

 CSQLCSQLCSQLCSQL Main Memory Database Cache

User Manual

www.csqldb.com

www.csqldb.com CSQL – User Manual 2.0 2

Contents Page No.

1. Introduction ... 7

1.1 What is CSQL.. 7

1.2 CSQL is Unique... 7

1.3 CSQL as Open Source software .. 8

1.4 Who can use CSQL ... 8

2. Getting Started .. 9

2.1 Where to find CSQL ... 9

2.2 OS / Platform and Compiler support.. 9

2.3 How to build / compile CSQL .. 9

2.3.1 Building CSQL from the CVS repository... 10

2.4 Directory Layout and Files... 11

2.4.1 src.. 11

2.4.2 include... 12

2.4.3 docs ... 12

2.4.4 examples ... 12

2.4.5 test ... 12

2.5 How to Configure CSQL .. 13

2.6 Starting and Stopping csqlserver .. 13

2.7 Running examples ... 14

2.8 How to run test scripts from test directory 14

3. How to Use CSQL.. 15

3.1 Environmental variables .. 15

3.1.1 CSQL_CONFIG_FILE... 15

3.1.2 LD_LIBRARY_PATH ... 15

3.1.3 PATH .. 15

3.1.4 CLASSPATH.. 16

3.2 CSQL Tool ... 16

3.3 SQL Data Definition Language (DDL) 16

3.3.1 CREATE TABLE ... 16

3.3.2 DROP TABLE.. 18

3.4 SQL Data Manipulation Language (DML) 18

3.4.1 INSERT... 18

3.4.2 UPDATE... 19

3.4.3 DELETE ... 20

3.5 SQL Data Query Language (DQL) ... 21

3.5.1 SELECT.. 21

www.csqldb.com CSQL – User Manual 2.0 3

4. JDBC Driver .. 22

4.1 What is JDBC .. 23

4.1.1 Implemented Interfaces.. 23

4.1.2 JDBC Datatype .. 24

4.2 Establishing a Connection .. 25

4.2.1 Loading the Driver:... 25

4.2.2 Making the Connection... 26

4.3 Creating Table... 27

4.3.1 Creating Index... 27

4.3.2 Closing and committing the Statement object 27

4.4 Inserting tuples .. 28

4.5 Updating Rows .. 30

4.6 Deleting Rows ... 30

4.7 Fetching the Rows ... 31

4.8 Drop the table .. 32

4.9 Close the connection.. 32

5. ODBC Driver.. 33

5.1 Why ODBC .. 33

5.2 Components of ODBC .. 33

5.3 ODBC API Overview.. 34

5.3.1 ODBC Handles ... 34

5.4 ODBC API ... 36

5.4.1 SQLPrepare... 36

5.4.2 SQLExecute .. 37

5.4.3 SQLBindParameter ... 37

5.4.4 SQLBindCol ... 38

5.5 Data Types ... 39

5.6 ODBC API with Examples ... 40

5.6.1 Connect to the CSQL.. 40

5.6.2 Transactions .. 43

5.6.3 Create Table .. 44

5.6.4 Insert records into the table... 45

5.6.5 Fetch the records ... 48

5.6.6 Update Records... 50

5.6.7 Delete Records .. 51

5.6.8 Drop the Table .. 51

5.6.9 Freeing Handles and Disconnect from the CSQL..................................... 52

6. SQL API .. 52

6.1 Connect to the Database ... 52

6.2 Create and Set the statement for the connection 53

6.3 Create the table ... 53

6.3.1 Prepare Statement ... 53

6.3.2 Execute the Statement and release the memory.. 54

www.csqldb.com CSQL – User Manual 2.0 4

6.4 Insert tuples into the table.. 54

6.4.1 Prepare the statement .. 54

6.4.2 Start the transaction... 54

6.4.3 Parameterize the fields.. 55

6.4.4 Execute the insert statement.. 55

6.4.5 Commit the transaction ... 56

6.5 Read the tuples (rows) from the table ... 56

6.5.1 Read tuples from the table. ... 56

6.5.2 Prepare the statement .. 56

6.5.3 Bind the fields ... 56

6.5.4 Begin transaction and execute the statement .. 57

6.5.5 Fetch the tuples ... 57

6.6 Update some tuples ... 58

6.7 Delete tuples ... 58

7. DB API .. 59

7.1 Connect to the database.. 59

7.2 Database Manager creates the table ... 60

7.2.1 Get the DatabaseManager ... 60

7.2.2 Define the table ... 60

7.2.3 Create table ... 60

7.2.4 Create index for primary key field.. 61

7.3 Insert tuples into the table.. 61

7.3.1 Open the table ... 61

7.3.2 Bind each field of the table ... 62

7.3.3 Start the transaction... 62

7.3.4 Insert the tuples ... 62

7.3.5 Commit the transaction ... 62

7.4 Read the tuples from the database .. 63

7.4.1 Set and execute condition to read all the inserted tuples 63

7.4.2 Fetch the tuples ... 63

7.5 Update some of the tuples... 63

7.5.1 Set a condition to update the tuples .. 63

7.5.2 Start transaction and be prepared to update .. 64

7.5.3 fetch and update the tuples.. 65

7.6 Delete some of the tuples .. 65

8. CSQL as cache for MySQL database 65

8.1.1 Updateable Cache Tables... 66

8.1.2 Bi-Directional Updates .. 66

8.1.3 Synchronous and Asynchronous update propagation ... 66

8.1.4 Multiple cache granularity ... 66

8.1.5 Recovery for cached tables... 67

8.1.6 Tools to validate the coherence of cache .. 67

8.1.7 Horizontally Scalable .. 67

8.1.8 Transparent access to non-cached tables reside in target database............................ 67

8.1.9 Transparent Fail over .. 67

www.csqldb.com CSQL – User Manual 2.0 5

8.2 Configuration .. 68

8.3 MySQL Configuration Settings ... 68

8.4 Starting the csqlserver .. 70

8.5 Working with CSQL gateway.. 70

8.6 Programming with CSQL gateway ... 72

8.7 Configuring Bi-Directional Cache... 73

9. Configuration.. 74

9.1 Server section variables .. 74

9.1.1 PAGE_SIZE.. 74

9.1.2 MAX_PROCS... 74

9.1.3 MAX_SYS_DB_SIZE.. 75

9.1.4 MAX_DB_SIZE ... 75

9.1.5 SYS_DB_KEY ... 75

9.1.6 USER_DB_KEY... 75

9.1.7 LOG_FILE.. 75

9.1.8 MAP_ADDRESS.. 75

9.2 Client section variables ... 75

9.2.1 MUTEX_TIMEOUT_SECS... 75

9.2.2 MUTEX_TIMEOUT_USECS.. 75

9.2.3 MUTEX_TIMEOUT_RETRIES .. 76

9.2.4 LOCK_TIMEOUT_SECS .. 76

9.2.5 LOCK_TIMEOUT_USECS ... 76

9.2.6 LOCK_TIMEOUT_RETRIES ... 76

9.3 Cache section variables... 76

9.3.1 CACHE_TABLE .. 76

9.3.2 DSN... 76

9.3.3 TABLE_CONFIG_FILE .. 76

9.3.4 ENABLE_BIDIRECTIONAL_CACHE .. 76

9.3.5 CACHE_RECEIVER_WAIT_SECS ... 76

10. Tool reference ... 77

10.1 CSQL .. 77

10.2 Catalog .. 77

10.3 Csqldump.. 79

10.4 cachetable ... 81

10.5 csqlverify... 83

11. Troubleshooting .. 86

11.1 Errors while building CSQL .. 86

11.1.1 Please set JDK_HOME... 86

11.1.2 Cannot find –lodbc.. 86

11.2 Errors while running csqlserver... 87

11.2.1 – bash: csqlserver Command not found.. 87

11.2.2 Unable to create the log file .. 87

12. Getting Support ... 88

www.csqldb.com CSQL – User Manual 2.0 6

13. How to contribute... 88

Appendix – A (Benchmark Results) 89

Machine Configuration ... 89

Schema Definition .. 89

CSQL MMDB Benchmark Results .. 89

CSQL Cache Benchmark Results ... 91

www.csqldb.com CSQL – User Manual 2.0 7

1. Introduction

The CSQL Main Memory Database Cache is an easily accessible and powerful database

that can serve as a source of information for performance related research. This

constitutes of two major components

• CSQL Main memory Database

• CSQL Cache

1.1 What is CSQL

CSQL is a compact main memory database SQL engine that supports limited set of

features and gives ultra fast response for database queries. Many applications like

telecom, process control, airline reservation, stock market etc., require real time

access to data.

Main memory databases, which have become more feasible recently with the

increasing availability of large amounts of memory at very low costs, can provide

better performance and consistent throughput than disk based database systems.

The basic philosophy behind CSQL’s design is the fact that accessing data from main

memory is an order of magnitude faster than accessing data from disk. And recent

technological advancements have only shown that memory speeds and network

speeds are advancing in leaps and bounds, whereas disk I/O speeds are not increasing

in the same proportions. Hence the major platform dependency in CSQL is not on the

disk, but on the memory and going ahead will be the network.

CSQLCache, a client side caching mechanism for any disk-based database (Oracle,

Sybase, DB2, MySql, etc.) shall increase the throughput of existing applications by

multi-folds without requiring any application changes. It will retrieve the frequently

accessed tables from the target database and place it in main memory database

(CSQL). Any further operations will be carried out from the main memory database

rather than target database. There are many options supported for synchronizing the

data between the cache and the target database.

CSQL and its associated suite of products have a single design objective and that is

undisruptive performance, close to 100 times faster than traditional options and it has

achieved these performances because it has been designed from scratch to achieve

performance.

1.2 CSQL is Unique

CSQL is unique for the following reasons.

• It keeps the data in main memory rather than disk.

www.csqldb.com CSQL – User Manual 2.0 8

• It is 20 times* faster than any disk based database system.

• No buffer manager overhead is present since all the records are stored in main

memory.

• The data structures and algorithms are targeted for memory access.

• Supports primitive SQL, ODBC and JDBC.

• Proprietary SQL API and DBAPI for faster access.

• Client side cache for any target database

The future will see an increase in demand for main memory databases as performance

will be the crucial deciding factor and CSQL will ensure that performance

expectations are exceeded

1.3 CSQL as Open Source software

Released on the 15th of May 2008, the CSQL MMDB is available as Open Source

software at Sourceforge (www.sourceforge.net), world’s largest development and

download repository of open source code and applications.

CSQL is available at www.csqldb.com and also at

http://www.sourceforge.net/projects/csql. This release includes client side caching for

any disk based database systems.

The current release of CSQL works on Linux Platform and it supports DDL

operations like CREATE TABLE, DROP TABLE and DML operations like INSERT,

SELECT, UPDATE and DELETE on single tables.

1.4 Who can use CSQL

CSQL has been designed from scratch with a single point benefit – to provide

undisruptive performance benefits in application domains where real time access to

data is a core necessity. For example –

• Financial and Insurance Industry

• Information Technology

• Telecommunication Industry

But again that does not mean CSQL is the preserve of white-coated DBAs sitting in

chilled rooms!!!

* Test results are shown in Appendix A

www.csqldb.com CSQL – User Manual 2.0 9

CSQL through its simplicity of design and usage is equally appealing to individual

researchers, students or some one simply interested in experimenting on another

Open Source database.

As an Open Source initiative we would welcome brickbats and bouquets at

feedback@csqldb.com

2. Getting Started

2.1 Where to find CSQL

• Go to www.csqldb.com and follow the Download link. It is also available at

http://www.sourceforge.net/projects/csql

• Download the source file csql-src-2.0.tar.gz

2.2 OS / Platform and Compiler support

• CSQL runs on Linux operating system on Intel x86 architecture.

• The g++ compiler must be present to build CSQL (it is a default install with

any Linux distro).

2.3 How to build / compile CSQL

To build CSQL, i.e. to compile the CSQL source make sure you have the following

tools installed on the Linux box:

• Make

• Automake

• Autoconf

• libtool

• unixODBC

• jdk 1.5

Most of these are installed by default during the Linux installation; just make sure

that “Development packages” are included during the installation process. During the

installation process, it will ask for the packages that need to be installed. It will appear

in the screen with combo box unchecked under the item “Development packages”.

This check box needs to be checked before you press the ‘Next’ button for these

packages to be installed during the process.

www.csqldb.com CSQL – User Manual 2.0 10

Building CSQL from source file

• Copy the source file csql-src-2.0.tar.gz into your <home-dir>.

• Extract the files

$ tar zxvf csql-src-2.0.tar.gz

This will extract the files under csql-src-2.0 directory in the current

directory.

• Go to csql-src-2.0 directory and run

$ export JDK_HOME=<path of your jdk installation>

To know the path to your JDK installation, please do the following –

$ locate javac

If the output is

/home/csql/jdk1.5.0_14/bin/javac

/home/csql/jdk1.5.0_14/man/ja_JP.eucJP/man1/javac

.1

/home/csql/jdk1.5.0_14/man/man1/javac.1

/opt/java/jdk1.6.0_04/bin/javac

Then set the directory which has java1.5 compiler as below

$ export JDK_HOME=/home/csql/jdk1.5.0_14

$ export PATH=$JDK_HOME/bin:$PATH

$./build.ksh

$ make

$ make install

$./csqlinstall.ksh

Now the CSQL build is ready. Check Section 2.5 on how to configure CSQL.

2.3.1 Building CSQL from the CVS repository

This project's SourceForge.net CVS repository can be checked out through

anonymous (pserver) CVS with the following instruction set.

$ cvs - \

>d:pserver:anonymous@csql.cvs.sourceforge.net:/cv

sroot/csql \

login

www.csqldb.com CSQL – User Manual 2.0 11

When prompted for a password for anonymous, simply press the Enter key.

$ cvs -z3 \

> -

d:pserver:anonymous@csql.cvs.sourceforge.net:/cvsroot/csql

\

> co -P csql

This will place all the files in the csql directory, which will be created under the

current working directory.

$ cd csql

 $ export JDK_HOME=<path of your jdk installation>

Note: Refer section 2.3 for information on find the correct jdk installation path.

 $ export PATH=$JDK_HOME/bin:$PATH

$./build.ksh

$ make

$ make install

$./csqlinstall.ksh

Now the CSQL build is ready. Check Section 2.5 on how to configure CSQL.

2.4 Directory Layout and Files

CSQL directory layout is divided mainly into the following five directories.

• src

• include

• docs

• examples

• test

2.4.1 src

This directory contains the following subdirectories that contain c++ source code

for all the modules like CSQLCache, SQL Engine, JDBC and ODBC drivers,

SQL API, DB API etc.

• adapter

• cache

• gateway

• jdbc

www.csqldb.com CSQL – User Manual 2.0 12

• network

• server

• sql

• sqllog

• tools

2.4.2 include

This directory contains all the header files that include class declarations of

various classes of CSQL.

2.4.3 docs

This directory contains the User Manual in pdf format.

For creating API documentation, the “doxygen” tool can be used. Refer

README file for details.

2.4.4 examples

This directory is subdivided into the following subdirectories that explain how to

interact with CSQL with different supported APIs.

• dbapi

• isql

• odbc

• jdbc

• sqlapi

Refer to Section 2.7 for how to run the examples present in these directories.

2.4.5 test

This directory includes most of the test scripts that have been written during the

development phases of the CSQL database. These test scripts are the most

comprehensive and exhaustive.

It includes the following subdirectories.

• dbapi

• jdbc

• odbc

• sqlapi

• performance

• system

• tools

www.csqldb.com CSQL – User Manual 2.0 13

Each of it subdirectory represents test module and each module contains test

scripts which tests each and every functionality of that module.

Please refer to Section 2.8 to know, how to run these test scripts.

2.5 How to Configure CSQL

The default database size is 10 MB. If you wish to change the size to more than

30 MB, then the system variable kernel.shmmax should be set to either same

size or more than the size of the database. Only the superuser has the privilege to

run this command.

You can ask your system administrator to set it for you in case you are not the

super user of the system.

The following command sets the kernel parameter to 1 GB,

/sbin/sysctl –w kernel.shmmax=1000000000

kernel.shmmax=1000000000

$ cd <CSQL_ROOT>

$. ./setupenv.ksh

This will set all the environmental variables defined in setupenv.ksh file

present in <CSQL_ROOT> directory. Refer to Section 3.1 for environmental

variables.

2.6 Starting and Stopping csqlserver

Once CSQL is built and configured the server is ready to start. The CSQL Server

can be invoked by running the following command:

$ csqlserver

ConfigValues

 getPageSize 8192

 getMaxProcs 100

 getMaxLogStoreSize 1048576

 getNetworkID 1

 getCacheNetworkID -1

sysdb size 1048576 dbsize 10485760

System Database initialized

Database server started

www.csqldb.com CSQL – User Manual 2.0 14

If the ensuing screen output looks similar to the above, then the server is ready for

operations. To stop the server just press <Ctrl + C> from the terminal where the

server is running –

Received signal 2

Stopping the server

Server Exiting.

The above output message is displayed during the exit. This will stop the server

gracefully by removing the database and doing the necessary clean ups.

2.7 Running examples

You are now ready to run some examples given in examples directory. This directory

contains following subdirectories

dbapi – contains dbapiexample.c with Makefile and README

sqlapi - contains sqlapiexample.c with Makefile and README

isql - contains sql input files and README

jdbc - contains jdbcexample.java, gwexample.java with Makefile and README

odbc - contains odbcexample.c with Makefile and README

Each of these subdirectory contain README file that will guide you to compile and

run these examples.

2.8 How to run test scripts from test directory

Set the environment variables by running setupenv.ksh present in the CSQL

root directory

$ cd <CSQL_ROOT>

$. ./setupenv.ksh

Create a directory in your home directory

$ cd

$ mkdir testResults

Set the environmental variable TEST_RUN_ROOT to point to this directory.

$ export TEST_RUN_ROOT=<user-home>/testResults

Go to the test directory in CSQL root directory.

www.csqldb.com CSQL – User Manual 2.0 15

$ cd <CSQL_ROOT>/test

Run the following command and wait for it to finish.

$ make runall

It may take several minutes to finish this test. It will generate a test report once

running through all the test scripts mentioning the number of scripts passed and failed

in each module. The testResults directory will have the logs of all the test scripts

under appropriate subdirectories.

3. How to Use CSQL

3.1 Environmental variables

CSQL has a set of environmental variables that need to be set after the build is ready

and before starting the server. To carry out the various database operations, either by

using the csql tools or using executables which link with csql libraries, the following

environmental variables need to be set.

Note: Let us assume CSQL_ROOT is the absolute path where CSQL is installed.

3.1.1 CSQL_CONFIG_FILE

There is a configuration file called csql.conf in the CSQL root directory,

which the csqlserver reads during loading up. This file has the configuration

variables that the CSQL system needs during setting up of the server. These

variables are explained in detail in Section 8.

$ export CSQL_CONFIG_FILE=<CSQL_ROOT>/csql.conf

3.1.2 LD_LIBRARY_PATH

This variable is set to locate the CSQL lib directory that contains CSQL

specific libraries.

$ export \

> LD_LIBRARY_PATH=<CSQL_ROOT>/install/lib:$LD_LIBRARY_PATH

3.1.3 PATH

This variable is set to locate the CSQL bin directory that contains the CSQL

executables.

$ export PATH=<CSQL_ROOT>/install/bin:$PATH

www.csqldb.com CSQL – User Manual 2.0 16

3.1.4 CLASSPATH

This variable is set to locate the libraries for the JDBC driver of CSQL.

$ export /

> CLASSPATH=<CSQL_ROOT>/install/lib/CSqlJdbcDriver.jar:.

Running the following script from the CSQL root directory will set the above

variables automatically.

$. ./setupenv.ksh

3.2 CSQL Tool

CSQL provides an interactive SQL client tool called csql, which communicates

with the CSQL database. It supports most of the standard SQL statements like the

DDL and DML. It executes as a sub-shell and executes the SQL statements on the

database. The csql interface is invoked as below –

$ csql

CSQL>

Refer Section 10 for more about CSQL tools.

3.3 SQL Data Definition Language (DDL)

The CSQL Tool supports standard DDL statements such as CREATE TABLE and

DROP TABLE.

3.3.1 CREATE TABLE

CREATE TABLE creates a table in the database.

Syntax:

CREATE TABLE <table name>

(<col1> <datatype> constr,

 <col2> <datatype> constr,

 ...,

[primary key (col1)]);

Where

col1,col2 - are the columns in the table

datatype – type of the data that the column represents,

www.csqldb.com CSQL – User Manual 2.0 17

constr - the constraint that applies to the column.

• DATATYPES

The Datatypes supported by CSQL are

Datatype name Description
CHAR(size) A string of fixed length

TINYINT A 8-bit signed integer value

SMALLINT A 16-bit signed integer value

INTEGER or INT A 32-bit signed integer value. The range

of INTEGER is -2147483648 to

2147483647

BIGINT A 64-bit signed integer value

FLOAT A 64-bit precision floating point value.

These types are analogous to the Java

double type

REAL A higher precision numeric value

DATE A date value in month/day/year

TIME A time of day value

TIMESTAMP A month/day/year and time of day value

• CONSTRAINT

At present only NOT NULL constraints are supported by CSQL in CREATE

TABLE statement. The UNIQUE constraints are supported through the

CREATE INDEX statement.

Syntax:

create table t1

(f1 int, f2 char(20),

f3 float,

primary key (f1));

f1 is a primary key and it will be NOT NULL and UNIQUE.

create table t2

(f1 int Not Null,

f2 char(30) Not Null);

f1 and f2 are not null fields.

Currently CSQL supports only one primary key field per table and it should

be mentioned at the end of the table definition.

www.csqldb.com CSQL – User Manual 2.0 18

3.3.2 DROP TABLE

DROP TABLE removes the table from the database.

Syntax:

DROP TABLE <table name>;

3.4 SQL Data Manipulation Language (DML)

CSQL tool supports standard DML statements such as INSERT, UPDATE and

DELETE commands to store, modify and remove data from the database.

3.4.1 INSERT

The INSERT command adds one row at a time into the table.

Syntax:

INSERT INTO <table-name> [(column-list)]

VALUES (value list)

This form has an optional column-list specification. Only the columns listed will

be assigned values. Unlisted columns are set to null, so these columns must

allow null values. The values from the VALUES Clause are assigned to the

corresponding column in column-list in order.

If the optional column-list is missing, the default column list is substituted. The

default column list contains all columns in table-name in the order they were

declared in CREATE TABLE.

Table T1 before INSERT –

F1 f2 f3

INSERT INTO t1 VALUES(1001,‘Ravi’,5000.00);

Table T1 after INSERT –

F1 f2 f3

1001 Ravi 5000.00

INSERT INTO t1(f1) VALUES(1002);

 Table T1 after INSERT –

www.csqldb.com CSQL – User Manual 2.0 19

F1 f2 f3

1001 Ravi 5000.00

1002 NULL NULL

Presently CSQL adds only one row at a time.

3.4.2 UPDATE

The UPDATE statement modifies column values in selected table rows. It has the

following general format:

UPDATE <table-name>

SET <set-list>

[WHERE predicate]

The optional WHERE clause chooses which table rows to be updated. If it is

missing, all rows in table-name are updated. The set-list contains assignments of

new values for selected columns.

• SET clause

The SET clause in the UPDATE statement updates (assigns new value to)

columns in the selected table rows. It has the following general format:

SET col1 = value1

[, col2 = value2]

...

• WHERE Clause

 The WHERE clause specifies which rows needs to be updated. If it is not

specified, then all the rows in the table are updated.

col1 and col2 are columns in the table. value1 and value2 are expressions

that can reference columns from the table which is being updated. They also can

be the keyword -- NULL. Since the assignment expressions can reference columns

from the current row, the expressions are evaluated first. After the values of all

set expressions have been computed, they are then assigned to the referenced

columns.

UPDATE t2 SET qty=100;

T2 before updation –

www.csqldb.com CSQL – User Manual 2.0 20

no item qty

1 Bolts 10

2 Nuts 20

T2 after updation –

no item qty

1 Bolts 100

2 Nuts 100

UPDATE t1 SET qty = 150 WHERE item=’Nuts’;

T2 before updation –

no item qty

1 Bolts 100

2 Nuts 100

T2 after updation –

no item Qty

1 Bolts 100

2 Nuts 150

3.4.3 DELETE

The DELETE Statement removes selected rows from a table.

Syntax:

DELETE FROM <table-name>

[WHERE predicate]

The optional WHERE Clause has the same format as in the UPDATE Statement.

The WHERE clause specifies which rows needs to be deleted. If it is not specified,

then all the rows in the table are removed.

DELETE FROM t2 WHERE no=2;

 T2 before deletion –

no item Qty

1 Bolts 100

2 Nuts 150

T2 after deletion –

www.csqldb.com CSQL – User Manual 2.0 21

No item Qty

1 Bolts 100

DELETE FROM t2;

 T2 before deletion –

no item Qty

1 Bolts 100

 T2 after deletion –

no item Qty

3.5 SQL Data Query Language (DQL)

CSQL tool supports standard DQL statement, SELECT to view the data present in the

table.

3.5.1 SELECT

The SQL SELECT statement queries data from tables in the database. The

statement begins with the SELECT keyword. The basic SELECT statement has

3 clauses:

• SELECT

• FROM

• WHERE

The SELECT clause specifies the table columns that are to be retrieved.

The FROM clause specifies the table to be accessed.

The WHERE clause specifies which table rows are selected. It is optional; if

missing, all table rows are selected.

Syntax:

SELECT <select-list>

FROM <table-name>

[WHERE predicate]

If select-list is specified as *, then it projects all the columns for those rows that

satisfy the where clause.

SELECT *

FROM <table-name>

www.csqldb.com CSQL – User Manual 2.0 22

[WHERE predicate]

To view the records of a table named tab

No Name Age Wt

1 Tom 25 60

2 Dick 30 70

3 Harry 35 80

SELECT Name, Age FROM tab

WHERE Wt < 75;

 Result set of the above select statement –

Name Age

Tom 25

Dick 30

SELECT Name, Wt FROM tab WHERE Age > 25;

Output –

Name Wt

Dick 70

Harry 80

SELECT Name FROM tab WHERE Wt < 100;

 Output –

Name

Tom

Dick

Harry

SELECT * FROM tab;

 Output –

No Name Age Wt

1 Tom 25 60

2 Dick 30 70

3 Harry 35 80

4. JDBC Driver

This section explain various Interfaces and methods in JDBC APIs and their uses, which

would help in writing applications to access CSQL main memory database using the

CSQL’s JDBC Driver.

www.csqldb.com CSQL – User Manual 2.0 23

The JDBC (Java Database Connectivity) is one of the standard interfacing subsystems in

CSQL Database. It supports most of the JDBC 2.0 APIs and all-primitive data types,

along with the date, time and timestamp.

In order to make things simple, the JDBC sub-system talks to the SQLAPI, which is,

implemented by the SQL Engine, this SQL Engine in turn accesses the storage engine

through DBAPI.

4.1 What is JDBC

JDBC is an API (Application Programming Interface) which consists of a set of classes,
interfaces and exceptions and a specification used for application development.

Using these standard interfaces and classes, programmers can write applications that

connect to CSQL, send queries written in SQL and process the results.

4.1.1 Implemented Interfaces

The JDBC API is consistent with the style of the core Java interfaces and classes,

such as java.lang and java.awt. The table below describes the

interfaces, classes and exception classes that make up the

JDBC API.

Interface/class/exception Description

Interfaces:
java.sql.Connection Interface used to establish a connection

to CSQL.SQL statements run within the

context of a connection.

java.sql.PreparedStatement Interface used to send precompiled SQL

statements to the database driver and

obtain results.

java.sql.ResultSet Interface used to process the results

returned after executing an SQL

statement.

java.sql.Statement Interface used to send static SQL

statements to the database server

Classes:

java.sql.Date Subclass of java.util.Date used for the

SQL DATE data type.

java.lang.DriverManager Class used to manage a set of JDBC

drivers.

java.sql.Time Subclass of java.util.Date used for the

SQL TIME data type.

www.csqldb.com CSQL – User Manual 2.0 24

java.sql.Timestamp Subclass of java.util.Date used for the

SQL TIMESTAMP data type.

Exception classes:
java.sql.SQLException Exception that provides information

about a database error.

Because JDBC is a standard specification, any Java program that uses the JDBC

API can connect to CSQL using the JDBC driver.

What is a JDBC driver

The JDBC API defines the Java Interfaces and Classes that programmers use to

connect to CSQL and send queries.

Basically, JDBC consists of two parts:

• JDBC API:
 It provides a programmatic access to relational data from the Java programming

 language. Using the JDBC API, applications can execute SQL statements, retrieve

 results, and propagate changes back to an underlying data source.

• JDBC Driver Manager:
The JDBC DriverManager class defines objects, which can connect Java

applications to a JDBC Driver. It has traditionally been the backbone of the JDBC

architecture.

4.1.2 JDBC Datatype

This JDBC 2.0 supports all primitive types like – integer, char, float,

string, including Date, Time, TimeStamp.

The table below shows the JDBC prescribed “SQL-to-Java datatype” mappings.

SQL datatypes supported in JDBC 2.0:

www.csqldb.com CSQL – User Manual 2.0 25

These mappings are the JDBC specification for direct type mapping.

Lets take an example where you create a table in the CSQL with two fields,

create table t1

(f1 integer, f2 char(20));

The following sections describe how to connect to the CSQL and to create a table

‘T1’ in it, and perform insertion, updation, fetch and deletion of records and

ultimately drop the table ‘T1’ from CSQL Database.

Please refer to the jdbcexample.java file for source code, which is present

in the jdbc sub-directory of example directory.

4.2 Establishing a Connection

First, you need to establish a connection with the CSQL. Establishing a connection

involves two steps: Loading the driver, and making the connection.

4.2.1 Loading the Driver:

The jdbcexample.java program must first open a connection to a database,

and can then execute SQL statements. But before opening a connection, it is

necessary to load the appropriate drivers for the database by using

Class.forName.

Loading the driver you want to use is very simple. It involves just one line of code

in your program. To add the appropriate Driver, add the following line of code:

SQL Type (from
java.sql.types)

Java Type

TINYINT Byte

SMALLINT Short

INTEGER Int

BIGINT Long

REAL Float

FLOAT

DOUBLE

Double

CHAR

java.lang.String

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

www.csqldb.com CSQL – User Manual 2.0 26

Class.forName("csql.jdbc.JdbcSqlDriver");

In the above code, JdbcSqlDriver is the driver for CSQL.

Calling the class.forName automatically creates an instance of a driver and

registers it with the DriverManager, so you don’t need to create an instance of

the class.

Now you have loaded the driver and it can make a connection with a DBMS.

4.2.2 Making the Connection

The second step in establishing a connection is to have the appropriate driver

connect to the CSQL.

• Using the DriverManager Class

The DriverManager class works with the driver interface to manage the set of

drivers available to a JDBC Client. When the client requests a connection and

provides a URL, the DriverManager is responsible for finding a driver that

recognizes the URL and connects to the data source. The connection URL would

have the following syntax:

"jdbc:csql"

 The jdbc:csql portion of the URL identifies the database.

• The getConnection method establishes a connection:

Actually basic database access starts with the Connection object, when this

object is created this is simply a direct link to the database.

Connection con =

DriverManager.getConnection("jdbc:csql", "root",

"manager");

You need to use root for the user name and manager for the password. This

will establish a connection with CSQL.

If the loaded driver recognizes the parameters supplied to the method

DriverManager.getConnection, then it establishes a connection to the

CSQL database. The DriverManager class encapsulates and manages the

connection process.

www.csqldb.com CSQL – User Manual 2.0 27

The connection returned by the method

DriverManager.getConnection() is connection to the CSQL Database.

Now we can create JDBC functions that pass the SQL statements to CSQL using

this connection.

4.3 Creating Table

Now you can create a statement handle on the Connection and use it to

execute an SQL statement. Once you are connected, you can create a new SQL

statement object by using the Connection object.

 Statement cStmt = con.createStatement();

The Statement class provides an execute() method to execute the SQL

Statements.

You can then execute this statement to create a table T1 with two fields in the

CSQL and we do that by executing a CREATE SQL statement.

cStmt.execute("CREATE TABLE T1 (f1 integer, f2 char

(20));");

4.3.1 Creating Index

You can use the same statement object to create a unique index.

cStmt.execute("CREATE INDEX IDX ON T1 (f1);");

After executing this SQL Statement, it will be creating a unique index ‘IDX’ for

f1 column.

4.3.2 Closing and committing the Statement object

cStmt.close();

The code closes the Statement object cStmt through a close()method.

This cStmt object holds database resources, so its good to close any instance of

this object when we are done with them.

In the code snippet above, you used one statement object, which is generated by

Connection. Connection object provides methods to commit (or

rollback) all the statement executed in that connection context.

www.csqldb.com CSQL – User Manual 2.0 28

 con.commit();

In the example jdbcexample.java, you can observe that the Statement

object is used for SQL Create and Drop statements. And for other SQL statements

like INSERT, UPDATE, DELETE, you use the PreparedStatement

interface. Because, each SQL statement needs to be parsed by the database

engine, a corresponding query plan (“query-tree”) has to be formulated before it

can actually be executed.

If each DDL statement needs a new query plan then the database builds one for it.

If statements, which generate the same query plan, were being executed

consecutively, then going by the above criteria you would waste processing

cycles. In order to get rid of this, you use the PreparedStatement interface,

which ensures a one-time creation of query plan and subsequently the same query

plan is just re-used whenever needed. Refer to example jdbcexample.java.

4.4 Inserting tuples

In the last example, you created a table T1 with two fields. Now we will try to

insert 10 tuples (rows) with different values for both fields.

 PreparedStatement stmt = null, selStmt= null;

stmt = con.prepareStatement("INSERT INTO T1 (f1, f2)

VALUES (?, ?);");

 int count =0;

 int ret =0;

 for (int i =0 ; i< 10 ; i++) {

 stmt.setInt(1, i);

 stmt.setString(2, String.valueOf(i+100));

 ret = stmt.executeUpdate();

 if (ret != 1) break; //error

 count++;

 }

 stmt.close();

 con.commit();

 System.out.println("Total Rows inserted " + count);

The steps involved in the record insertion code snippet above are –

o Use the prepareStatement function to generate the one-time query

plan.

o Bind the parameters with the respective fields and execute the prepared

statement (the same query plan is re-used).

www.csqldb.com CSQL – User Manual 2.0 29

o Close the PreparedStatement object

o Commit the transaction

The prepareStatement method:

The prepareStatement method enables a SQL statement to contain parameters, and you

can execute a single statement repeatedly with different values for those parameters and

to assign values to these parameters is called binding.

stmt = con.prepareStatement("INSERT INTO T1 (f1, f2)

VALUES (?, ?);");

Binding the parameters and executing the prepared statement:

Using the PreparedStatement object, you pass the SQL statement to the database

through the prepareStatement()method in java.sql.Connection. You

execute the resulting “prepared” SQL statement multiple times inside the for loop, the

query plan had been built once at the start.

stmt.setInt(1, i);

stmt.setString(2, String.valueOf(i+100));

ret = stmt.executeUpdate();

Before each execution of the prepared statement, you pass to JDBC the values to be used

as input for that execution cycle. In order to bind the input parameters,

PreparedStatement provides setInt() and setString() method. These

methods bind the parameters from left to right in the order you placed them in the

prepared statement.

Close the PreparedStatement object:

The PreparedStatement object is closed with the close() method.

stmt.close();

Closing stmt object implicitly closes instances associated with it and frees the

associated memory.

Commit the transaction:

The Connection object sets up the connection with the CSQL database. In order to close

the connection you use the commit method.

 con.commit();

www.csqldb.com CSQL – User Manual 2.0 30

You can use the con object to generate implementations of java.sql.Statement

tied to the same database transaction.

4.5 Updating Rows

You would now look into a code snippet for updating rows in table ‘T1’.

You create a PreparedStatement object that can receive 2 parameters using the

Connection method - prepareStatement:

stmt = con.prepareStatement("UPDATE T1 SET f2 = ?

WHERE f1 = ?;");

for (int i =0 ; i< 10 ; i +=2) {

stmt.setString(1, String.valueOf(i+200));

stmt.setInt(2, i);

ret = stmt.executeUpdate();

if (ret != 1) break; //error

count++;

}

stmt.close();

con.commit();

The variable stmt contains the SQL Statement, UPDATE T1 SET f2=? WHERE

f1=?, which is sent to the DBMS and precompiled into a query plan.

Here the f1 and f2 fields can be supplied with values using the setString and
setInt method in accordance to the column positions in the prepared statement from

left to right.

Subsequently the executeUpdate method executes the update SQL statement at

the database level.

4.6 Deleting Rows

In this example you will delete some rows from the table “T1” using

PreparedStatement parameters.

stmt = con.prepareStatement("DELETE FROM T1 WHERE f1 =

?;");

for (int i =0 ; i< 10 ; i +=3) {

stmt.setInt(1, i);

ret = stmt.executeUpdate();

if (ret != 1) break; //error

count++;

}

www.csqldb.com CSQL – User Manual 2.0 31

stmt.close();

con.commit();

In the prepared statement the f1 = ? signifies that the rows to be deleted will be based

on the parameter being passed through setInt() method.

Post deletion, you commit the Statement objects associated with that Connection.

4.7 Fetching the Rows

You can create a PreparedStatement object based on a result-set generated

through a SELECT query, for example –

PreparedStatement selStmt= null;

selStmt = con.prepareStatement("SELECT * from T1 where

f1 = ?;");

The executeQuery() method of the statement object is used to generate the result

set. It returns an object that implements the ResultSet interface. The following code

snippets depicts the above –

ResultSet rs = null;

for (int i =0 ; i< 10 ; i++) {

selStmt.setInt(1, i);

rs = selStmt.executeQuery();

while (rs.next())

{

System.out.println("Tuple value is " +

rs.getInt(1)+ " "+ rs.getString(2));

count++;

}

rs.close();

}

selStmt.close();

con.commit();

The ResultSet interface provides methods for retrieving and manipulating the results

of executed queries, and these objects can have different functionality and characteristics.

The result set is generated upon executing query statements on the table data.

The code snippet above displays how to generate the result set using a query statement

through a Java program.

www.csqldb.com CSQL – User Manual 2.0 32

The variable rs, (in the code snippet above) is an instance of ResultSet, and contains

the rows of T1 which have been “selected”. In order to access the f1and f2 field values,

the ResultSet object maintains a cursor, which points to its current row of data.

When a ResultSet object is created, the cursor is positioned before the first row. To

move the cursor down the rows, we use the following methods:

• next() --- moves the cursor forward by one row. Returns true if the cursor is

now positioned on a row and false if the cursor is positioned after the last row.

You can iterate through the ResultSet to obtain values for each field of the

T1 table and print these values on the user console.

while (rs.next())

System.out.println("Tuple value is " + rs.getInt(1)+ "

"+ rs.getString(2));

At the end, close the ResultSet, PreparedStatement and Connection

objects as depicted below –

rs.close();

selStmt.close();

con.commit();

Once the rows are fetched, commit the transaction.

4.8 Drop the table

In order to drop a table from the CSQL database –

cStmt.execute("DROP TABLE T1;");

Once this is executed, it will drop the T1 table from the CSQL Database.

4.9 Close the connection

cStmt.close();

When close() method is invoked, it implicitly closes all PreparedStatement

instances associated with the Connection.

www.csqldb.com CSQL – User Manual 2.0 33

5. ODBC Driver

This section explains various functions in ODBC API and their uses, which would help in

writing applications to access the CSQL database using the CSQL ODBC driver.

The ODBC (Open Database Connectivity) is the other standard interfacing subsystem in

CSQL Database (the other one is JDBC). CSQL supports most of ODBC 2 APIs and all

primitive data types, including Date, Time and TimeStamp data types.

Let us start with an example where you create a table in the CSQL database to store

employee details, lets say the table is EMP and the fields are empId (int), name (char(20))

and sal (float).

The following sections describe how to connect to the database, how to create table, how

to insert, update and delete tuples in the table and how to drop table.

5.1 Why ODBC

Due to the inherent limitations in SQL in performing certain complex computations, they

must be written in a host language, such as C or C++, with embedded SQL queries which

in turn access the data in the CSQL database.

To access the CSQL, the SQL statements need to be executed from within the host

language application, using an API, which can be used to send DML and DDL statements

to the CSQL and retrieve the results. This programming interface is called the ODBC

API.

The ODBC API is a library of ODBC functions that lets ODBC-enabled applications to

connect to CSQL, execute statements, and retrieve results. For doing this an ODBC

driver is available.

The goal of ODBC is to make data access possible in any database from any application,

this is achieved by inserting a middle layer called the “database driver” between an

application and the DBMS. This layer translates the application’s data queries into

commands that the DBMS understands.

5.2 Components of ODBC

• An ODBC compliant application i.e. an application that uses the ODBC API to

talk to CSQL (DBMS).

• The ODBC Driver manager is a repository containing the list of installed ODBC

drivers and data sources. It is the interface between an ODBC application and an

ODBC Driver. Applications requiring ODBC access, interface with the driver

www.csqldb.com CSQL – User Manual 2.0 34

manager and make ODBC API calls, which causes the driver manager to load the

appropriate ODBC Driver.

• An ODBC driver translates the ODBC API calls into something that the backend

CSQL understands.

• Header files required to build the ODBC application – stdlib.h, sql.h,
sqlext.h & sqlucode.h

Normally C applications need to include –

sql.h – which contains most of the definitions you’ll need

sqlext.h – which contains mostly additions for ODBC 3

sqlucode.h is automatically included by sqlext.h and

sqltypes.h is automatically included from sql.h

5.3 ODBC API Overview

Before you get into the various functions provided by the ODBC API, let’s look at

a few key concepts. In this section, you will look at allocating various handles that

are used by ODBC and some important APIs which are frequently used in any

ODBC application.

5.3.1 ODBC Handles

The ODBC API introduces new handle types that are used to reference

information about your application’s ODBC environment, specific database

connections and SQL statements.

In ODBC 3, each of these handle types are allocated with a single function

SQLAllocHandle()and freed with a single function SQLFreeHandle()

In ODBC, there are three main handle types, which you need to know in order to

do access the data.

• SQLHENV – environment handle

This is the first handle you will need as everything else is effectively in the

environment. Once you have an environment handle you can define the

versions of ODBC you require, enable connection pooling and allocate

connection handles.

• SQLHDBC – connection handle

You need one connection handle to make the connection. Like

environment handles, connection handles have attributes which you can

retrieve and set.

www.csqldb.com CSQL – User Manual 2.0 35

• SQLSTMT – statement handle

Once you have a connection handle and have connected to CSQL you

allocate handles to execute SQL or retrieve data. As with the other handles

you can set and get statement attributes with this handle also.

SQLAllocHandle:

SQLAllocHandle is a generic function for allocating environment, connection and

statement handles.

Prototype of the Function:

SQLRETURN SQLAllocHandle(SQL_SMALLINT HandleType,

SQLHANDLE InputHandle, SQLHANDLE * OutputHandlePtr);

The arguments for SQLAllocHandle are listed in below table

Type Name Description

SQLSMALLINT HandleType The type of handle to allocate.

SQLHANDLE InputHandle The handle to base on the new handle. This is either an

environment or connection handle. To create a new

handle from scratch, pass in NULL.

SQLHANDLE* OutputHandle Pointer to the storage for the newly create handle.

Note: - An application allocates different handles to use with different API functions. The

handle provides a context for each function .The supported handle types are.

Environment SQL_TYPE_ENV These handles are used to create an environment.

Each environment contains generic information

that allows you to access the CSQL. A new

transaction is associated with a newly-created

environment handle.

Connection SQL_TYPE_DBC A connection handle is used to open a connection

to a specific CSQL Database. Connections can be

based on the same environment handle, hence

sharing the same transaction across multiple

database connections. However, a maximum of

eight connections can share a single environment.

Statement SQL_TYPE_STMT The statement handle contains information about

the compiled SQL statement and its result sets.

www.csqldb.com CSQL – User Manual 2.0 36

Returns: SQLAllocHandle returns SQL_SUCCESS if it is successful.

Otherwise, it returns SQL_ERROR.

SQLFreeHandle:

 SQLFreeHandle is a generic function to free environment, connection, and statement

handles.

Prototype of the Function:

RETCODE SQLFreeHandle(SQLSMALLINT handleType,

SQLHANDLE handle)

SQLFreeHandle Arguments:

Type Name Description

SQLSMALLINT handleType The type of handle to free.

SQLHANDLE handle The handle to free.

Returns

SQLFreeHandle returns SQL_SUCCESS if it is successful. Otherwise, it

returns SQL_ERROR.

5.4 ODBC API

In this section, we describe some important APIs .

5.4.1 SQLPrepare

SQLPrepare prepares an SQL String for execution. In our examples you have

used this function for DML statements.

ODBC allows us to prepare SQL statements in a separate step so that you can

generate the query plan once after the parsing and for every subsequent execution

you could simply re-use the same query plan.

Prototype of the function:

SQLRETURN SQLPrepare(

 SQLHSTMT StatementHandle,

 SQLCHAR * StatementText,

 SQLINTEGER TextLength);

www.csqldb.com CSQL – User Manual 2.0 37

Arguments:

StatementHandle: [Input] Statement handle

StatementText : [Input]SQL text string

TextLength : [Input] Length of *Statement Text in Characters.

This function returns SQL_SUCCESS, if it successfully prepares the SQL

Statements.

5.4.2 SQLExecute

SQLExecute executes a prepared statement using the current values of the

parameter marker variables if any exists in the statement.

Prototype of the Function:

SQLRETURN SQLExecute(SQLHSTMT StatementHandle)

Arguments:

StatementHandle: [Input] StatementHandle.

This function returns SQL_SUCCESS on successful execution.

5.4.3 SQLBindParameter

It binds a buffer to a parameter marker in an SQL statement.

You will see in following sections that how we bind the parameter using this

function for Insert, Update and Delete statements.

 SQLRETURN SQLBindParameter(

 SQLHSTMT StatementHandle,

 SQLUSMALLINT ParameterNumber,

 SQLSMALLINT InputOutputType,

 SQLSMALLINT ValueType,

 SQLSMALLINT ParameterType,

 SQLULEN ColumnSize,

 SQLSMALLINT DecimalDigits,

 SQLPOINTER ParameterValuePtr,

 SQLINTEGER BufferLength,

www.csqldb.com CSQL – User Manual 2.0 38

 SQLLEN * StrLen_or_IndPtr);

Arguments:

StatementHandle : [Input] Statement handle.

ParameterNumber : [Input] Parameter number, sequentially increasing

parameter order starting at 1.

InputOutputType : [Input] The type of the parameter.

SQL_PARAM_INPUT is used for

parameters in SQL Statements and

SQL_PARAM_OUTPUT or

SQL_PARAM_INPUT_OUTPUT are used for

stored procedure parameters.

ValueType : [Input] The C data type of the parameter.

ParameterType : [Input] The SQL data type of the parameter.

ColumnSize : [Input] The size of the column.

DecimalDigits : [Input] The decimal digits of the column or

expression of the corresponding parameter marker .

ParameterValuePtr :[Deferred Input]A pointer to a buffer for the

parameter’s data.

BufferLength : [Input/Output] Length of the parameterValuePtr

buffer in bytes.

StrLen_or_IndPtr : [Deferred Input] A pointer to a buffer for the

parameter’s length.

This function returns SQL_SUCCESS, if it successfully binds the parameter.

5.4.4 SQLBindCol

This function binds application data buffers to columns in the result set. You use

this function for select statements.

SQLRETURN SQLBindCol(

 SQLHSTMT StatementHandle,

 SQLUSMALLINT ColumnNumber,

 SQLSMALLINT TargetType,

 SQLPOINTER TargetValuePtr,

 SQLLEN BufferLength,

 SQLLEN * StrLen_or_Ind);

Arguments:

StatementHandle : [Input] Statement handle

www.csqldb.com CSQL – User Manual 2.0 39

ColumnNumber : [Input] Number of the result set column to bind.

Columns are numbered in increasing column order

starting at 1.

TargetType : [Input] The identifier of the C datatype of the

*TargetValuePtr Buffer, when it is retrieving data

from the data source with SQLFetch.

TargetValuePtr : [Deferred Input/Output] pointer to the data buffer

to bind to the column. SQLFetch return data in this

buffer.

BufferLength : [Input] Length of the targetValuePtr buffer in

bytes.

StrLen_or_IndPtr : [Deffered Input/Output] Pointer to the length

buffer to bind to the column.

This function returns SQL_SUCCESS, if it successfully binds the column.

5.5 Data Types

CSQL supports all primitive Data types like int, float, char etc and Date,
Time, TimeStamp.

ODBC uses two sets of data types – SQL datatypes and C Datatypes. SQL data types are

used in the data source and C data types are used as part of the host language application.

SQL Type Identifier: SQL data types are the types in which data is stored in the data

source.

For example, SQL_CHAR is the type identifier for a character column with a fixed

length, typically between 1 and 254 characters. These characteristics correspond to the

CHAR data type found in data source. Thus when application discovers that the type

identifier for a column is SQL_CHAR, it can assume it is probably dealing with a CHAR

column.

In our sample ODBC source code, you create an emp table with three fields. Field eid is

integer, ename is character and salary is float, for these three fields the SQL

Identifiers are SQL_SHORT, SQL_CHAR, SQL_FLOAT.

C Type Identifier: ODBC also defines the C data types that are used by application

variables and their corresponding type identifiers. The buffers that are bound to the result

set columns and statement parameters use these. For example, an application wants to

retrieve data from a result set column in character format. It declares a variable with the

SQLCHAR* data types and binds this variable to the result set column with type

identifier of SQL_C_CHAR.

www.csqldb.com CSQL – User Manual 2.0 40

Here also for the three fields, the data types will be SQL_C_SHORT, SQL_C_CHAR,

SQL_C_FLOAT for integer, character, float respectively.

SQL Definition SQL Type Identifier C Type Identifier

CHAR(n)

SMALLINT

INTEGER

REAL

FLOAT

DOUBLE

TINYINT

BIGINT

DATE

TIME

TIMESTAMP

SQL_CHAR

SQL_SMALLINT

SQL_INTEGER

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

SQL_TINYINT

SQL_BIGINT

SQL_TYPE_DATE

SQL_TYPE_TIME

SQL_TYPE_TIMESTAMP

SQL_C_CHAR

SQL_C_SSHORT

SQL_C_SLONG

SQL_C_FLOAT

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TINYINT

SQL_C_SBIGINT

SQL_C_TYPE_DATE

SQL_C_TYPE_TIME

SQL_C_TYPE_TIMESTAMP

5.6 ODBC API with Examples

Let us start with an example where you create a table in the CSQL database to store

employee details, say emp(eid int, ename char(20), salary float).

5.6.1 Connect to the CSQL

Refer to ODBCman1.c for the source code

You have to allocate the internal structures for the various handle types through

SQLAllocHandle function.

SQLHENV env;

 SQLHDBC dbc;

 SQLRETURN ret;

ret = SQLAllocHandle (SQL_HANDLE_ENV,

SQL_NULL_HANDLE, &env);

ret = SQLSetEnvAttr

(env,SQL_ATTR_ODBC_VERSION,(void*)SQL_OV_ODBC3,

0);

ret = SQLAllocHandle (SQL_HANDLE_DBC, env, &dbc);

Firstly, SQLAllocHandle function allocates an environment handle.

www.csqldb.com CSQL – User Manual 2.0 41

SQL_HANDLE_ENV is used to create an environment and a new transaction is

associated with it.

SQL_NULL_HANDLE specifies the structure from which a new handle is

derived. An environment handle, however, isn’t derived from another handle, so

InputHandle should be set to SQL_NULL_HANDLE.

The OutputHandle pointer – env should point to the new handle that is to

be allocated.

Secondly, SQLSetEnvAttr function sets the application’s ODBC Version.

The ODBC driver manager is designed to support version 2 drivers and

applications, as well as newer ODBC 3 components. Depending on the version of

ODBC that your application is using, certain functionalities will behave

differently. This requires that our application specify which version of the

ODBC API it is using before you go on to allocate Connection handles. The

version can be set using SQLSetEnvAttr()to set the

SQL_ATTR_ODBC_VERSION environment attribute to SQL_OV_ODBC3.

Thirdly, SQLAllocHandle function allocates a Connection handle.

SQL_HANDLE_DBC is used to open a connection to a specific CSQL database.

The input handle env specifies the handle from which the Connection handle is

allocated. The outpu thandle ptr ‘dbc’ is allocated.

If the new handle is successfully allocated, SQLAllocHandle()will return

SQL_SUCCESS; otherwise, it will return SQL_ERROR.

After you allocate a connection handle with SQLAllocConnect(), you

must connect the handle to a data source before you can start operating on that

data source.

ODBC functions to connect to a data source

SQLConnect :Loads a driver and establishes a connection to data

source.

SQLDriverConnect :Connects to a specific driver using a connection

string or requests the Driver Manager to connect to

the specified DSN (Data Source Name).

SQLConnect

This function provides the most direct programmable control of the connection.

www.csqldb.com CSQL – User Manual 2.0 42

Prototype for SQLConnect().

SQLRETURN SQLConnect

(SQLHDBC ConnectionHandle, SQLCHAR*

ServerName,SQLSMALLINT NameLength1,SQLCHAR*

Username,SQLSMALLINT NameLength2,SQLCHAR*

Authentication, SQLSMALLINT NameLength3);

ConnectionHandle is allocated with SQLAllocHandle().

ServerName passes the name or URL of the database server.

Username passes the login user id

Authentication passes the password.

The username and password can be passed as NULL if the DSN resides on the

local machine.
Connect to CSQL:

rc = SQLConnect (dbc,

(SQLCHAR *) "test", (SQLSMALLINT)

strlen ("test"),

 (SQLCHAR *) "root",

 (SQLSMALLINT) strlen ("root"),

 (SQLCHAR *) "",

 (SQLSMALLINT) strlen (""));

When you call SQLConnect(), the ODBC Driver manager will load the

requested driver, if it isn’t already loaded and will connect to the requested data

source. If an error occurs, SQLConnect()will return SQL_ERROR.

SQLDriverConnect:

It is an alternative to SQLConnect. It supports data sources that require more

information. And those that are not defined in the ODBC.INI file.

SQLCHAR outstr[1024];

SQLSMALLINT outstrlen;

rc = SQLDriverConnect (dbc,

NULL,(SQLCHAR*)"DSN=myodbc3;", SQL_NTS, outstr,

sizeof(outstr), &outstrlen, SQL_DRIVER_NOPROMPT);

dbc – allocated connection handle with SQLAllocHandle.

NULL – is set for the window handle for the any dialog boxes that may be

created.

www.csqldb.com CSQL – User Manual 2.0 43

DSN=myodbc3 – InConnectionString parameter which points to a

connection string that is passed into SQLDriverConnect.

All string parameters that are passed as inputs to ODBC functions will consist of

a pointer to the string and a separate parameter for its length, which is used to

support languages that require this. For C/C++ applications, you should pass a

pointer to a null-terminated string and set the length parameter to SQL_NTS

(Null-Terminated String).

outstr – can extract status of data source and its attributes.

outstrlen – records the buffer length.

SQL_DRIVER_NOPROMPT disables user interaction.

When the connection to the data source is established, SQLDriverConnect()

will return the actual connection string that was used in

OutConnectionString.

5.6.2 Transactions

So far, each SQL statement has been atomic, i.e., each statement can stand on its

own and if one fails, others are not affected and the database is left in a consistent

state. By default, ODBC is in “auto-commit” mode, where each statement is

either committed as soon as it succeeds or rolled back if it fails.

SQLTransact

It requests a commit or rollback operation for all active operations on all

statements associated with a connection. SQLTransact can also request that a

commit or rollback operation be performed for all connections associated with the

environment.

Prototype of SQLTransact:

RETCODE SQLTransact(env,dbc,ftype);

env : input environment variable.

dbc : input connection handle

ftype : input one of the following two values : SQL_COMMIT,
SQL_ROLLBACK.

When you connect to a database, a transaction starts automatically; you can

execute as many SQL statements as you need. Once these SQL statements are

processed, if you want to commit a transaction, which means all changes made by

www.csqldb.com CSQL – User Manual 2.0 44

DML statements will be reflected in the table, call SQLTransact with the

option SQL_COMMIT. In order to abort a transaction, replace SQL_ROLLBACK

with SQL_COMMIT.

ODBC Commit Modes:

In ODBC, transactions can be handled in two different ways. The connection can

be set to either auto-commit mode (the default) or manual-commit mode. The

commit mode for a Connection is set by calling SQLSetConnectAttr()

with the SQL_ATTR_AUTOCOMMIT option.

Auto-commit Mode – The default mode for a new connection is auto-commit,

which is supported by all drivers. In this mode, each statement operates as a

separate transaction; the driver will take care of committing each operation on the

database automatically.

If you submit a batch of SQL statements in a single SQLExecute()call, ODBC

doesn’t define whether this is treated as a single transaction or each statement is a

separate transaction. If you want to send a batch as a transaction, use manual-

commit mode.

Manual-Commit Mode – In cases where you want to ensure that multiple SQL

statements be executed as ONE transaction, you should use manual-commit

mode, which requires the application to explicitly end the transaction with a call

to SQLEndTran().

ret = SQLSetConnectAttr(dbc, SQL_ATTR_AUTOCOMMIT,

(void*)SQL_AUTOCOMMIT_OFF, SQL_IS_UINTEGER);

Applications can specify the transaction mode with the

SQL_ATTR_AUTOCOMMIT attribute. SQL_AUTOCOMMIT_OFF changes to

manual commit mode.

To commit or roll back a transaction in manual-commit mode, an application calls

SQLEndTran.

5.6.3 Create Table

Refer to ODBCman2.c for the source code

Once the connection is established you can execute the SQL statements against

the connected data source.

www.csqldb.com CSQL – User Manual 2.0 45

Statement Handles: Before executing a statement, you must allocate a statement

handle, which provides a data structure for ODBC to keep track of the SQL

statement to be executed and the results it will return.

SQLHSTMT stmt;

ret = SQLAllocHandle (SQL_HANDLE_STMT, dbc,

&stmt);

SQL_HANDLE_STMT– handle type should be set to SQL_HANDLE_STMT

dbc – InputHandle should receive a previously allocated

connection handle

&stmt – OutputHandle should point to a new handle of type

SQLHSTMT that will be initialized.

In our examples, you will use SQLExecuteDirect() function for DDL

Statements like creating or dropping tables as these statements will execute. On

the other hand SQLPrepare and SQLExecute functions for DML Statements

as they will be executed multiple times.

SQLExecDirect() :

For statements that will be executed only once, this is the fastest method of

submitting SQL statements.

SQLCHAR table[100] = “create table emp(eid int,

ename char(20),salary float)”;

ret = SQLExecDirect (stmt, table, SQL_NTS);

This function simply takes a null-terminated string (table) containing an SQL

statement and executes it on the data source connected to the statement handle

(stmt). The length parameter is set to SQL_NTS.

If SQLExecDirect() returns SQL_SUCCESS, then the statement was

successfully executed against data source otherwise it returns SQL_ERROR.

5.6.4 Insert records into the table.

Refer to ODBCman3.c for the source code.

In the last session you saw “emp” table has been created with three fields. This

table is present in the CSQL database. Now, you can insert some records in it

using the appropriate APIs.

www.csqldb.com CSQL – User Manual 2.0 46

The stages for Inserting Records:

• Prepare

• Bind buffers

• Execute the Prepared Statement

• Commit the Transaction

Prepare the Statement

During the statement preparation, the ODBC standard SQL grammar which is

passed to SQLPrepare() is translated into SQL for the data source.

ODBC allows the preparation of a statement prior to its submission, to facilitate

the parsing and creation of the query plan once, which can subsequently be re-

used multiple times with different parameters each time. This as earlier stated

enhances efficiency.

ret = SQLPrepare(stmt,(unsigned char*)”insert

into emp values(? ,?,?);”, SQL_NTS);

This function takes a statement (stmt) handle as its first parameter which is

previously allocated with SQLAllocHandle(); the second parameter is a

pointer to null terminated string that contains the INSERT statement. SQL_NTS

is the last parameter for text length.

Bind buffer

The SQLBindParameter() function allows to bind a buffer in memory to a

given parameter marker, prior to the execution of the statement.

int eid1 = 1001;

char ename1[20] = “Ritish”;

float salary1 = 2500;

size_t slen=strlen(ename1);

ret = SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,

SQL_C_SHORT, SQL_INTEGER, 0, 0, &eid1, 0, NULL);

ret = SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,

SQL_C_CHAR, SQL_CHAR, 196, 0, (void*)ename1,

slen, NULL);

ret = SQLBindParameter(stmt, 3, SQL_PARAM_INPUT,

SQL_C_FLOAT, SQL_REAL, 0, 0, &salary1, 0,

NULL);

www.csqldb.com CSQL – User Manual 2.0 47

The 1
st
 parameter - stmt refers to the statement handle that you are using to

execute the SQL statement.

2
nd

 parameter specifies the parameter position in the SQL Statement. The

positions are numbered as 1, 2, 3, …etc from left to right.

The SQL_PARAM_INPUT parameter specifies how the parameter is used – input

to write value to the field, SQL_PARAM_OUTPUT to read value from the field.

The 4
th

 parameter is the ValueType parameter. This is a C type Identifier.

ODBC defines many standard data types. There are C data types – used in the

application code, and SQL data types – used to describe the type of data that is

used within the data source. Many of the ODBC calls that move data from the

application to the data source, or vice versa, can perform implicit type conversion.

Here you have used SQL_C_SHORT, SQL_C_CHAR, SQL_C_FLOAT for

the corresponding fields – eid, ename, salary which are represented at the

data source level by the SQL type identifiers – SQL_INTEGER, SQL_CHAR,

SQL_REAL for this three field.

Parameters 6 and 7 are used to specify the size of the SQL parameter and its

precision.

Parameter 8 is points to the buffer in the application that holds the value to be

substituted in the SQL Statement,

Parameter 9 is used to pass the length of the buffer for binary or character

parameters.

Parameter 10 is usually set to NULL pointer or pointer to length of the buffer for

binary or character parameters. If it is set to NULL pointer, the driver assumes

that all input parameter values are non-NULL and that character and binary data

is null-terminated. This is not used internally in CSQL. So it is usually set to

NULL in CSQL.

Executing SQL Statements

After the statement is prepared by SQLPrepare(),you can execute the

statement by calling SQLExecute().

ret = SQLExecute(stmt);

The SQLExecute()executes a prepared statement, using the current values of

the parameter marker variables.

www.csqldb.com CSQL – User Manual 2.0 48

Commiting the transaction

After inserting the data into the database, committing it will make sure that all the

records inserted will be present in the database permanently.

ret = SQLTransact (env, dbc, SQL_COMMIT);

5.6.5 Fetch the records

Refer to ODBCman4.c for the source code.

The result set returned by a query is like a temporary table. These rows can be

retrieved from the result set using cursors, which come in several different

flavors. The default cursor used in ODBC is a forward-only cursor, which allows

to access the rows in the result set only one row at a time.

The stages for Fetching:

• Prepare

• Bind buffer for column values

• Execute the prepared statement

• Fetch the row values.

• Close the cursor

Prepare the statement

It’s the same as in the previous section.

ret = SQLPrepare(stmt,(unsigned char*)"select *

from emp",SQL_NTS);

Binding Columns

This is done to assign the memory location into which a column’s data would be

copied when the row is fetched. In most cases, the best way to retrieve data from a

result set is to bind the columns to specific memory locations / buffers that you

have bound for that column.

This is done using SQLBindCol().

ret=SQLBindCol(stmt,1,SQL_C_SHORT,&eid1,0,NULL);

ret=SQLBindCol(stmt,2,SQL_C_CHAR,ename1,

sizeof(ename1),NULL);

ret= SQLBindCol(stmt,3,SQL_C_FLOAT,&salary,

www.csqldb.com CSQL – User Manual 2.0 49

0,NULL);

The SQLBindColumn()is called once each for the 3 fields.

The 2
nd

parameter is the field identifier to be bound. As mentioned earlier the

number is from left to right in the table structure.

The 3
rd

 parameter specifies the target data type.

The 4
th

 parameter is the buffer or memory location which will holding the data

being read from that field.

Parameter 5 is the sizeof the memory location or buffer.

Parameter 6 is the pointer to the length/indicator buffer to bind to the column.

This is an input/output parameter and is not used internally in CSQL. So it is

usually set to NULL in CSQL.

Execute the Statement

The SQL statements prepared before are executed.

ret = SQLExecute(stmt);

Fetch the results

The next step is to fetch the rows from the result set. SQLFetch() fetches the

next row-set of data from the result set and returns the data for all bound columns.

The application here calls SQLFetch() to retrieve the first row of data and

place the data from that row in the variables bound with SQLBindCol().

while(SQL_SUCCEEDED(ret = SQLFetch(stmt)))

 {

 printf(“eid = %d ename = %s salary = %f”,

eid1,ename1,salary);

 count++;

 }

If you want to get the row count of a result set, simply scroll through it using

SQLFetch()until no more records are found.

Closing the cursor

www.csqldb.com CSQL – User Manual 2.0 50

When you call a function that creates a result set, such as SQLExecute(), a

cursor is opened, when you are finished working with the result set, you should

close the cursor and free the memory by using SQLCloseCursor().

ret = SQLCloseCursor(stmt);

5.6.6 Update Records

Refer to ODBCman5.c for the source code.

You can make changes to the tables by executing UPDATE statements. Update

statements are often more efficient when they are used with parameters.

The Stages for update:

• Prepare the statement

• Bind a Buffer.

• Execute the Prepared Statement

• Commit the Transaction.

Prepare Statement

For example, the following statement can be prepared and repeatedly executed to

update rows in the emp table.

ret = SQLPrepare(stmt,(unsigned char*)"update emp

set eid=?,salary=? where eid = ?;",SQL_NTS);

Bind the parameters

You have to bind the parameters with the help of SQLBindParameter()

function.

ret= SQLBindParameter(stmt,1,SQL_PARAM_INPUT,
SQL_C_SHORT,SQL_INTEGER,0,0,&eid1,0,NULL);

ret= SQLBindParameter(stmt,2,SQL_PARAM_INPUT,

SQL_C_FLOAT,SQL_REAL,0,0,&salary1,0,NULL);

ret = SQLBindParameter(stmt,3,SQL_PARAM_INPUT,
SQL_C_SHORT,SQL_INTEGER,0,0,&eid2,0,NULL);

Execute the statement

ret = SQLExecute(stmt);

www.csqldb.com CSQL – User Manual 2.0 51

SQLExecute() executes a prepared statement, using the current values of the

parameter marker variables if any parameter markers exist in the statement.

Commit the transaction

ret = SQLTransact(env,dbc,SQL_COMMIT);

5.6.7 Delete Records

Refer to the ODBCman6.c for the source code.

The stages for Delete:

• Prepare the statement

• Bind a Buffer.

• Execute the Prepared Statement

• Commit the Transaction.

Prepare statement

ret = SQLPrepare(stmt,(unsigned char*)

"delete from emp where eid = ?;",SQL_NTS);

Bind the Parameters

ret = SQLBindParameter(stmt,1,SQL_PARAM_INPUT,

SQL_C_SHORT,SQL_INTEGER,0,0,&eid1,0,NULL);

Execute the statement

ret = SQLExecute(stmt);

After binding the value you execute the statements using the current value of the

parameter marker.

Commit the transaction

Committing permanently deletes the records from the table.

ret = SQLTransact(env,dbc,SQL_COMMIT);

5.6.8 Drop the Table

Refer to the ODBCman6.c for the source code.

www.csqldb.com CSQL – User Manual 2.0 52

The SQL Statement drop table emp; will drop the mentioned table. As this

is a one time activity, we might use the SQLExecDirect() function (it is the

same for all DDL statements).

ret = SQLExecDirect(stmt , (unsigned

char*)”drop table emp;” , SQL_NTS);

5.6.9 Freeing Handles and Disconnect from the CSQL

There is the SQLFreeHandle()to free up a handle and its associated resources.

Note that handles generally need to be freed in the opposite order to which they

were allocated and that handles cannot be freed if they are in use.

In section 5.5.1, we discussed about the each and every parameters of
SQLFreeHandle()

ret = SQLFreeHandle(SQL_HANDLE_STMT,stmt);

ret - SQLDisconnect(dbc);

ret = SQLFreeHandle(SQL_HANDLE_DBC,dbc);

ret = SQLFreeHandle(SQL_HANDLE_ENV,env);

6. SQL API

This section explains various interfaces in SQL API and their references along the way,

which would help in writing applications to access the CSQL database.

Let us start with an example where you create a table in the CSQL database to store

employee details, say

table EMP (int empId, char name(20), float sal).

The following sections describe how to connect to the database, how to create a table,

how to insert, update and delete tuples in the table and how to drop the table.

6.1 Connect to the Database

Refer manSQLAPIinsert.c for the source to understand how the SQL API

works.

www.csqldb.com CSQL – User Manual 2.0 53

First of all you need to create the connection with the database which is done by the

following classes – SqlFactory, AbsSqlConnection

AbsSqlConnection *con = SqlFactory::createConnection(CSql);

rv = con->connect("root", "manager");

The first one declares an SqlConnection object that helps to connect with the

CSQL databaseas is evident from the argument CSql.

The second class actually connects the user to the database using the

createConnection() method.

6.2 Create and Set the statement for the connection

At this stage the SqlStatement object is created and set to the

SqlConnection object as follows.

AbsSqlStatement *stmt =
SqlFactory::createStatement(CSql);

stmt->setConnection(con);

The first instruction declares the SqlStatement object that helps in preparing and

executing the SQL statements to carry out the DDL and DML operations.

The second one sets the SqlConnection to let the SqlStatement talk to the

database.

6.3 Create the table
Now you should prepare the sql statement to create the table into the CSQL database.

6.3.1 Prepare Statement
The statement is prepared by the following function.

rv = stmt->prepare(statement);

Where statement is a memory location pointing to the string holding the SQL

statement that needs to be prepared for execution.

Make sure that you have the SQL statement to prepare and execute before calling

the above function. Preparation of the statement, is done by allocating memory

for statement and copying the create table statement into the memory.

char statement[200];

www.csqldb.com CSQL – User Manual 2.0 54

strcpy(statement, "CREATE TABLE EMP(EID INT,ENAME
CHAR(20), SALARY FLOAT);");

Prepare sets all that need to be done to execute the statement, internally. In this

scenario it will set the type of statement, which is Create Table, sets the table

name, name of fields, and their types and size based on the data types specified in

the statement.

6.3.2 Execute the Statement and release the memory

Once preparation is done its time to execute the statement. This is done as

follows –

.
stmt->execute(rows);

It executes the SQL statement, internally and does the required job.

You can release the memory by calling

stmt->free()

This releases all the memory that was allocated internally for the

SqlStatement object. This must be done, otherwise it might lead to memory

leaks for long running processes.

6.4 Insert tuples into the table

Now let us insert some tuples into the table EMP.

6.4.1 Prepare the statement

You first copy the INSERT SQL statement into a memory location and pass the

address of that memory location to the prepare function –

strcpy(statement,"INSERT INTO EMP
VALUES(?,?,?);");

...

rv = stmt->prepare(statement);

If you notice the statement above, the values are given as three '?'s separated by

commas. This is called “parameterizing” the fields of the table in the order

mentioned during the definition of the table.

6.4.2 Start the transaction

www.csqldb.com CSQL – User Manual 2.0 55

For any operation to take place in the table like INSERT, UPDATE, DELETE

or SELECT, a transaction needs to be started. This is done as below –

con->beginTrans();

6.4.3 Parameterize the fields

You need to tell the SqlStatement object to pick the values from an allocated

area of memory and you need to parameterize all the three fields in the table as

per our requirement in the example. It is done as show below –

stmt->setIntParam(1, eid);
stmt->setStringParam(2, ename);
stmt->setFloatParam(3, salary);

All three are functionally similar except for the fact that is for varying types of

data. The 1
st
 argument is the position of the '?' in the INSERT statement starting

from 1 and the 2
nd

 argument is the memory location from where the value for the

field is picked up during execution

In our example, the 1
st
 parameter to be inserted is integer, 2

nd
 one is String and

3
rd

 one is float type, hence the function calls are in that order.

Suppose if the statement were to be

“insert into EMP values(?, 'Kishor', 123.0);”

There is only one field to be parameterized and that should have been the integer

type with position number 1.

If the statement were to be

“insert into EMP values(eid, ?, ?);”

There are two fields to be parameterized and that should be String and Float type

with position numbers 1 and 2 respectively.

6.4.4 Execute the insert statement

The inserting of a row is done one row at a time by the following function.

stmt->execute(rows);

This function receives an argument rows, which is a reference variable populated

by the execute function. This is always 1 if successful. Since this is an insert

statement and always one row is inserted at a time.

www.csqldb.com CSQL – User Manual 2.0 56

In the example you have called this function in a loop so as to insert 10 rows.

6.4.5 Commit the transaction

After inserting 10 rows you can commit the transaction by using

con->commit();

The release the memory by calling

stmt->free() ;

This releases all the memory that was allocated internally for the

SqlStatement object. As already mentioned, if this is not done, it might lead

to memory leaks.

The first 3 rows in the table EMP look like this logically when you compile and

run manSQLAPIinsert.c

Table: EMP

empId name salary

1001 Praba 1000.00

1002 Kishor 2000.00

1003 Jiten 3000.00

6.5 Read the tuples (rows) from the table

6.5.1 Read tuples from the table.

Now let us read all the tuples that were last inserted into the table. For that the

statement SELECT * FROM EMP; needs to be prepared.

6.5.2 Prepare the statement

strcpy(statement," SELECT * FROM EMP;");
rv = stmt->prepare(statement);

6.5.3 Bind the fields

stmt->bindField(1, &eid);
stmt->bindField(2, ename);
stmt->bindField(3, &salary);

Since the query projects all fields using *, the entire field values are to be fetched

from the table according to the sequence they are in the table, the first parameter

www.csqldb.com CSQL – User Manual 2.0 57

being the column position in the tuple and second parameter being the memory

location to store the fetched values.

Supposing the statement was to look like select EID, ENAME from EMP;

Then the binding would take place for only two parameters EID and ENAME

with param position 1 and 2 respectively.

stmt->bindField(1, &eid);

 stmt->bindField(2, ename);

Supposing the statement was to look like select SALARY, ENAME from

EMP;.Then the binding should take place for only two parameters SALARY and

ENAME with param position 1 and 2 respectively.

 stmt->bindField(1, &salary);

 stmt->bindField(2, ename);

6.5.4 Begin transaction and execute the statement

Any DML operation needs to start a transaction and the following statement does

it

con->beginTrans();

Now execute the statement by calling the following function.

stmt->execute(rows);

This will set the condition for fetching the required tuples and initialize the

appropriate iterations for picking up the tuples.

6.5.5 Fetch the tuples

Calling the fetch() function will return the address of each tuple in the

database. Fetch will also copy the values from the database to the bound

locations.

stmt->fetch();

Fetch will return one tuple at a time that satisfies the condition set in the

statement. Here you have selected all the tuples hence it should show all the

tuples present in the table. After fetching all the tuples commit the connection

using

conn->commit();

www.csqldb.com CSQL – User Manual 2.0 58

6.6 Update some tuples

Now let us update some of the tuples in table EMP.

Refer manSQLAPIupdate.c which updates the tuples where EID

=1001, 1003, 1005. To update the tuples you need to repeat the Section 6.1

and 6.2.

Prepare the SQL statement – “Update EMP SET SALARY, ENAME where

EID = ?;

This statement is prepared using

stmt->prepare(statement);

Begin the transaction by calling

con->beginTrans();

Now call

stmt->setIntParam(1, eid);
stmt->setStringParam(2, ename);
stmt->setFloatParam(3, salary);

Respectively corresponding to the order of their appearance.

Now call

stmt->execute(rows);

To execute the prepared statement

Now commit the transaction.

conn->commit();

Check for the updated values (as per section 6.5) by creating another select statement

after freeing the current one.

6.7 Delete tuples

Refer manSQLAPIdelete.c which deletes the tuples where EID >

1006.

www.csqldb.com CSQL – User Manual 2.0 59

To delete the tuples you need to repeat the Section 6.1 and 6.2.

Prepare the statement as explained in Section 6.5.1. The statement for this one would

be – Delete from EMP WHERE EID > 1006;

This statement is prepared using

stmt->prepare(statement);

The transaction would have been started using

con->beginTrans();

Now call
stmt->execute(rows);

Finally commit the transaction

 conn->commit();

All the required fields are deleted based on the condition.

Check for the deleted values by creating another select statement after freeing that

statement.

7. DB API

This section explains various interfaces in DB API and their references along the way,

which would help in writing applications to access CSQL database directly through the

storage engine.

Let us start with an example where you create a table in the CSQL database to store

employee details, say table EMP (int empId, char name(20), float
sal).

The following sections describe how to connect to the database, how to create a table,

how to insert, update and delete tuples in the table and how to drop the table.

7.1 Connect to the database

Refer to manDBAPIinsert.c

Firstly you need to create a Connection object and open the connection as follows.

www.csqldb.com CSQL – User Manual 2.0 60

Connection conn;

rv = conn.open(“root”, “manager”);

This will connect the application to the database. The return value rv is defined as

an enumerator. The parameters “root” and “manager” are the username and

password respectively. The return value of OK defines success and the rest are errors.

Refer ErrorType.h for list of error codes.

7.2 Database Manager creates the table

To create the table you need the DatabaseManager, which is required to

create, open, close and drop the table.

7.2.1 Get the DatabaseManager

DatabaseManager *dbMgr =

conn.getDatabaseManager();

7.2.2 Define the table

Before creating the table you need to define the table and to do that you need to

create a TableDef object. The TableDef object will have all the

information that a table should have.

Call the addField function as many times as there are fields in the table with

appropriate parameters as follows.

TableDef tabDef;

tabDef.addField("empId", typeInt, 0, NULL, true);

tabDef.addField("name", typeString, 20);

tabDef.addField("salary", typeFloat);

Here addfield is the overloaded function with the parameters being name,

type, length, defaultValue and notNull.

By default

length is 0 for known type of fields like integer, float etc.

defaultValue value is NULL.

notNull is false.

Here empId field is the field with primary key hence notNull parameter is

true.

7.2.3 Create table

www.csqldb.com CSQL – User Manual 2.0 61

Now the table can be created with a name as follows

rv = dbMgr->createTable("EMP", tabDef);

EMP is the table name and since tabDef object has all the field information,

passing the object as reference to the dbMgr will be sufficient to create the table.

7.2.4 Create index for primary key field

Primary key is created whenever a field is unique, which means that the field

cannot have duplicate values. In our example empId will be the field with

primary key value, for obvious reasons. Primary key is created using following

lines of code.

HashIndexInitInfo *idxInfo = new

HashIndexInitInfo();

strcpy(idxInfo->tableName, "EMP");

idxInfo->list.append("empId");

idxInfo->isUnique = true;

idxInfo->isPrimary = true;

idxInfo->indType = hashIndex;

HashIndex is used for point look-ups for conditions like empId = 1005

etc on primary key fields during retrieval of records.

The object is initialized with rest of the details and the DatabaseManager

finally creates the index with the following function.

rv = dbMgr->createIndex("indx1", idxInfo);

7.3 Insert tuples into the table

The table has been created in the last section. Let us insert some tuples into the

table.

7.3.1 Open the table

To insert tuples into the table you need to first open the table and store the table

handle, which is done as follows

Table *table = dbMgr->openTable("EMP");

The Database Manager opens the table and the table name EMP is the parameter

to it. It returns the table handle, which is stored in table variable.

www.csqldb.com CSQL – User Manual 2.0 62

7.3.2 Bind each field of the table

The table in the database needs to know from where to fetch the data for each

field in the table.

table->bindFld("empId", &id1);

table->bindFld("name", name);

table->bindFld("salary", &sal);

bindFld is called by the table handle and it will give the address of the memory

location from where the data can be fetched for each field in the table.

7.3.3 Start the transaction

For any operation to take place in the table like inserting, selecting, updating and

deleting, a transaction needs to be started.

conn.startTransaction();

The above function is called using Connection object. To call this function a

connection should be open. One connection can have only one transaction. To

start any other transaction for this connection the current transaction should either

be committed or rolled back.

7.3.4 Insert the tuples

Now as the connection is started you can insert some records in the table.

rv = table->insertTuple();

Before calling this function, make sure that you have the desired values stored in

the fields that have been bound by bindFld function.

7.3.5 Commit the transaction

After inserting all the rows, commit the transaction by calling the following

function.
conn.commit();

Remember any modification operation to the table has to be done between

startTransaction and the commit / rollback functions of

Connection class.

Now all the rows are inserted into the ‘EMP’ table and, it would look like

Table: EMP

empId name salary

www.csqldb.com CSQL – User Manual 2.0 63

1001 Praba 1000.00

1002 Kishor 2000.00

1003 Jiten 3000.00

7.4 Read the tuples from the database

Now let us read the tuples that you have inserted in the last section.

7.4.1 Set and execute condition to read all the inserted tuples

To read the tuples you need to set the condition to get all the tuples. This is done

by the following function.

table->setCondition(NULL);
rv = table->execute();

The setCondition function is called with the address of Condition object.

Here the function is called with NULL, which means you set no condition and the

table should return all the tuples. You will see how to set condition in a later

section. The execute function sets the information about how to go about

fetching the tuples that satisfy the given condition.

7.4.2 Fetch the tuples

Now the table is all ready to fetch the tuples. It is done by the following function.

tuple = (char*)table->fetch();

The fetch function traverses through each of the tuples in the table and returns

the address of the first tuple that satisfies the condition.

It will fill the values of each field in the memory area bound earlier by bindFld

function. You can rebind those fields with some other memory location if you

wish by calling bindFld again.

Make sure you start the transaction to read the tuples and ultimately commit or

rollback to complete the transaction.

7.5 Update some of the tuples

Now let us update some of the tuples in table EMP. Refer

manDBAPIupdate.c. As usual to update the tuples, you need to open the table

with the help of Database Manager and the Table handle.

7.5.1 Set a condition to update the tuples

www.csqldb.com CSQL – User Manual 2.0 64

Create a Condition object.

Call setTerm on that object to prepare the condition.

Condition p1;
int val1 = 1006;
p1.setTerm("empId", OpLessThan, &val1);

setTerm is an overloaded function which has four types.

void setTerm(const char* f1, ComparisionOp op,
const char *f2);

To handle comparisons between two fields such as f1 & f2, etc.

void setTerm(const char* f1, ComparisionOp op, void
*opnd);

To handle comparisons where operand opnd is a costant such as f1 =5, etc.

void setTerm(Predicate *p1, LogicalOp op,
Predicate *p2 = NULL);

To handle conditions where two or more logical comparisons like f1 < 5 and f2 > 7,

etc

In our example, the second type is called by the Condition object on empId

field.

The second and third parameters are the type of comparison and the operand used

for that comparison. Here you used OpLessThan and val1 as the parameters for

the condition empId < 1006.

Now setCondition is called by table object with the Condition object as the

parameter. (Table.h).

Now the condition for Update is set.

7.5.2 Start transaction and be prepared to update

Since you are doing an operation on the table you need to start a transaction first

by calling

conn.startTransaction();

Then you call

table->execute()

www.csqldb.com CSQL – User Manual 2.0 65

as you did in last section to set up the table for scanning.

conn.startTransaction();
rv=table->execute();

7.5.3 fetch and update the tuples

Now you fetch tuples that satisfy the above set condition by calling fetch.

tuple = (char*)table->fetch();

Remember fetch will populate the values of each field in the tuple with the

memory location that was bound earlier by calling bindFld.

The tuples are now fetched for the condition empId < 1006

Now you can easily update the values as needed by the application as depicted by

the following code by updating the values in the bound memory.

if (id1 == 1001) {
 strcpy(name,"Shubha");
 sal = 1111.00;
 table->updateTuple();
}

Now the tuples are updated where id1 = 1001, 1003 and 1005.

Once after updation transaction should be commited by calling conn.commit().

In the source the values are read again as explained in Section 7.4 to test for the

updation.

7.6 Delete some of the tuples

Refer manDBAPIdelete.c for the source.

Deleting tuples is exactly similar to the way you update the tuples. You call

table->deleteTuple()

Finally the table is closed and it is deleted from the database by calling

dbMgr->dropTable(“EMP”);

8. CSQL as cache for MySQL database

www.csqldb.com CSQL – User Manual 2.0 66

In keeping with its design goals, CSQL MMDB shall also act as middle-tier data cache

for any disk resident database. In this section we outline and demonstrate how CSQL can

be configured to work as data cache for MySQL database.

CSQL Cache is a high performance, bi-directional updateable data-caching infrastructure

that sits between the clustered application process and back-end data sources to provide

unprecedented high throughput to your application by offloading the computing cycles

from expensive backend systems along with reduction in costly network calls, thereby

enabling real time application to provide faster and predictive response time.

CSQL Cache uses the fastest Main Memory Database (CSQL MMDB) designed for high

performance and high volume data computing for caching the table and provides most

flexible and cost-effective way to cache and manage enterprise information without

compromising on transactional and indexed access to the data. This main memory

database is 10-20 times faster than traditional disk based database system as the database

completely resides in main memory and developed to be used on real time high

computing data platforms.

Functionalities of the CSQL cache are listed below.

8.1.1 Updateable Cache Tables

Most of the existing cache solutions are read only which limits their usage to
small segment of the applications, non-real time applications.

8.1.2 Bi-Directional Updates

For updateable caches, updates, which happen in cache, should be
propagated to the target database and any updates that happen directly on the target
database should come to cache automatically.

8.1.3 Synchronous and Asynchronous update propagation

The updates on cache table shall be propagated to target database in two
modes. Synchronous mode makes sure that after the database operation completes
the updates are applied at the target database as well. In case of Asynchronous
mode the updates are delayed to the target database.
Synchronous mode gives high cache consistency and is suited for real time
applications. Asynchronous mode gives high throughput and is suited for near real
time applications.

8.1.4 Multiple cache granularity

CSQL supports Table level and Result-set caching. Major portions of
corporate databases are historical and infrequently accessed. But, there is some
information that should be instantly accessible like premium customer’s data, etc

www.csqldb.com CSQL – User Manual 2.0 67

8.1.5 Recovery for cached tables

Incase of system or power failure, during the restart of caching platform all
the committed transactions on the cached tables should be recovered.

8.1.6 Tools to validate the coherence of cache

In case of asynchronous mode of update propagation, cache at different
cache nodes and target database may diverge. This needs to be resolved manually
and the caching solution should provide tools to identify the mismatches and take
corrective measures if required.

8.1.7 Horizontally Scalable

Clustering is employed in many solutions to increase the availability and to
achieve load balancing. Caching platform should work in a clustered environment
spanning to multiple nodes thereby keeping the cached data coherent across nodes.

8.1.8 Transparent access to non-cached tables reside in target database

Database Cache should keep track of queries and should be able to
intelligently route to the database cache or to the origin database based on the data

locality without any application code modification.

8.1.9 Transparent Fail over

There should not be any service outages, incase of caching platform failure.
Client connections should be routed to the target database.

No or very minimal changes to application for the caching solution.
Support for standard interfaces JDBC, ODBC etc that will make the

application to work seamlessly without any application code changes. It should route
all stored procedure calls to target database so that they don’t need to be migrated.

Caching happens at table level granularity in CSQL, which means that the tables, which

are frequently accessed by the applications, shall be specified in CSQL configuration file

(csqltable.conf), which will be loaded into CSQL during the csqlserver startup.

Once these tables are loaded, they are treated like normal CSQL tables and any DML

operation is allowed on these tables.

The difference between normal CSQL table and cached table is that, the DML operations

INSERT, UPDATE, DELETE on cached tables are propagated to MySQL

automatically by the CSQL server. For the application, they see only CSQL tables and

CSQL takes care of propagating the updates internally to MySQL table.

Apart from caching the MySQL tables, CSQL also acts as a transparent gateway, which

allows the application to access the tables, which are not cached in CSQL. This provides

a unified interface to the applications and it does not need to deal with the location of the

table, making the underlying database caching architecture transparent to the application

layer.

www.csqldb.com CSQL – User Manual 2.0 68

8.2 Configuration

 Configuration file, csql.conf has five parameters associated with caching. They can

be found in the Cache section of the csql.conf file. They are CACHE_TABLE, DSN,

ENABLE_BIDIRECTIONAL_CACHE, CACHE_RECEIVER_WAIT_SECS and

TABLE_CONFIG_FILE.

• CACHE_TABLE is a boolean parameter which needs to be set to true when csql

should cache tables from MySQL

• DSN is a string parameter, which needs to be set to the data source name of the

MySQL ODBC driver specified in the odbc.ini file.

• TABLE_CONFIG_FILE is a string parameter which contains the complete path

to the file which holds the cache table information

• ENABLE_BIDIRECTIONAL_CACHE is a boolean parameter which needs to be

set to true when direct updates to MySQL needs to be brought into CSQL cache

table automatically.

• CACHE_RECEIVER_WAIT_SECS is an integer parameter, which needs to be

set to interval it waits if there are no update logs from the target database.

If csql needs to cache table t1 and t2, then entries for t1 and t2 needs to be

present in csqltable.conf file. Add the following lines to TABLE_CONFIG_FILE that is
1:t1

 1:t2

A sample configuration file is present in the csql root directory. If you want to cache

tables at run time, that is when csqlserver is running, then cachetable tool shall be used

for that. Refer tool reference section for the syntax and usage.

The first field denotes the mode and it should be specified as always 1, which represents

the update propagation mode for cached tables.

1-> Synchronous mode (updates are propagated during the DML operation itself)

2-> Asynchronous mode (logs are generated and propagated later for DML

operations on cached tables).

This release currently supports only the synchronous mode of update propagation.

8.3 MySQL Configuration Settings

www.csqldb.com CSQL – User Manual 2.0 69

For CSQLCache to work you need to install the MySQL server, MySQL ODBC

Connector, unixODBC packages on your system. Please make sure that these packages

are installed in your system before you proceed.

Once you install mysqlserver, start the server by using the following command after

logging in with user ‘mysql’

$/etc/init.d/mysqld start

After that you have to install MySQL ODBC connector, which contains the ODBC driver

to connect to MySQL server. This shall be downloaded from the MySQL web site.

Usually this library is named as libmyodbc3.so.

After this you need to install unixODBC package, which is the driver manager for ODBC

drivers. Once you install unixODBC, copy the following lines into ~/.odbc.ini file

[ODBC Data Sources]

myodbc3 = MyODBC 3.51 Driver DSN

[myodbc3]

Driver = /home/csql/mysql-connector-odbc-

3.51.23-linux-x86-32bit/lib/libmyodbc3.so

Description = Connector/ODBC 3.51 Driver DSN

SERVER = localhost

PORT = 3306

USER = root

Password =

Database = test

OPTION = 16

SOCKET = /var/lib/mysql/mysql.sock

The above assumes that MySQL ODBC connector is installed at location
/home/csql/mysql-connector-odbc-3.51.23-linux-x86-

32bit

You can check whether you have configured MySQL ODBC driver correctly using the

isql command

$isql myodbc3

It should display the following

+---------------------------------------+

| Connected! |

| |

| sql-statement |

| help [tablename] |

www.csqldb.com CSQL – User Manual 2.0 70

| quit |

| |

+---------------------------------------+

SQL>

If you get the above output, it means that you have configured the ODBC driver manager

and MySQL ODBC connector properly and it can connect to MySQL server.

Create the tables in MySQL server so that they shall be cached in CSQL.

In the SQL prompt enter the following statements

SQL>CREATE TABLE t1 (f1 integer, f2 char (196),

primary key (f1));

SQL>CREATE TABLE t2 (f1 integer, f2 integer, primary

key (f1));

SQL>CREATE TABLE t3 (f1 integer, f2 integer, primary

key (f1));

SQL>INSERT INTO t1 (f1, f2) values (100, '100');

SQL>INSERT INTO t2 (f1, f2) values (102, 102);

SQL>INSERT INTO t3 (f1, f2) values (103, 103);

SQL>quit;

The above statements create tables namely t1, t2 and t3, which will be cached in CSQL

later.

8.4 Starting the csqlserver

csqlserver supports -c option which loads the cached tables into CSQL during the

startup. Before you run make sure that filename pointed to by csql.conf parameter

TABLE_CONFIG_FILE contains the table names which needs to be loaded into CSQL.

Run the below command to cache the tables in CSQL server

$ csqlserver –c

8.5 Working with CSQL gateway

In another terminal run csql tool with -g option. This creates an isql session which acts as

gateway to csql and mysql.
$ csql -g

It will show the CSQL prompt as follows

CSQL>

www.csqldb.com CSQL – User Manual 2.0 71

To retrieve records from table t1, enter the following statement in CSQL prompt.

CSQL>select * from t1;

It will display

 f1 f2

 100 100

It displays the values inserted into MySQL from CSQL.

You can also perform any DML operations on these cached tables, for example

CSQL>insert into t1 values (200, '200');

This will insert one record in CSQL as well as in MySQL. You can verify this by

accessing MySQL through isql tool.

$isql myodbc3;

SQL>select * from t1;

+-----------+---

--

--

--+

| f1 |f2

|

+-----------+---

--

--

--+

| 100 | 100

|

| 200 | 200

|

+-----------+---

--

--

--+

It displays both the records from MySQL database.

You can also retrieve records in tables, which are not cached in CSQL and are present in

MySQL

www.csqldb.com CSQL – User Manual 2.0 72

$ csql -g

CSQL>select * from t3;

It will display

24083:3086153424:DatabaseManagerImpl.cxx:599:Table not

exists t3

24083:3086153424:SelStatement.cxx:245:Unable to open

the table:Table not exists

--

 f1 f2

--

 103 103

First it displays that the table is not present in CSQL, then it checks with MySQL whether

the table is present there and if present it retrieves the records from MySQL.

8.6 Programming with CSQL gateway

You can find a JDBC sample program gwexample.java under the

examples/jdbc directory. It will demonstrate how to use the CSQL gateway through

Java programs.

Note: You shall also use gateway through JDBC and SQLAPI interfaces. The ODBC

interface does not support gateway in this release.

From SQL API, use CSqlGateway to create connection and statement objects in

SqlFactory class like below:

AbsSqlConnection *con = SqlFactory::

createConnection(CSqlGateway);

rv = con->connect("root", "manager");

if (rv != OK) return 1;

AbsSqlStatement *stmt = SqlFactory::

createStatement(CSqlGateway);

stmt->setConnection(con);

//---other statements follow----

www.csqldb.com CSQL – User Manual 2.0 73

8.7 Configuring Bi-Directional Cache

The default caching in CSQL is uni-directional caching, which means all updates

(INSERT, UPDATE, DELETE) on cached tables will be automatically propagated to

target database (MySQL). CSQL also supports bi-directional caching in which, direct

updates on MySQL are propagated to CSQL cache automatically.

Bi-directional caching is implemented using triggers of the target database. This requires

additional triggers, which needs to be installed on the tables in target database, which

needs to be cached in bi-directional mode.

Sample trigger code is available in the file trigger.sql under the CSQL root directory.

Lets say for cached table ‘p1’ having primary key field ‘f1’, following is the format for

creating the triggers in MySQL database.

use test;

drop trigger if exists triggerinsertp1;

drop trigger if exists triggerupdatep1;

drop trigger if exists triggerdeletep1;

DELIMITER |

create trigger triggerinsertp1

AFTER INSERT on p1

FOR EACH ROW

BEGIN

Insert into csql_log_int (tablename, pkid, operation)

values ('p1', NEW.f1, 1);

End;

create trigger triggerupdatep1

AFTER UPDATE on p1

FOR EACH ROW

BEGIN

Insert into csql_log_int (tablename, pkid, operation)

values ('p1', OLD.f1, 2);

Insert into csql_log_int (tablename, pkid, operation)

values ('p1', NEW.f1, 1);

End;

create trigger triggerdeletep1

AFTER DELETE on p1

FOR EACH ROW

BEGIN

Insert into csql_log_int (tablename, pkid, operation)

values ('p1', OLD.f1, 2);

End;

|

www.csqldb.com CSQL – User Manual 2.0 74

Note: Trigger name ends with the table name. Replace ‘p1’ in the above script to the

cached table name and ‘f1’ to the primary key fieldname of the cached table.

After editing the trigger.sql file as per your need, you shall execute it by

$ mysql –u root –p <trigger.sql

Apart from the triggers, ENABLE_BIDIRECTIONAL_CACHE parameter in csql.conf

should be set to true for bi-directional caching of tables.

9. Configuration

CSQL subsystem requires some system parameters that need to be set before starting

CSQL database. Hence CSQL defines some of the system configuration variables that

need to be defined. These configuration variables are defined in a file called

csql.conf. Some of the parameters mentioned in this file may have to be tweaked

based on the requirements.

The lines starting with # are ignored as comments and the rest are treated as configuration

variables. All the other lines are read from this file during server start up.

These configuration variables are divided logically into following classes.

• Server section variables

• Client section variables

• Cache section variables

9.1 Server section variables
It is very important to note that for Server section parameters, the value should be the

same for the server process and all the CSQL client processes, which connects to it.

Otherwise, behavior is undefined.

9.1.1 PAGE_SIZE

Each database is logically divided into pages and allocation happens in this unit of

pages. Increasing this value will reduce frequent allocation of pages. This value

should be a multiple of 1024 bytes. This value may be set to the OS page size

which is usually 8192 bytes.

9.1.2 MAX_PROCS

www.csqldb.com CSQL – User Manual 2.0 75

This is the number of process that can connect and work with the database

concurrently. This value can be set anywhere between 10 and 8192 depending on

the number of users who may access the database.

9.1.3 MAX_SYS_DB_SIZE

This is the maximum size of the system database where the metadata are stored.

The value can be anywhere between 1 MB and 1GB. It should be multiples of

PAGE_SIZE.

9.1.4 MAX_DB_SIZE

This is the maximum size of the user database where user data are stored. This

value can be set anywhere between 1MB and 2GB. It should be multiples of

PAGE_SIZE.

9.1.5 SYS_DB_KEY

Shared memory key to be used by the system to create and locate system

database. The value can be anywhere between 10 and 8192.

9.1.6 USER_DB_KEY

Shared memory key to be used by the system to create and locate user database.

The value can be anywhere between 10 and 8192. This should not be the same as

SYS_DB_KEY.

9.1.7 LOG_FILE

Full path of the directory where the important CSQL system specific log files are

created. Make sure that this directory exists before you start the server.

9.1.8 MAP_ADDRESS

This is the virtual memory start address at which the shared memory segment will

be created and attached.

9.2 Client section variables

9.2.1 MUTEX_TIMEOUT_SECS

Mutex timeout interval in seconds. When requesting for mutex, if it is acquired by

anybody else, then the requester will wait for this specified time interval before it

checks whether it is released.

9.2.2 MUTEX_TIMEOUT_USECS

www.csqldb.com CSQL – User Manual 2.0 76

Mutex timeout interval in microseconds. The cumulative of the seconds and

microseconds set will be used for the mutex timeout.

9.2.3 MUTEX_TIMEOUT_RETRIES

Number of retries before csql gives mutex timeout error.

9.2.4 LOCK_TIMEOUT_SECS

Lock timeout interval in seconds. When requesting for lock, if it is acquired by

anybody else, then the requester will wait for this interval before it checks

whether it is released.

9.2.5 LOCK_TIMEOUT_USECS

Lock timeout interval in microseconds. The cumulative of the seconds and

microseconds set will be used for the lock timeout.

9.2.6 LOCK_TIMEOUT_RETRIES

Number of retries before csql gives lock timeout error.

9.3 Cache section variables

9.3.1 CACHE_TABLE

Enables the caching of tables from the target database. Default value is false.

9.3.2 DSN

DSN Name to connect to the target database. This name should be present in the

odbc.ini file with the respective ODBC library specified in it.

9.3.3 TABLE_CONFIG_FILE

File name where the cached table information is stored. Specify the file name with

full path.

9.3.4 ENABLE_BIDIRECTIONAL_CACHE
Enables the bi-directional caching for cached tables. Direct updates to MySQL

will be brought into CSQL cache table automatically making cache coherent.

9.3.5 CACHE_RECEIVER_WAIT_SECS

Interval it waits if there is no update logs from the target database for bi-

directional caching.

www.csqldb.com CSQL – User Manual 2.0 77

10. Tool reference

CSQL provides certain tools to access data from CSQL database. These are

• csql

• catalog

• csqldump

10.1 CSQL

CSQL provides a tool called csql, which is a sub-shell used to access the CSQL

database. It supports most of the standard SQL statements.

Type csql to run CSQL sub shell. Make sure that csqlserver is running

prior to running this tool.

$ csql

CSQL>

Once you have the CSQL prompt the tool is ready to access the database.

10.2 Catalog

Catalog is a tool, which provides the information about system metadata and

user metadata of tables stored in the CSQL database.

catalog [-u username] [-p password] [-l]
[-i] [-d] [-T table]

 [-I index] [-D <lock|trans|proc>]

Options:
-u username username of the user

-p password password of the user

-l lists all the tables with field information

-i reinitialize catalog tables dropping all the tables

-d prints the database usage statistics for system and user database

-T table prints the table information

-I index prints the index information

-D lock | trans | proc prints debug information for system tables

If the username is not mentioned then it will list all the tables with only their names.

If multiple options are specified then only the last option is considered for processing.

Let us understand some of the outputs of the command.

www.csqldb.com CSQL – User Manual 2.0 78

You create two tables in the database as follows with the help of CSQL tool.

$ csql

CSQL> create table t1(f1 int, f2 char(20), f3
float);
Statement Executed

CSQL>create table emp(eid int, name char(20), sal
float);
statement Executed

CSQL>quit;

We have two tables, t1 and emp created. Let us see how the catalog tool

displays the details of the two tables.

$ catalog -l

<TableNames>

<TableName> t1 </TableName>

<TableName> emp </TableName>

</TableNames>

This is a default behavior as mentioned before since there is no username provided.

 $ catalog -u root -p manager -l

This will list all the tables with field information and index information

 $ catalog -u root -p manager -d

This will print the database usage statistics

 $ catalog -u root -p manager -T <table-name>

This will list Field and Index information of the table specified.

 $ catalog -u root -p manager -I <index-name>

This will list index information of the index specified.

 $ catalog -u root -p manager -D proc

This will list process table information

 $ catalog -u root -p manager -D lock

This will list lock table information

www.csqldb.com CSQL – User Manual 2.0 79

 $ catalog -u root -p manager -D trans

This will list transaction table information

 $ catalog -u root -p manager –ild

This is same as -d option

 $ catalog -u root -p manager -i

This will drop all the tables from the database

10.3 Csqldump

csqldump is a tool that generates a standard file readable by the csql tool and

dumps on the standard output. This file is fed into the csql tool to build the database that

was present at the time of the file generation. This can be viewed as a back up

mechanism where one can close down the server by generating this file and rebuild the

database next time when the server is started again.

csqldump [-u username] [-p password] [-c] [-n
numberOfStmtPerCommit] [-T tableName]

$ csqldump -?

Usage: csqldump [-u username] [-p passwd] [-c] [-n
noOfStmtsPerCommit]

n -> number of statements per commit
Default value is 100. If system database size is
bigger, then it shall be increased.

T-> Will dump only the table specified with this

 option.

c ->includes all the cache tables in the dump output

Note: csqldump does not output cache tables by default. Use
c option to include cache tables.

Now let us create some tables and insert some of the tuples into those tables.

Run the csqlserver in one terminal.

Open another terminal.

Run csql tool.

$ csql
CSQL> set autocommit off;

www.csqldb.com CSQL – User Manual 2.0 80

AUTOCOMMIT Mode is set to OFF
CSQL> create table t1(f1 int, f2 char(30), primary key(f1));
Statement Executed
CSQL> insert into t1 values(1, 'Lakshya');
Statement Executed: Rows Affected = 1
CSQL> insert into t1 values(10, 'Uttara');
statement Executed: Rows Affected = 1
CSQL> commit;
CSQL> create table emp(empId int, empName char(40), empSal
float, primary key (empId));
Statement Executed
CSQL> insert into emp values(1001, 'Jitendra', 1000.00);
Statement Executed: Rows Affected = 1
CSQL> insert into emp values(1002, 'Dharmendra', 2000.00);
Statement Executed: Rows Affected = 1

CSQL> commit;
CSQL> quit;

Two tables are now created in the csql database with each table having two tuples.

Now running csqldump will dump the file on the standard output.

$ csqldump
CREATE TABLE t1 (f1 INT NOT NULL , f2 CHAR (30));
CREATE INDEX t1_idx1_Primary on t1 (f1) UNIQUE;
CREATE TABLE emp (empId INT NOT NULL , empName CHAR (40),
empSal FLOAT);
CREATE INDEX emp_idx1_Primary on emp (empId) UNIQUE;
SET AUTOCOMMIT OFF;
INSERT INTO t1 VALUES(1, 'Lakshya');
INSERT INTO t1 VALUES(10, 'Uttara');
COMMIT;
INSERT INTO emp VALUES(1001, 'Jitendra',1000.000000);
INSERT INTO emp VALUES(1002, 'Dharmendra',2000.000000);
COMMIT;

Again run csqldump and redirect the output to backup.sql.

$ csqldump > backup.sql

Close the server by hitting Ctl + C.

Open the server again. At this point server is in virgin state.

Now run csql tool with the file as input as follows.

$ csql -u root -p manager -s backup.sql
Statement Executed
Statement Executed
Statement Executed
Statement Executed
AUTOCOMMIT Mode is set to OFF
Statement Executed: Rows Affected = 1

www.csqldb.com CSQL – User Manual 2.0 81

Statement Executed: Rows Affected = 1
Statement Executed: Rows Affected = 1
Statement Executed: Rows Affected = 1

The first 4 lines are for creation of table and index for both tables. Then the

autocommit mode is set OFF by the csqldump tool and the last 4 rows are the

output resulting from the insertion of 2 tuples each for each table.

In order to check whether the tuples are loaded appropriately or not, do the following

Start the csql tool.

$ csql
CSQL>show tables;
=============TableNames===================
 t1
 emp
===

CSQL>select * from t1;

 f1 f2

 1 Lakshya
 10 Uttara

CSQL>select * from emp;

 empId empName empSal

 1001 Jitendra 1000.000000
 1002 Dharmendra 2000.000000

CSQL>quit;

$ csqldump -T t1
CREATE TABLE t1 (f1 INT NOT NULL , f2 CHAR (30));
CREATE INDEX t1_idx1_Primary on t1 (f1) UNIQUE;
SET AUTOCOMMIT OFF;
INSERT INTO t1 VALUES(1, 'Lakshya');
INSERT INTO t1 VALUES(10, 'Uttara');
COMMIT;

10.4 cachetable

cachetable is a tool to cache the table from the target database into CSQL. This

needs to be invoked when the csqlserver process is running.

Syntax:
cachetable [-U username] [-P password] -t tablename

www.csqldb.com CSQL – User Manual 2.0 82

 [-R] [-s] [-r]

 tablename -> table name to be cached in csql from target
db.
 R -> recover all cached tables from the target database.
 s -> load only the records from target db. Assumes table
is already created in csql
 r -> reload the table. get the latest image of table from
target db
 u -> unload the table. if used with -s option, removes
only records and preserves the schema

For the below command to work, table t1 should exist in the target database and should

not exist in CSQL.

To create the table and insert records in MySQL,
$ isql myodbc3
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL> create table emp (empId int, empName char(40), empSal
float, primary key (empId));
SQLRowCount returns 0
SQL> insert into emp values(1001, 'Jitendra', 1000.00);
SQLRowCount returns 1
SQL> insert into emp values(1002, 'Dharmendra', 2000.00);
SQLRowCount returns 1
SQL> insert into emp values(1003, 'Rajendra', 3000.00);
SQLRowCount returns 1
SQL> insert into emp values(1004, 'Narendra', 4000.00);
SQLRowCount returns 1

Now 4 rows are added into the MySQL database, which is our target database.

If you want to cache table emp, then run the following command

$ cachetable –u root –p manager –t emp

After loading you can check whether the records are loaded into CSQL using csql tool

$ csql

www.csqldb.com CSQL – User Manual 2.0 83

CSQL>select * from emp;

It will display all the records inserted into MySQL table ‘emp’

10.5 csqlverify

cacheverify is a tool that will display the missing records in the specified cached

table either in csql or in target database, if any.

cacheverify [-U username] [-P password] -t tableName [-p] [-f]

$ cacheverify -?
Usage: cacheverify [-U username] [-P passwd] -t tablename
 [-p] [-f]
 username -> username to connect with csql.
 password -> password for the above username.
 tablename -> cached table name in csql from target db.
 p -> verification at primary key field level
 f -> verification at record level
 ? -> help

Table name must be specified and it must be a cached table having a primary key field.

By default, that is without -p or -f switch the tool will display only the count of the

records in both the databases.

With -p switch, the tool will display only the missing records in either of the database

with primary key field value.

The switch -f, has not been implemented and it shall display the missing records in either

of the database and the mismatching fields in the records present in both the databases

having same primary key field value.

Now let us see how the tool works.

Create a table t1 in target database as follows. We used mysql as the target database at

our end.

$ isql myodbc3
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+

www.csqldb.com CSQL – User Manual 2.0 84

SQL> create table emp(empId int, empName char(40), empSal
float, primary key (empId));
SQLRowCount returns 0
SQL> insert into emp values(1001, 'Jitendra', 1000.00);
SQLRowCount returns 1
SQL> insert into emp values(1002, 'Dharmendra', 2000.00);
SQLRowCount returns 1
SQL> insert into emp values(1003, 'Rajendra', 3000.00);
SQLRowCount returns 1
SQL> insert into emp values(1004, 'Narendra', 4000.00);
SQLRowCount returns 1

Now 4 rows are added into the mysql database which is our target database.

Let us cache this table into csql.

To cache this table into csql add an entry
1:emp

on a new line in csqltable.conf.

Now run
$ csqlserver -c
ConfigValues
 getPageSize 8192
 getMaxProcs 100
 getMaxSysDbSize 1048576
 getMaxDbSize 10485760
 getSysDbKey 1222
 getUserDbKey 4555
 getLogFile /tmp/log/csql/log.out
 getMapAddress 400000000
 getMutexSecs 0
 ...
 ...
 ...
 getTableConfigFile /tmp/csql/csqltable.conf
 isTwoWayCache 1
 getCacheWaitSecs 10
Sysdb size 1048576 dbsize 10485760
System Database initialized
Database server recovering cached tables...
Recovering table emp
Cached Tables recovered
Starting Cache Recv Server
filename is
/home/kishoramballi/csql/install/bin/csqlcacheserver
Cache Recv Server Started pid=6414
Database server started
Cache server started

Now the table emp is cached into the csql server.

Let us now check the output of cacheverify for the default option and for the -p option.

www.csqldb.com CSQL – User Manual 2.0 85

Open another terminal and setup the environment by moving into csql root directory and

entering the following command

$. ./setupenv.ksh
$ cacheverify -t emp
--------------------+---------------+----------------------+
 Data | In CSQL | In TargetDb |
--------------------+---------------+----------------------+
 Number of Tuples | 4 | 4 |
--------------------+---------------+----------------------+

$ cacheverify -t emp -p
Primary key field name is 'empId'
The data in both the servers is consistent

Let us delete one row with primary key field value 1002 from target database and one

row with primary key value 1004 from csql as follows.

$ isql myodbc3
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+

SQL> delete from emp where empId = 1002;
SQLRowCount returns 1
SQL> quit;

$ csql
CSQL>delete from emp where empId = 1004;
Statement Executed: Rows Affected = 1
CSQL>quit;

Now one row each is deleted from each of the databases. Let us see what happens to the

output of cacheverify.

$ cacheverify -t emp
--------------------+---------------+----------------------+
 Data | In CSQL | In TargetDb |
--------------------+---------------+----------------------+
 Number of Tuples | 3 | 3 |
--------------------+---------------+----------------------+

$ cacheverify -t emp -p
Primary key field name is 'empId'
-----------------+-----------------+-----------------------+

www.csqldb.com CSQL – User Manual 2.0 86

 empId | not in csql | not in targetdb |
-----------------+-----------------+-----------------------+
 1002 | | X |
 1004 | X | |
-----------------+-----------------+-----------------------+

The first output shows number of tuples present in both the databases.

And the second output shows the missing records based on the primary key field values

1002 and 1004 in the sorted incresing order.

11. Troubleshooting

11.1 Errors while building CSQL

11.1.1 Please set JDK_HOME

$./build.ksh

Please set JDK_HOME

This error is thrown when JDK_HOME is not set. CSQL requires Java

Development Toolkit (JDK) Version 1.5 or higher. If it is not present in the

system then please install it.

Set up the JDK_HOME by following the steps below –

$ export JDK_HOME=/home/csql/jdk1.5.0_14

In the above example it is assumed that the JDK is based in the /home/csql

directory, you might change the path based on your system. Now run

./build.ksh and it should work.

11.1.2 Cannot find –lodbc

$ make

...

/usr/lib/gcc/i586-suse-

linux/4.2.1/../../../../i586-suse-linux/bin/ld:

cannot find -lodbc

collect2: ld returned 1 exit status

make[3]: *** [libcsqlodbcadapter.la] Error 1

...

www.csqldb.com CSQL – User Manual 2.0 87

...

This error is thrown when unixodbc module is not installed in the system.

Please download and install unixodbc rpm package from

http://rpm.pbone.net/index.php3/stat/3/srodzaj/1/search/unixODBC

To install the rpm

$ rpm -ivh <rpm-package-file>

Now run make and it should work.

11.2 Errors while running csqlserver

11.2.1 – bash: csqlserver Command not found

$ csqlserver

-bash: csqlserver: command not found

This error is thrown when the $PATH environmental variable may not have been

set for CSQL. Run the following command from CSQL_ROOT directory

$. ./setupenv.ksh

Now run csqlserver and it should work.

11.2.2 Unable to create the log file

$ csqlserver

4822:3086075584:Logger.cxx:101:Unable to create

log file. Check whether server started

Unable to start the logger

This error is thrown when csqlserver is not able to create the log file. Please

create the directory defined for LOG_FILE in csql.conf file, which is

present in CSQL_ROOT directory.

For example if LOG_FILE=/tmp/log/csql/log.out then create the

directory as follows.

$ mkdir –p /tmp/log/csql

If you wish to create the log file in different directory then create that directory

and change the value of LOG_FILE in csql.conf file.

www.csqldb.com CSQL – User Manual 2.0 88

Now run csqlserver and it should work.

12. Getting Support

The primary mechanism for CSQL communication is through its mailing lists. Anyone

who is using this product shall participate in user mailing lists. You can search for the

archive of past discussions before you post your question to the mailing lists.

The main channel for user support is csql-users@lists.sourceforge.net mailing list. As is

usual with mailing lists, be prepared to wait for an answer.

Please summarize any off-list knowledge gained and post it for the benefit of all. For

example, if a user asks a question and gets a response, post that to

csql-users@lists.sourceforge.net

13. How to contribute

For beginners, items, which come first in the list, are a good starting point. It is ordered

on the basis of complexity

• Check out, build the code and run the tests.

• Add functional, stress and scalability Tests.

• Fix bugs.

• Add new test cases for user exposed interfaces

• Develop test cases, run them and create bugs

• Review bug fixes, new feature's design and its code

• Test the Documentation

o Review the manual and test all the examples. If you find something that

looks wrong, create bug and specify "Documentation" as category

• Develop New Features

• Testing New Features

• Read Architecture in csql wiki page and update missing links

• Suggesting new features

www.csqldb.com CSQL – User Manual 2.0 89

• Improve subsystems (code reorganization, performance improvement, etc)

If you find any issues or any queries on CSQL please get back to us at

feedback@csqldb.com.

Appendix – A (Benchmark Results)
All times are in microseconds and benchmarking is done against leading open source

database. Read operation is point lookup on the primary key field, F1.SQLAPI in the

native C++ interface of CSQL for its SQL Engine.

The benchmark is done on most frequently used database operations

• INSERT one record

• SELECT on the primary key field with equality predicate

• UPDATE one field with equality predicate on primary key field

• DELETE with equality predicate on the primary key field

Machine Configuration
Dell OPTIPLEX 320, Intel Pentium D 800 MHz Dual core, 1GBRAM, Linux 2.6 Kernel

Schema Definition
CREATE TABLE T1 (F1 INTEGER, F2 CHAR (200), PRIMARY KEY (F1));

CSQL MMDB Benchmark Results
For the above said operations, time taken is measured in microsecond for leading

traditional database system and for CSQL Main Memory Database System. The

benchmarking application and the database server runs in the same machine/host and

table fully cached in RAM during the test.

Operation

Other
DB
ODBC

CSQL
ODBC

ODBC
Times
Faster

CSQL
SQLAPI

SQLAPI
Times
Faster

Insert 139 10 13.90 6.9 20.14

Read = 167 7.5 22.27 3.2 52.19

Update 163 9 18.11 7.9 20.63

Delete 148 11 13.45 8.2 18.05

www.csqldb.com CSQL – User Manual 2.0 90

CSQL ODBC with leading DB

0

20

40

60

80

100

120

140

160

180

Insert Read = Update Delete

T
im

e
 t

a
k
e
n

 i
n

 m
ic

ro
s
e
c
s

Other DB ODBC

CSQL ODBC

CSQL SQLAPI w ith leading DB

0

20

40

60

80

100

120

140

160

180

Insert Read = Update Delete

T
im

e
 t

a
k
e
n

 i
n

 m
ic

ro
s
e
c
s

Other DB ODBC

CSQL SQLAPI

From the above results, it is evident that CSQL is 22 times faster than leading database

with standard ODBC interface and 52 times faster with proprietary C++ SQL API. This

demonstrates CSQL's ability to meet the most demanding service levels which traditional

disk based database systems cannot deliver.

www.csqldb.com CSQL – User Manual 2.0 91

CSQL Cache Benchmark Results

Time taken for the above operations in microsecond granularity for an application,

which access the table in the target database directly (Column-2 of the below table) and

after it caches the table using CSQL cache (Column-3 of the below table). The fourth

column in the table tells how many times performance of the above said operations

increase after employing CSQL Cache.

Network: Application host and target db host connected through 10/100Mb Fast Ethernet

switch

Database
Operation

Existing
Application

Without
Cache

Application
using

CSQL Cache

Times
 Faster

INSERT 603 616 0.98

SELECT 618 4 154.50

UPDATE 623 628 0.99

DELETE 617 625 0.99

CSQL Sync Cache Performance

0

100

200

300

400

500

600

700

INSERT SELECT UPDATE DELETE

M
ic

ro
s
e
c
s

Existing

Application

Without

Cache

Application

using

CSQL Cache

From the above results, for sync cache update propagation mode, it is evident that CSQL

queries are 150 times faster than the existing database system and there is no degradation

of performance in case of write operations.

