
CLooG
A Loop Generator For Scanning Polyhedra

Edition 2.0, for CLooG 0.14.0
November 17th 2005

Cédric Bastoul

(September 2001)

Cédric Bastoul
SCHEDULES GENERATE !!! I just need to apply them now, where can I find
a good code generator ?!

Paul Feautrier
Hmmm. I fear that if you want something powerful enough, you’ll have to write
it yourself !

This manual is for CLooG version 0.14.0, a software which generates loops for scanning
Z-polyhedra. That is, CLooG produces a code visiting each integral point of a union of
parametrized polyhedra. CLooG is designed to avoid control overhead and to produce a
very effective code.
It would be quite kind to refer the following paper in any publication that results from the
use of the CLooG software or its library:

@InProceedings{Bas04,
author = {C. Bastoul},
title = {Code Generation in the Polyhedral Model

Is Easier Than You Think},
booktitle = {PACT’13 IEEE International Conference on

Parallel Architecture and Compilation Techniques},
year = 2004,
pages = {7--16},
month = {september},
address = {Juan-les-Pins}

}

Copyright c© 2002-2005 Cédric Bastoul.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 published by the Free Software Founda-
tion. To receive a copy of the GNU Free Documentation License, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

i

Table of Contents

1 Introduction . 1
1.1 Basically, what’s the point ? . 1
1.2 Defining a Scanning Order: Scattering Functions 2

2 Using the CLooG Software 5
2.1 A First Example . 5
2.2 Writing The Input File . 6

2.2.1 Domain Representation . 7
2.2.2 Scattering Function Representation 8

2.3 Calling CLooG . 10
2.4 CLooG Options . 10

2.4.1 Last Depth to Optimize Control -l <depth> 11
2.4.2 First Depth to Optimize Control -f <depth> 11
2.4.3 Once Time Loop Elimination -otl <boolean> . . . 12
2.4.4 Equality Spreading -esp <boolean>. 12
2.4.5 Constant Spreading -csp <boolean> 12
2.4.6 First Level for Spreading -fsp <level> 13
2.4.7 C PreProcessor Friendly -cpp <boolean> 13
2.4.8 Statement Block -block <boolean> 14
2.4.9 Loop Strides -strides <boolean> 14
2.4.10 Compilable Code -compilable <value> 15
2.4.11 Output -o <output> . 16
2.4.12 Help --help or -h . 16
2.4.13 Version --version or -v . 16

2.5 A Full Example . 16

3 Using the CLooG Library 21
3.1 CLooG Data Structures Description . 21

3.1.1 CloogMatrix . 21
3.1.2 CloogDomain . 22
3.1.3 CloogDomainList . 22
3.1.4 CloogStatement . 23
3.1.5 CloogBlock. 23
3.1.6 CloogBlockList . 23
3.1.7 CloogLoop . 23
3.1.8 CloogNames . 24
3.1.9 CloogProgram . 24
3.1.10 CloogOptions . 27

3.2 CLooG Functions Description . 28
3.2.1 cloog program generate . 28
3.2.2 cloog program pprint . 29
3.2.3 cloog program scatter . 29

ii CLooG - a loop generator for scanning polyhedra

3.2.4 cloog program read . 30
3.2.5 From Matrices to Domains and Conversely 30
3.2.6 Allocation and Initialization Functions 30
3.2.7 Memory Deallocation Functions. 30
3.2.8 Printing Functions . 31

3.3 Example of Library Utilization . 31

4 Installing CLooG . 33
4.1 License . 33
4.2 Requirements . 33

4.2.1 PolyLib (mandatory) . 33
4.2.2 GMP Library (optional) . 33

4.3 CLooG Basic Installation . 34
4.4 Optional Features . 34
4.5 Uninstallation . 35

5 Documentation . 37

6 References . 39

Chapter 1: Introduction 1

1 Introduction

CLooG is a free software and library generating loops for scanning Z-polyhedra. That
is, it finds a code (e.g. in C, FORTRAN...) that reaches each integral point of one or more
parameterized polyhedra. CLooG has been originally written to solve the code generation
problem for optimizing compilers based on the polytope model. Nevertheless it is used now
in various area, e.g., to build control automata for high-level synthesis or to find the best
polynomial approximation of a function. CLooG may help in any situation where scanning
polyhedra matters. It uses the best state-of-the-art code generation algorithm known as the
Quilleré et al. algorithm (see [Qui00], page 39) with our own improvements and extensions
(see [Bas04], page 39). The user has full control on generated code quality. On one hand,
generated code size has to be tuned for sake of readability or instruction cache use. On the
other hand, we must ensure that a bad control management does not hamper performance
of the generated code, for instance by producing redundant guards or complex loop bounds.
CLooG is specially designed to avoid control overhead and to produce a very efficient code.

CLooG stands for Chunky Loop Generator : it is a part of the Chunky project, a research
tool for data locality improvement (see [Bas03a], page 39). It is designed also to be the back-
end of automatic parallelizers like LooPo (see [Gri04], page 39). Thus it is very compilable
code oriented and provides powerful program transformation facilities. Mainly, it allows
the user to specify very general schedules where, e.g., unimodularity or invertibility of the
transformation doesn’t matter.

The current version is still under evaluation, and there is no guarantee that the upward
compatibility will be respected (but the previous API has been stable for two years, we
hope this one will be as successful -and we believe it-). A lot of reports are necessary to
freeze the library API and the input file shape. Most API changes from 0.12.x to 0.14.x
have been requested by the users themselves. Thus you are very welcome and encouraged
to post reports on bugs, wishes, critics, comments, suggestions or successful experiences in
the forum of http://www.CLooG.org (preferably) or to send them to cedric.bastoul@inria.fr
directly.

1.1 Basically, what’s the point ?

If you want to use CLooG, this is because you want to scan or to find something inside the
integral points of a set of polyhedra. There are many reasons for that. Maybe you need the
generated code itself because it actually implements a very smart program transformation
you found. Maybe you want to use the generated code because you know that the solution of
your problem belongs to the integral points of those damned polyhedra and you don’t know
which one. Maybe you just want to know if a polyhedron has integral points depending on
some parameters, which is the lexicographic minimum, maximum, the third on the basis of
the left etc. Probably you have your own reasons to use CLooG.

Let us illustrate a basic use of CLooG. Suppose we have a set of affine constraints
that describes a part of a whatever-dimensional space, called a domain, and we want to
scan it. Let us consider for instance the following set of constraints where ‘i’ and ‘j’ are
the unknown (the two dimensions of the space) and ‘m’ and ‘n’ are the parameters (some
symbolic constants):

2 CLooG - a loop generator for scanning polyhedra

2<=i<=n
2<=j<=m
j<=n+2-i

Let us also consider that we have a partial knowledge of the parameter values, called the
context, expressed as affine constraints as well, for instance:

m>=2
n>=2

Note that using parameters is optional, if you are not comfortable with parameter ma-
nipulation, just replace them with any scalar value that fits m>=2 and n>=2. A graphical
representation of this part of the 2-dimensional space, where the integral points are repre-
sented using heavy dots would be for instance:

1
2

1

j i<=n

2 n

m

j>=2

j<=m

i

i>=2 j<=n+2−i

The affine constraints of both the domain and the context are what we will provide to
CLooG as input (in a particular shape that will be described later). The output of CLooG
is a pseudo-code to scan the integral points of the input domain according to the context:

for (i=2;i<=n;i++) {
for (j=2;j<=min(m,-i+n+2);j++) {
S1(i,j) ;

}
}

If you felt such a basic example is yet interesting, there is a good chance that CLooG
is appropriate for you. CLooG can do much more: scanning several polyhedra or unions
of polyhedra at the same time, applying general affine transformations to the polyhedra,
generate compilable code etc. Welcome to the CLooG’s user’s guide !

1.2 Defining a Scanning Order: Scattering Functions

In CLooG, domains only define the set of integral points to scan and their coordinates.
In particular, CLooG is free to choose the scanning order for generating the most efficient
code. This means, for optimizing/parallelizing compiler people, that CLooG doesn’t make
any speculation on dependences on and between statements (by the way, it’s not its job !).
For instance, if an user give to CLooG only two domains S1:1<=i<=n, S2:1<=i<=n and the
context n>=1, the following pseudo-codes are considered to be equivalent:

Chapter 1: Introduction 3

/* A convenient target pseudo-code. */
for (i=1;i<=N;i++) {
S1(i) ;
}
for (i=1;i<=N;i++) {
S2(i) ;
}

/* Another convenient target pseudo-code. */
for (i=1;i<=N;i++) {
S1(i) ;
S2(i) ;
}

The default behaviour of CLooG is to generate the second one, since it is optimized in
control. It is right if there are no data dependences between S1 and S2, but wrong otherwise.

Thus it is often useful to force scanning to respect a given order. This can be done in
CLooG by using scattering functions. Scattering is a shortcut for scheduling, allocation,
chunking functions and the like we can find in the restructuring compilation litterature.
There are a lot of reasons to scatter the integral points of the domains (i.e. the statement
instances of a program, for compilation people), parallelization or optimization are good
examples. For instance, if the user wants for any reason to set some precedence constraints
between the statements of our example above in order to force the generation of the first
code, he can do it easily by setting (for example) the following scheduling functions:

θS1(i) = (1)

θS2(j) = (2)

This scattering means that each integral point of the domain S1 is scanned at logical
date 1 while each integral point of the domain S2 is scanned at logical date 2. As a result,
the whole domain S1 is scanned before domain S2 and the first code in our example is
generated.

The user can set every kind of affine scanning order thanks to the scattering func-
tions. Each domain has its own scattering function and each scattering function may
be multi-dimensional. A multi-dimentional logical date may be seen as classical date
(year,month,day,hour,minute,etc.) where the first dimensions are the most significant. Each
scattering dimension may depend linearly on the original dimensions (e.g., i), the parame-
ters (e.g., n) ans scalars (e.g., 2).

A very useful example of multi-dimensional scattering functions is, for compilation peo-
ple, the scheduling of the original program. The basic data to use for code generation are
statement iteration domains. As we saw, these data are not sufficient to rebuild the original
program (what is the ordering between instances of different statements ?). The missing
data can be put in the scattering functions as the original scheduling. The method to com-
pute it is quite simple (see [Fea92], page 39). The idea is to build an abstract syntax tree
of the program and to read the scheduling for each statement. For instance, let us consider
the following implementation of a Cholesky factorization:

4 CLooG - a loop generator for scanning polyhedra

/* A Cholesky factorization kernel. */
for (i=1;i<=N;i++) {
for (j=1;j<=i-1;j++) {
a[i][i] -= a[i][j] ; /* S1 */

}
a[i][i] = sqrt(a[i][i]) ; /* S2 */
for (j=i+1;j<=N;j++) {
for (k=1;k<=i-1;k++) {

a[j][i] -= a[j][k]*a[i][k] ; /* S3 */
}
a[j][i] /= a[i][i] ; /* S4 */
}

}
}

The corresponding abstract syntax tree is given in the following figure. It directly gives
the scattering functions (schedules) for all the statements of the program.

0

0

10 2

0 1

0

S1

S2

S3

S4

i

j j

k


θS1(i, j)T = (0, i, 0, j, 0)T

θS2(i) = (0, i, 1)T

θS3(i, j, k)T = (0, i, 2, j, 0, k, 0)T

θS4(i, j)T = (0, i, 2, j, 1)T

These schedules depend on the iterators and give for each instance of each statement
a unique execution date. Using such scattering functions allow CLooG to re-generate the
input code.

Chapter 2: Using the CLooG Software 5

2 Using the CLooG Software

2.1 A First Example

CLooG takes as input a file that must be written accordingly to a grammar described
in depth in a further section (see Section 2.2 [Writing The Input File], page 6). Moreover
it supports many options to tune the target code presentation or quality as discussed in a
dedicated section (see Section 2.3 [Calling CLooG], page 10). However, a basic use of CLooG
is not very complex and we present in this section how to generate the code corresponding
to a basic example discussed earlier (see Section 1.1 [Basics], page 1).

The problem is to find the code that scans a 2-dimensional polyhedron where ‘i’ and ‘j’
are the unknown (the two dimensions of the space) and ‘m’ and ‘n’ are the parameters (the
symbolic constants), defined by the following set of constraints:

2<=i<=n
2<=j<=m
j<=n+2-i

We also consider a partial knowledge of the parameter values, expressed thanks to the
following affine constraints:

m>=2
n>=2

An input file that corresponds to this problem, and asks for a generated code in C,
may be the following. Note that we do not describe here precisely the structure and the
components of this file (see Section 2.2 [Writing The Input File], page 6 for such information,
if you feel it necessary):

---------------------- CONTEXT ----------------------
c # language is C

Context (constraints on two parameters)
2 4 # 2 lines and 4 columns
eq/in m n 1 eq/in: 1 for inequality >=0, 0 for equality =0

1 1 0 -2 # 1*m + 0*n -2*1 >= 0, i.e. m>=2
1 0 1 -2 # 0*m + 1*n -2*1 >= 0, i.e. n>=2

1 # We want to set manually the parameter names
m n # parameter names

--------------------- STATEMENTS --------------------
1 # Number of statements

1 # First statement: one domain
First domain
5 6 # 5 lines and 6 columns
eq/in i j m n 1

1 1 0 0 0 -2 # i >= 2

6 CLooG - a loop generator for scanning polyhedra

1 -1 0 0 1 0 # i <= n
1 0 1 0 0 -2 # j >= 2
1 0 -1 1 0 0 # j <= m
1 -1 -1 0 1 2 # n+2-i>=j

0 0 0 # for future options

1 # We want to set manually the iterator names
i j # iterator names

--------------------- SCATTERING --------------------
0 # No scattering functions

This file may be called ‘basic.cloog’ (this example is provided in the CLooG distribu-
tion as test/manual_basic.cloog) and we can ask CLooG to process it and to generate
the code by a simple calling to CLooG with this file as input: ‘cloog basic.cloog’. By
default, CLooG will print the generated code in the standard output:

/* Generated by CLooG v0.14.0 in 0.00s. */
for (i=2;i<=n;i++) {
for (j=2;j<=min(m,-i+n+2);j++) {
S1(i,j) ;

}
}

2.2 Writing The Input File

The input text file contains a problem description, i.e. the context, the domains and the
scattering functions. Because CLooG is very ’compilable code generation oriented’, we can
associate some additional informations to each domain. We call this association a statement.
The set of all informations is called a program. The input file respects the grammar below
(terminals are preceeded by " "):

File ::= Program
Program ::= Context Statements Scattering
Context ::= Language Domain Naming
Statements ::= Nb_statements Statement_list Naming
Scattering ::= Nb_functions Domain_list Naming
Naming ::= Option Name_list
Name_list ::= _String Name_list | (void)
Statement_list ::= Statement Statement_list | (void)
Domain_list ::= _Domain Domain_list | (void)
Statement ::= Iteration_domain 0 0 0
Iteration_domain ::= Domain_union
Domain_union ::= Nb_domains Domain_list
Option ::= 0 | 1
Language ::= c | f
Nb_statements ::= _Integer
Nb_domains ::= _Integer
Nb_functions ::= _Integer

Chapter 2: Using the CLooG Software 7

• ‘Context’ represents the informations that are shared by all the statements. It consists
on the language used (which can be ‘c’ for C or ‘f’ for FORTRAN 90) and the global
constraints on parameters. These constraints are essential since they give to CLooG
the number of parameters. If there is no parameter or no constraints on parameters,
just give a constraint always satisfied like 1 ≥ 0. ‘Naming’ sets the parameter names. If
the naming option ‘Option’ is 1, parameter names will be read on the next line. There
must be exactly as many names as parameters. If the naming option ‘Option’ is 0,
parameter names are automatically generated. The name of the first parameter will
be ‘M’, and the name of the (n + 1)th parameter directly follows the name of the nth

parameter in ASCII code. It is the user responsibility to ensure that parameter names,
iterators and scattering dimension names are different.

• ‘Statements’ represents the informations on the statements. ‘Nb_statements’ is
the number of statements in the program, i.e. the number of ‘Statement’ items
in the ‘Statement_list’. ‘Statement’ represents the informations on a given
statement. To each statement is associated a domain (the statement iteration domain:
‘Iteration_domain’) and three zeroes that represents future options. ‘Naming’ sets
the iterator names. If the naming option ‘Option’ is 1, the iterator names will be read
on the next line. There must be exactly as many names as nesting level in the deepest
iteration domain. If the naming option ‘Option’ is 0, iterator names are automatically
generated. The iterator name of the outermost loop will be ‘i’, and the iterator name
of the loop at level n + 1 directly follows the iterator name of the loop at level n in
ASCII code.

• ‘Scattering’ represents the informations on scattering functions. ‘Nb_functions’ is
the number of functions (it must be equal to the number of statements or 0 if there is no
scattering function). The function themselves are represented through ‘Domain_list’.
‘Naming’ sets the scattering dimension names. If the naming option ‘Option’ is 1, the
scattering dimension names will be read on the next line. There must be exactly as
many names as scattering dimensions. If the naming option ‘Option’ is 0, scattering di-
mension names are automatically generated. The name of the nth scattering dimention
will be ‘cn’.

2.2.1 Domain Representation

As shown by the grammar, the input file describes the various informations thanks to
characters, integers and domains. Each domain is defined by a set of constraints in the
PolyLib format (see [Wil93], page 39). They have the following syntax:
1. some optional comment lines beginning with ‘#’,
2. the row and column numbers, possibly followed by comments,
3. the constraint rows, each row corresponds to a constraint the domain have to satisfy.

Each row must be on a single line and is possibly followed by comments. The constraint
is an equality p(x) = 0 if the first element is 0, an inequality p(x) ≥ 0 if the first
element is 1. The next elements are the unknown coefficients, followed by the parameter
coefficients. The last element is the constant factor.

For instance, assuming that ‘i’, ‘j’ and ‘k’ are iterators and ‘m’ and ‘n’ are parameters,
the domain defined by the following constraints :

8 CLooG - a loop generator for scanning polyhedra


−i + m ≥ 0
−j + n ≥ 0
i + j − k ≥ 0

can be written in the input file as follows :
This is the domain
3 7 # 3 lines and 7 columns
eq/in i j k m n 1

1 -1 0 0 1 0 0 # -i + m >= 0
1 0 -1 0 0 1 0 # -j + n >= 0
1 1 1 -1 0 0 0 # i + j - k >= 0

Each iteration domain ‘Iteration_domain’ of a given statement is a union of polyhe-
dra ‘Domain_union’. A union is defined by its number of elements ‘Nb_domains’ and the
elements themselves ‘Domain_list’. For instance, let us consider the following pseudo-code:

for (i=1;i<=n;i++) {
if ((i >= m) || (i <= 2*m))
S1 ;

for (j=i+1;j<=m;j++)
S2 ;

}

The iteration domain of ‘S1’ can be divided into two polyhedra and written in the input
file as follows:

2 # Number of polyhedra in the union
First domain
3 5 # 3 lines and 5 columns
eq/in i m n 1

1 1 0 0 -1 # i >= 1
1 -1 0 1 0 # i <= n
1 1 -1 0 0 # i >= m

Second domain
3 5 # 3 lines and 5 columns
eq/in i m n 1

1 1 0 0 -1 # i >= 1
1 -1 0 1 0 # i <= n
1 -1 2 0 0 # i <= 2*m

2.2.2 Scattering Function Representation

Scattering functions are depicted in the input file thanks a representation very close
to the domain one. An integer gives the number of functions ‘Nb_functions’ and each
function is represented by a domain. Each line of the domain corresponds to an equality
defining a dimension of the function. Note that at present (CLooG 0.14.0) all functions
must have the same scattering dimension number. If a user wants to set scattering functions
with different dimensionality, he has to complete the smaller one with zeroes to reach the
maximum dimensionality. For instance, let us consider the following code and scheduling
functions:

Chapter 2: Using the CLooG Software 9

for (i=1;i<=n;i++) {
if ((i >= m) || (i <= 2*m))
S1 ;

for (j=i+1;j<=m;j++)
S2 ;

} {
θS1(i) = (i, 0)T

θS2(i, j)T = (n, i + j)T

This scheduling can be written in the input file as follows:

2 # Number of scattering functions
First function
2 7 # 2 lines and 7 columns
eq/in c1 c2 i m n 1

0 1 0 -1 0 0 0 # c1 = i
0 0 1 0 0 0 0 # c2 = 0

Second function
2 8 # 2 lines and 8 columns
eq/in c1 c2 i j m n 1

0 1 0 0 0 0 -1 0 # c1 = n
0 0 1 -1 -1 0 0 0 # c2 = i+j

The complete input file for the user who wants to generate the code for this example
with the preceding scheduling would be (this file is provided in the CLooG distribution as
test/manual_scattering.cloog:

---------------------- CONTEXT ----------------------
c # language is C

Context (no constraints on two parameters)
1 4 # 1 lines and 4 columns
eq/in m n 1

1 0 0 0 # 0 >= 0, always true

1 # We want to set manually the parameter names
m n # parameter names

--------------------- STATEMENTS --------------------
2 # Number of statements

2 # First statement: two domains
First domain
3 5 # 3 lines and 5 columns
eq/in i m n 1

1 1 0 0 -1 # i >= 1
1 -1 0 1 0 # i <= n
1 1 -1 0 0 # i >= m

Second domain

10 CLooG - a loop generator for scanning polyhedra

3 5 # 3 lines and 5 columns
eq/in i m n 1

1 1 0 0 -1 # i >= 1
1 -1 0 1 0 # i <= n
1 -1 2 0 0 # i <= 2*m

0 0 0 # for future options

1 # Second statement: one domain
4 6 # 4 lines and 6 columns
eq/in i j m n 1

1 1 0 0 0 -1 # i >= 1
1 -1 0 0 1 0 # i <= n
1 -1 1 0 0 -1 # j >= i+1
1 0 -1 1 0 0 # j <= m

0 0 0 # for future options

1 # We want to set manually the iterator names
i j # iterator names

--------------------- SCATTERING --------------------
2 # Scattering functions
First function
2 7 # 2 lines and 7 columns
eq/in p1 p2 i m n 1

0 1 0 -1 0 0 0 # p1 = i
0 0 1 0 0 0 0 # p2 = 0

Second function
2 8 # 2 lines and 8 columns
eq/in p1 p2 i j m n 1

0 1 0 0 0 0 -1 0 # p1 = n
0 0 1 -1 -1 0 0 0 # p2 = i+j

1 # We want to set manually the scattering dimension names
p1 p2 # scattering dimension names

2.3 Calling CLooG

CLooG is called by the following command:
cloog [options | file]

The default behavior of CLooG is to read the input informations from a file and to print
the generated code or pseudo-code on the standard output. CLooG’s behavior and the
output code shape is under the user control thanks to many options which are detailed a
further section (see Section 2.4 [CLooG Options], page 11). file is the input file. stdin
is a special value: when used, input is standard input. For instance, we can call CLooG
to treat the input file basic.cloog with default options by typing: cloog basic.cloog or
more basic.cloog | cloog stdin.

Chapter 2: Using the CLooG Software 11

2.4 CLooG Options

2.4.1 Last Depth to Optimize Control -l <depth>

-l <depth>: this option sets the last loop depth to be optimized in control. The higher
this depth, the less control overhead. For instance, with some input file, a user can generate
different pseudo-codes with different depth values as shown below.

/* Generated using a given input file and option -l 1 */
for (i=0;i<=M;i++) {
S1 ;
for (j=0;j<=N;j++) {
S2 ;

}
for (j=0;j<=N;j++) {
S3 ;

}
S4 ;

}

/* Generated using the same input file but option -l 2 */
for (i=0;i<=M;i++) {
S1 ;
for (j=0;j<=N;j++) {
S2 ;
S3 ;

}
S4 ;

}

In this example we can see that this option can change the operation execution order
between statements. Let us remind that CLooG does not make any speculation on de-
pendences between statements (see Section 1.2 [Scattering], page 2). Thus if nothing (i.e.
scattering functions) forbids this, CLooG considers the above codes to be equivalent. If
there is no scattering functions, the minimum value for depth is 1 (in the case of 0, the user
doesn’t really need a loop generator !), and the number of scattering dimensions otherwise
(CLooG will warn the user if he doesn’t respect such constraint). The maximum value for
depth is -1 (infinity). Default value is infinity.

2.4.2 First Depth to Optimize Control -f <depth>

-f <depth>: this option sets the first loop depth to be optimized in control. The lower
this depth, the less control overhead (and the longer the generated code). For instance,
with some input file, a user can generate different pseudo-codes with different depth values
as shown below. The minimum value for depth is 1, and the maximum value is -1 (infinity).
Default value is 1.

12 CLooG - a loop generator for scanning polyhedra

/* Generated using a given input file and option -f 3 */
for (i=1;i<=N;i++) {
for (j=1;j<=M;j++) {
S1 ;
if (j >= 10) {

S2 ;
}

}
}

/* Generated using the same input file but option -f 2 */
for (i=1;i<=N;i++) {
for (j=1;j<=9;j++) {
S1 ;

}
for (j=10;j<=M;j++) {
S1 ;
S2 ;

}
}

2.4.3 Once Time Loop Elimination -otl <boolean>

-otl <boolean>: this option allows (boolean=1) or forbids (boolean=0) the simplifica-
tion of loops running once. Default value is 1.

/* Generated using a given input file and option -otl 0 */
for (j=i+1;j<=i+1;j++) {
S1 ;

}

/* Generated using the same input file but option -otl 1 */
j = i+1 ;
S1 ;

2.4.4 Equality Spreading -esp <boolean>

-esp <boolean>: this option allows (boolean=1) or forbids (boolean=0) values spread-
ing when there are equalities. Default value is 0.

/* Generated using a given input file and option -esp 0 */
i = M+2 ;
j = N ;
for (k=i;k<=j+M;k++) {
S1 ;

}

/* Generated using the same input file but option -esp 1 */
for (k=M+2;k<=N+M;k++) {
S1(i = M+2, j = N) ;

}

Chapter 2: Using the CLooG Software 13

2.4.5 Constant Spreading -csp <boolean>

-csp <boolean>: this option allows (boolean=1) or forbids (boolean=0) values spread-
ing when there are constant equalities. That is, when the right member of the equality is a
constant term. Default value is 1.

/* Generated using a given input file and option -csp 0 */
i = M+2 ;
j = N ;
for (k=i;j<=j+M;j++) {
S1 ;

}

/* Generated using the same input file but option -csp 1 */
i = M+2 ;
for (k=i;k<=N+M;k++) {
S1(j = N) ;

}

2.4.6 First Level for Spreading -fsp <level>

-fsp <level>: it can be useful to set a first level to begin equality spreading. Particularly
when using scattering functions, the user may want to see the scattering dimension values
instead of spreading or hiding them. If user has set a spreading, level is the first level to
start it. Default value is 1.

/* Generated using a given input file and option -fsp 1 */
for (j=0;j<=N+M;j++) {
S1(i = N) ;

}
for (j=0;j<=N+M;j++) {

S1(i = M) ;
}

/* Generated using the same input file but option -fsp 2 */
c1 = N ;
for (j=0;j<=c1+M;j++) {
S1(i = c1) ;

}
c1 = M ;
for (j=0;j<=N+c1;j++) {

S1(i = c1) ;
}

2.4.7 C PreProcessor Friendly -cpp <boolean>

-cpp <boolean>: this option ask CLooG for printing a less human-readable but com-
pilable code by using the C preprocessor (boolean=1). In this case each statement is

14 CLooG - a loop generator for scanning polyhedra

written as a function of the iterators corresponding to its domain dimensions: Si(value_
of_iterator_1,...,value_of_iterator_n). It follows that the user can easily add pre-
processor macros to define each statement and use the generated textual code directly for
compilation. When boolean is set to 0, the pretty printer has the default behaviour. Default
value is 0.

/* Generated using a given input file and option -cpp 0 */
for (j=0;j<=N+M;j++) {
S1(i = N) ;

}

/* Generated using the same input file but option -cpp 1 */
/* and a preprocessor macro set by the user */

#define S1(i,j) A[(j)]=3*(i)

for (j=0;j<=N+M;j++) {
S1(N,j) ;

}

2.4.8 Statement Block -block <boolean>

-block <boolean>: this option allows (boolean=1) to create a statement block for each
new iterator, even if there is only an equality. This can be useful in order to parse the
generated pseudo-code. When boolean is set to 0 or when the generation language is
FORTRAN, this feature is disabled. Default value is 0.

/* Generated using a given input file and option -block 0 */
i = M+2 ;
j = N ;
S1 ;

/* Generated using the same input file but option -block 1 */
{ i = M+2 ;
{ j = N ;
S1 ;

}
}

2.4.9 Loop Strides -strides <boolean>

-strides <boolean>: this options allows (boolean=1) to handle non-unit strides for
loop increments. This can remove a lot of guards and make the generated code more
efficient. Default value is 0.

Chapter 2: Using the CLooG Software 15

/* Generated using a given input file and option -strides 0 */
for (i=1;i<=n;i++) {
if (i%2 == 0) {
S1(j = i/2) ;

}
if (i%4 == 0) {
S2(j = i/4) ;

}
}

/* Generated using the same input file but option -strides 1 */
for (i=2;i<=n;i+=2) {
S1(j = i/2) ;
if (i%4 == 0) {
S2(j = i/4) ;

}
}

2.4.10 Compilable Code -compilable <value>

-compilable <value>: this options allows (value is not 0) to generate a compilable
code where all parameters have the integral value value. This option creates a macro for
each statement. Since CLooG do not know anything about the statement sources, it fills the
macros with a basic increment that computes the total number of scanned integral points.
The user may change easily the macros according to his own needs. This option is possible
only if the generated code is in C. Default value is 0.

/* Generated using a given input file and option -compilable 0 */
for (i=0;i<=n;i++) {
for (j=0;j<=n;j++) {
S1 ;
S2 ;

}
S3 ;

}

/* Generated using the same input file but option -compilable 10 */
/* DON’T FORGET TO USE -lm OPTION TO COMPILE. */

/* Useful headers. */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Parameter value. */
#define PARVAL 10

/* Statement macros (please set). */
#define S1(i,j) {total++;}

16 CLooG - a loop generator for scanning polyhedra

#define S2(i,j) {total++;}
#define S3(i) {total++;}

int main() {
/* Original iterators. */
int i, j ;
/* Parameters. */
int n=PARVAL, total=0 ;

for (i=0;i<=n;i++) {
for (j=0;j<=n;j++) {

S1(i,j) ;
S2(i,j) ;

}
S3(i) ;

}

printf("Number of integral points: %d.\n",total) ;
return 0 ;

}

2.4.11 Output -o <output>

-o <output>: this option sets the output file. stdout is a special value: when used,
output is standard output. Default value is stdout.

2.4.12 Help --help or -h

--help or -h: this option ask CLooG to print a short help.

2.4.13 Version --version or -v

--version or -v: this option ask CLooG to print some version informations.

2.5 A Full Example

Let us consider the allocation problem of a Gaussian elimination, i.e. we want to dis-
tribute the various statement instances of the compute kernel onto different processors. The
original code is the following:

Chapter 2: Using the CLooG Software 17

for (i=1;j<=N-1;i++) {
for (j=i+1;j<=N;j++) {
c[i][j] = a[j][i]/a[i][i] ; /* S1 */
for (k=i+1;k<=N;k++) {

a[j][k] -= c[i][j]*a[i][k] ; /* S2 */
}

}
}

The best affine allocation functions can be found by any good automatic parallelizer like
LooPo (see [Gri04], page 39): {

θS1(i, j)T = (i)
θS2(i, j, k)T = (k)

To ensure that on each processor, the set of statement instances is executed according to
the original ordering, we add as minor scattering dimensions the original scheduling (see
Section 1.2 [Scattering], page 2):{

θS1(i, j)T = (i, 0, i, 0, j, 0)T

θS2(i, j, k)T = (k, 0, i, 0, j, 1, k, 0)T

To ensure that the scattering functions have the same dimensionality, we complete the first
function with zeroes (this is a CLooG 0.14.0 and previous versions requirement, it should
be removed in a future version, don’t worry it’s absolutly legal !):{

θS1(i, j)T = (i, 0, i, 0, j, 0, 0, 0)T

θS2(i, j, k)T = (k, 0, i, 0, j, 1, k, 0)T

The input file corresponding to this code generation problem could be (this file is provided
in the CLooG distribution as test/manual_gauss.cloog:

---------------------- CONTEXT ----------------------
c # language is C

Context (no constraints on one parameter)
1 3 # 1 line and 3 columns
eq/in n 1

1 0 0 # 0 >= 0, always true

1 # We want to set manually the parameter name
n # parameter name

--------------------- STATEMENTS --------------------
2 # Number of statements

1 # First statement: one domain
4 5 # 4 lines and 3 columns
eq/in i j n 1

1 1 0 0 -1 # i >= 1

18 CLooG - a loop generator for scanning polyhedra

1 -1 0 1 -1 # i <= n-1
1 -1 1 0 -1 # j >= i+1
1 0 -1 1 0 # j <= n

0 0 0 # for future options

1
Second statement: one domain
6 6 # 6 lines and 3 columns
eq/in i j k n 1

1 1 0 0 0 -1 # i >= 1
1 -1 0 0 1 -1 # i <= n-1
1 -1 1 0 0 -1 # j >= i+1
1 0 -1 0 1 0 # j <= n
1 -1 0 1 0 -1 # k >= i+1
1 0 0 -1 1 0 # k <= n

0 0 0 # for future options

0 # We let CLooG set the iterator names

--------------------- SCATTERING --------------------
2 # Scattering functions
First function
8 13 # 3 lines and 3 columns
eq/in p1 p2 p3 p4 p5 p6 p7 p8 i j n 1

0 1 0 0 0 0 0 0 0 -1 0 0 0 # p1 = i
0 0 1 0 0 0 0 0 0 0 0 0 0 # p2 = 0
0 0 0 1 0 0 0 0 0 -1 0 0 0 # p3 = i
0 0 0 0 1 0 0 0 0 0 0 0 0 # p4 = 0
0 0 0 0 0 1 0 0 0 0 -1 0 0 # p5 = j
0 0 0 0 0 0 1 0 0 0 0 0 0 # p6 = 0
0 0 0 0 0 0 0 1 0 0 0 0 0 # p7 = 0
0 0 0 0 0 0 0 0 1 0 0 0 0 # p8 = 0

Second function
8 14 # 3 lines and 3 columns
eq/in p1 p2 p3 p4 p5 p6 p7 p8 i j k n 1

0 1 0 0 0 0 0 0 0 0 0 -1 0 0 # p1 = k
0 0 1 0 0 0 0 0 0 0 0 0 0 0 # p2 = 0
0 0 0 1 0 0 0 0 0 -1 0 0 0 0 # p3 = i
0 0 0 0 1 0 0 0 0 0 0 0 0 0 # p4 = 0
0 0 0 0 0 1 0 0 0 0 -1 0 0 0 # p5 = j
0 0 0 0 0 0 1 0 0 0 0 0 0 -1 # p6 = 1
0 0 0 0 0 0 0 1 0 0 0 -1 0 0 # p7 = k
0 0 0 0 0 0 0 0 1 0 0 0 0 0 # p8 = 0

1 # We want to set manually the scattering dimension names
p1 p2 p3 p4 p5 p6 p7 p8 # scattering dimension names

Chapter 2: Using the CLooG Software 19

Calling CLooG, with for instance the command line cloog -fsp 2 gauss.cloog for a
better view of the allocation (the processor number is given by p1), will result on the
following target code that actually implements the transformation. A minor processing on
the dimension p1 to implement, e.g., MPI calls, which is not shown here may result in
dramatic speedups !

if (n >= 2) {
p1 = 1 ;
for (p5=2;p5<=n;p5++) {
S1(i = 1,j = p5) ;

}
}
for (p1=2;p1<=n-1;p1++) {

for (p3=1;p3<=p1-1;p3++) {
for (p5=p3+1;p5<=n;p5++) {

S2(i = p3,j = p5,k = p1) ;
}

}
for (p5=p1+1;p5<=n;p5++) {
S1(i = p1,j = p5) ;

}
}
if (n >= 2) {

p1 = n ;
for (p3=1;p3<=n-1;p3++) {
for (p5=p3+1;p5<=n;p5++) {

S2(i = p3,j = p5,k = n) ;
}

}
}

20 CLooG - a loop generator for scanning polyhedra

Chapter 3: Using the CLooG Library 21

3 Using the CLooG Library

The CLooG Library was implemented to allow the user to call CLooG directly from his
programs, without file accesses or system calls. The user only needs to link his programs with
C libraries. The CLooG library mainly provides one function (cloog_program_generate)
which takes as input the problem description with some options, and returns the data struc-
ture corresponding to the generated code (a CloogProgram structure) which is more or less
an abstract syntax tree. The user can work with this data structure and/or use our pretty
printing function to write the final code in either C or FORTRAN. Some other functions
are provided for convenience reasons. These functions as well as the data structures are
described in this section.

3.1 CLooG Data Structures Description

In this section, we describe the data structures used by the loop generator to represent
and to process a code generation problem.

3.1.1 CloogMatrix

#define CloogMatrix Matrix

The CloogMatrix structure is directly the PolyLib Matrix data structure (see [Wil93],
page 39). This structure is devoted to represent a set of constraints. It is defined in
polylib/types.h as the following:

struct matrix
{ unsigned NbRows ; /* Number of rows. */
unsigned NbColumns ; /* Number of columns. */
Value ** p ; /* Array of pointers to the matrix rows. */
Value * p_Init ; /* Matrix rows contiguously in memory. */
int p_Init_size ; /* For internal use. */

}
typedef struct matrix Matrix;

The whole matrix is stored in memory row after row at the p_Init address. p is an array
of pointers where p[i] points to the first element of the ith row. NbRows and NbColumns
are respectively the number of rows and columns of the matrix. Each row corresponds to
a constraint. The first element of each row is an equality/inequality tag. The constraint
is an equality p(x) = 0 if the first element is 0, but it is an inequality p(x) ≥ 0 if the first
element is 1. The next elements are the unknown coefficients, followed by the parameter
coefficients, then the scalar coefficient. For instance, the following three constraints:


−i + m = 0
−j + n ≥ 0
j + i− k ≥ 0

would be represented by the following rows:

22 CLooG - a loop generator for scanning polyhedra

eq/in i j k m n cst
0 0 -1 0 1 0 0
1 -1 0 0 0 1 0
1 1 1 -1 0 0 0

To be able to provide different precision version (CLooG supports 32 bits, 64 bits and
arbitrary precision through the GMP library), the Value type depends on the configuration
options (it may be long int for 32 bits version, long long int for 64 bits version, and
mpz_t for multiple precision version). The p_Init_size field is needed by the PolyLib to
free the memory allocated by mpz_init in the multiple precision release. Set this field to 0
if you are not using multiple precision. Set this field to the size of the p_Init array if you
initialized it yourself and if you are using the multiple precision version.

3.1.2 CloogDomain

struct cloogdomain
{ Polyhedron * polyhedron ; /* The polyhedral domain. */
} ;
typedef struct cloogdomain CloogDomain ;

The CloogDomain structure contains a PolyLib Polyhedron data structure which represents
a polyhedral domain (a union of polyhedra) in both constraint representation and its dual
ray representation (see [Wil93], page 39). It is defined in polylib/types.h as the following:

struct polyhedron
{ unsigned Dimension, /* Number of dimensions. */

NbConstraints, /* Number of constraints. */
NbRays, /* Number of rays. */
NbEq, /* Number of vertices (?). */
NbBid ; /* Number of extremal rays (?). */

Value ** Constraint ; /* Pointers to constraints. */
Value ** Ray ; /* Pointers to rays. */
Value * p_Init ; /* Constraints and rays contiguously. */
int p_Init_size ; /* For internal use. */
struct polyhedron * next ; /* Next component of the union. */

}
typedef struct polyhedron Polyhedron;

The constraint representation is quite the same as in the Matrix data structure (see Sec-
tion 3.1.1 [CloogMatrix], page 21). The number of rows is NbConstraints and the number
of columns in the Polyhedron structure is Dimension+2 (the +2 comes from the equal-
ity/inequality tag and the scalar coefficient). As in the Matrix structure, The data are
stored in memory contiguously at the p_Init address and the p_Init_size field is used
for memory deallocation in the multiple precision case (see Section 3.1.1 [CloogMatrix],
page 21). For a better understanding of the dual ray representation, the user may refer to
the PolyLib documentation.

Chapter 3: Using the CLooG Library 23

3.1.3 CloogDomainList

struct cloogdomainlist
{ CloogDomain * domain ;
struct cloogdomainlist * next ;

} ;
typedef struct cloogdomainlist CloogDomainList ;

The CloogDomainList structure represents a NULL terminated linked list of domains.

3.1.4 CloogStatement

struct cloogstatement
{ int number ; /* The statement unique number. */
void * usr ; /* Pointer for user’s convenience. */
struct cloogstatement * next ;/* Next element of the linked list. */

} ;
typedef struct cloogstatement CloogStatement ;

The CloogStatement structure represents a NULL terminated linked list of statements. In
CLooG, a statement is only defined by its unique number (number). The user can use
the pointer usr for his own convenience to link his own statement representation to the
corresponding CloogStatement structure. The whole management of the usr pointer is
under the responsibility of the user, in particular, CLooG never tries to print, to allocate
or to free a memory block pointed by usr.

3.1.5 CloogBlock

struct cloogblock
{ CloogStatement * statement ; /* Statement list of the block. */
CloogMatrix * scattering ; /* Scattering function of the block. */
int depth ; /* Original block depth.*/

} ;
typedef struct cloogblock CloogBlock ;

The CloogBlock structure represents a statement block. In a statement block, every state-
ments have the same iteration domain and the same scattering function (actually, the scat-
tering functions may differ only by a scalar coefficient if it just precises the ordering of the
statements within the block). statement is the statement list where the statement order
matters, scattering is one of the statement scattering functions and depth is the number
of dimensions of the iteration domain (only the unknown, not the tag/parameters/scalar).

3.1.6 CloogBlockList

struct cloogdblocklist
{ CloogBlock * block ;
struct cloogblocklist * next ;

} ;
typedef struct cloogblocklist CloogBlockList ;

The CloogBlockList structure represents a NULL terminated linked list of blocks.

24 CLooG - a loop generator for scanning polyhedra

3.1.7 CloogLoop

struct cloogloop
{ CloogDomain * domain ; /* Iteration domain. */
int stride ; /* Loop stride. */
CloogBlock * block ; /* Included statement block.*/
struct cloogloop * inner ; /* Loop at the next level. */
struct cloogloop * next ; /* Next loop at the same level. */

} ;
typedef struct cloogloop CloogLoop ;

The CloogLoop structure represents a loop. First of all, a loop has an iteration domain
(domain). The iterator’s stride for loop increment is stride. The loop can include a
statement block in the field block. If there is no included statement block, block is set
to NULL. inner is a pointer to the inner loop, and next a pointer to the next loop in the
textual order. If there are no inner loop or no next loop, the corresponding pointer is set
to NULL.

3.1.8 CloogNames

struct cloognames
{ int nb_scattering ; /* Scattering dimension number. */
int nb_iterators ; /* Iterator number. */
int nb_parameters ; /* Parameter number. */
char ** scattering ; /* The scattering dimension names. */
char ** iterators ; /* The iterator names. */
char ** parameters ; /* The parameter names. */

} ;
typedef struct cloognames CloogNames ;

The CloogNames structure represents the scattering dimension, the iterator and the pa-
rameter names in the final program. nb_scattering (respectively nb_iterators and nb_
parameters) is the number of scattering dimensions number (respectively the iterator and
parameter number) and of elements in the corresponding array of strings scattering (re-
spectively iterators and parameters). The ith scattering dimension name will be asso-
ciated with the to the dimension i of the scattering function. The ith iterator name will
be associated with the dimension i of the iteration domain. The ith parameter name will
be associated with the dimension i of the context polyhedron. The user has to ensure that
there are enough scattering dimension, iterator and parameter names.

Chapter 3: Using the CLooG Library 25

3.1.9 CloogProgram

struct cloogprogram
{ char language ; /* The language of the program. */
int scattdims ; /* Scattering dimension number. */
CloogNames * names ; /* Iterators and parameters names. */
CloogDomain * context ; /* The context of the program. */
CloogLoop * loop ; /* The loops of the program. */
CloogBlockList * blocklist ; /* The statement block list. */

} ;
typedef struct cloogprogram CloogProgram ;

The CloogProgram structure represents a static control program kernel. language precises
the language (c for C or f for FORTRAN). scattdims gives the number of scattering
dimensions. context is a pointer to the constraints on the program parameters, it can’t
be the NULL pointer even if there are no constraints on parameters. In such a case, set a
polyhedron with as many dimensions as there are parameters, with an always true constraint
like 1 ≥ 0 (this is necessary since the number of parameters is deduced from the dimension
number of the context constraints). loop is a pointer to the first loop of the program. names
is a pointer to the various element names (scattering dimension, iterators, parameters) of
the final program. names can be the NULL pointer if the user do not want to use our pretty
printing function. blocklist is the linked list of all the statement block structures. As an
example, let us consider the following loop nest:

for (i=0; i<=n; i++) {
for (j=0; j<=n; j++) {
S1 ;
S2 ;

}
for (j=n+1; j<=2*n; j++) {
S3 ;

}
}

The next figure gives a possible representation in memory for this program thanks to the
CLooG data structures (it has been actually printed by the cloog_program_print func-
tion). In this figure, ‘+-- CloogLoop’ denotes an ‘inner’ loop, while a ‘CloogLoop’ on the
same column pointed by an arrow denotes a ‘next’ loop:

+-- CloogProgram

| |

| Language: c

| |

| Scattering dimension number: 0

| |

| +-- CloogNames

| | |

| | Scattering dimension number: 0

| | |

| | +-- No scattering string

| | |

| | Iterator number -----------: 2

| | |

26 CLooG - a loop generator for scanning polyhedra

| | +-- Iterator strings ------: i j

| | |

| | Parameter number ----------: 1

| | |

| | +-- Parameter strings -----: n

| |

| +-- Context

| | [1 1 -2]

| | [1 0 1]

| |

| +-- CloogLoop

| | |

| | +-- CloogDomain

| | | [1 -1 1 0]

| | | [1 1 0 0]

| | | [1 0 0 1]

| | |

| | Stride: 1

| | |

| | +-- Null CloogBlock

| | |

| | +-- CloogLoop

| | | |

| | | +-- CloogDomain

| | | | [1 0 1 0 0]

| | | | [1 0 -1 1 0]

| | | | [1 0 0 0 1]

| | | |

| | | Stride: 1

| | | |

| | | +-- Null CloogBlock

| | | |

| | | +-- CloogLoop

| | | | |

| | | | +-- CloogDomain

| | | | | [1 0 0 0 1]

| | | | |

| | | | Stride: 1

| | | | |

| | | | +-- CloogBlock

| | | | | |

| | | | | +-- CloogStatement 1

| | | | | | |

| | | | | | V

| | | | | | CloogStatement 2

| | | | | |

| | | | | +-- Null scattering function

| | | | | |

| | | | | Depth: 2

| | | | |

| | | |

| | | V

| | | CloogLoop

| | | |

| | | +-- CloogDomain

| | | | [1 0 -1 2 0]

| | | | [1 0 1 -1 -1]

| | | | [1 0 0 0 1]

Chapter 3: Using the CLooG Library 27

| | | |

| | | Stride: 1

| | | |

| | | +-- Null CloogBlock

| | | |

| | | +-- CloogLoop

| | | | |

| | | | +-- CloogDomain

| | | | | [1 0 0 0 1]

| | | | |

| | | | Stride: 1

| | | | |

| | | | +-- CloogBlock

| | | | | |

| | | | | +-- CloogStatement 3

| | | | | |

| | | | | +-- Null scattering function

| | | | | |

| | | | | Depth: 2

| | | | |

| | | |

| | |

| |

|

3.1.10 CloogOptions

struct cloogoptions
{ int l ; /* -l option. */
int f ; /* -f option. */
int strides ; /* -strides option. */
int esp ; /* -esp option. */
int csp ; /* -csp option. */
int fsp ; /* -fsp option. */
int otl ; /* -otl option. */
int block ; /* -block option. */
int cpp ; /* -cpp option. */
int compilable ; /* -compilable option. */

} ;
typedef struct cloogoptions CloogOptions ;

The CloogOptions structure contains all the possible options to rule CLooG’s behaviour
(see Section 2.3 [Calling CLooG], page 10). As a reminder, the default values are:
• l = −1 (optimize control until the innermost loops),
• f = 1 (optimize control from the outermost loops),
• strides = 0 (use only unit strides),
• esp = 0 (do not spread complex equalities),
• csp = 1 (spread constant values),
• fsp = 1 (start to spread from the first iterators),
• otl = 1 (simplify loops running only once).
• block = 0 (do not make statement blocks when not necessary).

28 CLooG - a loop generator for scanning polyhedra

• cpp = 0 (do not generate a compilable part of code using preprocessor).
• compilable = 0 (do not generate a compilable code).

3.2 CLooG Functions Description

3.2.1 cloog program generate

CloogProgram * cloog_program_generate
(CloogProgram * program, /* Input program. */
CloogOptions * options /* Options. */

) ;

The cloog_program_generate function generates the data structure of the source code
that scans the input polyhedra pointed by program according to the options pointed by
options. The process is made directly on the input structure pointed by program, thus the
original structure is no longer available after a call to this function. It returns a pointer to
a CloogProgram structure containing the solution in CLooG structures.

The input CloogProgram structure must have only one loop level (no inner loops): there
is one loop per statement block. For a given block, the corresponding loop carries the
iteration domain, the statement block, and a loop stride initialized to 1. For instance, the
input CloogProgram structure that have been sent to cloog_program_generate to achieve
the final structure and code shown as example in the CloogProgram structure description
(see Section 3.1.9 [CloogProgram], page 25) was the following one:

+-- CloogProgram

| |

| Language: c

| |

| Scattering dimension number: 0

| |

| +-- CloogNames

| | |

| | Scattering dimension number: 0

| | |

| | +-- No scattering string

| | |

| | Iterator number -----------: 2

| | |

| | +-- Iterator strings ------: i j

| | |

| | Parameter number ----------: 1

| | |

| | +-- Parameter strings -----: n

| |

| +-- Context

| | [1 1 -2]

| |

| +-- CloogLoop

| | |

| | +-- CloogDomain

| | | [1 1 0 0 0]

| | | [1 -1 0 1 0]

Chapter 3: Using the CLooG Library 29

| | | [1 0 1 0 0]

| | | [1 0 -1 1 0]

| | |

| | Stride: 1

| | |

| | +-- CloogBlock

| | | |

| | | +-- CloogStatement 1

| | | | |

| | | | V

| | | | CloogStatement 2

| | | |

| | | +-- Null scattering function

| | | |

| | | Depth: 2

| | |

| | V

| | CloogLoop

| | |

| | +-- CloogDomain

| | | [1 1 0 0 0]

| | | [1 -1 0 1 0]

| | | [1 0 1 -1 -1]

| | | [1 0 -1 2 0]

| | |

| | Stride: 1

| | |

| | +-- CloogBlock

| | | |

| | | +-- CloogStatement 3

| | | |

| | | +-- Null scattering function

| | | |

| | | Depth: 2

| | |

| |

|

3.2.2 cloog program pprint

void cloog_program_pprint
(FILE * file, /* Output file. */
CloogProgram * program, /* Program to print. */
CloogOptions * options /* Options. */

) ;

The function cloog_program_pprint is a pretty printer for CloogProgram structures when
it is a solution provided by the cloog_program_generate function. It prints the code
or pseudo-code in the file pointed by file (possibly stdout) with regards to the options
pointed by options.

30 CLooG - a loop generator for scanning polyhedra

3.2.3 cloog program scatter

void cloog_program_scatter
(CloogProgram * program, /* Input program. */
CloogDomainList * scattering, /* Additional scattering functions. */
char ** names ; /* Additional dimension names. */

) ;

The function cloog_program_scatter applies scattering functions to the CloogProgram
structure pointed by program. Original domains of program are freed. Scattering functions
are inside the CloogDomainList structure pointed by scattering. There must be as many
scattering functions in the CloogDomainList structure as loops (i.e. iteration domains) in
the CloogProgram structure. The first scattering function of the list will be applied to the
iteration domain of the first loop in the program, and so on. names gives the scattering
dimension names as an array of strings. If names is NULL, names are automatically generated:
the name of the nth scattering dimension will be cn.

3.2.4 cloog program read

CloogProgram * cloog_program_read(FILE *) ;

The cloog_program_read function reads the program data from a CLooG input file (see
Section 2.2 [Writing The Input File], page 6). It takes as input a pointer to the file it has
to read (possibly stdin), and return a pointer to the read CloogProgram structure.

3.2.5 From Matrices to Domains and Conversely

CloogMatrix * cloog_domain_domain2matrix(CloogDomain *) ;
CloogDomain * cloog_domain_matrix2domain(CloogMatrix *) ;

Two functions are provided to translate a CloogDomain data structure to a CloogMatrix
data structure and conversely. Each function takes as input a pointer to the data structure
to translate and returns as output a pointer to the translated data structure. The input
data structure if neither modified nor freed. They may be quite useful for e.g. pretty
printing since it is more convenient in constraint (matrix) representation.

3.2.6 Allocation and Initialization Functions

CloogStructure * cloog_structure_malloc() ;

Each CLooG data structure has an allocation and initialization function as shown above,
where Structure and structure have to be replaced by the name of the convenient struc-
ture (without ‘Cloog’ prefix) for instance CloogLoop * cloog_loop_malloc() ;. These
functions return pointers to an allocated structure with fields set to convenient default
values. Using those functions is mandatory to support internal management fields and to
avoid upward compatibility problems if new fields appear. An exception is cloog_matrix_
malloc since the CloogMatrix comes directly from the PolyLib. It takes two parameters:
the number of rows and columns of the matrix we want to allocate:

CloogMatrix * cloog_matrix_malloc(unsigned nbrows, unsigned nbcolumns);

Chapter 3: Using the CLooG Library 31

3.2.7 Memory Deallocation Functions

void cloog_structure_free(CloogStructure *) ;

Each CLooG data structure has a deallocation function as shown above, where Structure
and structure have to be replaced by the name of the convenient structure (without
‘Cloog’ prefix) for instance void cloog_loop_free(CloogLoop *) ;. These functions free
the allocated memory for the structure provided as input. They free memory recursively,
i.e. they also free the allocated memory for the internal structures. Using those functions
is mandatory to avoid memory leaks on internal management fields and to avoid upward
compatibility problems if new fields appear.

3.2.8 Printing Functions

void cloog_structure_print(FILE *, CloogStructure *) ;

Each CLooG data structure has a printing function as shown above, where Structure and
structure have to be replaced by the name of the convenient structure (without ‘Cloog’ pre-
fix) for instance void cloog_loop_print(FILE *, CloogLoop *) ;. These functions print
the pointed structure (and its fields recursively) to the file provided as input (possibly
stdout).

3.3 Example of Library Utilization

Here is a basic example showing how it is possible to use the CLooG library, assuming
that a standard installation has been done. The following C program reads a CLooG input
file on the standard input, then prints the solution on the standard output. Options are
preselected to the default values of the CLooG software. This example is provided in the
example directory of the CLooG distribution.

/* example.c */
include <stdio.h>
include <cloog/cloog.h>

int main()
{ CloogProgram * program ;
CloogOptions * options ;

/* Setting options and reading program informations. */
options = cloog_options_malloc() ;
program = cloog_program_read(stdin,options) ;

/* Generating and printing the code. */
program = cloog_program_generate(program,options) ;
cloog_program_pprint(stdout,program,options) ;

cloog_options_free(options) ;
cloog_program_free(program) ;
return 0;

32 CLooG - a loop generator for scanning polyhedra

}

The compilation command could be:
gcc example.c -lcloog -o example

A calling command with the input file test.cloog could be:
more test.cloog | ./example

Chapter 4: Installing CLooG 33

4 Installing CLooG

4.1 License

First of all, it would be very kind to refer the following paper in any publication that
result from the use of the CLooG software or its library, see [Bas04], page 39 (a bibtex entry
is provided behind the title page of this manual, along with copyright notice, and in the
CLooG home http://www.CLooG.org.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License version 2 as published by the Free Software Founda-
tion. This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
http://www.gnu.org/copyleft/gpl.html

4.2 Requirements

4.2.1 PolyLib (mandatory)

To successfully install CLooG, the user need firstly to install PolyLib version 5.22.1 or
above (default 64 bits version is satisfying as well as 32 bits or GMP multiple precision
version). Polylib can be downloaded freely at http://icps.u-strasbg.fr/PolyLib/ or
http://www.irisa.fr/polylib/. Once downloaded and unpacked (e.g. using the ‘tar
-zxvf polylib-5.22.1.tar.gz’ command), the user can compile it by typing the following
commands on the PolyLib’s root directory:
• ./configure

• make

• And as root: make install

The PolyLib default installation is /usr/local. This directory may not be inside your
library path. To fix the problem, the user should set

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

if your shell is, e.g., bash or
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/local/lib

if your shell is, e.g., tcsh. Add the line to your .bashrc or .tcshrc (or whatever convenient file)
to make this change permanent. Another solution is to ask PolyLib to install in the standard
path by using the prefix option of the configure script: ‘./configure --prefix=/usr’.

CLooG makes intensive calls to polyhedral operations, and PolyLib functions do the
job. Polylib is a free library written in C for the manipulation of polyhedra. The library
is operating on objects like vectors, matrices, lattices, polyhedra, Z-polyhedra, unions of
polyhedra and a lot of other intermediary structures. It provides functions for all the
important operations on these structures.

34 CLooG - a loop generator for scanning polyhedra

4.2.2 GMP Library (optional)

To be able to deal with insanely large coefficient, the user will need to install the GNU
Multiple Precision Library (GMP for short) version 4.1.4 or above. It can be freely down-
loaded from http://www.swox.com/gmp. The user can compile it by typing the following
commands on the GMP root directory:
• ./configure

• make

• And as root: make install

The GMP default installation is /usr/local, the same method to fix a library path
problem applies as with PolyLib (see Section 4.2.1 [PolyLib], page 33).

The PolyLib has to be built using the GMP library by specifying the option
‘--with-libgmp=PATH_TO_GMP’ to the PolyLib configure script (where PATH_TO_GMP is
/usr/local if you did not change the GMP installation directory). Then you have to set
the convenient CLooG configure script options to buid the GMP version (see Section 4.4
[Optional Features], page 34).

4.3 CLooG Basic Installation

Once downloaded and unpacked (e.g. using the ‘tar -zxvf cloog-0.14.0.tar.gz’ com-
mand), you can compile CLooG by typing the following commands on the CLooG’s root
directory:
• ./configure

• make

• And as root: make install

Depending on the location of the PolyLib, you may need to set the option --with-
polylib of the configure script (e.g. ‘./configure --with-polylib=/usr/local’ with a
default PolyLib installation).

The program binaries and object files can be removed from the source code directory by
typing make clean. To also remove the files that the configure script created (so you can
compile the package for a different kind of computer) type make distclean.

Both the CLooG software and library have been successfully compiled on the following
systems:
• PC’s under Linux, with the gcc compiler,
• PC’s under Windows (Cygwin), with the gcc compiler,
• Sparc and UltraSparc Stations, with the gcc compiler.

4.4 Optional Features

The configure shell script attempts to guess correct values for various system-dependent
variables and user options used during compilation. It uses those values to create the
Makefile. Various user options are provided by the CLooG’s configure script. They are

Chapter 4: Installing CLooG 35

summarized in the following list and may be printed by typing ./configure --help in the
CLooG top-level directory.
• By default, the installation directory is /usr/local: make install will install the

package’s files in /usr/local/bin, /usr/local/lib and /usr/local/include. The
user can specify an installation prefix other than /usr/local by giving configure the
option --prefix=PATH.

• By default, configure will look for the PolyLib in standard locations. If neces-
sary, the user can specify the PolyLib path by giving configure the option --with-
polylib=PATH.

• By default, both CLooG software and library are compiled and installed. By giving
configure the option --without-cloog the user disable the compilation and installa-
tion of the CLooG software. By giving configure the option --without-lib the user
disable the compilation and installation of the CLooG library.

• By default, CLooG is built in 64bits version if such version of the PolyLib is found
by configure. If the only existing version of the PolyLib is the 32bits or if the user
give to configure the option --with-bits=32, the 32bits version of CLooG will be
compiled. In the same way, the option --with-bits=gmp have to be used to build the
multiple precision version.

• By default, configure will look for the GMP library (necessary to build the multiple
precision version) in standard locations. If necessary, the user can specify the GMP
path by giving configure the option --with-gmp=PATH.

4.5 Uninstallation

The user can easily remove the CLooG software and library from his system by typing
(as root if necessary) from the CLooG top-level directory make uninstall.

36 CLooG - a loop generator for scanning polyhedra

Chapter 5: Documentation 37

5 Documentation

The CLooG distribution provides several documentation sources. First, the source code
itself is as documented as possible. The code comments use a Doxygen-compatible presen-
tation (something similar to what JavaDoc does for JAVA). The user may install Doxygen
(see http://www.stack.nl/~dimitri/doxygen) to automatically generate a technical doc-
umentation by typing make doc or doxygen ./autoconf/Doxyfile at the CLooG top-level
directory after running the configure script (see Chapter 4 [Installing], page 33). Doxy-
gen will generate documentation sources (in HTML, LaTeX and man) in the doc/source
directory of the CLooG distribution.

The Texinfo sources of the present document are also provided in the doc directory. You
can build it in either DVI format (by typing texi2dvi cloog.texi) or PDF format (by
typing texi2pdf cloog.texi) or HTML format (by typing makeinfo --html cloog.texi,
using --no-split option to generate a single HTML file) or info format (by typing makeinfo
cloog.texi).

38 CLooG - a loop generator for scanning polyhedra

Chapter 6: References 39

6 References

[Bas03a] C. Bastoul, P. Feautrier. Improving data locality by chunking. CC’12 Inter-
national Conference on Compiler Construction, LNCS 2622, pages 320-335, Warsaw,
april 2003.
[Bas03b] C. Bastoul. Efficient code generation for automatic parallelization and op-
timization. ISPDC’03 IEEE International Symposium on Parallel and Distributed
Computing, pages 23-30, Ljubljana, october 2003.
[Bas04] C. Bastoul. Code Generation in the Polyhedral Model Is Easier Than You
Think. PACT’13 IEEE International Conference on Parallel Architecture and Compi-
lation Techniques, pages 7-16, Juan-les-Pins, september 2004.
[Fea92] P. Feautrier Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. International Journal of Parallel Programming, 21(6):389–420,
December 1992.
[Gri04] M. Griebl. Automatic parallelization of loop programs for distributed memory
architectures. Habilitation Thesis. Facultät für Mathematik und Informatik, Univer-
sität Passau, 2004. http://www.infosun.fmi.uni-passau.de/cl/loopo/
[Qui00] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops
from polyhedra. International Journal of Parallel Programming, 28(5):469-498, october
2000.
[Wil93] Doran K. Wilde. A library for doing polyhedral operations. Technical Report
785, IRISA, Rennes, France, 1993.

40 CLooG - a loop generator for scanning polyhedra

	Introduction
	Basically, what's the point ?
	Defining a Scanning Order: Scattering Functions

	Using the CLooG Software
	A First Example
	Writing The Input File
	Domain Representation
	Scattering Function Representation

	Calling CLooG
	CLooG Options
	Last Depth to Optimize Control -l <depth>
	First Depth to Optimize Control -f <depth>
	Once Time Loop Elimination -otl <boolean>
	Equality Spreading -esp <boolean>
	Constant Spreading -csp <boolean>
	First Level for Spreading -fsp <level>
	C PreProcessor Friendly -cpp <boolean>
	Statement Block -block <boolean>
	Loop Strides -strides <boolean>
	Compilable Code -compilable <value>
	Output -o <output>
	Help --help or -h
	Version --version or -v

	A Full Example

	Using the CLooG Library
	CLooG Data Structures Description
	CloogMatrix
	CloogDomain
	CloogDomainList
	CloogStatement
	CloogBlock
	CloogBlockList
	CloogLoop
	CloogNames
	CloogProgram
	CloogOptions

	CLooG Functions Description
	cloog_program_generate
	cloog_program_pprint
	cloog_program_scatter
	cloog_program_read
	From Matrices to Domains and Conversely
	Allocation and Initialization Functions
	Memory Deallocation Functions
	Printing Functions

	Example of Library Utilization

	Installing CLooG
	License
	Requirements
	PolyLib (mandatory)
	GMP Library (optional)

	CLooG Basic Installation
	Optional Features
	Uninstallation

	Documentation
	References

