Import 2.3.46pre3
[davej-history.git] / drivers / usb / hid.c
blobe9bd801d595607e7c367df11bc9024ad53ff447d
1 /*
2 * hid.c Version 0.8
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000 Vojtech Pavlik
7 * USB HID support for the Linux input drivers
9 * Sponsored by SuSE
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
27 * Should you need to contact me, the author, you can do so either by
28 * e-mail - mail your message to <vojtech@suse.cz>, or by paper mail:
29 * Vojtech Pavlik, Ucitelska 1576, Prague 8, 182 00 Czech Republic
32 #include <linux/module.h>
33 #include <linux/malloc.h>
34 #include <linux/input.h>
35 #include <linux/init.h>
36 #include <linux/kernel.h>
37 #include <linux/sched.h>
38 #include <linux/list.h>
39 #include <linux/mm.h>
40 #include <linux/smp_lock.h>
41 #include <linux/spinlock.h>
43 #undef DEBUG
44 #undef DEBUG_DATA
46 #include "usb.h"
47 #include "hid.h"
49 #ifdef DEBUG
50 #include "hid-debug.h"
51 #else
52 #define hid_dump_input(a,b) do { } while (0)
53 #define hid_dump_device(c) do { } while (0)
54 #endif
56 #define unk KEY_UNKNOWN
58 static unsigned char hid_keyboard[256] = {
59 0, 0, 0, 0, 30, 48, 46, 32, 18, 33, 34, 35, 23, 36, 37, 38,
60 50, 49, 24, 25, 16, 19, 31, 20, 22, 47, 17, 45, 21, 44, 2, 3,
61 4, 5, 6, 7, 8, 9, 10, 11, 28, 1, 14, 15, 57, 12, 13, 26,
62 27, 43, 84, 39, 40, 41, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64,
63 65, 66, 67, 68, 87, 88, 99, 70,119,110,102,104,111,107,109,106,
64 105,108,103, 69, 98, 55, 74, 78, 96, 79, 80, 81, 75, 76, 77, 71,
65 72, 73, 82, 83, 86,127,116,117, 85, 89, 90, 91, 92, 93, 94, 95,
66 120,121,122,123,unk,138,unk,unk,128,129,131,137,133,135,136,113,
67 115,114,unk,unk,unk,unk,unk,124,unk,unk,unk,unk,unk,unk,unk,unk,
68 unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
69 unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
70 unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
71 134,130,132,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
72 unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
73 29, 42, 56,125, 97, 54,100,126
76 static struct {
77 __s32 x;
78 __s32 y;
79 } hid_hat_to_axis[] = {{ 0, 0}, { 0,-1}, { 1,-1}, { 1, 0}, { 1, 1}, { 0, 1}, {-1, 1}, {-1, 0}, {-1,-1}};
82 * Register a new report for a device.
85 static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
87 struct hid_report_enum *report_enum = device->report_enum + type;
88 struct hid_report *report;
90 if (report_enum->report_id_hash[id])
91 return report_enum->report_id_hash[id];
93 if (!(report = kmalloc(sizeof(struct hid_report), GFP_KERNEL)))
94 return NULL;
95 memset(report, 0, sizeof(struct hid_report));
97 if (id != 0) report_enum->numbered = 1;
99 report->id = id;
100 report->type = type;
101 report->size = 0;
102 report->device = device;
103 report_enum->report_id_hash[id] = report;
105 list_add_tail(&report->list, &report_enum->report_list);
107 return report;
111 * Register a new field for this report.
114 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
116 if (report->maxfield < HID_MAX_FIELDS) {
117 struct hid_field *field;
119 if (!(field = kmalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
120 + values * sizeof(unsigned), GFP_KERNEL)))
121 return NULL;
122 memset(field, 0, sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
123 + values * sizeof(unsigned));
125 report->field[report->maxfield++] = field;
126 field->usage = (struct hid_usage *)(field + 1);
127 field->value = (unsigned *)(field->usage + usages);
128 field->report = report;
130 return field;
133 dbg("too many fields in report");
134 return NULL;
138 * Open a collection. The type/usage is pushed on the stack.
141 static int open_collection(struct hid_parser *parser, unsigned type)
143 unsigned usage;
145 usage = parser->local.usage[0];
147 if (type == HID_COLLECTION_APPLICATION)
148 parser->device->application = usage;
150 if (parser->collection_stack_ptr < HID_COLLECTION_STACK_SIZE) { /* PUSH on stack */
151 struct hid_collection *collection = parser->collection_stack + parser->collection_stack_ptr++;
152 collection->type = type;
153 collection->usage = usage;
154 return 0;
157 dbg("collection stack overflow");
158 return -1;
162 * Close a collection.
165 static int close_collection(struct hid_parser *parser)
167 if (parser->collection_stack_ptr > 0) { /* POP from stack */
168 parser->collection_stack_ptr--;
169 return 0;
171 dbg("collection stack underflow");
172 return -1;
176 * Climb up the stack, search for the specified collection type
177 * and return the usage.
180 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
182 int n;
183 for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
184 if (parser->collection_stack[n].type == type)
185 return parser->collection_stack[n].usage;
186 return 0; /* we know nothing about this usage type */
190 * Add a usage to the temporary parser table.
193 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
195 if (parser->local.usage_index >= MAX_USAGES) {
196 dbg("usage index exceeded");
197 return -1;
199 parser->local.usage[parser->local.usage_index++] = usage;
200 return 0;
204 * Register a new field for this report.
207 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
209 struct hid_report *report;
210 struct hid_field *field;
211 int usages;
212 unsigned offset;
213 int i;
215 if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
216 dbg("hid_register_report failed");
217 return -1;
220 if (HID_MAIN_ITEM_VARIABLE & ~flags) { /* ARRAY */
221 if (parser->global.logical_maximum <= parser->global.logical_minimum) {
222 dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
223 return -1;
225 usages = parser->local.usage_index;
226 /* Hint: we can assume usages < MAX_USAGE here */
227 } else { /* VARIABLE */
228 usages = parser->global.report_count;
230 offset = report->size;
231 report->size += parser->global.report_size *
232 parser->global.report_count;
233 if (usages == 0)
234 return 0; /* ignore padding fields */
235 if ((field = hid_register_field(report, usages,
236 parser->global.report_count)) == NULL)
237 return 0;
238 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
239 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
240 for (i = 0; i < usages; i++) field->usage[i].hid = parser->local.usage[i];
241 field->maxusage = usages;
242 field->flags = flags;
243 field->report_offset = offset;
244 field->report_type = report_type;
245 field->report_size = parser->global.report_size;
246 field->report_count = parser->global.report_count;
247 field->logical_minimum = parser->global.logical_minimum;
248 field->logical_maximum = parser->global.logical_maximum;
249 field->physical_minimum = parser->global.physical_minimum;
250 field->physical_maximum = parser->global.physical_maximum;
251 field->unit_exponent = parser->global.unit_exponent;
252 field->unit = parser->global.unit;
253 return 0;
257 * Read data value from item.
260 static __inline__ __u32 item_udata(struct hid_item *item)
262 switch (item->size) {
263 case 1: return item->data.u8;
264 case 2: return item->data.u16;
265 case 4: return item->data.u32;
267 return 0;
270 static __inline__ __s32 item_sdata(struct hid_item *item)
272 switch (item->size) {
273 case 1: return item->data.s8;
274 case 2: return item->data.s16;
275 case 4: return item->data.s32;
277 return 0;
281 * Process a global item.
284 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
286 switch (item->tag) {
288 case HID_GLOBAL_ITEM_TAG_PUSH:
290 if (parser->global_stack_ptr < HID_GLOBAL_STACK_SIZE) {
291 memcpy(parser->global_stack + parser->global_stack_ptr++,
292 &parser->global, sizeof(struct hid_global));
293 return 0;
295 dbg("global enviroment stack overflow");
296 return -1;
298 case HID_GLOBAL_ITEM_TAG_POP:
300 if (parser->global_stack_ptr > 0) {
301 memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
302 sizeof(struct hid_global));
303 return 0;
305 dbg("global enviroment stack underflow");
306 return -1;
308 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
309 parser->global.usage_page = item_udata(item);
310 return 0;
312 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
313 parser->global.logical_minimum = item_sdata(item);
314 return 0;
316 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
317 parser->global.logical_maximum = item_sdata(item);
318 return 0;
320 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
321 parser->global.physical_minimum = item_sdata(item);
322 return 0;
324 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
325 parser->global.physical_maximum = item_sdata(item);
326 return 0;
328 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
329 parser->global.unit_exponent = item_udata(item);
330 return 0;
332 case HID_GLOBAL_ITEM_TAG_UNIT:
333 parser->global.unit = item_udata(item);
334 return 0;
336 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
337 if ((parser->global.report_size = item_udata(item)) > 32) {
338 dbg("invalid report_size %d", parser->global.report_size);
339 return -1;
341 return 0;
343 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
344 if ((parser->global.report_count = item_udata(item)) > MAX_USAGES) {
345 dbg("invalid report_count %d", parser->global.report_count);
346 return -1;
348 return 0;
350 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
351 if ((parser->global.report_id = item_udata(item)) == 0) {
352 dbg("report_id 0 is invalid");
353 return -1;
355 return 0;
357 default:
358 dbg("unknown global tag 0x%x", item->tag);
359 return -1;
364 * Process a local item.
367 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
369 __u32 data;
371 if (item->size == 0) {
372 dbg("item data expected for local item");
373 return -1;
376 data = item_udata(item);
378 switch (item->tag) {
380 case HID_LOCAL_ITEM_TAG_DELIMITER:
382 if (data) {
384 * We treat items before the first delimiter
385 * as global to all usage sets (branch 0).
386 * In the moment we process only these global
387 * items and the first delimiter set.
389 if (parser->local.delimiter_depth != 0) {
390 dbg("nested delimiters");
391 return -1;
393 parser->local.delimiter_depth++;
394 parser->local.delimiter_branch++;
395 } else {
396 if (parser->local.delimiter_depth < 1) {
397 dbg("bogus close delimiter");
398 return -1;
400 parser->local.delimiter_depth--;
402 return 1;
404 case HID_LOCAL_ITEM_TAG_USAGE:
406 if (parser->local.delimiter_branch < 2) {
407 if (item->size <= 2)
408 data = (parser->global.usage_page << 16) + data;
409 return hid_add_usage(parser, data);
411 dbg("alternative usage ignored");
412 return 0;
414 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
416 if (parser->local.delimiter_branch < 2) {
417 if (item->size <= 2)
418 data = (parser->global.usage_page << 16) + data;
419 parser->local.usage_minimum = data;
420 return 0;
422 dbg("alternative usage ignored");
423 return 0;
425 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
427 if (parser->local.delimiter_branch < 2) {
428 unsigned n;
429 if (item->size <= 2)
430 data = (parser->global.usage_page << 16) + data;
431 for (n = parser->local.usage_minimum; n <= data; n++)
432 if (hid_add_usage(parser, n)) {
433 dbg("hid_add_usage failed\n");
434 return -1;
436 return 0;
438 dbg("alternative usage ignored");
439 return 0;
441 default:
443 dbg("unknown local item tag 0x%x", item->tag);
444 return 0;
449 * Process a main item.
452 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
454 __u32 data;
455 int ret;
457 data = item_udata(item);
459 switch (item->tag) {
460 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
461 ret = open_collection(parser, data & 3);
462 break;
463 case HID_MAIN_ITEM_TAG_END_COLLECTION:
464 ret = close_collection(parser);
465 break;
466 case HID_MAIN_ITEM_TAG_INPUT:
467 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
468 break;
469 case HID_MAIN_ITEM_TAG_OUTPUT:
470 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
471 break;
472 case HID_MAIN_ITEM_TAG_FEATURE:
473 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
474 break;
475 default:
476 dbg("unknown main item tag 0x%x", item->tag);
477 ret = 0;
480 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
482 return ret;
486 * Process a reserved item.
489 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
491 dbg("reserved item type, tag 0x%x", item->tag);
492 return 0;
496 * Free a report and all registered fields. The field->usage and
497 * field->value table's are allocated behind the field, so we need
498 * only to free(field) itself.
501 static void hid_free_report(struct hid_report *report)
503 unsigned n;
505 for (n = 0; n < report->maxfield; n++)
506 kfree(report->field[n]);
507 kfree(report);
511 * Free a device structure, all reports, and all fields.
514 static void hid_free_device(struct hid_device *device)
516 unsigned i,j;
518 for (i = 0; i < HID_REPORT_TYPES; i++) {
519 struct hid_report_enum *report_enum = device->report_enum + i;
521 for (j = 0; j < 256; j++) {
522 struct hid_report *report = report_enum->report_id_hash[j];
523 if (report) hid_free_report(report);
527 if (device->rdesc) kfree(device->rdesc);
531 * Fetch a report description item from the data stream. We support long
532 * items, though they are not used yet.
535 static __u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
537 if ((end - start) > 0) {
539 __u8 b = *start++;
540 item->type = (b >> 2) & 3;
541 item->tag = (b >> 4) & 15;
543 if (item->tag == HID_ITEM_TAG_LONG) {
545 item->format = HID_ITEM_FORMAT_LONG;
547 if ((end - start) >= 2) {
549 item->size = *start++;
550 item->tag = *start++;
552 if ((end - start) >= item->size) {
553 item->data.longdata = start;
554 start += item->size;
555 return start;
558 } else {
560 item->format = HID_ITEM_FORMAT_SHORT;
561 item->size = b & 3;
562 switch (item->size) {
564 case 0:
565 return start;
567 case 1:
568 if ((end - start) >= 1) {
569 item->data.u8 = *start++;
570 return start;
572 break;
574 case 2:
575 if ((end - start) >= 2) {
576 item->data.u16 = le16_to_cpu( *((__u16*)start)++);
577 return start;
580 case 3:
581 item->size++;
582 if ((end - start) >= 4) {
583 item->data.u32 = le32_to_cpu( *((__u32*)start)++);
584 return start;
589 return NULL;
593 * Parse a report description into a hid_device structure. Reports are
594 * enumerated, fields are attached to these reports.
597 static struct hid_device *hid_parse_report(__u8 *start, unsigned size)
599 struct hid_device *device;
600 struct hid_parser *parser;
601 struct hid_item item;
602 __u8 *end;
603 unsigned i;
604 static int (*dispatch_type[])(struct hid_parser *parser,
605 struct hid_item *item) = {
606 hid_parser_main,
607 hid_parser_global,
608 hid_parser_local,
609 hid_parser_reserved
612 if (!(device = kmalloc(sizeof(struct hid_device), GFP_KERNEL)))
613 return NULL;
614 memset(device, 0, sizeof(struct hid_device));
616 for (i = 0; i < HID_REPORT_TYPES; i++)
617 INIT_LIST_HEAD(&device->report_enum[i].report_list);
619 if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
620 kfree(device);
621 return NULL;
623 memcpy(device->rdesc, start, size);
625 if (!(parser = kmalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
626 kfree(device->rdesc);
627 kfree(device);
628 return NULL;
630 memset(parser, 0, sizeof(struct hid_parser));
631 parser->device = device;
633 end = start + size;
634 while ((start = fetch_item(start, end, &item)) != 0) {
635 if (item.format != HID_ITEM_FORMAT_SHORT) {
636 dbg("unexpected long global item");
637 hid_free_device(device);
638 kfree(parser);
639 return NULL;
641 if (dispatch_type[item.type](parser, &item)) {
642 dbg("item %u %u %u %u parsing failed\n",
643 item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
644 hid_free_device(device);
645 kfree(parser);
646 return NULL;
649 if (start == end) {
650 if (parser->collection_stack_ptr) {
651 dbg("unbalanced collection at end of report description");
652 hid_free_device(device);
653 kfree(parser);
654 return NULL;
656 if (parser->local.delimiter_depth) {
657 dbg("unbalanced delimiter at end of report description");
658 hid_free_device(device);
659 kfree(parser);
660 return NULL;
662 kfree(parser);
663 return device;
667 dbg("item fetching failed at offset %d\n", (int)(end - start));
668 hid_free_device(device);
669 kfree(parser);
670 return NULL;
674 * Convert a signed n-bit integer to signed 32-bit integer. Common
675 * cases are done through the compiler, the screwed things has to be
676 * done by hand.
679 static __inline__ __s32 snto32(__u32 value, unsigned n)
681 switch (n) {
682 case 8: return ((__s8)value);
683 case 16: return ((__s16)value);
684 case 32: return ((__s32)value);
686 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
690 * Convert a signed 32-bit integer to a signed n-bit integer.
693 static __inline__ __u32 s32ton(__s32 value, unsigned n)
695 __s32 a = value >> (n - 1);
696 if (a && a != -1) return value > 0 ? 1 << (n - 1) : (1 << n) - 1;
697 return value & ((1 << n) - 1);
701 * Extract/implement a data field from/to a report. We use 64-bit unsigned,
702 * 32-bit aligned, so that we can possibly have alignment problems on some
703 * odd architectures.
706 static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
708 report += (offset >> 5) << 2; offset &= 31;
709 return (le64_to_cpu(*(__u64*)report) >> offset) & ((1 << n) - 1);
712 static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
714 report += (offset >> 5) << 2; offset &= 31;
715 *(__u64*)report &= cpu_to_le64(~((((__u64) 1 << n) - 1) << offset));
716 *(__u64*)report |= cpu_to_le64((__u64)value << offset);
719 static void hid_configure_usage(struct hid_device *device, struct hid_field *field, struct hid_usage *usage)
721 struct input_dev *input = &device->input;
722 int max;
723 unsigned long *bit;
725 switch (usage->hid & HID_USAGE_PAGE) {
727 case HID_UP_KEYBOARD:
729 if ((usage->hid & HID_USAGE) < 256) {
730 if (!(usage->code = hid_keyboard[usage->hid & HID_USAGE]))
731 return;
732 } else
733 usage->code = KEY_UNKNOWN;
735 set_bit(EV_REP, input->evbit);
736 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
737 break;
739 case HID_UP_BUTTON:
741 usage->code = ((usage->hid - 1) & 0xf) + 0x100;
742 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
744 switch (device->application) {
745 case HID_GD_GAMEPAD: usage->code += 0x10;
746 case HID_GD_JOYSTICK: usage->code += 0x10;
747 case HID_GD_MOUSE: usage->code += 0x10; break;
748 default:
749 if (field->physical == HID_GD_POINTER)
750 usage->code += 0x10;
751 break;
753 break;
755 case HID_UP_GENDESK:
757 if ((usage->hid & 0xf0) == 0x80) { /* SystemControl */
758 switch (usage->hid & 0xf) {
759 case 0x1: usage->code = KEY_POWER; break;
760 case 0x2: usage->code = KEY_SLEEP; break;
761 case 0x3: usage->code = KEY_WAKEUP; break;
762 default: usage->code = KEY_UNKNOWN; break;
764 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
765 break;
768 usage->code = usage->hid & 0xf;
770 if (field->report_size == 1) {
771 usage->code = BTN_MISC;
772 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
773 break;
776 if (field->flags & HID_MAIN_ITEM_RELATIVE) {
777 usage->type = EV_REL; bit = input->relbit; max = REL_MAX;
778 break;
781 usage->type = EV_ABS; bit = input->absbit; max = ABS_MAX;
783 if (usage->hid == HID_GD_HATSWITCH) {
784 usage->code = ABS_HAT0X;
785 usage->hat = 1 + (field->logical_maximum == 4);
787 break;
789 case HID_UP_LED:
791 usage->code = (usage->hid - 1) & 0xf;
792 usage->type = EV_LED; bit = input->ledbit; max = LED_MAX;
793 break;
795 case HID_UP_DIGITIZER:
797 switch (usage->hid & 0xff) {
799 case 0x30: /* TipPressure */
801 usage->type = EV_ABS; bit = input->absbit; max = ABS_MAX;
802 usage->code = ABS_PRESSURE;
803 clear_bit(usage->code, bit);
804 break;
806 case 0x32: /* InRange */
808 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
809 switch (field->physical & 0xff) {
810 case 0x21: usage->code = BTN_TOOL_MOUSE; break;
811 case 0x22: usage->code = BTN_TOOL_FINGER; break;
812 default: usage->code = BTN_TOOL_PEN; break;
814 break;
816 case 0x33: /* Touch */
817 case 0x42: /* TipSwitch */
818 case 0x43: /* TipSwitch2 */
820 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
821 usage->code = BTN_TOUCH;
822 clear_bit(usage->code, bit);
823 break;
825 case 0x44: /* BarrelSwitch */
827 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
828 usage->code = BTN_STYLUS;
829 clear_bit(usage->code, bit);
830 break;
832 default: goto unknown;
834 break;
836 case HID_UP_HOTKEY:
838 switch (usage->hid & HID_USAGE) {
840 case 0x0034: usage->code = KEY_PHONE; break;
841 case 0x0036: usage->code = KEY_NOTEPAD; break;
842 case 0x008a: usage->code = KEY_MAIL; break;
843 case 0x0095: usage->code = KEY_CALENDAR; break;
844 case 0x00b7: usage->code = KEY_PRINT; break;
845 case 0x00b8: usage->code = KEY_HELP; break;
846 case 0x00cd: usage->code = KEY_SOUND; break;
847 case 0x00e2: usage->code = KEY_PROG1; break;
848 case 0x00e9: usage->code = KEY_PROG2; break;
849 case 0x00ea: usage->code = KEY_PROG3; break;
850 case 0x018a: usage->code = KEY_WWW; break;
851 case 0x0223: usage->code = KEY_FULLSCREEN; break;
852 default: usage->code = KEY_UNKNOWN; break;
856 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
857 break;
859 default:
860 unknown:
862 if (field->report_size == 1) {
863 usage->code = BTN_MISC;
864 usage->type = EV_KEY; bit = input->keybit; max = KEY_MAX;
865 break;
868 if (field->flags & HID_MAIN_ITEM_RELATIVE) {
869 usage->code = REL_MISC;
870 usage->type = EV_REL; bit = input->relbit; max = REL_MAX;
871 break;
874 usage->code = ABS_MISC;
875 usage->type = EV_ABS; bit = input->absbit; max = ABS_MAX;
876 break;
879 set_bit(usage->type, input->evbit);
881 while (usage->code <= max && test_and_set_bit(usage->code, bit)) {
882 usage->code = find_next_zero_bit(bit, max + 1, usage->code);
885 if (usage->type == EV_ABS) {
886 int a = field->logical_minimum;
887 int b = field->logical_maximum;
889 input->absmin[usage->code] = a;
890 input->absmax[usage->code] = b;
891 input->absfuzz[usage->code] = (b - a) >> 8;
892 input->absflat[usage->code] = (b - a) >> 4;
895 if (usage->hat) {
896 int i;
897 for (i = usage->code; i < usage->code + 2; i++) {
898 input->absmax[i] = 1;
899 input->absmin[i] = -1;
900 input->absfuzz[i] = 0;
901 input->absflat[i] = 0;
903 set_bit(usage->code + 1, input->absbit);
907 static void hid_process_event(struct input_dev *input, int flags, struct hid_usage *usage, __s32 value)
909 hid_dump_input(usage, value);
911 if (usage->hat) {
912 if (usage->hat == 2) value = value * 2 - 1;
913 input_event(input, usage->type, usage->code , hid_hat_to_axis[value].x);
914 input_event(input, usage->type, usage->code + 1, hid_hat_to_axis[value].y);
915 return;
918 input_event(input, usage->type, usage->code, value);
920 if ((flags & HID_MAIN_ITEM_RELATIVE) && (usage->type == EV_KEY))
921 input_event(input, usage->type, usage->code, 0);
925 * Search an array for a value.
928 static __inline__ int search(__s32 *array, __s32 value, unsigned n)
930 while (n--) if (*array++ == value) return 0;
931 return -1;
935 * Analyse a received field, and fetch the data from it. The field
936 * content is stored for next report processing (we do differential
937 * reporting to the layer).
940 static void hid_input_field(struct hid_device *dev, struct hid_field *field, __u8 *data)
942 unsigned n;
943 unsigned count = field->report_count;
944 unsigned offset = field->report_offset;
945 unsigned size = field->report_size;
946 __s32 min = field->logical_minimum;
947 __s32 max = field->logical_maximum;
948 __s32 value[count]; /* WARNING: gcc specific */
950 for (n = 0; n < count; n++)
951 value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
952 extract(data, offset + n * size, size);
954 for (n = 0; n < count; n++) {
956 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
958 if (field->flags & HID_MAIN_ITEM_RELATIVE) {
959 if (!value[n]) continue;
960 } else {
961 if (value[n] == field->value[n]) continue;
963 hid_process_event(&dev->input, field->flags, &field->usage[n], value[n]);
965 } else {
967 if (field->value[n] >= min && field->value[n] <= max /* non-NULL value */
968 && field->usage[field->value[n] - min].hid /* nonzero usage */
969 && search(value, field->value[n], count))
970 hid_process_event(&dev->input, field->flags, &field->usage[field->value[n] - min], 0);
972 if (value[n] >= min && value[n] <= max /* non-NULL value */
973 && field->usage[value[n] - min].hid /* nonzero usage */
974 && search(field->value, value[n], count))
975 hid_process_event(&dev->input, field->flags, &field->usage[value[n] - min], 1);
979 memcpy(field->value, value, count * sizeof(__s32));
983 * Interrupt input handler - analyse a received report.
986 static void hid_irq(struct urb *urb)
988 struct hid_device *device = urb->context;
989 struct hid_report_enum *report_enum = device->report_enum + HID_INPUT_REPORT;
990 struct hid_report *report;
991 __u8 *data = urb->transfer_buffer;
992 int len = urb->actual_length;
993 int n;
995 if (urb->status) {
996 dbg("nonzero status in irq %d", urb->status);
997 return;
1000 if (!len) {
1001 dbg("empty report");
1002 return;
1005 #ifdef DEBUG_DATA
1006 printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered) = ", len, report_enum->numbered ? "" : "un");
1007 for (n = 0; n < len; n++)
1008 printk(" %02x", data[n]);
1009 printk("\n");
1010 #endif
1012 n = 0; /* Normally report number is 0 */
1014 if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */
1015 n = *data++;
1016 len--;
1019 if (!(report = report_enum->report_id_hash[n])) {
1020 dbg("undefined report_id %d received", n);
1021 #ifdef DEBUG
1022 printk(KERN_DEBUG __FILE__ ": report (size %u) = ", len);
1023 for (n = 0; n < len; n++)
1024 printk(" %02x", data[n]);
1025 printk("\n");
1026 #endif
1028 return;
1031 if (len < ((report->size - 1) >> 3) + 1) {
1032 dbg("report %d is too short, (%d < %d)", report->id, len, ((report->size - 1) >> 3) + 1);
1033 return;
1036 for (n = 0; n < report->maxfield; n++)
1037 hid_input_field(device, report->field[n], data);
1039 return;
1043 * hid_read_report() s intended to read the hid devices values even
1044 * before the input device is registered, so that the userland interface
1045 * modules start with real values. This is especially important for joydev.c
1046 * automagic calibration. Doesn't work yet, though. Don't know why, the control
1047 * request just times out on most devices I have and returns nonsense on others.
1050 static void hid_read_report(struct hid_device *hid, struct hid_report *report)
1052 #if 0
1053 int rlen = ((report->size - 1) >> 3) + 1;
1054 char rdata[rlen];
1055 struct urb urb;
1056 int read, j;
1058 memset(&urb, 0, sizeof(struct urb));
1059 memset(rdata, 0, rlen);
1061 urb.transfer_buffer = rdata;
1062 urb.actual_length = rlen;
1063 urb.context = hid;
1065 dbg("getting report type %d id %d len %d", report->type + 1, report->id, rlen);
1067 if ((read = usb_get_report(hid->dev, hid->ifnum, report->type + 1, report->id, rdata, rlen)) != rlen) {
1068 dbg("reading report failed rlen %d read %d", rlen, read);
1069 #ifdef DEBUG
1070 printk(KERN_DEBUG __FILE__ ": report = ");
1071 for (j = 0; j < rlen; j++) printk(" %02x", rdata[j]);
1072 printk("\n");
1073 #endif
1074 return;
1077 hid_irq(&urb);
1078 #endif
1082 * Output the field into the report.
1085 static void hid_output_field(struct hid_field *field, __u8 *data)
1087 unsigned count = field->report_count;
1088 unsigned offset = field->report_offset;
1089 unsigned size = field->report_size;
1090 unsigned n;
1092 for (n = 0; n < count; n++) {
1093 if (field->logical_minimum < 0) /* signed values */
1094 implement(data, offset + n * size, size, s32ton(field->value[n], size));
1095 else /* unsigned values */
1096 implement(data, offset + n * size, size, field->value[n]);
1101 * Create a report.
1104 void hid_output_report(struct hid_report *report, __u8 *data)
1106 unsigned n;
1107 for (n = 0; n < report->maxfield; n++)
1108 hid_output_field(report->field[n], data);
1112 * Set a field value. The report this field belongs to has to be
1113 * created and transfered to the device, to set this value in the
1114 * device.
1117 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1119 unsigned size = field->report_size;
1121 hid_dump_input(field->usage + offset, value);
1123 if (offset >= field->report_count) {
1124 dbg("offset exceeds report_count");
1125 return -1;
1127 if (field->logical_minimum < 0) {
1128 if (value != snto32(s32ton(value, size), size)) {
1129 dbg("value %d is out of range", value);
1130 return -1;
1133 if ( (value > field->logical_maximum)
1134 || (value < field->logical_minimum)) {
1135 dbg("value %d is invalid", value);
1136 return -1;
1138 field->value[offset] = value;
1139 return 0;
1142 static int hid_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field)
1144 struct hid_report_enum *report_enum = hid->report_enum + HID_OUTPUT_REPORT;
1145 struct list_head *list = report_enum->report_list.next;
1146 int i, j;
1148 while (list != &report_enum->report_list) {
1149 struct hid_report *report = (struct hid_report *) list;
1150 list = list->next;
1151 for (i = 0; i < report->maxfield; i++) {
1152 *field = report->field[i];
1153 for (j = 0; j < (*field)->maxusage; j++)
1154 if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
1155 return j;
1158 return -1;
1161 static void hid_ctrl(struct urb *urb)
1163 if (urb->status)
1164 warn("ctrl urb status %d received", urb->status);
1167 static int hid_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
1169 struct hid_device *hid = dev->private;
1170 struct hid_field *field = NULL;
1171 int offset;
1173 if ((offset = hid_find_field(hid, type, code, &field)) == -1) {
1174 warn("event field not found");
1175 return -1;
1178 hid_set_field(field, offset, value);
1180 if (hid->urbout.status == -EINPROGRESS) {
1181 warn("had to kill output urb");
1182 usb_unlink_urb(&hid->urbout);
1185 hid_output_report(field->report, hid->bufout);
1187 hid->dr.value = 0x200 | field->report->id;
1188 hid->dr.length = ((field->report->size - 1) >> 3) + 1;
1189 hid->urbout.transfer_buffer_length = hid->dr.length;
1191 if (usb_submit_urb(&hid->urbout)) {
1192 err("usb_submit_urb(out) failed");
1193 return -1;
1196 return 0;
1200 * Configure the input layer interface
1201 * Read all reports and initalize the absoulte field values.
1204 static void hid_init_input(struct hid_device *hid)
1206 struct hid_report_enum *report_enum;
1207 struct list_head *list;
1208 int i, j, k;
1210 hid->input.private = hid;
1211 hid->input.event = hid_event;
1213 for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) {
1215 report_enum = hid->report_enum + k;
1216 list = report_enum->report_list.next;
1218 while (list != &report_enum->report_list) {
1220 struct hid_report *report = (struct hid_report *) list;
1222 list = list->next;
1224 for (i = 0; i < report->maxfield; i++)
1225 for (j = 0; j < report->field[i]->maxusage; j++)
1226 hid_configure_usage(hid, report->field[i], report->field[i]->usage + j);
1228 if (k == HID_INPUT_REPORT) {
1229 usb_set_idle(hid->dev, hid->ifnum, report->id, 0);
1230 hid_read_report(hid, report);
1236 #define USB_VENDOR_ID_WACOM 0x056a
1237 #define USB_DEVICE_ID_WACOM_GRAPHIRE 0x0010
1238 #define USB_DEVICE_ID_WACOM_INTUOS 0x0021
1240 struct hid_blacklist {
1241 __u16 idVendor;
1242 __u16 idProduct;
1243 } hid_blacklist[] = {
1244 { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS },
1245 { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE },
1246 { 0, 0 }
1249 static struct hid_device *usb_hid_configure(struct usb_device *dev, int ifnum)
1251 struct usb_interface_descriptor *interface = dev->actconfig->interface[ifnum].altsetting + 0;
1252 struct hid_descriptor *hdesc;
1253 struct hid_device *hid;
1254 unsigned rsize = 0;
1255 int n;
1257 for (n = 0; hid_blacklist[n].idVendor; n++)
1258 if ((hid_blacklist[n].idVendor == dev->descriptor.idVendor) &&
1259 (hid_blacklist[n].idProduct == dev->descriptor.idProduct)) return NULL;
1261 if (interface->bInterfaceClass != USB_INTERFACE_CLASS_HID)
1262 return NULL;
1264 if (usb_get_extra_descriptor(interface, USB_DT_HID, &hdesc)
1265 && usb_get_extra_descriptor(&interface->endpoint[0], USB_DT_HID, &hdesc)) {
1266 dbg("class descriptor not present\n");
1267 return NULL;
1270 for (n = 0; n < hdesc->bNumDescriptors; n++)
1271 if (hdesc->desc[n].bDescriptorType == USB_DT_REPORT)
1272 rsize = le16_to_cpu(hdesc->desc[n].wDescriptorLength);
1274 if (!rsize || rsize > 1024) {
1275 dbg("weird size of report descriptor (%u)", rsize);
1276 return NULL;
1280 __u8 rdesc[rsize];
1282 if ((n = usb_get_class_descriptor(dev, interface->bInterfaceNumber, USB_DT_REPORT, 0, rdesc, rsize)) < 0) {
1283 dbg("reading report descriptor failed");
1284 return NULL;
1287 #ifdef DEBUG_DATA
1288 printk(KERN_DEBUG __FILE__ ": report (size %u, read %d) = ", rsize, n);
1289 for (n = 0; n < rsize; n++)
1290 printk(" %02x", (unsigned) rdesc[n]);
1291 printk("\n");
1292 #endif
1294 if (!(hid = hid_parse_report(rdesc, rsize))) {
1295 dbg("parsing report descriptor failed");
1296 return NULL;
1300 for (n = 0; n < interface->bNumEndpoints; n++) {
1302 struct usb_endpoint_descriptor *endpoint = &interface->endpoint[n];
1303 int pipe, maxp;
1305 if ((endpoint->bmAttributes & 3) != 3) /* Not an interrupt endpoint */
1306 continue;
1308 if (!(endpoint->bEndpointAddress & 0x80)) /* Not an input endpoint */
1309 continue;
1311 pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
1312 maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
1314 FILL_INT_URB(&hid->urb, dev, pipe, hid->buffer, maxp > 32 ? 32 : maxp, hid_irq, hid, endpoint->bInterval);
1316 if (usb_submit_urb(&hid->urb)) {
1317 dbg("submitting interrupt URB failed");
1318 continue;
1321 break;
1324 if (n == interface->bNumEndpoints) {
1325 dbg("couldn't find an input interrupt endpoint");
1326 hid_free_device(hid);
1327 return NULL;
1330 hid->version = hdesc->bcdHID;
1331 hid->country = hdesc->bCountryCode;
1332 hid->dev = dev;
1333 hid->ifnum = interface->bInterfaceNumber;
1335 hid->dr.requesttype = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
1336 hid->dr.request = USB_REQ_SET_REPORT;
1337 hid->dr.value = 0x200;
1338 hid->dr.index = hid->ifnum;
1339 hid->dr.length = 1;
1341 FILL_CONTROL_URB(&hid->urbout, dev, usb_sndctrlpipe(dev, 0),
1342 (void*) &hid->dr, hid->bufout, 1, hid_ctrl, hid);
1344 if (interface->bInterfaceSubClass == 1)
1345 usb_set_protocol(dev, hid->ifnum, 1);
1347 return hid;
1350 static void* hid_probe(struct usb_device *dev, unsigned int ifnum)
1352 char *hid_name[] = {"Device", "Pointer", "Mouse", "Device", "Joystick",
1353 "Gamepad", "Keyboard", "Keypad", "Multi-Axis Controller"};
1354 struct hid_device *hid;
1356 dbg("HID probe called for ifnum %d", ifnum);
1358 if (!(hid = usb_hid_configure(dev, ifnum)))
1359 return NULL;
1361 hid_dump_device(hid);
1363 hid_init_input(hid);
1364 input_register_device(&hid->input);
1366 printk(KERN_INFO "input%d: USB HID v%x.%02x %s\n",
1367 hid->input.number, hid->version >> 8, hid->version & 0xff,
1368 (hid->application & 0xffff) <= 8 ? hid_name[hid->application & 0xffff] : "device");
1370 return hid;
1373 static void hid_disconnect(struct usb_device *dev, void *ptr)
1375 struct hid_device *hid = ptr;
1377 dbg("cleanup called");
1378 usb_unlink_urb(&hid->urb);
1379 input_unregister_device(&hid->input);
1380 hid_free_device(hid);
1383 static struct usb_driver hid_driver = {
1384 name: "hid",
1385 probe: hid_probe,
1386 disconnect: hid_disconnect
1389 #ifdef MODULE
1390 void cleanup_module(void)
1392 usb_deregister(&hid_driver);
1395 int init_module(void)
1396 #else
1397 int hid_init(void)
1398 #endif
1400 usb_register(&hid_driver);
1401 return 0;
1404 __initcall(hid_init);