Import 2.4.0-test4
[davej-history.git] / drivers / net / rrunner.c
blobc3dc74c937c7a57c42c91c0a76a57410c2e0a6ec
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2000 by Jes Sorensen, <Jes.Sorensen@cern.ch>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
24 #define DEBUG 1
25 #define RX_DMA_SKBUFF 1
26 #define PKT_COPY_THRESHOLD 512
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/version.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/pci.h>
35 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/hippidevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/mm.h>
42 #include <net/sock.h>
44 #include <asm/system.h>
45 #include <asm/cache.h>
46 #include <asm/byteorder.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/uaccess.h>
51 #if (LINUX_VERSION_CODE < 0x02030e)
52 #define net_device device
53 #endif
55 #if (LINUX_VERSION_CODE >= 0x02031b)
56 #define NEW_NETINIT
57 #endif
59 #if (LINUX_VERSION_CODE < 0x02032b)
61 * SoftNet changes
63 #define dev_kfree_skb_irq(a) dev_kfree_skb(a)
64 #define netif_wake_queue(dev) clear_bit(0, &dev->tbusy)
65 #define netif_stop_queue(dev) set_bit(0, &dev->tbusy)
67 static inline void netif_start_queue(struct net_device *dev)
69 dev->tbusy = 0;
70 dev->start = 1;
73 #define rr_mark_net_bh(foo) mark_bh(foo)
74 #define rr_if_busy(dev) dev->tbusy
75 #define rr_if_running(dev) dev->start /* Currently unused. */
76 #define rr_if_down(dev) {do{dev->start = 0;}while (0);}
77 #else
78 #define NET_BH 0
79 #define rr_mark_net_bh(foo) {do{} while(0);}
80 #define rr_if_busy(dev) netif_queue_stopped(dev)
81 #define rr_if_running(dev) netif_running(dev)
82 #define rr_if_down(dev) {do{} while(0);}
83 #endif
85 #include "rrunner.h"
87 #define RUN_AT(x) (jiffies + (x))
91 * Implementation notes:
93 * The DMA engine only allows for DMA within physical 64KB chunks of
94 * memory. The current approach of the driver (and stack) is to use
95 * linear blocks of memory for the skbuffs. However, as the data block
96 * is always the first part of the skb and skbs are 2^n aligned so we
97 * are guarantted to get the whole block within one 64KB align 64KB
98 * chunk.
100 * On the long term, relying on being able to allocate 64KB linear
101 * chunks of memory is not feasible and the skb handling code and the
102 * stack will need to know about I/O vectors or something similar.
105 static const char __initdata *version = "rrunner.c: v0.22 03/01/2000 Jes Sorensen (Jes.Sorensen@cern.ch)\n";
107 static struct net_device *root_dev = NULL;
111 * These are checked at init time to see if they are at least 256KB
112 * and increased to 256KB if they are not. This is done to avoid ending
113 * up with socket buffers smaller than the MTU size,
115 extern __u32 sysctl_wmem_max;
116 extern __u32 sysctl_rmem_max;
118 static int probed __initdata = 0;
120 #ifdef NEW_NETINIT
121 int __init rr_hippi_probe (void)
122 #else
123 int __init rr_hippi_probe (struct net_device *dev)
124 #endif
126 #ifdef NEW_NETINIT
127 struct net_device *dev;
128 #endif
129 int boards_found = 0;
130 int version_disp; /* was version info already displayed? */
131 struct pci_dev *pdev = NULL;
132 struct pci_dev *opdev = NULL;
133 u8 pci_latency;
134 struct rr_private *rrpriv;
136 if (probed)
137 return -ENODEV;
138 probed++;
140 if (!pci_present()) /* is PCI BIOS even present? */
141 return -ENODEV;
143 version_disp = 0;
145 while((pdev = pci_find_device(PCI_VENDOR_ID_ESSENTIAL,
146 PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
147 pdev)))
149 if (pci_enable_device(pdev))
150 continue;
152 if (pdev == opdev)
153 return 0;
156 * So we found our HIPPI ... time to tell the system.
159 dev = init_hippi_dev(NULL, sizeof(struct rr_private));
161 if (!dev)
162 break;
164 if (!dev->priv)
165 dev->priv = kmalloc(sizeof(*rrpriv), GFP_KERNEL);
167 if (!dev->priv)
168 return -ENOMEM;
170 rrpriv = (struct rr_private *)dev->priv;
171 memset(rrpriv, 0, sizeof(*rrpriv));
173 #ifdef CONFIG_SMP
174 spin_lock_init(&rrpriv->lock);
175 #endif
176 sprintf(rrpriv->name, "RoadRunner serial HIPPI");
178 dev->irq = pdev->irq;
179 dev->open = &rr_open;
180 dev->hard_start_xmit = &rr_start_xmit;
181 dev->stop = &rr_close;
182 dev->get_stats = &rr_get_stats;
183 dev->do_ioctl = &rr_ioctl;
185 #if (LINUX_VERSION_CODE < 0x02030d)
186 dev->base_addr = pdev->base_address[0];
187 #else
188 dev->base_addr = pdev->resource[0].start;
189 #endif
191 /* display version info if adapter is found */
192 if (!version_disp)
194 /* set display flag to TRUE so that */
195 /* we only display this string ONCE */
196 version_disp = 1;
197 printk(version);
200 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
201 if (pci_latency <= 0x58){
202 pci_latency = 0x58;
203 pci_write_config_byte(pdev, PCI_LATENCY_TIMER,
204 pci_latency);
207 pci_set_master(pdev);
209 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
210 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
211 dev->base_addr, dev->irq, pci_latency);
214 * Remap the regs into kernel space.
217 rrpriv->regs = (struct rr_regs *)
218 ioremap(dev->base_addr, 0x1000);
220 if (!rrpriv->regs){
221 printk(KERN_ERR "%s: Unable to map I/O register, "
222 "RoadRunner %i will be disabled.\n",
223 dev->name, boards_found);
224 break;
228 * Don't access any registes before this point!
230 #ifdef __BIG_ENDIAN
231 writel(readl(&regs->HostCtrl) | NO_SWAP, &regs->HostCtrl);
232 #endif
234 * Need to add a case for little-endian 64-bit hosts here.
237 rr_init(dev);
239 boards_found++;
240 dev->base_addr = 0;
241 dev = NULL;
242 opdev = pdev;
246 * If we're at this point we're going through rr_hippi_probe()
247 * for the first time. Return success (0) if we've initialized
248 * 1 or more boards. Otherwise, return failure (-ENODEV).
251 #ifdef MODULE
252 return boards_found;
253 #else
254 if (boards_found > 0)
255 return 0;
256 else
257 return -ENODEV;
258 #endif
262 #ifdef MODULE
263 #if LINUX_VERSION_CODE > 0x20118
264 MODULE_AUTHOR("Jes Sorensen <Jes.Sorensen@cern.ch>");
265 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
266 #endif
268 int init_module(void)
270 int cards;
272 root_dev = NULL;
274 #ifdef NEW_NETINIT
275 cards = rr_hippi_probe();
276 #else
277 cards = rr_hippi_probe(NULL);
278 #endif
279 return cards ? 0 : -ENODEV;
282 void cleanup_module(void)
284 struct rr_private *rr;
285 struct net_device *next;
287 while (root_dev) {
288 next = ((struct rr_private *)root_dev->priv)->next;
289 rr = (struct rr_private *)root_dev->priv;
291 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
292 printk(KERN_ERR "%s: trying to unload running NIC\n",
293 root_dev->name);
294 writel(HALT_NIC, &rr->regs->HostCtrl);
297 iounmap(rr->regs);
298 unregister_hipdev(root_dev);
299 kfree(root_dev);
301 root_dev = next;
304 #endif
308 * Commands are considered to be slow, thus there is no reason to
309 * inline this.
311 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
313 struct rr_regs *regs;
314 u32 idx;
316 regs = rrpriv->regs;
318 * This is temporary - it will go away in the final version.
319 * We probably also want to make this function inline.
321 if (readl(&regs->HostCtrl) & NIC_HALTED){
322 printk("issuing command for halted NIC, code 0x%x, "
323 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
324 if (readl(&regs->Mode) & FATAL_ERR)
325 printk("error codes Fail1 %02x, Fail2 %02x\n",
326 readl(&regs->Fail1), readl(&regs->Fail2));
329 idx = rrpriv->info->cmd_ctrl.pi;
331 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
332 wmb();
334 idx = (idx - 1) % CMD_RING_ENTRIES;
335 rrpriv->info->cmd_ctrl.pi = idx;
336 wmb();
338 if (readl(&regs->Mode) & FATAL_ERR)
339 printk("error code %02x\n", readl(&regs->Fail1));
344 * Reset the board in a sensible manner. The NIC is already halted
345 * when we get here and a spin-lock is held.
347 static int rr_reset(struct net_device *dev)
349 struct rr_private *rrpriv;
350 struct rr_regs *regs;
351 struct eeprom *hw = NULL;
352 u32 start_pc;
353 int i;
355 rrpriv = (struct rr_private *)dev->priv;
356 regs = rrpriv->regs;
358 rr_load_firmware(dev);
360 writel(0x01000000, &regs->TX_state);
361 writel(0xff800000, &regs->RX_state);
362 writel(0, &regs->AssistState);
363 writel(CLEAR_INTA, &regs->LocalCtrl);
364 writel(0x01, &regs->BrkPt);
365 writel(0, &regs->Timer);
366 writel(0, &regs->TimerRef);
367 writel(RESET_DMA, &regs->DmaReadState);
368 writel(RESET_DMA, &regs->DmaWriteState);
369 writel(0, &regs->DmaWriteHostHi);
370 writel(0, &regs->DmaWriteHostLo);
371 writel(0, &regs->DmaReadHostHi);
372 writel(0, &regs->DmaReadHostLo);
373 writel(0, &regs->DmaReadLen);
374 writel(0, &regs->DmaWriteLen);
375 writel(0, &regs->DmaWriteLcl);
376 writel(0, &regs->DmaWriteIPchecksum);
377 writel(0, &regs->DmaReadLcl);
378 writel(0, &regs->DmaReadIPchecksum);
379 writel(0, &regs->PciState);
380 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
381 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
382 #elif (BITS_PER_LONG == 64)
383 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
384 #else
385 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
386 #endif
388 #if 0
390 * Don't worry, this is just black magic.
392 writel(0xdf000, &regs->RxBase);
393 writel(0xdf000, &regs->RxPrd);
394 writel(0xdf000, &regs->RxCon);
395 writel(0xce000, &regs->TxBase);
396 writel(0xce000, &regs->TxPrd);
397 writel(0xce000, &regs->TxCon);
398 writel(0, &regs->RxIndPro);
399 writel(0, &regs->RxIndCon);
400 writel(0, &regs->RxIndRef);
401 writel(0, &regs->TxIndPro);
402 writel(0, &regs->TxIndCon);
403 writel(0, &regs->TxIndRef);
404 writel(0xcc000, &regs->pad10[0]);
405 writel(0, &regs->DrCmndPro);
406 writel(0, &regs->DrCmndCon);
407 writel(0, &regs->DwCmndPro);
408 writel(0, &regs->DwCmndCon);
409 writel(0, &regs->DwCmndRef);
410 writel(0, &regs->DrDataPro);
411 writel(0, &regs->DrDataCon);
412 writel(0, &regs->DrDataRef);
413 writel(0, &regs->DwDataPro);
414 writel(0, &regs->DwDataCon);
415 writel(0, &regs->DwDataRef);
416 #endif
418 writel(0xffffffff, &regs->MbEvent);
419 writel(0, &regs->Event);
421 writel(0, &regs->TxPi);
422 writel(0, &regs->IpRxPi);
424 writel(0, &regs->EvtCon);
425 writel(0, &regs->EvtPrd);
427 rrpriv->info->evt_ctrl.pi = 0;
429 for (i = 0; i < CMD_RING_ENTRIES; i++)
430 writel(0, &regs->CmdRing[i]);
433 * Why 32 ? is this not cache line size dependant?
435 writel(RBURST_64|WBURST_64, &regs->PciState);
436 wmb();
438 start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
440 #if (DEBUG > 1)
441 printk("%s: Executing firmware at address 0x%06x\n",
442 dev->name, start_pc);
443 #endif
445 writel(start_pc + 0x800, &regs->Pc);
446 wmb();
447 udelay(5);
449 writel(start_pc, &regs->Pc);
450 wmb();
452 return 0;
457 * Read a string from the EEPROM.
459 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
460 unsigned long offset,
461 unsigned char *buf,
462 unsigned long length)
464 struct rr_regs *regs = rrpriv->regs;
465 u32 misc, io, host, i;
467 io = readl(&regs->ExtIo);
468 writel(0, &regs->ExtIo);
469 misc = readl(&regs->LocalCtrl);
470 writel(0, &regs->LocalCtrl);
471 host = readl(&regs->HostCtrl);
472 writel(host | HALT_NIC, &regs->HostCtrl);
473 mb();
475 for (i = 0; i < length; i++){
476 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
477 mb();
478 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
479 mb();
482 writel(host, &regs->HostCtrl);
483 writel(misc, &regs->LocalCtrl);
484 writel(io, &regs->ExtIo);
485 mb();
486 return i;
491 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
492 * it to our CPU byte-order.
494 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
495 void * offset)
497 u32 word;
499 if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
500 (char *)&word, 4) == 4))
501 return be32_to_cpu(word);
502 return 0;
507 * Write a string to the EEPROM.
509 * This is only called when the firmware is not running.
511 static unsigned int write_eeprom(struct rr_private *rrpriv,
512 unsigned long offset,
513 unsigned char *buf,
514 unsigned long length)
516 struct rr_regs *regs = rrpriv->regs;
517 u32 misc, io, data, i, j, ready, error = 0;
519 io = readl(&regs->ExtIo);
520 writel(0, &regs->ExtIo);
521 misc = readl(&regs->LocalCtrl);
522 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
523 mb();
525 for (i = 0; i < length; i++){
526 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
527 mb();
528 data = buf[i] << 24;
530 * Only try to write the data if it is not the same
531 * value already.
533 if ((readl(&regs->WinData) & 0xff000000) != data){
534 writel(data, &regs->WinData);
535 ready = 0;
536 j = 0;
537 mb();
538 while(!ready){
539 udelay(20);
540 if ((readl(&regs->WinData) & 0xff000000) ==
541 data)
542 ready = 1;
543 mb();
544 if (j++ > 5000){
545 printk("data mismatch: %08x, "
546 "WinData %08x\n", data,
547 readl(&regs->WinData));
548 ready = 1;
549 error = 1;
555 writel(misc, &regs->LocalCtrl);
556 writel(io, &regs->ExtIo);
557 mb();
559 return error;
563 static int __init rr_init(struct net_device *dev)
565 struct rr_private *rrpriv;
566 struct rr_regs *regs;
567 struct eeprom *hw = NULL;
568 u32 sram_size, rev;
569 int i;
571 rrpriv = (struct rr_private *)dev->priv;
572 regs = rrpriv->regs;
574 rev = readl(&regs->FwRev);
575 rrpriv->fw_rev = rev;
576 if (rev > 0x00020024)
577 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
578 ((rev >> 8) & 0xff), (rev & 0xff));
579 else if (rev >= 0x00020000) {
580 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
581 "later is recommended)\n", (rev >> 16),
582 ((rev >> 8) & 0xff), (rev & 0xff));
583 }else{
584 printk(" Firmware revision too old: %i.%i.%i, please "
585 "upgrade to 2.0.37 or later.\n",
586 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
589 #if (DEBUG > 2)
590 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
591 #endif
594 * Read the hardware address from the eeprom. The HW address
595 * is not really necessary for HIPPI but awfully convenient.
596 * The pointer arithmetic to put it in dev_addr is ugly, but
597 * Donald Becker does it this way for the GigE version of this
598 * card and it's shorter and more portable than any
599 * other method I've seen. -VAL
602 *(u16 *)(dev->dev_addr) =
603 htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
604 *(u32 *)(dev->dev_addr+2) =
605 htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
607 printk(" MAC: ");
609 for (i = 0; i < 5; i++)
610 printk("%2.2x:", dev->dev_addr[i]);
611 printk("%2.2x\n", dev->dev_addr[i]);
613 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
614 printk(" SRAM size 0x%06x\n", sram_size);
616 if (sysctl_rmem_max < 262144){
617 printk(" Receive socket buffer limit too low (%i), "
618 "setting to 262144\n", sysctl_rmem_max);
619 sysctl_rmem_max = 262144;
622 if (sysctl_wmem_max < 262144){
623 printk(" Transmit socket buffer limit too low (%i), "
624 "setting to 262144\n", sysctl_wmem_max);
625 sysctl_wmem_max = 262144;
628 rrpriv->next = root_dev;
629 root_dev = dev;
631 return 0;
635 static int rr_init1(struct net_device *dev)
637 struct rr_private *rrpriv;
638 struct rr_regs *regs;
639 unsigned long myjif, flags;
640 struct cmd cmd;
641 u32 hostctrl;
642 int ecode = 0;
643 short i;
645 rrpriv = (struct rr_private *)dev->priv;
646 regs = rrpriv->regs;
648 spin_lock_irqsave(&rrpriv->lock, flags);
650 hostctrl = readl(&regs->HostCtrl);
651 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
652 wmb();
654 if (hostctrl & PARITY_ERR){
655 printk("%s: Parity error halting NIC - this is serious!\n",
656 dev->name);
657 spin_unlock_irqrestore(&rrpriv->lock, flags);
658 ecode = -EFAULT;
659 goto error;
662 set_rxaddr(regs, rrpriv->rx_ctrl);
663 set_infoaddr(regs, rrpriv->info);
665 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
666 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
667 rrpriv->info->evt_ctrl.mode = 0;
668 rrpriv->info->evt_ctrl.pi = 0;
669 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring);
671 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
672 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
673 rrpriv->info->cmd_ctrl.mode = 0;
674 rrpriv->info->cmd_ctrl.pi = 15;
676 for (i = 0; i < CMD_RING_ENTRIES; i++) {
677 writel(0, &regs->CmdRing[i]);
680 for (i = 0; i < TX_RING_ENTRIES; i++) {
681 rrpriv->tx_ring[i].size = 0;
682 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
683 rrpriv->tx_skbuff[i] = 0;
685 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
686 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
687 rrpriv->info->tx_ctrl.mode = 0;
688 rrpriv->info->tx_ctrl.pi = 0;
689 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring);
692 * Set dirty_tx before we start receiving interrupts, otherwise
693 * the interrupt handler might think it is supposed to process
694 * tx ints before we are up and running, which may cause a null
695 * pointer access in the int handler.
697 rrpriv->tx_full = 0;
698 rrpriv->cur_rx = 0;
699 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
701 rr_reset(dev);
703 /* Tuning values */
704 writel(0x5000, &regs->ConRetry);
705 writel(0x100, &regs->ConRetryTmr);
706 writel(0x500000, &regs->ConTmout);
707 writel(0x60, &regs->IntrTmr);
708 writel(0x500000, &regs->TxDataMvTimeout);
709 writel(0x200000, &regs->RxDataMvTimeout);
710 writel(0x80, &regs->WriteDmaThresh);
711 writel(0x80, &regs->ReadDmaThresh);
713 rrpriv->fw_running = 0;
714 wmb();
716 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
717 writel(hostctrl, &regs->HostCtrl);
718 wmb();
720 spin_unlock_irqrestore(&rrpriv->lock, flags);
722 for (i = 0; i < RX_RING_ENTRIES; i++) {
723 struct sk_buff *skb;
725 rrpriv->rx_ring[i].mode = 0;
726 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
727 if (!skb) {
728 printk(KERN_WARNING "%s: Unable to allocate memory "
729 "for receive ring - halting NIC\n", dev->name);
730 ecode = -ENOMEM;
731 goto error;
733 rrpriv->rx_skbuff[i] = skb;
735 * Sanity test to see if we conflict with the DMA
736 * limitations of the Roadrunner.
738 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
739 printk("skb alloc error\n");
741 set_rraddr(&rrpriv->rx_ring[i].addr, skb->data);
742 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
745 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
746 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
747 rrpriv->rx_ctrl[4].mode = 8;
748 rrpriv->rx_ctrl[4].pi = 0;
749 wmb();
750 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring);
752 udelay(1000);
755 * Now start the FirmWare.
757 cmd.code = C_START_FW;
758 cmd.ring = 0;
759 cmd.index = 0;
761 rr_issue_cmd(rrpriv, &cmd);
764 * Give the FirmWare time to chew on the `get running' command.
766 myjif = jiffies + 5 * HZ;
767 while ((jiffies < myjif) && !rrpriv->fw_running);
769 netif_start_queue(dev);
771 return ecode;
773 error:
775 * We might have gotten here because we are out of memory,
776 * make sure we release everything we allocated before failing
778 for (i = 0; i < RX_RING_ENTRIES; i++) {
779 if (rrpriv->rx_skbuff[i]) {
780 rrpriv->rx_ring[i].size = 0;
781 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
782 dev_kfree_skb(rrpriv->rx_skbuff[i]);
785 return ecode;
790 * All events are considered to be slow (RX/TX ints do not generate
791 * events) and are handled here, outside the main interrupt handler,
792 * to reduce the size of the handler.
794 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
796 struct rr_private *rrpriv;
797 struct rr_regs *regs;
798 u32 tmp;
800 rrpriv = (struct rr_private *)dev->priv;
801 regs = rrpriv->regs;
803 while (prodidx != eidx){
804 switch (rrpriv->evt_ring[eidx].code){
805 case E_NIC_UP:
806 tmp = readl(&regs->FwRev);
807 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
808 "up and running\n", dev->name,
809 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
810 rrpriv->fw_running = 1;
811 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
812 wmb();
813 break;
814 case E_LINK_ON:
815 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
816 break;
817 case E_LINK_OFF:
818 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
819 break;
820 case E_RX_IDLE:
821 printk(KERN_WARNING "%s: RX data not moving\n",
822 dev->name);
823 break;
824 case E_WATCHDOG:
825 printk(KERN_INFO "%s: The watchdog is here to see "
826 "us\n", dev->name);
827 break;
828 case E_INTERN_ERR:
829 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
830 dev->name);
831 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
832 &regs->HostCtrl);
833 wmb();
834 break;
835 case E_HOST_ERR:
836 printk(KERN_ERR "%s: Host software error\n",
837 dev->name);
838 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
839 &regs->HostCtrl);
840 wmb();
841 break;
843 * TX events.
845 case E_CON_REJ:
846 printk(KERN_WARNING "%s: Connection rejected\n",
847 dev->name);
848 rrpriv->stats.tx_aborted_errors++;
849 break;
850 case E_CON_TMOUT:
851 printk(KERN_WARNING "%s: Connection timeout\n",
852 dev->name);
853 break;
854 case E_DISC_ERR:
855 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
856 dev->name);
857 rrpriv->stats.tx_aborted_errors++;
858 break;
859 case E_INT_PRTY:
860 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
861 dev->name);
862 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
863 &regs->HostCtrl);
864 wmb();
865 break;
866 case E_TX_IDLE:
867 printk(KERN_WARNING "%s: Transmitter idle\n",
868 dev->name);
869 break;
870 case E_TX_LINK_DROP:
871 printk(KERN_WARNING "%s: Link lost during transmit\n",
872 dev->name);
873 rrpriv->stats.tx_aborted_errors++;
874 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
875 &regs->HostCtrl);
876 wmb();
877 break;
878 case E_TX_INV_RNG:
879 printk(KERN_ERR "%s: Invalid send ring block\n",
880 dev->name);
881 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
882 &regs->HostCtrl);
883 wmb();
884 break;
885 case E_TX_INV_BUF:
886 printk(KERN_ERR "%s: Invalid send buffer address\n",
887 dev->name);
888 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
889 &regs->HostCtrl);
890 wmb();
891 break;
892 case E_TX_INV_DSC:
893 printk(KERN_ERR "%s: Invalid descriptor address\n",
894 dev->name);
895 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
896 &regs->HostCtrl);
897 wmb();
898 break;
900 * RX events.
902 case E_RX_RNG_OUT:
903 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
904 break;
906 case E_RX_PAR_ERR:
907 printk(KERN_WARNING "%s: Receive parity error\n",
908 dev->name);
909 break;
910 case E_RX_LLRC_ERR:
911 printk(KERN_WARNING "%s: Receive LLRC error\n",
912 dev->name);
913 break;
914 case E_PKT_LN_ERR:
915 printk(KERN_WARNING "%s: Receive packet length "
916 "error\n", dev->name);
917 break;
918 case E_RX_INV_BUF:
919 printk(KERN_ERR "%s: Invalid receive buffer "
920 "address\n", dev->name);
921 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
922 &regs->HostCtrl);
923 wmb();
924 break;
925 case E_RX_INV_DSC:
926 printk(KERN_ERR "%s: Invalid receive descriptor "
927 "address\n", dev->name);
928 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
929 &regs->HostCtrl);
930 wmb();
931 break;
932 case E_RNG_BLK:
933 printk(KERN_ERR "%s: Invalid ring block\n",
934 dev->name);
935 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
936 &regs->HostCtrl);
937 wmb();
938 break;
939 default:
940 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
941 dev->name, rrpriv->evt_ring[eidx].code);
943 eidx = (eidx + 1) % EVT_RING_ENTRIES;
946 rrpriv->info->evt_ctrl.pi = eidx;
947 wmb();
948 return eidx;
952 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
954 struct rr_private *rrpriv = (struct rr_private *)dev->priv;
955 struct rr_regs *regs = rrpriv->regs;
957 do {
958 u32 pkt_len;
959 pkt_len = rrpriv->rx_ring[index].size;
960 #if (DEBUG > 2)
961 printk("index %i, rxlimit %i\n", index, rxlimit);
962 printk("len %x, mode %x\n", pkt_len,
963 rrpriv->rx_ring[index].mode);
964 #endif
965 if (pkt_len > 0){
966 struct sk_buff *skb;
968 if (pkt_len < PKT_COPY_THRESHOLD) {
969 skb = alloc_skb(pkt_len, GFP_ATOMIC);
970 if (skb == NULL){
971 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
972 rrpriv->stats.rx_dropped++;
973 goto defer;
974 }else
975 memcpy(skb_put(skb, pkt_len),
976 rrpriv->rx_skbuff[index]->data,
977 pkt_len);
978 }else{
979 struct sk_buff *newskb;
981 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
982 GFP_ATOMIC);
983 if (newskb){
984 skb = rrpriv->rx_skbuff[index];
985 skb_put(skb, pkt_len);
986 rrpriv->rx_skbuff[index] = newskb;
987 set_rraddr(&rrpriv->rx_ring[index].addr, newskb->data);
988 }else{
989 printk("%s: Out of memory, deferring "
990 "packet\n", dev->name);
991 rrpriv->stats.rx_dropped++;
992 goto defer;
995 skb->dev = dev;
996 skb->protocol = hippi_type_trans(skb, dev);
998 netif_rx(skb); /* send it up */
1000 rrpriv->stats.rx_packets++;
1001 rrpriv->stats.rx_bytes += skb->len;
1003 defer:
1004 rrpriv->rx_ring[index].mode = 0;
1005 rrpriv->rx_ring[index].size = dev->mtu + HIPPI_HLEN;
1007 if ((index & 7) == 7)
1008 writel(index, &regs->IpRxPi);
1010 index = (index + 1) % RX_RING_ENTRIES;
1011 } while(index != rxlimit);
1013 rrpriv->cur_rx = index;
1014 wmb();
1018 static void rr_interrupt(int irq, void *dev_id, struct pt_regs *ptregs)
1020 struct rr_private *rrpriv;
1021 struct rr_regs *regs;
1022 struct net_device *dev = (struct net_device *)dev_id;
1023 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1025 rrpriv = (struct rr_private *)dev->priv;
1026 regs = rrpriv->regs;
1028 if (!(readl(&regs->HostCtrl) & RR_INT))
1029 return;
1031 spin_lock(&rrpriv->lock);
1033 prodidx = readl(&regs->EvtPrd);
1034 txcsmr = (prodidx >> 8) & 0xff;
1035 rxlimit = (prodidx >> 16) & 0xff;
1036 prodidx &= 0xff;
1038 #if (DEBUG > 2)
1039 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1040 prodidx, rrpriv->info->evt_ctrl.pi);
1041 #endif
1043 rxindex = rrpriv->cur_rx;
1044 if (rxindex != rxlimit)
1045 rx_int(dev, rxlimit, rxindex);
1047 txcon = rrpriv->dirty_tx;
1048 if (txcsmr != txcon) {
1049 do {
1050 rrpriv->stats.tx_packets++;
1051 rrpriv->stats.tx_bytes +=rrpriv->tx_skbuff[txcon]->len;
1052 dev_kfree_skb_irq(rrpriv->tx_skbuff[txcon]);
1054 rrpriv->tx_skbuff[txcon] = NULL;
1055 rrpriv->tx_ring[txcon].size = 0;
1056 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1057 rrpriv->tx_ring[txcon].mode = 0;
1059 txcon = (txcon + 1) % TX_RING_ENTRIES;
1060 } while (txcsmr != txcon);
1061 wmb();
1063 rrpriv->dirty_tx = txcon;
1064 if (rrpriv->tx_full && rr_if_busy(dev) &&
1065 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1066 != rrpriv->dirty_tx)){
1067 rrpriv->tx_full = 0;
1068 netif_wake_queue(dev);
1069 rr_mark_net_bh(NET_BH);
1073 eidx = rrpriv->info->evt_ctrl.pi;
1074 if (prodidx != eidx)
1075 eidx = rr_handle_event(dev, prodidx, eidx);
1077 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1078 writel(eidx, &regs->EvtCon);
1079 wmb();
1081 spin_unlock(&rrpriv->lock);
1085 static void rr_timer(unsigned long data)
1087 struct net_device *dev = (struct net_device *)data;
1088 struct rr_private *rrpriv = (struct rr_private *)dev->priv;
1089 struct rr_regs *regs = rrpriv->regs;
1090 unsigned long flags;
1091 int i;
1093 if (readl(&regs->HostCtrl) & NIC_HALTED){
1094 printk("%s: Restarting nic\n", dev->name);
1095 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1096 memset(rrpriv->info, 0, sizeof(struct rr_info));
1097 wmb();
1098 for (i = 0; i < TX_RING_ENTRIES; i++) {
1099 if (rrpriv->tx_skbuff[i]) {
1100 rrpriv->tx_ring[i].size = 0;
1101 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
1102 dev_kfree_skb(rrpriv->tx_skbuff[i]);
1103 rrpriv->tx_skbuff[i] = NULL;
1107 for (i = 0; i < RX_RING_ENTRIES; i++) {
1108 if (rrpriv->rx_skbuff[i]) {
1109 rrpriv->rx_ring[i].size = 0;
1110 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
1111 dev_kfree_skb(rrpriv->rx_skbuff[i]);
1112 rrpriv->rx_skbuff[i] = NULL;
1115 if (rr_init1(dev)) {
1116 spin_lock_irqsave(&rrpriv->lock, flags);
1117 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1118 &regs->HostCtrl);
1119 spin_unlock_irqrestore(&rrpriv->lock, flags);
1122 rrpriv->timer.expires = RUN_AT(5*HZ);
1123 add_timer(&rrpriv->timer);
1127 static int rr_open(struct net_device *dev)
1129 struct rr_private *rrpriv;
1130 struct rr_regs *regs;
1131 int ecode = 0;
1132 unsigned long flags;
1134 rrpriv = (struct rr_private *)dev->priv;
1135 regs = rrpriv->regs;
1137 if (rrpriv->fw_rev < 0x00020000) {
1138 printk(KERN_WARNING "%s: trying to configure device with "
1139 "obsolete firmware\n", dev->name);
1140 ecode = -EBUSY;
1141 goto error;
1144 rrpriv->rx_ctrl = kmalloc(256*sizeof(struct ring_ctrl), GFP_KERNEL);
1145 if (!rrpriv->rx_ctrl) {
1146 ecode = -ENOMEM;
1147 goto error;
1150 rrpriv->info = kmalloc(sizeof(struct rr_info), GFP_KERNEL);
1151 if (!rrpriv->info){
1152 rrpriv->rx_ctrl = NULL;
1153 ecode = -ENOMEM;
1154 goto error;
1156 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1157 memset(rrpriv->info, 0, sizeof(struct rr_info));
1158 wmb();
1160 spin_lock_irqsave(&rrpriv->lock, flags);
1161 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1162 spin_unlock_irqrestore(&rrpriv->lock, flags);
1164 if (request_irq(dev->irq, rr_interrupt, SA_SHIRQ, rrpriv->name, dev))
1166 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1167 dev->name, dev->irq);
1168 ecode = -EAGAIN;
1169 goto error;
1172 if ((ecode = rr_init1(dev)))
1173 goto error;
1175 /* Set the timer to switch to check for link beat and perhaps switch
1176 to an alternate media type. */
1177 init_timer(&rrpriv->timer);
1178 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1179 rrpriv->timer.data = (unsigned long)dev;
1180 rrpriv->timer.function = &rr_timer; /* timer handler */
1181 add_timer(&rrpriv->timer);
1183 netif_start_queue(dev);
1185 MOD_INC_USE_COUNT;
1186 return ecode;
1188 error:
1189 spin_lock_irqsave(&rrpriv->lock, flags);
1190 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1191 spin_unlock_irqrestore(&rrpriv->lock, flags);
1193 if (rrpriv->info) {
1194 kfree(rrpriv->info);
1195 rrpriv->info = NULL;
1197 if (rrpriv->rx_ctrl) {
1198 kfree(rrpriv->rx_ctrl);
1199 rrpriv->rx_ctrl = NULL;
1202 netif_stop_queue(dev);
1203 rr_if_down(dev);
1205 return ecode;
1209 static void rr_dump(struct net_device *dev)
1211 struct rr_private *rrpriv;
1212 struct rr_regs *regs;
1213 u32 index, cons;
1214 short i;
1215 int len;
1217 rrpriv = (struct rr_private *)dev->priv;
1218 regs = rrpriv->regs;
1220 printk("%s: dumping NIC TX rings\n", dev->name);
1222 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1223 readl(&regs->RxPrd), readl(&regs->TxPrd),
1224 readl(&regs->EvtPrd), readl(&regs->TxPi),
1225 rrpriv->info->tx_ctrl.pi);
1227 printk("Error code 0x%x\n", readl(&regs->Fail1));
1229 index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1230 cons = rrpriv->dirty_tx;
1231 printk("TX ring index %i, TX consumer %i\n",
1232 index, cons);
1234 if (rrpriv->tx_skbuff[index]){
1235 len = min(0x80, rrpriv->tx_skbuff[index]->len);
1236 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1237 for (i = 0; i < len; i++){
1238 if (!(i & 7))
1239 printk("\n");
1240 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1242 printk("\n");
1245 if (rrpriv->tx_skbuff[cons]){
1246 len = min(0x80, rrpriv->tx_skbuff[cons]->len);
1247 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1248 printk("mode 0x%x, size 0x%x,\n phys %08x (virt %08lx), skbuff-addr %08lx, truesize 0x%x\n",
1249 rrpriv->tx_ring[cons].mode,
1250 rrpriv->tx_ring[cons].size,
1251 rrpriv->tx_ring[cons].addr.addrlo,
1252 (unsigned long)bus_to_virt(rrpriv->tx_ring[cons].addr.addrlo),
1253 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1254 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1255 for (i = 0; i < len; i++){
1256 if (!(i & 7))
1257 printk("\n");
1258 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1260 printk("\n");
1263 printk("dumping TX ring info:\n");
1264 for (i = 0; i < TX_RING_ENTRIES; i++)
1265 printk("mode 0x%x, size 0x%x, phys-addr %08x\n",
1266 rrpriv->tx_ring[i].mode,
1267 rrpriv->tx_ring[i].size,
1268 rrpriv->tx_ring[i].addr.addrlo);
1273 static int rr_close(struct net_device *dev)
1275 struct rr_private *rrpriv;
1276 struct rr_regs *regs;
1277 u32 tmp;
1278 short i;
1280 netif_stop_queue(dev);
1281 rr_if_down(dev);
1283 rrpriv = (struct rr_private *)dev->priv;
1284 regs = rrpriv->regs;
1287 * Lock to make sure we are not cleaning up while another CPU
1288 * handling interrupts.
1290 spin_lock(&rrpriv->lock);
1292 tmp = readl(&regs->HostCtrl);
1293 if (tmp & NIC_HALTED){
1294 printk("%s: NIC already halted\n", dev->name);
1295 rr_dump(dev);
1296 }else{
1297 tmp |= HALT_NIC | RR_CLEAR_INT;
1298 writel(tmp, &regs->HostCtrl);
1299 wmb();
1302 rrpriv->fw_running = 0;
1304 del_timer(&rrpriv->timer);
1306 writel(0, &regs->TxPi);
1307 writel(0, &regs->IpRxPi);
1309 writel(0, &regs->EvtCon);
1310 writel(0, &regs->EvtPrd);
1312 for (i = 0; i < CMD_RING_ENTRIES; i++)
1313 writel(0, &regs->CmdRing[i]);
1315 rrpriv->info->tx_ctrl.entries = 0;
1316 rrpriv->info->cmd_ctrl.pi = 0;
1317 rrpriv->info->evt_ctrl.pi = 0;
1318 rrpriv->rx_ctrl[4].entries = 0;
1320 for (i = 0; i < TX_RING_ENTRIES; i++) {
1321 if (rrpriv->tx_skbuff[i]) {
1322 rrpriv->tx_ring[i].size = 0;
1323 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
1324 dev_kfree_skb(rrpriv->tx_skbuff[i]);
1325 rrpriv->tx_skbuff[i] = NULL;
1329 for (i = 0; i < RX_RING_ENTRIES; i++) {
1330 if (rrpriv->rx_skbuff[i]) {
1331 rrpriv->rx_ring[i].size = 0;
1332 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
1333 dev_kfree_skb(rrpriv->rx_skbuff[i]);
1334 rrpriv->rx_skbuff[i] = NULL;
1338 if (rrpriv->rx_ctrl) {
1339 kfree(rrpriv->rx_ctrl);
1340 rrpriv->rx_ctrl = NULL;
1342 if (rrpriv->info) {
1343 kfree(rrpriv->info);
1344 rrpriv->info = NULL;
1347 free_irq(dev->irq, dev);
1348 spin_unlock(&rrpriv->lock);
1350 MOD_DEC_USE_COUNT;
1351 return 0;
1355 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1357 struct rr_private *rrpriv = (struct rr_private *)dev->priv;
1358 struct rr_regs *regs = rrpriv->regs;
1359 struct ring_ctrl *txctrl;
1360 unsigned long flags;
1361 u32 index, len = skb->len;
1362 u32 *ifield;
1363 struct sk_buff *new_skb;
1365 if (readl(&regs->Mode) & FATAL_ERR)
1366 printk("error codes Fail1 %02x, Fail2 %02x\n",
1367 readl(&regs->Fail1), readl(&regs->Fail2));
1370 * We probably need to deal with tbusy here to prevent overruns.
1373 if (skb_headroom(skb) < 8){
1374 printk("incoming skb too small - reallocating\n");
1375 if (!(new_skb = dev_alloc_skb(len + 8))) {
1376 dev_kfree_skb(skb);
1377 netif_wake_queue(dev);
1378 return -EBUSY;
1380 skb_reserve(new_skb, 8);
1381 skb_put(new_skb, len);
1382 memcpy(new_skb->data, skb->data, len);
1383 dev_kfree_skb(skb);
1384 skb = new_skb;
1387 ifield = (u32 *)skb_push(skb, 8);
1389 ifield[0] = 0;
1390 ifield[1] = skb->private.ifield;
1393 * We don't need the lock before we are actually going to start
1394 * fiddling with the control blocks.
1396 spin_lock_irqsave(&rrpriv->lock, flags);
1398 txctrl = &rrpriv->info->tx_ctrl;
1400 index = txctrl->pi;
1402 rrpriv->tx_skbuff[index] = skb;
1403 set_rraddr(&rrpriv->tx_ring[index].addr, skb->data);
1404 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1405 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1406 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1407 wmb();
1408 writel(txctrl->pi, &regs->TxPi);
1410 if (txctrl->pi == rrpriv->dirty_tx){
1411 rrpriv->tx_full = 1;
1412 netif_stop_queue(dev);
1415 spin_unlock_irqrestore(&rrpriv->lock, flags);
1417 dev->trans_start = jiffies;
1418 return 0;
1422 static struct net_device_stats *rr_get_stats(struct net_device *dev)
1424 struct rr_private *rrpriv;
1426 rrpriv = (struct rr_private *)dev->priv;
1428 return(&rrpriv->stats);
1433 * Read the firmware out of the EEPROM and put it into the SRAM
1434 * (or from user space - later)
1436 * This operation requires the NIC to be halted and is performed with
1437 * interrupts disabled and with the spinlock hold.
1439 static int rr_load_firmware(struct net_device *dev)
1441 struct rr_private *rrpriv;
1442 struct rr_regs *regs;
1443 unsigned long eptr, segptr;
1444 int i, j;
1445 u32 localctrl, sptr, len, tmp;
1446 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1447 struct eeprom *hw = NULL;
1449 rrpriv = (struct rr_private *)dev->priv;
1450 regs = rrpriv->regs;
1452 if (dev->flags & IFF_UP)
1453 return -EBUSY;
1455 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1456 printk("%s: Trying to load firmware to a running NIC.\n",
1457 dev->name);
1458 return -EBUSY;
1461 localctrl = readl(&regs->LocalCtrl);
1462 writel(0, &regs->LocalCtrl);
1464 writel(0, &regs->EvtPrd);
1465 writel(0, &regs->RxPrd);
1466 writel(0, &regs->TxPrd);
1469 * First wipe the entire SRAM, otherwise we might run into all
1470 * kinds of trouble ... sigh, this took almost all afternoon
1471 * to track down ;-(
1473 io = readl(&regs->ExtIo);
1474 writel(0, &regs->ExtIo);
1475 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1477 for (i = 200; i < sram_size / 4; i++){
1478 writel(i * 4, &regs->WinBase);
1479 mb();
1480 writel(0, &regs->WinData);
1481 mb();
1483 writel(io, &regs->ExtIo);
1484 mb();
1486 eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1487 &hw->rncd_info.AddrRunCodeSegs);
1488 eptr = ((eptr & 0x1fffff) >> 3);
1490 p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1491 p2len = (p2len << 2);
1492 p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1493 p2size = ((p2size & 0x1fffff) >> 3);
1495 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1496 printk("%s: eptr is invalid\n", dev->name);
1497 goto out;
1500 revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1502 if (revision != 1){
1503 printk("%s: invalid firmware format (%i)\n",
1504 dev->name, revision);
1505 goto out;
1508 nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1509 eptr +=4;
1510 #if (DEBUG > 1)
1511 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1512 #endif
1514 for (i = 0; i < nr_seg; i++){
1515 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1516 eptr += 4;
1517 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1518 eptr += 4;
1519 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1520 segptr = ((segptr & 0x1fffff) >> 3);
1521 eptr += 4;
1522 #if (DEBUG > 1)
1523 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1524 dev->name, i, sptr, len, segptr);
1525 #endif
1526 for (j = 0; j < len; j++){
1527 tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1528 writel(sptr, &regs->WinBase);
1529 mb();
1530 writel(tmp, &regs->WinData);
1531 mb();
1532 segptr += 4;
1533 sptr += 4;
1537 out:
1538 writel(localctrl, &regs->LocalCtrl);
1539 mb();
1540 return 0;
1544 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1546 struct rr_private *rrpriv;
1547 unsigned char *image, *oldimage;
1548 unsigned int i;
1549 int error = -EOPNOTSUPP;
1551 rrpriv = (struct rr_private *)dev->priv;
1553 spin_lock(&rrpriv->lock);
1555 switch(cmd){
1556 case SIOCRRGFW:
1557 if (!capable(CAP_SYS_RAWIO)){
1558 error = -EPERM;
1559 goto out;
1562 if (rrpriv->fw_running){
1563 printk("%s: Firmware already running\n", dev->name);
1564 error = -EPERM;
1565 goto out;
1568 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1569 if (!image){
1570 printk(KERN_ERR "%s: Unable to allocate memory "
1571 "for EEPROM image\n", dev->name);
1572 error = -ENOMEM;
1573 goto out;
1575 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1576 if (i != EEPROM_BYTES){
1577 kfree(image);
1578 printk(KERN_ERR "%s: Error reading EEPROM\n",
1579 dev->name);
1580 error = -EFAULT;
1581 goto out;
1583 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1584 if (error)
1585 error = -EFAULT;
1586 kfree(image);
1587 break;
1588 case SIOCRRPFW:
1589 if (!capable(CAP_SYS_RAWIO)){
1590 error = -EPERM;
1591 goto out;
1594 if (rrpriv->fw_running){
1595 printk("%s: Firmware already running\n", dev->name);
1596 error = -EPERM;
1597 goto out;
1600 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1601 if (!image){
1602 printk(KERN_ERR "%s: Unable to allocate memory "
1603 "for EEPROM image\n", dev->name);
1604 error = -ENOMEM;
1605 goto out;
1608 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1609 if (!oldimage){
1610 printk(KERN_ERR "%s: Unable to allocate memory "
1611 "for old EEPROM image\n", dev->name);
1612 error = -ENOMEM;
1613 goto out;
1616 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1617 if (error)
1618 error = -EFAULT;
1620 printk("%s: Updating EEPROM firmware\n", dev->name);
1622 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1623 if (error)
1624 printk(KERN_ERR "%s: Error writing EEPROM\n",
1625 dev->name);
1627 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1628 if (i != EEPROM_BYTES)
1629 printk(KERN_ERR "%s: Error reading back EEPROM "
1630 "image\n", dev->name);
1632 error = memcmp(image, oldimage, EEPROM_BYTES);
1633 if (error){
1634 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1635 dev->name);
1636 error = -EFAULT;
1638 kfree(image);
1639 kfree(oldimage);
1640 break;
1641 case SIOCRRID:
1642 error = put_user(0x52523032, (int *)(&rq->ifr_data[0]));
1643 if (error)
1644 error = -EFAULT;
1645 break;
1646 default:
1649 out:
1650 spin_unlock(&rrpriv->lock);
1651 return error;
1656 * Local variables:
1657 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1658 * End: