->ack.lrcvtime = now;
392 TCP_ECN_check_ce(tp, skb);
394 if (skb->len >= 128)
395 tcp_grow_window(sk, tp, skb);
398 /* Called to compute a smoothed rtt estimate. The data fed to this
399 * routine either comes from timestamps, or from segments that were
400 * known _not_ to have been retransmitted [see Karn/Partridge
401 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
402 * piece by Van Jacobson.
403 * NOTE: the next three routines used to be one big routine.
404 * To save cycles in the RFC 1323 implementation it was better to break
405 * it up into three procedures. -- erics
407 static __inline__ void tcp_rtt_estimator(struct tcp_opt *tp, __u32 mrtt)
409 long m = mrtt; /* RTT */
411 /* The following amusing code comes from Jacobson's
412 * article in SIGCOMM '88. Note that rtt and mdev
413 * are scaled versions of rtt and mean deviation.
414 * This is designed to be as fast as possible
415 * m stands for "measurement".
417 * On a 1990 paper the rto value is changed to:
418 * RTO = rtt + 4 * mdev
420 * Funny. This algorithm seems to be very broken.
421 * These formulae increase RTO, when it should be decreased, increase
422 * too slowly, when it should be incresed fastly, decrease too fastly
423 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
424 * does not matter how to _calculate_ it. Seems, it was trap
425 * that VJ failed to avoid. 8)
427 if(m == 0)
428 m = 1;
429 if (tp->srtt != 0) {
430 m -= (tp->srtt >> 3); /* m is now error in rtt est */
431 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
432 if (m < 0)
433 m = -m; /* m is now abs(error) */
434 m -= (tp->mdev >> 2); /* similar update on mdev */
435 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
436 } else {
437 /* no previous measure. */
438 tp->srtt = m<<3; /* take the measured time to be rtt */
439 tp->mdev = m<<2; /* make sure rto = 3*rtt */
443 /* Calculate rto without backoff. This is the second half of Van Jacobson's
444 * routine referred to above.
446 static __inline__ void tcp_set_rto(struct tcp_opt *tp)
448 tp->rto = (tp->srtt >> 3) + tp->mdev;
449 /* I am not enough educated to understand this magic.
450 * However, it smells bad. snd_cwnd>31 is common case.
452 /* OK, I found comment in 2.0 source tree, it deserves
453 * to be reproduced:
454 * ====
455 * Note: Jacobson's algorithm is fine on BSD which has a 1/2 second
456 * granularity clock, but with our 1/100 second granularity clock we
457 * become too sensitive to minor changes in the round trip time.
458 * We add in two compensating factors. First we multiply by 5/4.
459 * For large congestion windows this allows us to tolerate burst
460 * traffic delaying up to 1/4 of our packets. We also add in
461 * a rtt / cong_window term. For small congestion windows this allows
462 * a single packet delay, but has negligible effect
463 * on the compensation for large windows.
465 tp->rto += (tp->rto >> 2) + (tp->rto >> (tp->snd_cwnd-1));
468 /* Keep the rto between HZ/5 and 120*HZ. 120*HZ is the upper bound
469 * on packet lifetime in the internet. We need the HZ/5 lower
470 * bound to behave correctly against BSD stacks with a fixed
471 * delayed ack.
472 * FIXME: It's not entirely clear this lower bound is the best
473 * way to avoid the problem. Is it possible to drop the lower
474 * bound and still avoid trouble with BSD stacks? Perhaps
475 * some modification to the RTO calculation that takes delayed
476 * ack bias into account? This needs serious thought. -- erics
478 static __inline__ void tcp_bound_rto(struct tcp_opt *tp)
480 if (tp->rto < TCP_RTO_MIN)
481 tp->rto = TCP_RTO_MIN;
482 else if (tp->rto > TCP_RTO_MAX)
483 tp->rto = TCP_RTO_MAX;
487 /* Save metrics learned by this TCP session.
488 This function is called only, when TCP finishes sucessfully
489 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
491 void tcp_update_metrics(struct sock *sk)
493 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
494 struct dst_entry *dst = __sk_dst_get(sk);
496 dst_confirm(dst);
498 if (dst && (dst->flags&DST_HOST)) {
499 int m;
501 if (tp->backoff || !tp->srtt) {
502 /* This session failed to estimate rtt. Why?
503 * Probably, no packets returned in time.
504 * Reset our results.
506 if (!(dst->mxlock&(1<<RTAX_RTT)))
507 dst->rtt = 0;
508 return;
511 m = dst->rtt - tp->srtt;
513 /* If newly calculated rtt larger than stored one,
514 * store new one. Otherwise, use EWMA. Remember,
515 * rtt overestimation is always better than underestimation.
517 if (!(dst->mxlock&(1<<RTAX_RTT))) {
518 if (m <= 0)
519 dst->rtt = tp->srtt;
520 else
521 dst->rtt -= (m>>3);
524 if (!(dst->mxlock&(1<<RTAX_RTTVAR))) {
525 if (m < 0)
526 m = -m;
528 /* Scale deviation to rttvar fixed point */
529 m >>= 1;
530 if (m < tp->mdev)
531 m = tp->mdev;
533 if (m >= dst->rttvar)
534 dst->rttvar = m;
535 else
536 dst->rttvar -= (dst->rttvar - m)>>2;
539 if (tp->snd_ssthresh >= 0xFFFF) {
540 /* Slow start still did not finish. */
541 if (dst->ssthresh &&
542 !(dst->mxlock&(1<<RTAX_SSTHRESH)) &&
543 (tp->snd_cwnd>>1) > dst->ssthresh)
544 dst->ssthresh = (tp->snd_cwnd>>1);
545 if (!(dst->mxlock&(1<<RTAX_CWND)) &&
546 tp->snd_cwnd > dst->cwnd)
547 dst->cwnd = tp->snd_cwnd;
548 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
549 tp->ca_state == TCP_CA_Open) {
550 /* Cong. avoidance phase, cwnd is reliable. */
551 if (!(dst->mxlock&(1<<RTAX_SSTHRESH)))
552 dst->ssthresh = max(tp->snd_cwnd>>1, tp->snd_ssthresh);
553 if (!(dst->mxlock&(1<<RTAX_CWND)))
554 dst->cwnd = (dst->cwnd + tp->snd_cwnd)>>1;
555 } else {
556 /* Else slow start did not finish, cwnd is non-sense,
557 ssthresh may be also invalid.
559 if (!(dst->mxlock&(1<<RTAX_CWND)))
560 dst->cwnd = (dst->cwnd + tp->snd_ssthresh)>>1;
561 if (dst->ssthresh &&
562 !(dst->mxlock&(1<<RTAX_SSTHRESH)) &&
563 tp->snd_ssthresh > dst->ssthresh)
564 dst->ssthresh = tp->snd_ssthresh;
567 if (!(dst->mxlock&(1<<RTAX_REORDERING))) {
568 if (dst->reordering < tp->reordering &&
569 tp->reordering != sysctl_tcp_reordering)
570 dst->reordering = tp->reordering;
575 /* Increase initial CWND conservatively: if estimated
576 * RTT is low enough (<20msec) or if we have some preset ssthresh.
578 * Numbers are taken from RFC1414.
580 __u32 tcp_init_cwnd(struct tcp_opt *tp)
582 __u32 cwnd;
584 if (tp->mss_cache > 1460)
585 return 2;
587 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
589 if (!tp->srtt || (tp->snd_ssthresh >= 0xFFFF && tp->srtt > ((HZ/50)<<3)))
590 cwnd = 2;
591 else if (cwnd > tp->snd_ssthresh)
592 cwnd = tp->snd_ssthresh;
594 return min(cwnd, tp->snd_cwnd_clamp);
597 /* Initialize metrics on socket. */
599 static void tcp_init_metrics(struct sock *sk)
601 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
602 struct dst_entry *dst = __sk_dst_get(sk);
604 if (dst == NULL)
605 goto reset;
607 dst_confirm(dst);
609 if (dst->mxlock&(1<<RTAX_CWND))
610 tp->snd_cwnd_clamp = dst->cwnd;
611 if (dst->ssthresh) {
612 tp->snd_ssthresh = dst->ssthresh;
613 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
614 tp->snd_ssthresh = tp->snd_cwnd_clamp;
616 if (dst->reordering && tp->reordering != dst->reordering) {
617 tp->sack_ok &= ~2;
618 tp->reordering = dst->reordering;
621 if (dst->rtt == 0)
622 goto reset;
624 if (!tp->srtt && dst->rtt < (TCP_TIMEOUT_INIT<<3))
625 goto reset;
627 /* Initial rtt is determined from SYN,SYN-ACK.
628 * The segment is small and rtt may appear much
629 * less than real one. Use per-dst memory
630 * to make it more realistic.
632 * A bit of theory. RTT is time passed after "normal" sized packet
633 * is sent until it is ACKed. In normal curcumstances sending small
634 * packets force peer to delay ACKs and calculation is correct too.
635 * The algorithm is adaptive and, provided we follow specs, it
636 * NEVER underestimate RTT. BUT! If peer tries to make some clever
637 * tricks sort of "quick acks" for time long enough to decrease RTT
638 * to low value, and then abruptly stops to do it and starts to delay
639 * ACKs, wait for troubles.
641 if (dst->rtt > tp->srtt)
642 tp->srtt = dst->rtt;
643 if (dst->rttvar > tp->mdev)
644 tp->mdev = dst->rttvar;
645 tcp_set_rto(tp);
646 tcp_bound_rto(tp);
647 if (tp->rto < TCP_TIMEOUT_INIT && !tp->saw_tstamp)
648 goto reset;
649 tp->snd_cwnd = tcp_init_cwnd(tp);
650 tp->snd_cwnd_stamp = tcp_time_stamp;
651 return;
653 reset:
654 /* Play conservative. If timestamps are not
655 * supported, TCP will fail to recalculate correct
656 * rtt, if initial rto is too small. FORGET ALL AND RESET!
658 if (!tp->saw_tstamp && tp->srtt) {
659 tp->srtt = 0;
660 tp->mdev = TCP_TIMEOUT_INIT;
661 tp->rto = TCP_TIMEOUT_INIT;
665 static void tcp_update_reordering(struct tcp_opt *tp, int metric, int ts)
667 if (metric > tp->reordering) {
668 tp->reordering = min(TCP_MAX_REORDERING, metric);
670 /* This exciting event is worth to be remembered. 8) */
671 if (ts)
672 NET_INC_STATS_BH(TCPTSReorder);
673 else if (IsReno(tp))
674 NET_INC_STATS_BH(TCPRenoReorder);
675 else if (IsFack(tp))
676 NET_INC_STATS_BH(TCPFACKReorder);
677 else
678 NET_INC_STATS_BH(TCPSACKReorder);
679 #if FASTRETRANS_DEBUG > 1
680 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
681 tp->sack_ok, tp->ca_state,
682 tp->reordering, tp->fackets_out, tp->sacked_out,
683 tp->undo_marker ? tp->undo_retrans : 0);
684 #endif
685 /* Disable FACK yet. */
686 tp->sack_ok &= ~2;
690 /* This procedure tags the retransmission queue when SACKs arrive.
692 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
693 * Packets in queue with these bits set are counted in variables
694 * sacked_out, retrans_out and lost_out, correspondingly.
696 * Valid combinations are:
697 * Tag InFlight Description
698 * 0 1 - orig segment is in flight.
699 * S 0 - nothing flies, orig reached receiver.
700 * L 0 - nothing flies, orig lost by net.
701 * R 2 - both orig and retransmit are in flight.
702 * L|R 1 - orig is lost, retransmit is in flight.
703 * S|R 1 - orig reached receiver, retrans is still in flight.
704 * (L|S|R is logically valid, it could occur when L|R is sacked,
705 * but it is equivalent to plain S and code short-curcuits it to S.
706 * L|S is logically invalid, it would mean -1 packet in flight 8))
708 * These 6 states form finite state machine, controlled by the following events:
709 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
710 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
711 * 3. Loss detection event of one of three flavors:
712 * A. Scoreboard estimator decided the packet is lost.
713 * A'. Reno "three dupacks" marks head of queue lost.
714 * A''. Its FACK modfication, head until snd.fack is lost.
715 * B. SACK arrives sacking data transmitted after never retransmitted
716 * hole was sent out.
717 * C. SACK arrives sacking SND.NXT at the moment, when the
718 * segment was retransmitted.
719 * 4. D-SACK added new rule: D-SACK changes any tag to S.
721 * It is pleasant to note, that state diagram turns out to be commutative,
722 * so that we are allowed not to be bothered by order of our actions,
723 * when multiple events arrive simultaneously. (see the function below).
725 * Reordering detection.
726 * --------------------
727 * Reordering metric is maximal distance, which a packet can be displaced
728 * in packet stream. With SACKs we can estimate it:
730 * 1. SACK fills old hole and the corresponding segment was not
731 * ever retransmitted -> reordering. Alas, we cannot use it
732 * when segment was retransmitted.
733 * 2. The last flaw is solved with D-SACK. D-SACK arrives
734 * for retransmitted and already SACKed segment -> reordering..
735 * Both of these heuristics are not used in Loss state, when we cannot
736 * account for retransmits accurately.
738 static int
739 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
741 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
742 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
743 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
744 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
745 int reord = tp->packets_out;
746 int prior_fackets;
747 u32 lost_retrans = 0;
748 int flag = 0;
749 int i;
751 if (!tp->sacked_out)
752 tp->fackets_out = 0;
753 prior_fackets = tp->fackets_out;
755 for (i=0; i<num_sacks; i++, sp++) {
756 struct sk_buff *skb;
757 __u32 start_seq = ntohl(sp->start_seq);
758 __u32 end_seq = ntohl(sp->end_seq);
759 int fack_count = 0;
760 int dup_sack = 0;
762 /* Check for D-SACK. */
763 if (i == 0) {
764 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
766 if (before(start_seq, ack)) {
767 dup_sack = 1;
768 NET_INC_STATS_BH(TCPDSACKRecv);
769 } else if (num_sacks > 1 &&
770 !after(end_seq, ntohl(sp[1].end_seq)) &&
771 !before(start_seq, ntohl(sp[1].start_seq))) {
772 dup_sack = 1;
773 NET_INC_STATS_BH(TCPDSACKOfoRecv);
776 /* D-SACK for already forgotten data...
777 * Do dumb counting. */
778 if (dup_sack &&
779 !after(end_seq, prior_snd_una) &&
780 after(end_seq, tp->undo_marker))
781 tp->undo_retrans--;
783 /* Eliminate too old ACKs, but take into
784 * account more or less fresh ones, they can
785 * contain valid SACK info.
787 if (before(ack, prior_snd_una-tp->max_window))
788 return 0;
791 /* Event "B" in the comment above. */
792 if (after(end_seq, tp->high_seq))
793 flag |= FLAG_DATA_LOST;
795 for_retrans_queue(skb, sk, tp) {
796 u8 sacked = TCP_SKB_CB(skb)->sacked;
797 int in_sack;
799 /* The retransmission queue is always in order, so
800 * we can short-circuit the walk early.
802 if(!before(TCP_SKB_CB(skb)->seq, end_seq))
803 break;
805 fack_count++;
807 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
808 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
810 /* Account D-SACK for retransmitted packet. */
811 if ((dup_sack && in_sack) &&
812 (sacked & TCPCB_RETRANS) &&
813 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
814 tp->undo_retrans--;
816 /* The frame is ACKed. */
817 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
818 if (sacked&TCPCB_RETRANS) {
819 if ((dup_sack && in_sack) &&
820 (sacked&TCPCB_SACKED_ACKED))
821 reord = min(fack_count, reord);
822 } else {
823 /* If it was in a hole, we detected reordering. */
824 if (fack_count < prior_fackets &&
825 !(sacked&TCPCB_SACKED_ACKED))
826 reord = min(fack_count, reord);
829 /* Nothing to do; acked frame is about to be dropped. */
830 continue;
833 if ((sacked&TCPCB_SACKED_RETRANS) &&
834 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
835 (!lost_retrans || after(end_seq, lost_retrans)))
836 lost_retrans = end_seq;
838 if (!in_sack)
839 continue;
841 if (!(sacked&TCPCB_SACKED_ACKED)) {
842 if (sacked & TCPCB_SACKED_RETRANS) {
843 /* If the segment is not tagged as lost,
844 * we do not clear RETRANS, believing
845 * that retransmission is still in flight.
847 if (sacked & TCPCB_LOST) {
848 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
849 tp->lost_out--;
850 tp->retrans_out--;
852 } else {
853 /* New sack for not retransmitted frame,
854 * which was in hole. It is reordering.
856 if (!(sacked & TCPCB_RETRANS) &&
857 fack_count < prior_fackets)
858 reord = min(fack_count, reord);
860 if (sacked & TCPCB_LOST) {
861 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
862 tp->lost_out--;
866 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
867 flag |= FLAG_DATA_SACKED;
868 tp->sacked_out++;
870 if (fack_count > tp->fackets_out)
871 tp->fackets_out = fack_count;
872 } else {
873 if (dup_sack && (sacked&TCPCB_RETRANS))
874 reord = min(fack_count, reord);
877 /* D-SACK. We can detect redundant retransmission
878 * in S|R and plain R frames and clear it.
879 * undo_retrans is decreased above, L|R frames
880 * are accounted above as well.
882 if (dup_sack &&
883 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
884 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
885 tp->retrans_out--;
890 /* Check for lost retransmit. This superb idea is
891 * borrowed from "ratehalving". Event "C".
892 * Later note: FACK people cheated me again 8),
893 * we have to account for reordering! Ugly,
894 * but should help.
896 if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
897 struct sk_buff *skb;
899 for_retrans_queue(skb, sk, tp) {
900 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
901 break;
902 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
903 continue;
904 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
905 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
906 (IsFack(tp) ||
907 !before(lost_retrans, TCP_SKB_CB(skb)->ack_seq+tp->reordering*tp->mss_cache))) {
908 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
909 tp->retrans_out--;
911 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
912 tp->lost_out++;
913 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
914 flag |= FLAG_DATA_SACKED;
915 NET_INC_STATS_BH(TCPLostRetransmit);
921 tp->left_out = tp->sacked_out + tp->lost_out;
923 if (reord < tp->fackets_out && tp->ca_state != TCP_CA_Loss)
924 tcp_update_reordering(tp, (tp->fackets_out+1)-reord, 0);
926 #if FASTRETRANS_DEBUG > 0
927 BUG_TRAP((int)tp->sacked_out >= 0);
928 BUG_TRAP((int)tp->lost_out >= 0);
929 BUG_TRAP((int)tp->retrans_out >= 0);
930 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
931 #endif
932 return flag;
935 void tcp_clear_retrans(struct tcp_opt *tp)
937 tp->left_out = 0;
938 tp->retrans_out = 0;
940 tp->fackets_out = 0;
941 tp->sacked_out = 0;
942 tp->lost_out = 0;
944 tp->undo_marker = 0;
945 tp->undo_retrans = 0;
948 /* Enter Loss state. If "how" is not zero, forget all SACK information
949 * and reset tags completely, otherwise preserve SACKs. If receiver
950 * dropped its ofo queue, we will know this due to reneging detection.
952 void tcp_enter_loss(struct sock *sk, int how)
954 struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
955 struct sk_buff *skb;
956 int cnt = 0;
958 /* Reduce ssthresh if it has not yet been made inside this window. */
959 if (tp->ca_state <= TCP_CA_Disorder ||
960 tp->snd_una == tp->high_seq ||
961 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
962 tp->prior_ssthresh = tcp_current_ssthresh(tp);
963 tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
965 tp->snd_cwnd = 1;
966 tp->snd_cwnd_cnt = 0;
967 tp->snd_cwnd_stamp = tcp_time_stamp;
969 tcp_clear_retrans(tp);
971 /* Push undo marker, if it was plain RTO and nothing
972 * was retransmitted. */
973 if (!how)
974 tp->undo_marker = tp->snd_una;
976 for_retrans_queue(skb, sk, tp) {
977 cnt++;
978 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
979 tp->undo_marker = 0;
980 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
981 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
982 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
983 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
984 tp->lost_out++;
985 } else {
986 tp->sacked_out++;
987 tp->fackets_out = cnt;
990 tp->left_out = tp->sacked_out + tp->lost_out;
992 tp->reordering = min(tp->reordering, sysctl_tcp_reordering);
993 tp->ca_state = TCP_CA_Loss;
994 tp->high_seq = tp->snd_nxt;
995 TCP_ECN_queue_cwr(tp);
998 static int tcp_check_sack_reneging(struct sock *sk, struct tcp_opt *tp)
1000 struct sk_buff *skb;
1002 /* If ACK arrived pointing to a remembered SACK,
1003 * it means that our remembered SACKs do not reflect
1004 * real state of receiver i.e.
1005 * receiver _host_ is heavily congested (or buggy).
1006 * Do processing similar to RTO timeout.
1008 if ((skb = skb_peek(&sk->write_queue)) != NULL &&
1009 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1010 NET_INC_STATS_BH(TCPSACKReneging);
1012 tcp_enter_loss(sk, 1);
1013 tp->retransmits++;
1014 tcp_retransmit_skb(sk, skb_peek(&sk->write_queue));
1015 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1016 return 1;
1018 return 0;
1021 static inline int tcp_fackets_out(struct tcp_opt *tp)
1023 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1027 /* Linux NewReno/SACK/FACK/ECN state machine.
1028 * --------------------------------------
1030 * "Open" Normal state, no dubious events, fast path.
1031 * "Disorder" In all the respects it is "Open",
1032 * but requires a bit more attention. It is entered when
1033 * we see some SACKs or dupacks. It is split of "Open"
1034 * mainly to move some processing from fast path to slow one.
1035 * "CWR" CWND was reduced due to some Congestion Notification event.
1036 * It can be ECN, ICMP source quench, local device congestion.
1037 * "Recovery" CWND was reduced, we are fast-retransmitting.
1038 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1040 * tcp_fastretrans_alert() is entered:
1041 * - each incoming ACK, if state is not "Open"
1042 * - when arrived ACK is unusual, namely:
1043 * * SACK
1044 * * Duplicate ACK.
1045 * * ECN ECE.
1047 * Counting packets in flight is pretty simple.
1049 * in_flight = packets_out - left_out + retrans_out
1051 * packets_out is SND.NXT-SND.UNA counted in packets.
1053 * retrans_out is number of retransmitted segments.
1055 * left_out is number of segments left network, but not ACKed yet.
1057 * left_out = sacked_out + lost_out
1059 * sacked_out: Packets, which arrived to receiver out of order
1060 * and hence not ACKed. With SACKs this number is simply
1061 * amount of SACKed data. Even without SACKs
1062 * it is easy to give pretty reliable estimate of this number,
1063 * counting duplicate ACKs.
1065 * lost_out: Packets lost by network. TCP has no explicit
1066 * "loss notification" feedback from network (for now).
1067 * It means that this number can be only _guessed_.
1068 * Actually, it is the heuristics to predict lossage that
1069 * distinguishes different algorithms.
1071 * F.e. after RTO, when all the queue is considered as lost,
1072 * lost_out = packets_out and in_flight = retrans_out.
1074 * Essentially, we have now two algorithms counting
1075 * lost packets.
1077 * FACK: It is the simplest heuristics. As soon as we decided
1078 * that something is lost, we decide that _all_ not SACKed
1079 * packets until the most forward SACK are lost. I.e.
1080 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1081 * It is absolutely correct estimate, if network does not reorder
1082 * packets. And it loses any connection to reality when reordering
1083 * takes place. We use FACK by default until reordering
1084 * is suspected on the path to this destination.
1086 * NewReno: when Recovery is entered, we assume that one segment
1087 * is lost (classic Reno). While we are in Recovery and
1088 * a partial ACK arrives, we assume that one more packet
1089 * is lost (NewReno). This heuristics are the same in NewReno
1090 * and SACK.
1092 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1093 * deflation etc. CWND is real congestion window, never inflated, changes
1094 * only according to classic VJ rules.
1096 * Really tricky (and requiring careful tuning) part of algorithm
1097 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1098 * The first determines the moment _when_ we should reduce CWND and,
1099 * hence, slow down forward transmission. In fact, it determines the moment
1100 * when we decide that hole is caused by loss, rather than by a reorder.
1102 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1103 * holes, caused by lost packets.
1105 * And the most logically complicated part of algorithm is undo
1106 * heuristics. We detect false retransmits due to both too early
1107 * fast retransmit (reordering) and underestimated RTO, analyzing
1108 * timestamps and D-SACKs. When we detect that some segments were
1109 * retransmitted by mistake and CWND reduction was wrong, we undo
1110 * window reduction and abort recovery phase. This logic is hidden
1111 * inside several functions named tcp_try_undo_<something>.
1114 /* This function decides, when we should leave Disordered state
1115 * and enter Recovery phase, reducing congestion window.
1117 * Main question: may we further continue forward transmission
1118 * with the same cwnd?
1120 static int
1121 tcp_time_to_recover(struct sock *sk, struct tcp_opt *tp)
1123 /* Trick#1: The loss is proven. */
1124 if (tp->lost_out)
1125 return 1;
1127 /* Not-A-Trick#2 : Classic rule... */
1128 if (tcp_fackets_out(tp) > tp->reordering)
1129 return 1;
1131 /* Trick#3: It is still not OK... But will it be useful to delay
1132 * recovery more?
1134 if (tp->packets_out <= tp->reordering &&
1135 tp->sacked_out >= max(tp->packets_out/2, sysctl_tcp_reordering) &&
1136 !tcp_may_send_now(sk, tp)) {
1137 /* We have nothing to send. This connection is limited
1138 * either by receiver window or by application.
1140 return 1;
1143 return 0;
1146 /* If we receive more dupacks than we expected counting segments
1147 * in assumption of absent reordering, interpret this as reordering.
1148 * The only another reason could be bug in receiver TCP.
1150 static void tcp_check_reno_reordering(struct tcp_opt *tp, int addend)
1152 if (tp->sacked_out + 1 > tp->packets_out) {
1153 tp->sacked_out = tp->packets_out ? tp->packets_out - 1 : 0;
1154 tcp_update_reordering(tp, tp->packets_out+addend, 0);
1158 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1160 static void tcp_add_reno_sack(struct tcp_opt *tp)
1162 ++tp->sacked_out;
1163 tcp_check_reno_reordering(tp, 0);
1164 tp->left_out = tp->sacked_out + tp->lost_out;
1167 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1169 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_opt *tp, int acked)
1171 if (acked > 0) {
1172 /* One ACK eated lost packet. Must eat! */
1173 BUG_TRAP(tp->lost_out == 0);
1175 /* The rest eat duplicate ACKs. */
1176 if (acked-1 >= tp->sacked_out)
1177 tp->sacked_out = 0;
1178 else
1179 tp->sacked_out -= acked-1;
1181 tcp_check_reno_reordering(tp, acked);
1182 tp->left_out = tp->sacked_out + tp->lost_out;
1185 static inline void tcp_reset_reno_sack(struct tcp_opt *tp)
1187 tp->sacked_out = 0;
1188 tp->left_out = tp->lost_out;
1191 /* Mark head of queue up as lost. */
1192 static void
1193 tcp_mark_head_lost(struct sock *sk, struct tcp_opt *tp, int packets, u32 high_seq)
1195 struct sk_buff *skb;
1196 int cnt = packets;
1198 BUG_TRAP(cnt <= tp->packets_out);
1200 for_retrans_queue(skb, sk, tp) {
1201 if (--cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1202 break;
1203 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1204 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1205 tp->lost_out++;
1208 tp->left_out = tp->sacked_out + tp->lost_out;
1211 /* Account newly detected lost packet(s) */
1213 static void tcp_update_scoreboard(struct sock *sk, struct tcp_opt *tp)
1215 if (IsFack(tp)) {
1216 int lost = tp->fackets_out - tp->reordering;
1217 if (lost <= 0)
1218 lost = 1;
1219 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1220 } else {
1221 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1225 /* CWND moderation, preventing bursts due to too big ACKs
1226 * in dubious situations.
1228 static __inline__ void tcp_moderate_cwnd(struct tcp_opt *tp)
1230 tp->snd_cwnd = min(tp->snd_cwnd,
1231 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1232 tp->snd_cwnd_stamp = tcp_time_stamp;
1235 /* Decrease cwnd each second ack. */
1237 static void tcp_cwnd_down(struct tcp_opt *tp)
1239 int decr = tp->snd_cwnd_cnt + 1;
1241 tp->snd_cwnd_cnt = decr&1;
1242 decr >>= 1;
1244 if (decr && tp->snd_cwnd > tp->snd_ssthresh/2)
1245 tp->snd_cwnd -= decr;
1247 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1248 tp->snd_cwnd_stamp = tcp_time_stamp;
1251 /* Nothing was retransmitted or returned timestamp is less
1252 * than timestamp of the first retransmission.
1254 static __inline__ int tcp_packet_delayed(struct tcp_opt *tp)
1256 return !tp->retrans_stamp ||
1257 (tp->saw_tstamp &&
1258 (__s32)(tp->rcv_tsecr - tp->retrans_stamp) < 0);
1261 /* Undo procedures. */
1263 #if FASTRETRANS_DEBUG > 1
1264 static void DBGUNDO(struct sock *sk, struct tcp_opt *tp, const char *msg)
1266 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1267 msg,
1268 NIPQUAD(sk->daddr), ntohs(sk->dport),
1269 tp->snd_cwnd, tp->left_out,
1270 tp->snd_ssthresh, tp->prior_ssthresh, tp->packets_out);
1272 #else
1273 #define DBGUNDO(x...) do { } while (0)
1274 #endif
1276 static void tcp_undo_cwr(struct tcp_opt *tp, int undo)
1278 if (tp->prior_ssthresh) {
1279 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1280 if (undo && tp->prior_ssthresh > tp->snd_ssthresh)
1281 tp->snd_ssthresh = tp->prior_ssthresh;
1282 } else {
1283 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1285 tcp_moderate_cwnd(tp);
1286 tp->snd_cwnd_stamp = tcp_time_stamp;
1289 static inline int tcp_may_undo(struct tcp_opt *tp)
1291 return tp->undo_marker &&
1292 (!tp->undo_retrans || tcp_packet_delayed(tp));
1295 /* People celebrate: "We love our President!" */
1296 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_opt *tp)
1298 if (tcp_may_undo(tp)) {
1299 /* Happy end! We did not retransmit anything
1300 * or our original transmission succeeded.
1302 DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1303 tcp_undo_cwr(tp, 1);
1304 if (tp->ca_state == TCP_CA_Loss)
1305 NET_INC_STATS_BH(TCPLossUndo);
1306 else
1307 NET_INC_STATS_BH(TCPFullUndo);
1308 tp->undo_marker = 0;
1310 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1311 /* Hold old state until something *above* high_seq
1312 * is ACKed. For Reno it is MUST to prevent false
1313 * fast retransmits (RFC2582). SACK TCP is safe. */
1314 tcp_moderate_cwnd(tp);
1315 return 1;
1317 tp->ca_state = TCP_CA_Open;
1318 return 0;
1321 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1322 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_opt *tp)
1324 if (tp->undo_marker && !tp->undo_retrans) {
1325 DBGUNDO(sk, tp, "D-SACK");
1326 tcp_undo_cwr(tp, 1);
1327 tp->undo_marker = 0;
1328 NET_INC_STATS_BH(TCPDSACKUndo);
1332 /* Undo during fast recovery after partial ACK. */
1334 static int tcp_try_undo_partial(struct sock *sk, struct tcp_opt *tp, int acked)
1336 /* Partial ACK arrived. Force Hoe's retransmit. */
1337 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1339 if (tcp_may_undo(tp)) {
1340 /* Plain luck! Hole if filled with delayed
1341 * packet, rather than with a retransmit.
1343 if (tp->retrans_out == 0)
1344 tp->retrans_stamp = 0;
1346 tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1348 DBGUNDO(sk, tp, "Hoe");
1349 tcp_undo_cwr(tp, 0);
1350 NET_INC_STATS_BH(TCPPartialUndo);
1352 /* So... Do not make Hoe's retransmit yet.
1353 * If the first packet was delayed, the rest
1354 * ones are most probably delayed as well.
1356 failed = 0;
1358 return failed;
1361 /* Undo during loss recovery after partial ACK. */
1362 static int tcp_try_undo_loss(struct sock *sk, struct tcp_opt *tp)
1364 if (tcp_may_undo(tp)) {
1365 struct sk_buff *skb;
1366 for_retrans_queue(skb, sk, tp) {
1367 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1369 DBGUNDO(sk, tp, "partial loss");
1370 tp->lost_out = 0;
1371 tp->left_out = tp->sacked_out;
1372 tcp_undo_cwr(tp, 1);
1373 NET_INC_STATS_BH(TCPLossUndo);
1374 tp->retransmits = 0;
1375 tp->undo_marker = 0;
1376 if (!IsReno(tp)) {
1377 tp->ca_state = TCP_CA_Open;
1378 tp->backoff = 0;
1380 return 1;
1382 return 0;
1385 static __inline__ void tcp_complete_cwr(struct tcp_opt *tp)
1387 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1388 tp->snd_cwnd_stamp = tcp_time_stamp;
1391 static void tcp_try_to_open(struct sock *sk, struct tcp_opt *tp, int flag)
1393 tp->left_out = tp->sacked_out;
1395 if (tp->retrans_out == 0)
1396 tp->retrans_stamp = 0;
1398 if (flag&FLAG_ECE)
1399 tcp_enter_cwr(tp);
1401 if (tp->ca_state != TCP_CA_CWR) {
1402 int state = TCP_CA_Open;
1404 if (tp->left_out ||
1405 tp->retrans_out ||
1406 tp->undo_marker)
1407 state = TCP_CA_Disorder;
1409 if (tp->ca_state != state) {
1410 tp->ca_state = state;
1411 tp->high_seq = tp->snd_nxt;
1413 tcp_moderate_cwnd(tp);
1414 } else {
1415 tcp_cwnd_down(tp);
1419 /* Process an event, which can update packets-in-flight not trivially.
1420 * Main goal of this function is to calculate new estimate for left_out,
1421 * taking into account both packets sitting in receiver's buffer and
1422 * packets lost by network.
1424 * Besides that it does CWND reduction, when packet loss is detected
1425 * and changes state of machine.
1427 * It does _not_ decide what to send, it is made in function
1428 * tcp_xmit_retransmit_queue().
1430 static void
1431 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1432 int prior_packets, int flag)
1434 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
1435 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1437 /* Some technical things:
1438 * 1. Reno does not count dupacks (sacked_out) automatically. */
1439 if (!tp->packets_out)
1440 tp->sacked_out = 0;
1441 /* 2. SACK counts snd_fack in packets inaccurately. */
1442 if (tp->sacked_out == 0)
1443 tp->fackets_out = 0;
1445 /* Now state machine starts.
1446 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1447 if (flag&FLAG_ECE)
1448 tp->prior_ssthresh = 0;
1450 /* B. In all the states check for reneging SACKs. */
1451 if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
1452 return;
1454 /* C. Process data loss notification, provided it is valid. */
1455 if ((flag&FLAG_DATA_LOST) &&
1456 before(tp->snd_una, tp->high_seq) &&
1457 tp->ca_state != TCP_CA_Open &&
1458 tp->fackets_out > tp->reordering) {
1459 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1460 NET_INC_STATS_BH(TCPLoss);
1463 /* D. Synchronize left_out to current state. */
1464 tp->left_out = tp->sacked_out + tp->lost_out;
1466 /* E. Check state exit conditions. State can be terminated
1467 * when high_seq is ACKed. */
1468 if (tp->ca_state == TCP_CA_Open) {
1469 BUG_TRAP(tp->retrans_out == 0);
1470 tp->retrans_stamp = 0;
1471 } else if (!before(tp->snd_una, tp->high_seq)) {
1472 switch (tp->ca_state) {
1473 case TCP_CA_Loss:
1474 tp->retransmits = 0;
1475 if (tcp_try_undo_recovery(sk, tp))
1476 return;
1477 tp->backoff = 0;
1478 break;
1480 case TCP_CA_CWR:
1481 /* CWR is to be held something *above* high_seq
1482 * is ACKed for CWR bit to reach receiver. */
1483 if (tp->snd_una != tp->high_seq) {
1484 tcp_complete_cwr(tp);
1485 tp->ca_state = TCP_CA_Open;
1487 break;
1489 case TCP_CA_Disorder:
1490 tcp_try_undo_dsack(sk, tp);
1491 if (IsReno(tp) || !tp->undo_marker) {
1492 tp->undo_marker = 0;
1493 tp->ca_state = TCP_CA_Open;
1495 break;
1497 case TCP_CA_Recovery:
1498 if (IsReno(tp))
1499 tcp_reset_reno_sack(tp);
1500 if (tcp_try_undo_recovery(sk, tp))
1501 return;
1502 tcp_complete_cwr(tp);
1503 break;
1507 /* F. Process state. */
1508 switch (tp->ca_state) {
1509 case TCP_CA_Recovery:
1510 if (prior_snd_una == tp->snd_una) {
1511 if (IsReno(tp) && is_dupack)
1512 tcp_add_reno_sack(tp);
1513 } else {
1514 int acked = prior_packets - tp->packets_out;
1515 if (IsReno(tp))
1516 tcp_remove_reno_sacks(sk, tp, acked);
1517 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1519 break;
1520 case TCP_CA_Loss:
1521 if (flag & FLAG_ACKED)
1522 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1523 if (!tcp_try_undo_loss(sk, tp)) {
1524 tcp_moderate_cwnd(tp);
1525 tcp_xmit_retransmit_queue(sk);
1526 return;
1528 if (tp->ca_state != TCP_CA_Open)
1529 return;
1530 /* Loss is undone; fall through to processing in Open state. */
1531 default:
1532 if (IsReno(tp)) {
1533 if (tp->snd_una != prior_snd_una)
1534 tcp_reset_reno_sack(tp);
1535 if (is_dupack)
1536 tcp_add_reno_sack(tp);
1539 if (tp->ca_state == TCP_CA_Disorder)
1540 tcp_try_undo_dsack(sk, tp);
1542 if (!tcp_time_to_recover(sk, tp)) {
1543 tcp_try_to_open(sk, tp, flag);
1544 return;
1547 /* Otherwise enter Recovery state */
1549 if (IsReno(tp))
1550 NET_INC_STATS_BH(TCPRenoRecovery);
1551 else
1552 NET_INC_STATS_BH(TCPSackRecovery);
1554 tp->high_seq = tp->snd_nxt;
1555 tp->prior_ssthresh = 0;
1556 tp->undo_marker = tp->snd_una;
1557 tp->undo_retrans = tp->retrans_out;
1559 if (tp->ca_state < TCP_CA_CWR) {
1560 if (!(flag&FLAG_ECE))
1561 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1562 tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1563 TCP_ECN_queue_cwr(tp);
1566 tp->snd_cwnd_cnt = 0;
1567 tp->ca_state = TCP_CA_Recovery;
1570 if (is_dupack)
1571 tcp_update_scoreboard(sk, tp);
1572 tcp_cwnd_down(tp);
1573 tcp_xmit_retransmit_queue(sk);
1576 /* Read draft-ietf-tcplw-high-performance before mucking
1577 * with this code. (Superceeds RFC1323)
1579 static void tcp_ack_saw_tstamp(struct tcp_opt *tp)
1581 __u32 seq_rtt;
1583 /* RTTM Rule: A TSecr value received in a segment is used to
1584 * update the averaged RTT measurement only if the segment
1585 * acknowledges some new data, i.e., only if it advances the
1586 * left edge of the send window.
1588 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1589 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1591 seq_rtt = tcp_time_stamp - tp->rcv_tsecr;
1592 tcp_rtt_estimator(tp, seq_rtt);
1593 tcp_set_rto(tp);
1594 tp->rto <<= tp->backoff;
1595 tcp_bound_rto(tp);
1598 static void tcp_ack_no_tstamp(struct tcp_opt *tp, u32 seq_rtt, int flag)
1600 /* We don't have a timestamp. Can only use
1601 * packets that are not retransmitted to determine
1602 * rtt estimates. Also, we must not reset the
1603 * backoff for rto until we get a non-retransmitted
1604 * packet. This allows us to deal with a situation
1605 * where the network delay has increased suddenly.
1606 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1609 if (!tp->retransmits && !(flag & FLAG_RETRANS_DATA_ACKED)) {
1610 tp->backoff = 0;
1611 tcp_rtt_estimator(tp, seq_rtt);
1612 tcp_set_rto(tp);
1613 tcp_bound_rto(tp);
1617 static __inline__ void
1618 tcp_ack_update_rtt(struct tcp_opt *tp, int flag, u32 seq_rtt)
1620 if (tp->saw_tstamp)
1621 tcp_ack_saw_tstamp(tp);
1622 else
1623 tcp_ack_no_tstamp(tp, seq_rtt, flag);
1626 /* This is Jacobson's slow start and congestion avoidance.
1627 * SIGCOMM '88, p. 328.
1629 static __inline__ void tcp_cong_avoid(struct tcp_opt *tp)
1631 if (tp->snd_cwnd <= tp->snd_ssthresh) {
1632 /* In "safe" area, increase. */
1633 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
1634 tp->snd_cwnd++;
1635 } else {
1636 /* In dangerous area, increase slowly.
1637 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
1639 if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
1640 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
1641 tp->snd_cwnd++;
1642 tp->snd_cwnd_cnt=0;
1643 } else
1644 tp->snd_cwnd_cnt++;
1648 static __inline__ void tcp_ack_packets_out(struct sock *sk, struct tcp_opt *tp)
1650 if (tp->packets_out==0) {
1651 tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
1652 } else {
1653 struct sk_buff *skb = skb_peek(&sk->write_queue);
1654 __u32 when = tp->rto - (tcp_time_stamp - TCP_SKB_CB(skb)->when);
1656 if ((__s32)when <= 0)
1657 when = TCP_RTO_MIN;
1658 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, when);
1662 /* Remove acknowledged frames from the retransmission queue. */
1663 static int tcp_clean_rtx_queue(struct sock *sk)
1665 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
1666 struct sk_buff *skb;
1667 __u32 now = tcp_time_stamp;
1668 int acked = 0;
1669 __u32 seq_rtt = 0; /* F..g gcc... */
1671 while((skb=skb_peek(&sk->write_queue)) && (skb != tp->send_head)) {
1672 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1673 __u8 sacked = scb->sacked;
1675 /* If our packet is before the ack sequence we can
1676 * discard it as it's confirmed to have arrived at
1677 * the other end.
1679 if (after(scb->end_seq, tp->snd_una))
1680 break;
1682 /* Initial outgoing SYN's get put onto the write_queue
1683 * just like anything else we transmit. It is not
1684 * true data, and if we misinform our callers that
1685 * this ACK acks real data, we will erroneously exit
1686 * connection startup slow start one packet too
1687 * quickly. This is severely frowned upon behavior.
1689 if(!(scb->flags & TCPCB_FLAG_SYN)) {
1690 acked |= FLAG_DATA_ACKED;
1691 } else {
1692 acked |= FLAG_SYN_ACKED;
1695 if (sacked) {
1696 if(sacked & TCPCB_RETRANS) {
1697 if(sacked & TCPCB_SACKED_RETRANS)
1698 tp->retrans_out--;
1699 acked |= FLAG_RETRANS_DATA_ACKED;
1701 if(sacked & TCPCB_SACKED_ACKED)
1702 tp->sacked_out--;
1703 if(sacked & TCPCB_LOST)
1704 tp->lost_out--;
1706 if(tp->fackets_out)
1707 tp->fackets_out--;
1708 tp->packets_out--;
1709 seq_rtt = now - scb->when;
1710 __skb_unlink(skb, skb->list);
1711 tcp_free_skb(sk, skb);
1714 if (acked&FLAG_ACKED) {
1715 tcp_ack_update_rtt(tp, acked, seq_rtt);
1716 tcp_ack_packets_out(sk, tp);
1719 #if FASTRETRANS_DEBUG > 0
1720 BUG_TRAP((int)tp->sacked_out >= 0);
1721 BUG_TRAP((int)tp->lost_out >= 0);
1722 BUG_TRAP((int)tp->retrans_out >= 0);
1723 if (tp->packets_out==0 && tp->sack_ok) {
1724 if (tp->lost_out) {
1725 printk(KERN_DEBUG "Leak l=%u %d\n", tp->lost_out, tp->ca_state);
1726 tp->lost_out = 0;
1728 if (tp->sacked_out) {
1729 printk(KERN_DEBUG "Leak s=%u %d\n", tp->sacked_out, tp->ca_state);
1730 tp->sacked_out = 0;
1732 if (tp->retrans_out) {
1733 printk(KERN_DEBUG "Leak r=%u %d\n", tp->retrans_out, tp->ca_state);
1734 tp->retrans_out = 0;
1737 #endif
1738 return acked;
1741 static void tcp_ack_probe(struct sock *sk)
1743 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
1745 /* Was it a usable window open? */
1747 if (!after(TCP_SKB_CB(tp->send_head)->end_seq, tp->snd_una + tp->snd_wnd)) {
1748 tp->backoff = 0;
1749 tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
1750 /* Socket must be waked up by subsequent tcp_data_snd_check().
1751 * This function is not for random using!
1753 } else {
1754 tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
1755 min(tp->rto << tp->backoff, TCP_RTO_MAX));
1759 static __inline__ int tcp_ack_is_dubious(struct tcp_opt *tp, int flag)
1761 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
1762 tp->ca_state != TCP_CA_Open);
1765 static __inline__ int tcp_may_raise_cwnd(struct tcp_opt *tp, int flag)
1767 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
1768 !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
1771 /* Check that window update is acceptable.
1772 * The function assumes that snd_una<=ack<=snd_next.
1774 static __inline__ int
1775 tcp_may_update_window(struct tcp_opt *tp, u32 ack, u32 ack_seq, u32 nwin)
1777 return (after(ack, tp->snd_una) ||
1778 after(ack_seq, tp->snd_wl1) ||
1779 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
1782 /* Update our send window.
1784 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
1785 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
1787 static int tcp_ack_update_window(struct sock *sk, struct tcp_opt *tp,
1788 struct sk_buff *skb, u32 ack, u32 ack_seq)
1790 int flag = 0;
1791 u32 nwin = ntohs(skb->h.th->window) << tp->snd_wscale;
1793 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
1794 flag |= FLAG_WIN_UPDATE;
1795 tcp_update_wl(tp, ack, ack_seq);
1797 if (tp->snd_wnd != nwin) {
1798 tp->snd_wnd = nwin;
1800 /* Note, it is the only place, where
1801 * fast path is recovered for sending TCP.
1803 if (skb_queue_len(&tp->out_of_order_queue) == 0 &&
1804 #ifdef TCP_FORMAL_WINDOW
1805 tcp_receive_window(tp) &&
1806 #endif
1807 !tp->urg_data)
1808 tcp_fast_path_on(tp);
1810 if (nwin > tp->max_window) {
1811 tp->max_window = nwin;
1812 tcp_sync_mss(sk, tp->pmtu_cookie);
1817 tp->snd_una = ack;
1819 #ifdef TCP_DEBUG
1820 if (before(tp->snd_una + tp->snd_wnd, tp->snd_nxt)) {
1821 if (net_ratelimit())
1822 printk(KERN_DEBUG "TCP: peer shrinks window. Bad, what else can I say?\n");
1824 #endif
1826 return flag;
1829 /* This routine deals with incoming acks, but not outgoing ones. */
1830 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
1832 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
1833 u32 prior_snd_una = tp->snd_una;
1834 u32 ack_seq = TCP_SKB_CB(skb)->seq;
1835 u32 ack = TCP_SKB_CB(skb)->ack_seq;
1836 u32 prior_in_flight;
1837 int prior_packets;
1839 /* If the ack is newer than sent or older than previous acks
1840 * then we can probably ignore it.
1842 if (after(ack, tp->snd_nxt))
1843 goto uninteresting_ack;
1845 if (before(ack, prior_snd_una))
1846 goto old_ack;
1848 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
1849 /* Window is constant, pure forward advance.
1850 * No more checks are required.
1851 * Note, we use the fact that SND.UNA>=SND.WL2.
1853 tcp_update_wl(tp, ack, ack_seq);
1854 tp->snd_una = ack;
1855 flag |= FLAG_WIN_UPDATE;
1857 NET_INC_STATS_BH(TCPHPAcks);
1858 } else {
1859 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
1860 flag |= FLAG_DATA;
1861 else
1862 NET_INC_STATS_BH(TCPPureAcks);
1864 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
1866 if (TCP_SKB_CB(skb)->sacked)
1867 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
1869 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
1870 flag |= FLAG_ECE;
1873 /* We passed data and got it acked, remove any soft error
1874 * log. Something worked...
1876 sk->err_soft = 0;
1877 tp->rcv_tstamp = tcp_time_stamp;
1878 if ((prior_packets = tp->packets_out) == 0)
1879 goto no_queue;
1881 prior_in_flight = tcp_packets_in_flight(tp);
1883 /* See if we can take anything off of the retransmit queue. */
1884 flag |= tcp_clean_rtx_queue(sk);
1886 if (tcp_ack_is_dubious(tp, flag)) {
1887 /* Advanve CWND, if state allows this. */
1888 if ((flag&FLAG_DATA_ACKED) && prior_in_flight >= tp->snd_cwnd &&
1889 tcp_may_raise_cwnd(tp, flag))
1890 tcp_cong_avoid(tp);
1891 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
1892 } else {
1893 if ((flag&FLAG_DATA_ACKED) && prior_in_flight >= tp->snd_cwnd)
1894 tcp_cong_avoid(tp);
1897 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
1898 dst_confirm(sk->dst_cache);
1900 return 1;
1902 no_queue:
1903 tp->probes_out = 0;
1905 /* If this ack opens up a zero window, clear backoff. It was
1906 * being used to time the probes, and is probably far higher than
1907 * it needs to be for normal retransmission.
1909 if (tp->send_head)
1910 tcp_ack_probe(sk);
1911 return 1;
1913 old_ack:
1914 if (TCP_SKB_CB(skb)->sacked)
1915 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
1917 uninteresting_ack:
1918 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
1919 return 0;
1923 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
1924 * But, this can also be called on packets in the established flow when
1925 * the fast version below fails.
1927 void tcp_parse_options(struct sk_buff *skb, struct tcp_opt *tp)
1929 unsigned char *ptr;
1930 struct tcphdr *th = skb->h.th;
1931 int length=(th->doff*4)-sizeof(struct tcphdr);
1933 ptr = (unsigned char *)(th + 1);
1934 tp->saw_tstamp = 0;
1936 while(length>0) {
1937 int opcode=*ptr++;
1938 int opsize;
1940 switch (opcode) {
1941 case TCPOPT_EOL:
1942 return;
1943 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
1944 length--;
1945 continue;
1946 default:
1947 opsize=*ptr++;
1948 if (opsize < 2) /* "silly options" */
1949 return;
1950 if (opsize > length)
1951 break; /* don't parse partial options */
1952 switch(opcode) {
1953 case TCPOPT_MSS:
1954 if(opsize==TCPOLEN_MSS && th->syn) {
1955 u16 in_mss = ntohs(*(__u16 *)ptr);
1956 if (in_mss) {
1957 if (tp->user_mss && tp->user_mss < in_mss)
1958 in_mss = tp->user_mss;
1959 tp->mss_clamp = in_mss;
1962 break;
1963 case TCPOPT_WINDOW:
1964 if(opsize==TCPOLEN_WINDOW && th->syn)
1965 if (sysctl_tcp_window_scaling) {
1966 tp->wscale_ok = 1;
1967 tp->snd_wscale = *(__u8 *)ptr;
1968 if(tp->snd_wscale > 14) {
1969 if(net_ratelimit())
1970 printk("tcp_parse_options: Illegal window "
1971 "scaling value %d >14 received.",
1972 tp->snd_wscale);
1973 tp->snd_wscale = 14;
1976 break;
1977 case TCPOPT_TIMESTAMP:
1978 if(opsize==TCPOLEN_TIMESTAMP) {
1979 if (sysctl_tcp_timestamps) {
1980 tp->tstamp_ok = 1;
1981 tp->saw_tstamp = 1;
1982 tp->rcv_tsval = ntohl(*(__u32 *)ptr);
1983 tp->rcv_tsecr = ntohl(*(__u32 *)(ptr+4));
1986 break;
1987 case TCPOPT_SACK_PERM:
1988 if(opsize==TCPOLEN_SACK_PERM && th->syn) {
1989 if (sysctl_tcp_sack) {
1990 tp->sack_ok = 1;
1991 tcp_sack_reset(tp);
1994 break;
1996 case TCPOPT_SACK:
1997 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1998 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
1999 tp->sack_ok) {
2000 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2003 ptr+=opsize-2;
2004 length-=opsize;
2009 /* Fast parse options. This hopes to only see timestamps.
2010 * If it is wrong it falls back on tcp_parse_options().
2012 static __inline__ int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, struct tcp_opt *tp)
2014 if (th->doff == sizeof(struct tcphdr)>>2) {
2015 tp->saw_tstamp = 0;
2016 return 0;
2017 } else if (th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2018 __u32 *ptr = (__u32 *)(th + 1);
2019 if (*ptr == __constant_ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2020 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2021 tp->saw_tstamp = 1;
2022 ++ptr;
2023 tp->rcv_tsval = ntohl(*ptr);
2024 ++ptr;
2025 tp->rcv_tsecr = ntohl(*ptr);
2026 return 1;
2029 tcp_parse_options(skb, tp);
2030 return 1;
2033 extern __inline__ void
2034 tcp_store_ts_recent(struct tcp_opt *tp)
2036 tp->ts_recent = tp->rcv_tsval;
2037 tp->ts_recent_stamp = xtime.tv_sec;
2040 extern __inline__ void
2041 tcp_replace_ts_recent(struct tcp_opt *tp, u32 seq)
2043 if (tp->saw_tstamp && !after(seq, tp->rcv_wup)) {
2044 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2045 * extra check below makes sure this can only happen
2046 * for pure ACK frames. -DaveM
2048 * Not only, also it occurs for expired timestamps.
2051 if((s32)(tp->rcv_tsval - tp->ts_recent) >= 0 ||
2052 xtime.tv_sec >= tp->ts_recent_stamp + TCP_PAWS_24DAYS)
2053 tcp_store_ts_recent(tp);
2057 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2059 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2060 * it can pass through stack. So, the following predicate verifies that
2061 * this segment is not used for anything but congestion avoidance or
2062 * fast retransmit. Moreover, we even are able to eliminate most of such
2063 * second order effects, if we apply some small "replay" window (~RTO)
2064 * to timestamp space.
2066 * All these measures still do not guarantee that we reject wrapped ACKs
2067 * on networks with high bandwidth, when sequence space is recycled fastly,
2068 * but it guarantees that such events will be very rare and do not affect
2069 * connection seriously. This doesn't look nice, but alas, PAWS is really
2070 * buggy extension.
2072 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2073 * states that events when retransmit arrives after original data are rare.
2074 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2075 * the biggest problem on large power networks even with minor reordering.
2076 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2077 * up to bandwidth of 18Gigabit/sec. 8) ]
2080 static int tcp_disordered_ack(struct tcp_opt *tp, struct sk_buff *skb)
2082 struct tcphdr *th = skb->h.th;
2083 u32 seq = TCP_SKB_CB(skb)->seq;
2084 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2086 return (/* 1. Pure ACK with correct sequence number. */
2087 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2089 /* 2. ... and duplicate ACK. */
2090 ack == tp->snd_una &&
2092 /* 3. ... and does not update window. */
2093 !tcp_may_update_window(tp, ack, seq, ntohs(th->window)<<tp->snd_wscale) &&
2095 /* 4. ... and sits in replay window. */
2096 (s32)(tp->ts_recent - tp->rcv_tsval) <= (tp->rto*1024)/HZ);
2099 extern __inline__ int tcp_paws_discard(struct tcp_opt *tp, struct sk_buff *skb)
2101 return ((s32)(tp->ts_recent - tp->rcv_tsval) > TCP_PAWS_WINDOW &&
2102 xtime.tv_sec < tp->ts_recent_stamp + TCP_PAWS_24DAYS &&
2103 !tcp_disordered_ack(tp, skb));
2106 static int __tcp_sequence(struct tcp_opt *tp, u32 seq, u32 end_seq)
2108 u32 end_window = tp->rcv_wup + tp->rcv_wnd;
2109 #ifdef TCP_FORMAL_WINDOW
2110 u32 rcv_wnd = tcp_receive_window(tp);
2111 #else
2112 u32 rcv_wnd = tp->rcv_wnd;
2113 #endif
2115 if (rcv_wnd &&
2116 after(end_seq, tp->rcv_nxt) &&
2117 before(seq, end_window))
2118 return 1;
2119 if (seq != end_window)
2120 return 0;
2121 return (seq == end_seq);
2124 /* This functions checks to see if the tcp header is actually acceptable.
2126 * Actually, our check is seriously broken, we must accept RST,ACK,URG
2127 * even on zero window effectively trimming data. It is RFC, guys.
2128 * But our check is so beautiful, that I do not want to repair it
2129 * now. However, taking into account those stupid plans to start to
2130 * send some texts with RST, we have to handle at least this case. --ANK
2132 extern __inline__ int tcp_sequence(struct tcp_opt *tp, u32 seq, u32 end_seq, int rst)
2134 #ifdef TCP_FORMAL_WINDOW
2135 u32 rcv_wnd = tcp_receive_window(tp);
2136 #else
2137 u32 rcv_wnd = tp->rcv_wnd;
2138 #endif
2139 if (seq == tp->rcv_nxt)
2140 return (rcv_wnd || (end_seq == seq) || rst);
2142 return __tcp_sequence(tp, seq, end_seq);
2145 /* When we get a reset we do this. */
2146 static void tcp_reset(struct sock *sk)
2148 /* We want the right error as BSD sees it (and indeed as we do). */
2149 switch (sk->state) {
2150 case TCP_SYN_SENT:
2151 sk->err = ECONNREFUSED;
2152 break;
2153 case TCP_CLOSE_WAIT:
2154 sk->err = EPIPE;
2155 break;
2156 case TCP_CLOSE:
2157 return;
2158 default:
2159 sk->err = ECONNRESET;
2162 if (!sk->dead)
2163 sk->error_report(sk);
2165 tcp_done(sk);
2169 * Process the FIN bit. This now behaves as it is supposed to work
2170 * and the FIN takes effect when it is validly part of sequence
2171 * space. Not before when we get holes.
2173 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2174 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2175 * TIME-WAIT)
2177 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2178 * close and we go into CLOSING (and later onto TIME-WAIT)
2180 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2182 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2184 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2186 tp->fin_seq = TCP_SKB_CB(skb)->end_seq;
2187 tcp_schedule_ack(tp);
2189 sk->shutdown |= RCV_SHUTDOWN;
2190 sk->done = 1;
2192 switch(sk->state) {
2193 case TCP_SYN_RECV:
2194 case TCP_ESTABLISHED:
2195 /* Move to CLOSE_WAIT */
2196 tcp_set_state(sk, TCP_CLOSE_WAIT);
2197 tp->ack.pingpong = 1;
2198 break;
2200 case TCP_CLOSE_WAIT:
2201 case TCP_CLOSING:
2202 /* Received a retransmission of the FIN, do
2203 * nothing.
2205 break;
2206 case TCP_LAST_ACK:
2207 /* RFC793: Remain in the LAST-ACK state. */
2208 break;
2210 case TCP_FIN_WAIT1:
2211 /* This case occurs when a simultaneous close
2212 * happens, we must ack the received FIN and
2213 * enter the CLOSING state.
2215 tcp_send_ack(sk);
2216 tcp_set_state(sk, TCP_CLOSING);
2217 break;
2218 case TCP_FIN_WAIT2:
2219 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2220 tcp_send_ack(sk);
2221 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2222 break;
2223 default:
2224 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2225 * cases we should never reach this piece of code.
2227 printk("tcp_fin: Impossible, sk->state=%d\n", sk->state);
2228 break;
2231 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2232 * Probably, we should reset in this case. For now drop them.
2234 __skb_queue_purge(&tp->out_of_order_queue);
2235 if (tp->sack_ok)
2236 tcp_sack_reset(tp);
2237 tcp_mem_reclaim(sk);
2239 if (!sk->dead) {
2240 sk->state_change(sk);
2242 /* Do not send POLL_HUP for half duplex close. */
2243 if (sk->shutdown == SHUTDOWN_MASK || sk->state == TCP_CLOSE)
2244 sk_wake_async(sk, 1, POLL_HUP);
2245 else
2246 sk_wake_async(sk, 1, POLL_IN);
2250 static __inline__ int
2251 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2253 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2254 if (before(seq, sp->start_seq))
2255 sp->start_seq = seq;
2256 if (after(end_seq, sp->end_seq))
2257 sp->end_seq = end_seq;
2258 return 1;
2260 return 0;
2263 static __inline__ void tcp_dsack_set(struct tcp_opt *tp, u32 seq, u32 end_seq)
2265 if (tp->sack_ok && sysctl_tcp_dsack) {
2266 if (before(seq, tp->rcv_nxt))
2267 NET_INC_STATS_BH(TCPDSACKOldSent);
2268 else
2269 NET_INC_STATS_BH(TCPDSACKOfoSent);
2271 tp->dsack = 1;
2272 tp->duplicate_sack[0].start_seq = seq;
2273 tp->duplicate_sack[0].end_seq = end_seq;
2274 tp->eff_sacks = min(tp->num_sacks+1, 4-tp->tstamp_ok);
2278 static __inline__ void tcp_dsack_extend(struct tcp_opt *tp, u32 seq, u32 end_seq)
2280 if (!tp->dsack)
2281 tcp_dsack_set(tp, seq, end_seq);
2282 else
2283 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2286 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2288 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2290 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2291 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2292 NET_INC_STATS_BH(DelayedACKLost);
2293 tcp_enter_quickack_mode(tp);
2295 if (tp->sack_ok && sysctl_tcp_dsack) {
2296 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2298 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2299 end_seq = tp->rcv_nxt;
2300 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2304 tcp_send_ack(sk);
2307 /* These routines update the SACK block as out-of-order packets arrive or
2308 * in-order packets close up the sequence space.
2310 static void tcp_sack_maybe_coalesce(struct tcp_opt *tp)
2312 int this_sack;
2313 struct tcp_sack_block *sp = &tp->selective_acks[0];
2314 struct tcp_sack_block *swalk = sp+1;
2316 /* See if the recent change to the first SACK eats into
2317 * or hits the sequence space of other SACK blocks, if so coalesce.
2319 for (this_sack = 1; this_sack < tp->num_sacks; ) {
2320 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2321 int i;
2323 /* Zap SWALK, by moving every further SACK up by one slot.
2324 * Decrease num_sacks.
2326 tp->num_sacks--;
2327 tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
2328 for(i=this_sack; i < tp->num_sacks; i++)
2329 sp[i] = sp[i+1];
2330 continue;
2332 this_sack++, swalk++;
2336 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2338 __u32 tmp;
2340 tmp = sack1->start_seq;
2341 sack1->start_seq = sack2->start_seq;
2342 sack2->start_seq = tmp;
2344 tmp = sack1->end_seq;
2345 sack1->end_seq = sack2->end_seq;
2346 sack2->end_seq = tmp;
2349 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2351 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2352 struct tcp_sack_block *sp = &tp->selective_acks[0];
2353 int cur_sacks = tp->num_sacks;
2354 int this_sack;
2356 if (!cur_sacks)
2357 goto new_sack;
2359 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2360 if (tcp_sack_extend(sp, seq, end_seq)) {
2361 /* Rotate this_sack to the first one. */
2362 for (; this_sack>0; this_sack--, sp--)
2363 tcp_sack_swap(sp, sp-1);
2364 if (cur_sacks > 1)
2365 tcp_sack_maybe_coalesce(tp);
2366 return;
2370 /* Could not find an adjacent existing SACK, build a new one,
2371 * put it at the front, and shift everyone else down. We
2372 * always know there is at least one SACK present already here.
2374 * If the sack array is full, forget about the last one.
2376 if (this_sack >= 4) {
2377 this_sack--;
2378 tp->num_sacks--;
2379 sp--;
2381 for(; this_sack > 0; this_sack--, sp--)
2382 *sp = *(sp-1);
2384 new_sack:
2385 /* Build the new head SACK, and we're done. */
2386 sp->start_seq = seq;
2387 sp->end_seq = end_seq;
2388 tp->num_sacks++;
2389 tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
2392 /* RCV.NXT advances, some SACKs should be eaten. */
2394 static void tcp_sack_remove(struct tcp_opt *tp)
2396 struct tcp_sack_block *sp = &tp->selective_acks[0];
2397 int num_sacks = tp->num_sacks;
2398 int this_sack;
2400 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2401 if (skb_queue_len(&tp->out_of_order_queue) == 0) {
2402 tp->num_sacks = 0;
2403 tp->eff_sacks = tp->dsack;
2404 return;
2407 for(this_sack = 0; this_sack < num_sacks; ) {
2408 /* Check if the start of the sack is covered by RCV.NXT. */
2409 if (!before(tp->rcv_nxt, sp->start_seq)) {
2410 int i;
2412 /* RCV.NXT must cover all the block! */
2413 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2415 /* Zap this SACK, by moving forward any other SACKS. */
2416 for (i=this_sack+1; i < num_sacks; i++)
2417 sp[i-1] = sp[i];
2418 num_sacks--;
2419 continue;
2421 this_sack++;
2422 sp++;
2424 if (num_sacks != tp->num_sacks) {
2425 tp->num_sacks = num_sacks;
2426 tp->eff_sacks = min(tp->num_sacks+tp->dsack, 4-tp->tstamp_ok);
2430 /* This one checks to see if we can put data from the
2431 * out_of_order queue into the receive_queue.
2433 static void tcp_ofo_queue(struct sock *sk)
2435 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2436 __u32 dsack_high = tp->rcv_nxt;
2437 struct sk_buff *skb;
2439 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2440 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2441 break;
2443 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2444 __u32 dsack = dsack_high;
2445 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2446 dsack_high = TCP_SKB_CB(skb)->end_seq;
2447 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2450 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2451 SOCK_DEBUG(sk, "ofo packet was already received \n");
2452 __skb_unlink(skb, skb->list);
2453 __kfree_skb(skb);
2454 continue;
2456 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2457 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2458 TCP_SKB_CB(skb)->end_seq);
2460 __skb_unlink(skb, skb->list);
2461 __skb_queue_tail(&sk->receive_queue, skb);
2462 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2463 if(skb->h.th->fin)
2464 tcp_fin(skb, sk, skb->h.th);
2468 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2470 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2471 int eaten = 0;
2473 if (tp->dsack) {
2474 tp->dsack = 0;
2475 tp->eff_sacks = min(tp->num_sacks, 4-tp->tstamp_ok);
2478 /* Queue data for delivery to the user.
2479 * Packets in sequence go to the receive queue.
2480 * Out of sequence packets to the out_of_order_queue.
2482 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2483 /* Ok. In sequence. */
2484 if (tp->ucopy.task == current &&
2485 tp->copied_seq == tp->rcv_nxt &&
2486 tp->ucopy.len &&
2487 sk->lock.users &&
2488 !tp->urg_data) {
2489 int chunk = min(skb->len, tp->ucopy.len);
2491 __set_current_state(TASK_RUNNING);
2493 local_bh_enable();
2494 if (memcpy_toiovec(tp->ucopy.iov, skb->data, chunk)) {
2495 sk->err = EFAULT;
2496 sk->error_report(sk);
2498 local_bh_disable();
2499 tp->ucopy.len -= chunk;
2500 tp->copied_seq += chunk;
2501 eaten = (chunk == skb->len && !skb->h.th->fin);
2504 if (!eaten) {
2505 queue_and_out:
2506 tcp_set_owner_r(skb, sk);
2507 __skb_queue_tail(&sk->receive_queue, skb);
2509 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2510 if(skb->len)
2511 tcp_event_data_recv(sk, tp, skb);
2512 if(skb->h.th->fin)
2513 tcp_fin(skb, sk, skb->h.th);
2515 if (skb_queue_len(&tp->out_of_order_queue)) {
2516 tcp_ofo_queue(sk);
2518 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2519 * gap in queue is filled.
2521 if (skb_queue_len(&tp->out_of_order_queue) == 0)
2522 tp->ack.pingpong = 0;
2525 if(tp->num_sacks)
2526 tcp_sack_remove(tp);
2528 /* Turn on fast path. */
2529 if (skb_queue_len(&tp->out_of_order_queue) == 0 &&
2530 #ifdef TCP_FORMAL_WINDOW
2531 tcp_receive_window(tp) &&
2532 #endif
2533 !tp->urg_data)
2534 tcp_fast_path_on(tp);
2536 if (eaten) {
2537 __kfree_skb(skb);
2538 } else if (!sk->dead)
2539 sk->data_ready(sk, 0);
2540 return;
2543 #ifdef TCP_DEBUG
2544 /* An old packet, either a retransmit or some packet got lost. */
2545 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2546 /* A retransmit, 2nd most common case. Force an imediate ack.
2548 * It is impossible, seq is checked by top level.
2550 printk("BUG: retransmit in tcp_data_queue: seq %X\n", TCP_SKB_CB(skb)->seq);
2551 tcp_enter_quickack_mode(tp);
2552 tcp_schedule_ack(tp);
2553 __kfree_skb(skb);
2554 return;
2556 #endif
2558 tcp_enter_quickack_mode(tp);
2560 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2561 /* Partial packet, seq < rcv_next < end_seq */
2562 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
2563 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2564 TCP_SKB_CB(skb)->end_seq);
2566 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
2567 goto queue_and_out;
2570 TCP_ECN_check_ce(tp, skb);
2572 /* Disable header prediction. */
2573 tp->pred_flags = 0;
2574 tcp_schedule_ack(tp);
2576 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
2577 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
2579 tcp_set_owner_r(skb, sk);
2581 if (skb_peek(&tp->out_of_order_queue) == NULL) {
2582 /* Initial out of order segment, build 1 SACK. */
2583 if(tp->sack_ok) {
2584 tp->num_sacks = 1;
2585 tp->dsack = 0;
2586 tp->eff_sacks = 1;
2587 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
2588 tp->selective_acks[0].end_seq = TCP_SKB_CB(skb)->end_seq;
2590 __skb_queue_head(&tp->out_of_order_queue,skb);
2591 } else {
2592 struct sk_buff *skb1=tp->out_of_order_queue.prev;
2593 u32 seq = TCP_SKB_CB(skb)->seq;
2594 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2596 if (seq == TCP_SKB_CB(skb1)->end_seq) {
2597 __skb_append(skb1, skb);
2599 if (tp->num_sacks == 0 ||
2600 tp->selective_acks[0].end_seq != seq)
2601 goto add_sack;
2603 /* Common case: data arrive in order after hole. */
2604 tp->selective_acks[0].end_seq = end_seq;
2605 return;
2608 /* Find place to insert this segment. */
2609 do {
2610 if (!after(TCP_SKB_CB(skb1)->seq, seq))
2611 break;
2612 } while ((skb1=skb1->prev) != (struct sk_buff*)&tp->out_of_order_queue);
2614 /* Do skb overlap to previous one? */
2615 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
2616 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
2617 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
2618 /* All the bits are present. Drop. */
2619 __kfree_skb(skb);
2620 tcp_dsack_set(tp, seq, end_seq);
2621 goto add_sack;
2623 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
2624 /* Partial overlap. */
2625 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
2626 } else {
2627 skb1 = skb1->prev;
2630 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
2632 /* And clean segments covered by new one as whole. */
2633 while ((skb1 = skb->next) != (struct sk_buff*)&tp->out_of_order_queue &&
2634 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
2635 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
2636 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
2637 break;
2639 __skb_unlink(skb1, skb1->list);
2640 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
2641 __kfree_skb(skb1);
2644 add_sack:
2645 if (tp->sack_ok)
2646 tcp_sack_new_ofo_skb(sk, seq, end_seq);
2651 static void tcp_collapse_queue(struct sock *sk, struct sk_buff_head *q)
2653 struct sk_buff *skb = skb_peek(q);
2654 struct sk_buff *skb_next;
2656 while (skb &&
2657 skb != (struct sk_buff *)q &&
2658 (skb_next = skb->next) != (struct sk_buff *)q) {
2659 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2660 struct tcp_skb_cb *scb_next = TCP_SKB_CB(skb_next);
2662 if (scb->end_seq == scb_next->seq &&
2663 skb_tailroom(skb) >= skb_next->len &&
2664 #define TCP_DONT_COLLAPSE (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN)
2665 !(tcp_flag_word(skb->h.th)&TCP_DONT_COLLAPSE) &&
2666 !(tcp_flag_word(skb_next->h.th)&TCP_DONT_COLLAPSE)) {
2667 /* OK to collapse two skbs to one */
2668 memcpy(skb_put(skb, skb_next->len), skb_next->data, skb_next->len);
2669 __skb_unlink(skb_next, skb_next->list);
2670 scb->end_seq = scb_next->end_seq;
2671 __kfree_skb(skb_next);
2672 NET_INC_STATS_BH(TCPRcvCollapsed);
2673 } else {
2674 /* Lots of spare tailroom, reallocate this skb to trim it. */
2675 if (tcp_win_from_space(skb->truesize) > skb->len &&
2676 skb_tailroom(skb) > sizeof(struct sk_buff) + 16) {
2677 struct sk_buff *nskb;
2679 nskb = skb_copy_expand(skb, skb_headroom(skb), 0, GFP_ATOMIC);
2680 if (nskb) {
2681 tcp_set_owner_r(nskb, sk);
2682 memcpy(nskb->data-skb_headroom(skb),
2683 skb->data-skb_headroom(skb),
2684 skb_headroom(skb));
2685 __skb_append(skb, nskb);
2686 __skb_unlink(skb, skb->list);
2687 __kfree_skb(skb);
2690 skb = skb_next;
2695 /* Clean the out_of_order queue if we can, trying to get
2696 * the socket within its memory limits again.
2698 * Return less than zero if we should start dropping frames
2699 * until the socket owning process reads some of the data
2700 * to stabilize the situation.
2702 static int tcp_prune_queue(struct sock *sk)
2704 struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
2706 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
2708 NET_INC_STATS_BH(PruneCalled);
2710 if (atomic_read(&sk->rmem_alloc) >= sk->rcvbuf)
2711 tcp_clamp_window(sk, tp);
2712 else if (tcp_memory_pressure)
2713 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4*tp->advmss);
2715 tcp_collapse_queue(sk, &sk->receive_queue);
2716 tcp_collapse_queue(sk, &tp->out_of_order_queue);
2717 tcp_mem_reclaim(sk);
2719 if (atomic_read(&sk->rmem_alloc) <= sk->rcvbuf)
2720 return 0;
2722 /* Collapsing did not help, destructive actions follow.
2723 * This must not ever occur. */
2725 /* First, purge the out_of_order queue. */
2726 if (skb_queue_len(&tp->out_of_order_queue)) {
2727 net_statistics[smp_processor_id()*2].OfoPruned += skb_queue_len(&tp->out_of_order_queue);
2728 __skb_queue_purge(&tp->out_of_order_queue);
2730 /* Reset SACK state. A conforming SACK implementation will
2731 * do the same at a timeout based retransmit. When a connection
2732 * is in a sad state like this, we care only about integrity
2733 * of the connection not performance.
2735 if(tp->sack_ok)
2736 tcp_sack_reset(tp);
2737 tcp_mem_reclaim(sk);
2740 if(atomic_read(&sk->rmem_alloc) <= sk->rcvbuf)
2741 return 0;
2743 /* If we are really being abused, tell the caller to silently
2744 * drop receive data on the floor. It will get retransmitted
2745 * and hopefully then we'll have sufficient space.
2747 NET_INC_STATS_BH(RcvPruned);
2749 /* Massive buffer overcommit. */
2750 return -1;
2753 static inline int tcp_rmem_schedule(struct sock *sk, struct sk_buff *skb)
2755 return (int)skb->truesize <= sk->forward_alloc ||
2756 tcp_mem_schedule(sk, skb->truesize, 1);
2760 * This routine handles the data. If there is room in the buffer,
2761 * it will be have already been moved into it. If there is no
2762 * room, then we will just have to discard the packet.
2765 static void tcp_data(struct sk_buff *skb, struct sock *sk, unsigned int len)
2767 struct tcphdr *th;
2768 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2770 th = skb->h.th;
2771 skb_pull(skb, th->doff*4);
2772 skb_trim(skb, len - (th->doff*4));
2774 if (skb->len == 0 && !th->fin)
2775 goto drop;
2777 TCP_ECN_accept_cwr(tp, skb);
2780 * If our receive queue has grown past its limits shrink it.
2781 * Make sure to do this before moving rcv_nxt, otherwise
2782 * data might be acked for that we don't have enough room.
2784 if (atomic_read(&sk->rmem_alloc) > sk->rcvbuf ||
2785 !tcp_rmem_schedule(sk, skb)) {
2786 if (tcp_prune_queue(sk) < 0 || !tcp_rmem_schedule(sk, skb))
2787 goto drop;
2790 tcp_data_queue(sk, skb);
2792 #ifdef TCP_DEBUG
2793 if (before(tp->rcv_nxt, tp->copied_seq)) {
2794 printk(KERN_DEBUG "*** tcp.c:tcp_data bug acked < copied\n");
2795 tp->rcv_nxt = tp->copied_seq;
2797 #endif
2798 return;
2800 drop:
2801 __kfree_skb(skb);
2804 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
2805 * As additional protections, we do not touch cwnd in retransmission phases,
2806 * and if application hit its sndbuf limit recently.
2808 void tcp_cwnd_application_limited(struct sock *sk)
2810 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2812 if (tp->ca_state == TCP_CA_Open &&
2813 sk->socket && !test_bit(SOCK_NOSPACE, &sk->socket->flags)) {
2814 /* Limited by application or receiver window. */
2815 u32 win_used = max(tp->snd_cwnd_used, 2);
2816 if (win_used < tp->snd_cwnd) {
2817 tp->snd_ssthresh = tcp_current_ssthresh(tp);
2818 tp->snd_cwnd = (tp->snd_cwnd+win_used)>>1;
2820 tp->snd_cwnd_used = 0;
2822 tp->snd_cwnd_stamp = tcp_time_stamp;
2826 /* When incoming ACK allowed to free some skb from write_queue,
2827 * we remember this event in flag tp->queue_shrunk and wake up socket
2828 * on the exit from tcp input handler.
2830 static void tcp_new_space(struct sock *sk)
2832 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2834 if (tp->packets_out < tp->snd_cwnd &&
2835 !(sk->userlocks&SOCK_SNDBUF_LOCK) &&
2836 !tcp_memory_pressure &&
2837 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
2838 int sndmem, demanded;
2840 sndmem = tp->mss_clamp+MAX_TCP_HEADER+16+sizeof(struct sk_buff);
2841 demanded = max(tp->snd_cwnd, tp->reordering+1);
2842 sndmem *= 2*demanded;
2843 if (sndmem > sk->sndbuf)
2844 sk->sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
2845 tp->snd_cwnd_stamp = tcp_time_stamp;
2848 /* Wakeup users. */
2849 if (tcp_wspace(sk) >= tcp_min_write_space(sk)) {
2850 struct socket *sock = sk->socket;
2852 clear_bit(SOCK_NOSPACE, &sock->flags);
2854 if (sk->sleep && waitqueue_active(sk->sleep))
2855 wake_up_interruptible(sk->sleep);
2857 if (sock->fasync_list && !(sk->shutdown&SEND_SHUTDOWN))
2858 sock_wake_async(sock, 2, POLL_OUT);
2860 /* Satisfy those who hook write_space() callback. */
2861 if (sk->write_space != tcp_write_space)
2862 sk->write_space(sk);
2866 static inline void tcp_check_space(struct sock *sk)
2868 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2870 if (tp->queue_shrunk) {
2871 tp->queue_shrunk = 0;
2872 if (sk->socket && test_bit(SOCK_NOSPACE, &sk->socket->flags))
2873 tcp_new_space(sk);
2877 static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
2879 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2881 if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
2882 tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
2883 tcp_write_xmit(sk))
2884 tcp_check_probe_timer(sk, tp);
2887 static __inline__ void tcp_data_snd_check(struct sock *sk)
2889 struct sk_buff *skb = sk->tp_pinfo.af_tcp.send_head;
2891 if (skb != NULL)
2892 __tcp_data_snd_check(sk, skb);
2893 tcp_check_space(sk);
2897 * Check if sending an ack is needed.
2899 static __inline__ void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
2901 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2903 /* More than one full frame received... */
2904 if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
2905 /* ... and right edge of window advances far enough.
2906 * (tcp_recvmsg() will send ACK otherwise). Or...
2908 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
2909 /* We ACK each frame or... */
2910 tcp_in_quickack_mode(tp) ||
2911 /* We have out of order data. */
2912 (ofo_possible &&
2913 skb_peek(&tp->out_of_order_queue) != NULL)) {
2914 /* Then ack it now */
2915 tcp_send_ack(sk);
2916 } else {
2917 /* Else, send delayed ack. */
2918 tcp_send_delayed_ack(sk);
2922 static __inline__ void tcp_ack_snd_check(struct sock *sk)
2924 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2925 if (!tcp_ack_scheduled(tp)) {
2926 /* We sent a data segment already. */
2927 return;
2929 __tcp_ack_snd_check(sk, 1);
2933 * This routine is only called when we have urgent data
2934 * signalled. Its the 'slow' part of tcp_urg. It could be
2935 * moved inline now as tcp_urg is only called from one
2936 * place. We handle URGent data wrong. We have to - as
2937 * BSD still doesn't use the correction from RFC961.
2938 * For 1003.1g we should support a new option TCP_STDURG to permit
2939 * either form (or just set the sysctl tcp_stdurg).
2942 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
2944 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2945 u32 ptr = ntohs(th->urg_ptr);
2947 if (ptr && !sysctl_tcp_stdurg)
2948 ptr--;
2949 ptr += ntohl(th->seq);
2951 /* Ignore urgent data that we've already seen and read. */
2952 if (after(tp->copied_seq, ptr))
2953 return;
2955 /* Do we already have a newer (or duplicate) urgent pointer? */
2956 if (tp->urg_data && !after(ptr, tp->urg_seq))
2957 return;
2959 /* Tell the world about our new urgent pointer. */
2960 if (sk->proc != 0) {
2961 if (sk->proc > 0)
2962 kill_proc(sk->proc, SIGURG, 1);
2963 else
2964 kill_pg(-sk->proc, SIGURG, 1);
2965 sk_wake_async(sk, 3, POLL_PRI);
2968 /* We may be adding urgent data when the last byte read was
2969 * urgent. To do this requires some care. We cannot just ignore
2970 * tp->copied_seq since we would read the last urgent byte again
2971 * as data, nor can we alter copied_seq until this data arrives
2972 * or we break the sematics of SIOCATMARK (and thus sockatmark())
2974 if (tp->urg_seq == tp->copied_seq)
2975 tp->copied_seq++; /* Move the copied sequence on correctly */
2976 tp->urg_data = TCP_URG_NOTYET;
2977 tp->urg_seq = ptr;
2979 /* Disable header prediction. */
2980 tp->pred_flags = 0;
2983 /* This is the 'fast' part of urgent handling. */
2984 static inline void tcp_urg(struct sock *sk, struct tcphdr *th, unsigned long len)
2986 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
2988 /* Check if we get a new urgent pointer - normally not. */
2989 if (th->urg)
2990 tcp_check_urg(sk,th);
2992 /* Do we wait for any urgent data? - normally not... */
2993 if (tp->urg_data == TCP_URG_NOTYET) {
2994 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff*4);
2996 /* Is the urgent pointer pointing into this packet? */
2997 if (ptr < len) {
2998 tp->urg_data = TCP_URG_VALID | *(ptr + (unsigned char *) th);
2999 if (!sk->dead)
3000 sk->data_ready(sk,0);
3005 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3007 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
3008 int chunk = skb->len - hlen;
3009 int err;
3011 local_bh_enable();
3012 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3013 err = memcpy_toiovec(tp->ucopy.iov, skb->h.raw + hlen, chunk);
3014 else
3015 err = copy_and_csum_toiovec(tp->ucopy.iov, skb, hlen);
3017 if (!err) {
3018 update:
3019 tp->ucopy.len -= chunk;
3020 tp->copied_seq += chunk;
3021 local_bh_disable();
3022 return 0;
3025 if (err == -EFAULT) {
3026 sk->err = EFAULT;
3027 sk->error_report(sk);
3028 goto update;
3031 local_bh_disable();
3032 return err;
3035 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3037 int result;
3039 if (sk->lock.users) {
3040 local_bh_enable();
3041 result = __tcp_checksum_complete(skb);
3042 local_bh_disable();
3043 } else {
3044 result = __tcp_checksum_complete(skb);
3046 return result;
3049 static __inline__ int
3050 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3052 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3053 __tcp_checksum_complete_user(sk, skb);
3057 * TCP receive function for the ESTABLISHED state.
3059 * It is split into a fast path and a slow path. The fast path is
3060 * disabled when:
3061 * - A zero window was announced from us - zero window probing
3062 * is only handled properly in the slow path.
3063 * [ NOTE: actually, it was made incorrectly and nobody ever noticed
3064 * this! Reason is clear: 1. Correct senders do not send
3065 * to zero window. 2. Even if a sender sends to zero window,
3066 * nothing terrible occurs.
3068 * For now I cleaned this and fast path is really always disabled,
3069 * when window is zero, but I would be more happy to remove these
3070 * checks. Code will be only cleaner and _faster_. --ANK
3072 * Later note. I've just found that slow path also accepts
3073 * out of window segments, look at tcp_sequence(). So...
3074 * it is the last argument: I repair all and comment out
3075 * repaired code by TCP_FORMAL_WINDOW.
3076 * [ I remember one rhyme from a chidren's book. (I apologize,
3077 * the trasnlation is not rhymed 8)): people in one (jewish) village
3078 * decided to build sauna, but divided to two parties.
3079 * The first one insisted that battens should not be dubbed,
3080 * another objected that foots will suffer of splinters,
3081 * the first fended that dubbed wet battens are too slippy
3082 * and people will fall and it is much more serious!
3083 * Certaiinly, all they went to rabbi.
3084 * After some thinking, he judged: "Do not be lazy!
3085 * Certainly, dub the battens! But put them by dubbed surface down."
3089 * - Out of order segments arrived.
3090 * - Urgent data is expected.
3091 * - There is no buffer space left
3092 * - Unexpected TCP flags/window values/header lengths are received
3093 * (detected by checking the TCP header against pred_flags)
3094 * - Data is sent in both directions. Fast path only supports pure senders
3095 * or pure receivers (this means either the sequence number or the ack
3096 * value must stay constant)
3097 * - Unexpected TCP option.
3099 * When these conditions are not satisfied it drops into a standard
3100 * receive procedure patterned after RFC793 to handle all cases.
3101 * The first three cases are guaranteed by proper pred_flags setting,
3102 * the rest is checked inline. Fast processing is turned on in
3103 * tcp_data_queue when everything is OK.
3105 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3106 struct tcphdr *th, unsigned len)
3108 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
3111 * Header prediction.
3112 * The code losely follows the one in the famous
3113 * "30 instruction TCP receive" Van Jacobson mail.
3115 * Van's trick is to deposit buffers into socket queue
3116 * on a device interrupt, to call tcp_recv function
3117 * on the receive process context and checksum and copy
3118 * the buffer to user space. smart...
3120 * Our current scheme is not silly either but we take the
3121 * extra cost of the net_bh soft interrupt processing...
3122 * We do checksum and copy also but from device to kernel.
3125 tp->saw_tstamp = 0;
3127 /* pred_flags is 0xS?10 << 16 + snd_wnd
3128 * if header_predition is to be made
3129 * 'S' will always be tp->tcp_header_len >> 2
3130 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3131 * turn it off (when there are holes in the receive
3132 * space for instance)
3133 * PSH flag is ignored.
3136 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3137 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3138 int tcp_header_len = tp->tcp_header_len;
3140 /* Timestamp header prediction: tcp_header_len
3141 * is automatically equal to th->doff*4 due to pred_flags
3142 * match.
3145 /* Check timestamp */
3146 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3147 __u32 *ptr = (__u32 *)(th + 1);
3149 /* No? Slow path! */
3150 if (*ptr != __constant_ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3151 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3152 goto slow_path;
3154 tp->saw_tstamp = 1;
3155 ++ptr;
3156 tp->rcv_tsval = ntohl(*ptr);
3157 ++ptr;
3158 tp->rcv_tsecr = ntohl(*ptr);
3160 /* If PAWS failed, check it more carefully in slow path */
3161 if ((s32)(tp->rcv_tsval - tp->ts_recent) < 0)
3162 goto slow_path;
3164 /* Predicted packet is in window by definition.
3165 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3166 * Hence, check seq<=rcv_wup reduces to:
3168 if (tp->rcv_nxt == tp->rcv_wup)
3169 tcp_store_ts_recent(tp);
3172 if (len <= tcp_header_len) {
3173 /* Bulk data transfer: sender */
3174 if (len == tcp_header_len) {
3175 /* We know that such packets are checksummed
3176 * on entry.
3178 tcp_ack(sk, skb, 0);
3179 __kfree_skb(skb);
3180 tcp_data_snd_check(sk);
3181 return 0;
3182 } else { /* Header too small */
3183 TCP_INC_STATS_BH(TcpInErrs);
3184 goto discard;
3186 } else {
3187 int eaten = 0;
3189 if (tp->ucopy.task == current &&
3190 tp->copied_seq == tp->rcv_nxt &&
3191 len - tcp_header_len <= tp->ucopy.len &&
3192 sk->lock.users) {
3193 eaten = 1;
3195 NET_INC_STATS_BH(TCPHPHitsToUser);
3197 __set_current_state(TASK_RUNNING);
3199 if (tcp_copy_to_iovec(sk, skb, tcp_header_len))
3200 goto csum_error;
3202 __skb_pull(skb,tcp_header_len);
3204 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3205 } else {
3206 if (tcp_checksum_complete_user(sk, skb))
3207 goto csum_error;
3209 if ((int)skb->truesize > sk->forward_alloc)
3210 goto step5;
3212 NET_INC_STATS_BH(TCPHPHits);
3214 /* Bulk data transfer: receiver */
3215 __skb_pull(skb,tcp_header_len);
3216 __skb_queue_tail(&sk->receive_queue, skb);
3217 tcp_set_owner_r(skb, sk);
3218 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3221 tcp_event_data_recv(sk, tp, skb);
3223 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3224 /* Well, only one small jumplet in fast path... */
3225 tcp_ack(sk, skb, FLAG_DATA);
3226 tcp_data_snd_check(sk);
3227 if (!tcp_ack_scheduled(tp))
3228 goto no_ack;
3231 if (eaten) {
3232 if (tcp_in_quickack_mode(tp)) {
3233 tcp_send_ack(sk);
3234 } else {
3235 tcp_send_delayed_ack(sk);
3237 } else {
3238 __tcp_ack_snd_check(sk, 0);
3241 no_ack:
3242 if (eaten)
3243 __kfree_skb(skb);
3244 else
3245 sk->data_ready(sk, 0);
3246 return 0;
3250 slow_path:
3251 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3252 goto csum_error;
3255 * RFC1323: H1. Apply PAWS check first.
3257 if (tcp_fast_parse_options(skb, th, tp) && tp->saw_tstamp &&
3258 tcp_paws_discard(tp, skb)) {
3259 if (!th->rst) {
3260 NET_INC_STATS_BH(PAWSEstabRejected);
3261 tcp_send_dupack(sk, skb);
3262 goto discard;
3264 /* Resets are accepted even if PAWS failed.
3266 ts_recent update must be made after we are sure
3267 that the packet is in window.
3272 * Standard slow path.
3275 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, th->rst)) {
3276 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3277 * (RST) segments are validated by checking their SEQ-fields."
3278 * And page 69: "If an incoming segment is not acceptable,
3279 * an acknowledgment should be sent in reply (unless the RST bit
3280 * is set, if so drop the segment and return)".
3282 if (!th->rst)
3283 tcp_send_dupack(sk, skb);
3284 goto discard;
3287 if(th->rst) {
3288 tcp_reset(sk);
3289 goto discard;
3292 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3294 if(th->syn && TCP_SKB_CB(skb)->seq != tp->syn_seq) {
3295 TCP_INC_STATS_BH(TcpInErrs);
3296 NET_INC_STATS_BH(TCPAbortOnSyn);
3297 tcp_reset(sk);
3298 return 1;
3301 step5:
3302 if(th->ack)
3303 tcp_ack(sk, skb, FLAG_SLOWPATH);
3305 /* Process urgent data. */
3306 tcp_urg(sk, th, len);
3308 /* step 7: process the segment text */
3309 tcp_data(skb, sk, len);
3311 tcp_data_snd_check(sk);
3312 tcp_ack_snd_check(sk);
3313 return 0;
3315 csum_error:
3316 TCP_INC_STATS_BH(TcpInErrs);
3318 discard:
3319 __kfree_skb(skb);
3320 return 0;
3323 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3324 struct tcphdr *th, unsigned len)
3326 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
3328 tcp_parse_options(skb, tp);
3330 if (th->ack) {
3331 /* rfc793:
3332 * "If the state is SYN-SENT then
3333 * first check the ACK bit
3334 * If the ACK bit is set
3335 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3336 * a reset (unless the RST bit is set, if so drop
3337 * the segment and return)"
3339 * We do not send data with SYN, so that RFC-correct
3340 * test reduces to:
3342 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3343 return 1;
3345 if (tp->saw_tstamp) {
3346 if (tp->rcv_tsecr == 0) {
3347 /* Workaround for bug in linux-2.1 and early
3348 * 2.2 kernels. Let's pretend that we did not
3349 * see such timestamp to avoid bogus rtt value,
3350 * calculated by tcp_ack().
3352 tp->saw_tstamp = 0;
3354 /* But do not forget to store peer's timestamp! */
3355 if (th->syn)
3356 tcp_store_ts_recent(tp);
3357 } else if (!between(tp->rcv_tsecr, tp->retrans_stamp, tcp_time_stamp)) {
3358 NET_INC_STATS_BH(PAWSActiveRejected);
3359 return 1;
3363 /* Now ACK is acceptable.
3365 * "If the RST bit is set
3366 * If the ACK was acceptable then signal the user "error:
3367 * connection reset", drop the segment, enter CLOSED state,
3368 * delete TCB, and return."
3371 if (th->rst) {
3372 tcp_reset(sk);
3373 goto discard;
3376 /* rfc793:
3377 * "fifth, if neither of the SYN or RST bits is set then
3378 * drop the segment and return."
3380 * See note below!
3381 * --ANK(990513)
3383 if (!th->syn)
3384 goto discard;
3386 /* rfc793:
3387 * "If the SYN bit is on ...
3388 * are acceptable then ...
3389 * (our SYN has been ACKed), change the connection
3390 * state to ESTABLISHED..."
3393 TCP_ECN_rcv_synack(tp, th);
3395 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3396 tcp_ack(sk, skb, FLAG_SLOWPATH);
3398 /* Ok.. it's good. Set up sequence numbers and
3399 * move to established.
3401 tp->rcv_nxt = TCP_SKB_CB(skb)->seq+1;
3402 tp->rcv_wup = TCP_SKB_CB(skb)->seq+1;
3404 /* RFC1323: The window in SYN & SYN/ACK segments is
3405 * never scaled.
3407 tp->snd_wnd = ntohs(th->window);
3408 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3409 tp->syn_seq = TCP_SKB_CB(skb)->seq;
3410 tp->fin_seq = TCP_SKB_CB(skb)->seq;
3412 if (tp->wscale_ok == 0) {
3413 tp->snd_wscale = tp->rcv_wscale = 0;
3414 tp->window_clamp = min(tp->window_clamp,65535);
3417 if (tp->tstamp_ok) {
3418 tp->tcp_header_len =
3419 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3420 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3421 } else
3422 tp->tcp_header_len = sizeof(struct tcphdr);
3423 if (tp->saw_tstamp)
3424 tcp_store_ts_recent(tp);
3425 if (tp->sack_ok && sysctl_tcp_fack)
3426 tp->sack_ok |= 2;
3428 tcp_sync_mss(sk, tp->pmtu_cookie);
3429 tcp_initialize_rcv_mss(sk);
3430 tcp_init_metrics(sk);
3431 tcp_init_buffer_space(sk);
3433 if (sk->keepopen)
3434 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
3436 if (tp->snd_wscale == 0)
3437 __tcp_fast_path_on(tp, tp->snd_wnd);
3438 else
3439 tp->pred_flags = 0;
3441 /* Remember, tcp_poll() does not lock socket!
3442 * Change state from SYN-SENT only after copied_seq
3443 * is initilized. */
3444 tp->copied_seq = tp->rcv_nxt;
3445 mb();
3446 tcp_set_state(sk, TCP_ESTABLISHED);
3448 if(!sk->dead) {
3449 sk->state_change(sk);
3450 sk_wake_async(sk, 0, POLL_OUT);
3453 if (tp->write_pending || tp->defer_accept) {
3454 /* Save one ACK. Data will be ready after
3455 * several ticks, if write_pending is set.
3457 * It may be deleted, but with this feature tcpdumps
3458 * look so _wonderfully_ clever, that I was not able
3459 * to stand against the temptation 8) --ANK
3461 tcp_schedule_ack(tp);
3462 tp->ack.lrcvtime = tcp_time_stamp;
3463 tcp_enter_quickack_mode(tp);
3464 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
3465 goto discard;
3466 } else {
3467 tcp_send_ack(sk);
3469 return -1;
3472 /* No ACK in the segment */
3474 if (th->rst) {
3475 /* rfc793:
3476 * "If the RST bit is set
3478 * Otherwise (no ACK) drop the segment and return."
3481 goto discard;
3484 /* PAWS check. */
3485 if (tp->ts_recent_stamp && tp->saw_tstamp && tcp_paws_check(tp, 0))
3486 goto discard;
3488 if (th->syn) {
3489 /* We see SYN without ACK. It is attempt of
3490 * simultaneous connect with crossed SYNs.
3491 * Particularly, it can be connect to self.
3493 tcp_set_state(sk, TCP_SYN_RECV);
3494 if (tp->saw_tstamp)
3495 tcp_store_ts_recent(tp);
3497 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3498 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3500 /* RFC1323: The window in SYN & SYN/ACK segments is
3501 * never scaled.
3503 tp->snd_wnd = ntohs(th->window);
3504 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3505 tp->max_window = tp->snd_wnd;
3507 tcp_sync_mss(sk, tp->pmtu_cookie);
3508 tcp_initialize_rcv_mss(sk);
3510 TCP_ECN_rcv_syn(tp, th);
3512 tcp_send_synack(sk);
3513 #if 0
3514 /* Note, we could accept data and URG from this segment.
3515 * There are no obstacles to make this.
3517 * However, if we ignore data in ACKless segments sometimes,
3518 * we have no reasons to accept it sometimes.
3519 * Also, seems the code doing it in step6 of tcp_rcv_state_process
3520 * is not flawless. So, discard packet for sanity.
3521 * Uncomment this return to process the data.
3523 return -1;
3524 #endif
3526 /* "fifth, if neither of the SYN or RST bits is set then
3527 * drop the segment and return."
3530 discard:
3531 __kfree_skb(skb);
3532 return 0;
3537 * This function implements the receiving procedure of RFC 793 for
3538 * all states except ESTABLISHED and TIME_WAIT.
3539 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
3540 * address independent.
3543 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
3544 struct tcphdr *th, unsigned len)
3546 struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
3547 int queued = 0;
3549 tp->saw_tstamp = 0;
3551 switch (sk->state) {
3552 case TCP_CLOSE:
3553 goto discard;
3555 case TCP_LISTEN:
3556 if(th->ack)
3557 return 1;
3559 if(th->syn) {
3560 if(tp->af_specific->conn_request(sk, skb) < 0)
3561 return 1;
3563 /* Now we have several options: In theory there is
3564 * nothing else in the frame. KA9Q has an option to
3565 * send data with the syn, BSD accepts data with the
3566 * syn up to the [to be] advertised window and
3567 * Solaris 2.1 gives you a protocol error. For now
3568 * we just ignore it, that fits the spec precisely
3569 * and avoids incompatibilities. It would be nice in
3570 * future to drop through and process the data.
3572 * Now that TTCP is starting to be used we ought to
3573 * queue this data.
3574 * But, this leaves one open to an easy denial of
3575 * service attack, and SYN cookies can't defend
3576 * against this problem. So, we drop the data
3577 * in the interest of security over speed.
3579 goto discard;
3581 goto discard;
3583 case TCP_SYN_SENT:
3584 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
3585 if (queued >= 0)
3586 return queued;
3587 queued = 0;
3588 goto step6;
3591 if (tcp_fast_parse_options(skb, th, tp) && tp->saw_tstamp &&
3592 tcp_paws_discard(tp, skb)) {
3593 if (!th->rst) {
3594 NET_INC_STATS_BH(PAWSEstabRejected);
3595 tcp_send_dupack(sk, skb);
3596 goto discard;
3598 /* Reset is accepted even if it did not pass PAWS. */
3601 /* step 1: check sequence number */
3602 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, th->rst)) {
3603 if (!th->rst)
3604 tcp_send_dupack(sk, skb);
3605 goto discard;
3608 /* step 2: check RST bit */
3609 if(th->rst) {
3610 tcp_reset(sk);
3611 goto discard;
3614 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3616 /* step 3: check security and precedence [ignored] */
3618 /* step 4:
3620 * Check for a SYN, and ensure it matches the SYN we were
3621 * first sent. We have to handle the rather unusual (but valid)
3622 * sequence that KA9Q derived products may generate of
3624 * SYN
3625 * SYN|ACK Data
3626 * ACK (lost)
3627 * SYN|ACK Data + More Data
3628 * .. we must ACK not RST...
3630 * We keep syn_seq as the sequence space occupied by the
3631 * original syn.
3634 if (th->syn && TCP_SKB_CB(skb)->seq != tp->syn_seq) {
3635 NET_INC_STATS_BH(TCPAbortOnSyn);
3636 tcp_reset(sk);
3637 return 1;
3640 /* step 5: check the ACK field */
3641 if (th->ack) {
3642 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
3644 switch(sk->state) {
3645 case TCP_SYN_RECV:
3646 if (acceptable) {
3647 tp->copied_seq = tp->rcv_nxt;
3648 mb();
3649 tcp_set_state(sk, TCP_ESTABLISHED);
3651 /* Note, that this wakeup is only for marginal
3652 * crossed SYN case. Passively open sockets
3653 * are not waked up, because sk->sleep == NULL
3654 * and sk->socket == NULL.
3656 if (sk->socket) {
3657 sk->state_change(sk);
3658 sk_wake_async(sk,0,POLL_OUT);
3661 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
3662 tp->snd_wnd = ntohs(th->window) << tp->snd_wscale;
3663 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3665 /* tcp_ack considers this ACK as duplicate
3666 * and does not calculate rtt.
3667 * Fix it at least with timestamps.
3669 if (tp->saw_tstamp && !tp->srtt)
3670 tcp_ack_saw_tstamp(tp);
3672 if (tp->tstamp_ok)
3673 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3675 tcp_init_metrics(sk);
3676 tcp_initialize_rcv_mss(sk);
3677 tcp_init_buffer_space(sk);
3678 tcp_fast_path_on(tp);
3679 } else {
3680 return 1;
3682 break;
3684 case TCP_FIN_WAIT1:
3685 if (tp->snd_una == tp->write_seq) {
3686 tcp_set_state(sk, TCP_FIN_WAIT2);
3687 sk->shutdown |= SEND_SHUTDOWN;
3688 dst_confirm(sk->dst_cache);
3690 if (!sk->dead) {
3691 /* Wake up lingering close() */
3692 sk->state_change(sk);
3693 } else {
3694 int tmo;
3696 if (tp->linger2 < 0 ||
3697 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3698 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
3699 tcp_done(sk);
3700 NET_INC_STATS_BH(TCPAbortOnData);
3701 return 1;
3704 tmo = tcp_fin_time(tp);
3705 if (tmo > TCP_TIMEWAIT_LEN) {
3706 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
3707 } else if (th->fin || sk->lock.users) {
3708 /* Bad case. We could lose such FIN otherwise.
3709 * It is not a big problem, but it looks confusing
3710 * and not so rare event. We still can lose it now,
3711 * if it spins in bh_lock_sock(), but it is really
3712 * marginal case.
3714 tcp_reset_keepalive_timer(sk, tmo);
3715 } else {
3716 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3717 goto discard;
3721 break;
3723 case TCP_CLOSING:
3724 if (tp->snd_una == tp->write_seq) {
3725 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3726 goto discard;
3728 break;
3730 case TCP_LAST_ACK:
3731 if (tp->snd_una == tp->write_seq) {
3732 tcp_update_metrics(sk);
3733 tcp_done(sk);
3734 goto discard;
3736 break;
3738 } else
3739 goto discard;
3741 step6:
3742 /* step 6: check the URG bit */
3743 tcp_urg(sk, th, len);
3745 /* step 7: process the segment text */
3746 switch (sk->state) {
3747 case TCP_CLOSE_WAIT:
3748 case TCP_CLOSING:
3749 if (!before(TCP_SKB_CB(skb)->seq, tp->fin_seq))
3750 break;
3751 case TCP_FIN_WAIT1:
3752 case TCP_FIN_WAIT2:
3753 /* RFC 793 says to queue data in these states,
3754 * RFC 1122 says we MUST send a reset.
3755 * BSD 4.4 also does reset.
3757 if (sk->shutdown & RCV_SHUTDOWN) {
3758 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3759 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
3760 NET_INC_STATS_BH(TCPAbortOnData);
3761 tcp_reset(sk);
3762 return 1;
3765 /* Fall through */
3766 case TCP_ESTABLISHED:
3767 tcp_data(skb, sk, len);
3768 queued = 1;
3769 break;
3772 /* tcp_data could move socket to TIME-WAIT */
3773 if (sk->state != TCP_CLOSE) {
3774 tcp_data_snd_check(sk);
3775 tcp_ack_snd_check(sk);
3778 if (!queued) {
3779 discard:
3780 __kfree_skb(skb);
3782 return 0;