doc: sort: give example for sorting on the last field
[coreutils.git] / gl / lib / randperm.c
blob9903966e4dd21c0a9f8127190742e151c766103e
1 /* Generate random permutations.
3 Copyright (C) 2006-2024 Free Software Foundation, Inc.
5 This program is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation, either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <https://www.gnu.org/licenses/>. */
18 /* Written by Paul Eggert. */
20 #include <config.h>
22 #include "randperm.h"
24 #include <limits.h>
25 #include <stdint.h>
26 #include <stdlib.h>
28 #include "attribute.h"
29 #include "count-leading-zeros.h"
30 #include "hash.h"
31 #include "xalloc.h"
33 /* Return the floor of the log base 2 of N. If N is zero, return -1. */
35 ATTRIBUTE_CONST static int
36 floor_lg (size_t n)
38 static_assert (SIZE_WIDTH <= ULLONG_WIDTH);
39 return (n == 0 ? -1
40 : SIZE_WIDTH <= UINT_WIDTH
41 ? UINT_WIDTH - 1 - count_leading_zeros (n)
42 : SIZE_WIDTH <= ULONG_WIDTH
43 ? ULONG_WIDTH - 1 - count_leading_zeros_l (n)
44 : ULLONG_WIDTH - 1 - count_leading_zeros_ll (n));
47 /* Return an upper bound on the number of random bytes needed to
48 generate the first H elements of a random permutation of N
49 elements. H must not exceed N. */
51 size_t
52 randperm_bound (size_t h, size_t n)
54 /* Upper bound on number of bits needed to generate the first number
55 of the permutation. */
56 uintmax_t lg_n = floor_lg (n) + 1;
58 /* Upper bound on number of bits needed to generated the first H elements. */
59 uintmax_t ar = lg_n * h;
61 /* Convert the bit count to a byte count. */
62 size_t bound = (ar + CHAR_BIT - 1) / CHAR_BIT;
64 return bound;
67 /* Swap elements I and J in array V. */
69 static void
70 swap (size_t *v, size_t i, size_t j)
72 size_t t = v[i];
73 v[i] = v[j];
74 v[j] = t;
77 /* Structures and functions for a sparse_map abstract data type that's
78 used to effectively swap elements I and J in array V like swap(),
79 but in a more memory efficient manner (when the number of permutations
80 performed is significantly less than the size of the input). */
82 struct sparse_ent_
84 size_t index;
85 size_t val;
88 static size_t
89 sparse_hash_ (void const *x, size_t table_size)
91 struct sparse_ent_ const *ent = x;
92 return ent->index % table_size;
95 static bool
96 sparse_cmp_ (void const *x, void const *y)
98 struct sparse_ent_ const *ent1 = x;
99 struct sparse_ent_ const *ent2 = y;
100 return ent1->index == ent2->index;
103 typedef Hash_table sparse_map;
105 /* Initialize the structure for the sparse map,
106 when a best guess as to the number of entries
107 specified with SIZE_HINT. */
109 static sparse_map *
110 sparse_new (size_t size_hint)
112 return hash_initialize (size_hint, nullptr, sparse_hash_, sparse_cmp_, free);
115 /* Swap the values for I and J. If a value is not already present
116 then assume it's equal to the index. Update the value for
117 index I in array V. */
119 static void
120 sparse_swap (sparse_map *sv, size_t *v, size_t i, size_t j)
122 struct sparse_ent_ *v1 = hash_remove (sv, &(struct sparse_ent_) {i,0});
123 struct sparse_ent_ *v2 = hash_remove (sv, &(struct sparse_ent_) {j,0});
125 /* FIXME: reduce the frequency of these mallocs. */
126 if (!v1)
128 v1 = xmalloc (sizeof *v1);
129 v1->index = v1->val = i;
131 if (!v2)
133 v2 = xmalloc (sizeof *v2);
134 v2->index = v2->val = j;
137 size_t t = v1->val;
138 v1->val = v2->val;
139 v2->val = t;
140 if (!hash_insert (sv, v1))
141 xalloc_die ();
142 if (!hash_insert (sv, v2))
143 xalloc_die ();
145 v[i] = v1->val;
148 static void
149 sparse_free (sparse_map *sv)
151 hash_free (sv);
155 /* From R, allocate and return a malloc'd array of the first H elements
156 of a random permutation of N elements. H must not exceed N.
157 Return nullptr if H is zero. */
159 size_t *
160 randperm_new (struct randint_source *r, size_t h, size_t n)
162 size_t *v;
164 switch (h)
166 case 0:
167 v = nullptr;
168 break;
170 case 1:
171 v = xmalloc (sizeof *v);
172 v[0] = randint_choose (r, n);
173 break;
175 default:
177 /* The algorithm is essentially the same in both
178 the sparse and non sparse case. In the sparse case we use
179 a hash to implement sparse storage for the set of n numbers
180 we're shuffling. When to use the sparse method was
181 determined with the help of this script:
183 #!/bin/sh
184 for n in $(seq 2 32); do
185 for h in $(seq 2 32); do
186 test $h -gt $n && continue
187 for s in o n; do
188 test $s = o && shuf=shuf || shuf=./shuf
189 num=$(env time -f "$s:${h},${n} = %e,%M" \
190 $shuf -i0-$((2**$n-2)) -n$((2**$h-2)) | wc -l)
191 test $num = $((2**$h-2)) || echo "$s:${h},${n} = failed" >&2
192 done
193 done
194 done
196 This showed that if sparseness = n/h, then:
198 sparseness = 128 => .125 mem used, and about same speed
199 sparseness = 64 => .25 mem used, but 1.5 times slower
200 sparseness = 32 => .5 mem used, but 2 times slower
202 Also the memory usage was only significant when n > 128Ki
204 bool sparse = (n >= (128 * 1024)) && (n / h >= 32);
206 size_t i;
207 sparse_map *sv;
209 if (sparse)
211 sv = sparse_new (h * 2);
212 if (sv == nullptr)
213 xalloc_die ();
214 v = xnmalloc (h, sizeof *v);
216 else
218 sv = nullptr; /* To placate GCC's -Wuninitialized. */
219 v = xnmalloc (n, sizeof *v);
220 for (i = 0; i < n; i++)
221 v[i] = i;
224 for (i = 0; i < h; i++)
226 size_t j = i + randint_choose (r, n - i);
227 if (sparse)
228 sparse_swap (sv, v, i, j);
229 else
230 swap (v, i, j);
233 if (sparse)
234 sparse_free (sv);
235 else
236 v = xnrealloc (v, h, sizeof *v);
238 break;
241 return v;