Allow variadic arguments without named ones for C++, e.g. "void(...);"
[clang.git] / lib / Sema / SemaChecking.cpp
blob27f3abe68a6444d0617ed0a557820d1344956a1a
1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements extra semantic analysis beyond what is enforced
11 // by the C type system.
13 //===----------------------------------------------------------------------===//
15 #include "Sema.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Basic/Diagnostic.h"
22 #include "SemaUtil.h"
23 using namespace clang;
25 /// CheckFunctionCall - Check a direct function call for various correctness
26 /// and safety properties not strictly enforced by the C type system.
27 Action::ExprResult
28 Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCallRaw) {
29 llvm::OwningPtr<CallExpr> TheCall(TheCallRaw);
30 // Get the IdentifierInfo* for the called function.
31 IdentifierInfo *FnInfo = FDecl->getIdentifier();
33 switch (FnInfo->getBuiltinID()) {
34 case Builtin::BI__builtin___CFStringMakeConstantString:
35 assert(TheCall->getNumArgs() == 1 &&
36 "Wrong # arguments to builtin CFStringMakeConstantString");
37 if (CheckBuiltinCFStringArgument(TheCall->getArg(0)))
38 return true;
39 return TheCall.take();
40 case Builtin::BI__builtin_stdarg_start:
41 case Builtin::BI__builtin_va_start:
42 if (SemaBuiltinVAStart(TheCall.get()))
43 return true;
44 return TheCall.take();
45 case Builtin::BI__builtin_isgreater:
46 case Builtin::BI__builtin_isgreaterequal:
47 case Builtin::BI__builtin_isless:
48 case Builtin::BI__builtin_islessequal:
49 case Builtin::BI__builtin_islessgreater:
50 case Builtin::BI__builtin_isunordered:
51 if (SemaBuiltinUnorderedCompare(TheCall.get()))
52 return true;
53 return TheCall.take();
54 case Builtin::BI__builtin_return_address:
55 case Builtin::BI__builtin_frame_address:
56 if (SemaBuiltinStackAddress(TheCall.get()))
57 return true;
58 return TheCall.take();
59 case Builtin::BI__builtin_shufflevector:
60 return SemaBuiltinShuffleVector(TheCall.get());
61 case Builtin::BI__builtin_prefetch:
62 if (SemaBuiltinPrefetch(TheCall.get()))
63 return true;
64 return TheCall.take();
65 case Builtin::BI__builtin_object_size:
66 if (SemaBuiltinObjectSize(TheCall.get()))
67 return true;
70 // FIXME: This mechanism should be abstracted to be less fragile and
71 // more efficient. For example, just map function ids to custom
72 // handlers.
74 // Search the KnownFunctionIDs for the identifier.
75 unsigned i = 0, e = id_num_known_functions;
76 for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
77 if (i == e) return TheCall.take();
79 // Printf checking.
80 if (i <= id_vprintf) {
81 // Retrieve the index of the format string parameter and determine
82 // if the function is passed a va_arg argument.
83 unsigned format_idx = 0;
84 bool HasVAListArg = false;
86 switch (i) {
87 default: assert(false && "No format string argument index.");
88 case id_NSLog: format_idx = 0; break;
89 case id_asprintf: format_idx = 1; break;
90 case id_fprintf: format_idx = 1; break;
91 case id_printf: format_idx = 0; break;
92 case id_snprintf: format_idx = 2; break;
93 case id_snprintf_chk: format_idx = 4; break;
94 case id_sprintf: format_idx = 1; break;
95 case id_sprintf_chk: format_idx = 3; break;
96 case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
97 case id_vfprintf: format_idx = 1; HasVAListArg = true; break;
98 case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
99 case id_vsnprintf_chk: format_idx = 4; HasVAListArg = true; break;
100 case id_vsprintf: format_idx = 1; HasVAListArg = true; break;
101 case id_vsprintf_chk: format_idx = 3; HasVAListArg = true; break;
102 case id_vprintf: format_idx = 0; HasVAListArg = true; break;
105 CheckPrintfArguments(TheCall.get(), HasVAListArg, format_idx);
108 return TheCall.take();
111 /// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
112 /// CFString constructor is correct
113 bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
114 Arg = Arg->IgnoreParenCasts();
116 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
118 if (!Literal || Literal->isWide()) {
119 Diag(Arg->getLocStart(),
120 diag::err_cfstring_literal_not_string_constant,
121 Arg->getSourceRange());
122 return true;
125 const char *Data = Literal->getStrData();
126 unsigned Length = Literal->getByteLength();
128 for (unsigned i = 0; i < Length; ++i) {
129 if (!isascii(Data[i])) {
130 Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
131 diag::warn_cfstring_literal_contains_non_ascii_character,
132 Arg->getSourceRange());
133 break;
136 if (!Data[i]) {
137 Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
138 diag::warn_cfstring_literal_contains_nul_character,
139 Arg->getSourceRange());
140 break;
144 return false;
147 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
148 /// Emit an error and return true on failure, return false on success.
149 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
150 Expr *Fn = TheCall->getCallee();
151 if (TheCall->getNumArgs() > 2) {
152 Diag(TheCall->getArg(2)->getLocStart(),
153 diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
154 SourceRange(TheCall->getArg(2)->getLocStart(),
155 (*(TheCall->arg_end()-1))->getLocEnd()));
156 return true;
159 // Determine whether the current function is variadic or not.
160 bool isVariadic;
161 if (getCurFunctionDecl())
162 isVariadic =
163 cast<FunctionTypeProto>(getCurFunctionDecl()->getType())->isVariadic();
164 else
165 isVariadic = getCurMethodDecl()->isVariadic();
167 if (!isVariadic) {
168 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
169 return true;
172 // Verify that the second argument to the builtin is the last argument of the
173 // current function or method.
174 bool SecondArgIsLastNamedArgument = false;
175 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
177 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
178 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
179 // FIXME: This isn't correct for methods (results in bogus warning).
180 // Get the last formal in the current function.
181 const ParmVarDecl *LastArg;
182 if (getCurFunctionDecl())
183 LastArg = *(getCurFunctionDecl()->param_end()-1);
184 else
185 LastArg = *(getCurMethodDecl()->param_end()-1);
186 SecondArgIsLastNamedArgument = PV == LastArg;
190 if (!SecondArgIsLastNamedArgument)
191 Diag(TheCall->getArg(1)->getLocStart(),
192 diag::warn_second_parameter_of_va_start_not_last_named_argument);
193 return false;
196 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
197 /// friends. This is declared to take (...), so we have to check everything.
198 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
199 if (TheCall->getNumArgs() < 2)
200 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
201 if (TheCall->getNumArgs() > 2)
202 return Diag(TheCall->getArg(2)->getLocStart(),
203 diag::err_typecheck_call_too_many_args,
204 SourceRange(TheCall->getArg(2)->getLocStart(),
205 (*(TheCall->arg_end()-1))->getLocEnd()));
207 Expr *OrigArg0 = TheCall->getArg(0);
208 Expr *OrigArg1 = TheCall->getArg(1);
210 // Do standard promotions between the two arguments, returning their common
211 // type.
212 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
214 // If the common type isn't a real floating type, then the arguments were
215 // invalid for this operation.
216 if (!Res->isRealFloatingType())
217 return Diag(OrigArg0->getLocStart(),
218 diag::err_typecheck_call_invalid_ordered_compare,
219 OrigArg0->getType().getAsString(),
220 OrigArg1->getType().getAsString(),
221 SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()));
223 return false;
226 bool Sema::SemaBuiltinStackAddress(CallExpr *TheCall) {
227 // The signature for these builtins is exact; the only thing we need
228 // to check is that the argument is a constant.
229 SourceLocation Loc;
230 if (!TheCall->getArg(0)->isIntegerConstantExpr(Context, &Loc))
231 return Diag(Loc, diag::err_stack_const_level, TheCall->getSourceRange());
233 return false;
236 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
237 // This is declared to take (...), so we have to check everything.
238 Action::ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
239 if (TheCall->getNumArgs() < 3)
240 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
241 TheCall->getSourceRange());
243 QualType FAType = TheCall->getArg(0)->getType();
244 QualType SAType = TheCall->getArg(1)->getType();
246 if (!FAType->isVectorType() || !SAType->isVectorType()) {
247 Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector,
248 SourceRange(TheCall->getArg(0)->getLocStart(),
249 TheCall->getArg(1)->getLocEnd()));
250 return true;
253 if (Context.getCanonicalType(FAType).getUnqualifiedType() !=
254 Context.getCanonicalType(SAType).getUnqualifiedType()) {
255 Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector,
256 SourceRange(TheCall->getArg(0)->getLocStart(),
257 TheCall->getArg(1)->getLocEnd()));
258 return true;
261 unsigned numElements = FAType->getAsVectorType()->getNumElements();
262 if (TheCall->getNumArgs() != numElements+2) {
263 if (TheCall->getNumArgs() < numElements+2)
264 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args,
265 TheCall->getSourceRange());
266 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
267 TheCall->getSourceRange());
270 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
271 llvm::APSInt Result(32);
272 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
273 return Diag(TheCall->getLocStart(),
274 diag::err_shufflevector_nonconstant_argument,
275 TheCall->getArg(i)->getSourceRange());
277 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
278 return Diag(TheCall->getLocStart(),
279 diag::err_shufflevector_argument_too_large,
280 TheCall->getArg(i)->getSourceRange());
283 llvm::SmallVector<Expr*, 32> exprs;
285 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
286 exprs.push_back(TheCall->getArg(i));
287 TheCall->setArg(i, 0);
290 return new ShuffleVectorExpr(exprs.begin(), numElements+2, FAType,
291 TheCall->getCallee()->getLocStart(),
292 TheCall->getRParenLoc());
295 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
296 // This is declared to take (const void*, ...) and can take two
297 // optional constant int args.
298 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
299 unsigned numArgs = TheCall->getNumArgs();
300 bool res = false;
302 if (numArgs > 3) {
303 res |= Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_many_args,
304 TheCall->getSourceRange());
307 // Argument 0 is checked for us and the remaining arguments must be
308 // constant integers.
309 for (unsigned i=1; i<numArgs; ++i) {
310 Expr *Arg = TheCall->getArg(i);
311 QualType RWType = Arg->getType();
313 const BuiltinType *BT = RWType->getAsBuiltinType();
314 llvm::APSInt Result;
315 if (!BT || BT->getKind() != BuiltinType::Int ||
316 !Arg->isIntegerConstantExpr(Result, Context)) {
317 if (Diag(TheCall->getLocStart(), diag::err_prefetch_invalid_argument,
318 SourceRange(Arg->getLocStart(), Arg->getLocEnd()))) {
319 res = true;
320 continue;
324 // FIXME: gcc issues a warning and rewrites these to 0. These
325 // seems especially odd for the third argument since the default
326 // is 3.
327 if (i==1) {
328 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 1)
329 res |= Diag(TheCall->getLocStart(), diag::err_argument_invalid_range,
330 "0", "1",
331 SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
332 } else {
333 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3)
334 res |= Diag(TheCall->getLocStart(), diag::err_argument_invalid_range,
335 "0", "3",
336 SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
340 return res;
343 /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
344 /// int type). This simply type checks that type is one of the defined
345 /// constants (0-3).
346 bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
347 Expr *Arg = TheCall->getArg(1);
348 QualType ArgType = Arg->getType();
349 const BuiltinType *BT = ArgType->getAsBuiltinType();
350 llvm::APSInt Result(32);
351 if (!BT || BT->getKind() != BuiltinType::Int ||
352 !Arg->isIntegerConstantExpr(Result, Context)) {
353 return Diag(TheCall->getLocStart(), diag::err_object_size_invalid_argument,
354 SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
357 if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
358 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range,
359 "0", "3",
360 SourceRange(Arg->getLocStart(), Arg->getLocEnd()));
363 return false;
366 /// CheckPrintfArguments - Check calls to printf (and similar functions) for
367 /// correct use of format strings.
369 /// HasVAListArg - A predicate indicating whether the printf-like
370 /// function is passed an explicit va_arg argument (e.g., vprintf)
372 /// format_idx - The index into Args for the format string.
374 /// Improper format strings to functions in the printf family can be
375 /// the source of bizarre bugs and very serious security holes. A
376 /// good source of information is available in the following paper
377 /// (which includes additional references):
379 /// FormatGuard: Automatic Protection From printf Format String
380 /// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
382 /// Functionality implemented:
384 /// We can statically check the following properties for string
385 /// literal format strings for non v.*printf functions (where the
386 /// arguments are passed directly):
388 /// (1) Are the number of format conversions equal to the number of
389 /// data arguments?
391 /// (2) Does each format conversion correctly match the type of the
392 /// corresponding data argument? (TODO)
394 /// Moreover, for all printf functions we can:
396 /// (3) Check for a missing format string (when not caught by type checking).
398 /// (4) Check for no-operation flags; e.g. using "#" with format
399 /// conversion 'c' (TODO)
401 /// (5) Check the use of '%n', a major source of security holes.
403 /// (6) Check for malformed format conversions that don't specify anything.
405 /// (7) Check for empty format strings. e.g: printf("");
407 /// (8) Check that the format string is a wide literal.
409 /// (9) Also check the arguments of functions with the __format__ attribute.
410 /// (TODO).
412 /// All of these checks can be done by parsing the format string.
414 /// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
415 void
416 Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
417 unsigned format_idx) {
418 Expr *Fn = TheCall->getCallee();
420 // CHECK: printf-like function is called with no format string.
421 if (format_idx >= TheCall->getNumArgs()) {
422 Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string,
423 Fn->getSourceRange());
424 return;
427 Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
429 // CHECK: format string is not a string literal.
431 // Dynamically generated format strings are difficult to
432 // automatically vet at compile time. Requiring that format strings
433 // are string literals: (1) permits the checking of format strings by
434 // the compiler and thereby (2) can practically remove the source of
435 // many format string exploits.
437 // Format string can be either ObjC string (e.g. @"%d") or
438 // C string (e.g. "%d")
439 // ObjC string uses the same format specifiers as C string, so we can use
440 // the same format string checking logic for both ObjC and C strings.
441 ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(OrigFormatExpr);
442 StringLiteral *FExpr = NULL;
444 if(ObjCFExpr != NULL)
445 FExpr = ObjCFExpr->getString();
446 else
447 FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
449 if (FExpr == NULL) {
450 // For vprintf* functions (i.e., HasVAListArg==true), we add a
451 // special check to see if the format string is a function parameter
452 // of the function calling the printf function. If the function
453 // has an attribute indicating it is a printf-like function, then we
454 // should suppress warnings concerning non-literals being used in a call
455 // to a vprintf function. For example:
457 // void
458 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
459 // va_list ap;
460 // va_start(ap, fmt);
461 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
462 // ...
465 // FIXME: We don't have full attribute support yet, so just check to see
466 // if the argument is a DeclRefExpr that references a parameter. We'll
467 // add proper support for checking the attribute later.
468 if (HasVAListArg)
469 if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
470 if (isa<ParmVarDecl>(DR->getDecl()))
471 return;
473 Diag(TheCall->getArg(format_idx)->getLocStart(),
474 diag::warn_printf_not_string_constant,
475 OrigFormatExpr->getSourceRange());
476 return;
479 // CHECK: is the format string a wide literal?
480 if (FExpr->isWide()) {
481 Diag(FExpr->getLocStart(),
482 diag::warn_printf_format_string_is_wide_literal,
483 OrigFormatExpr->getSourceRange());
484 return;
487 // Str - The format string. NOTE: this is NOT null-terminated!
488 const char * const Str = FExpr->getStrData();
490 // CHECK: empty format string?
491 const unsigned StrLen = FExpr->getByteLength();
493 if (StrLen == 0) {
494 Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string,
495 OrigFormatExpr->getSourceRange());
496 return;
499 // We process the format string using a binary state machine. The
500 // current state is stored in CurrentState.
501 enum {
502 state_OrdChr,
503 state_Conversion
504 } CurrentState = state_OrdChr;
506 // numConversions - The number of conversions seen so far. This is
507 // incremented as we traverse the format string.
508 unsigned numConversions = 0;
510 // numDataArgs - The number of data arguments after the format
511 // string. This can only be determined for non vprintf-like
512 // functions. For those functions, this value is 1 (the sole
513 // va_arg argument).
514 unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
516 // Inspect the format string.
517 unsigned StrIdx = 0;
519 // LastConversionIdx - Index within the format string where we last saw
520 // a '%' character that starts a new format conversion.
521 unsigned LastConversionIdx = 0;
523 for (; StrIdx < StrLen; ++StrIdx) {
525 // Is the number of detected conversion conversions greater than
526 // the number of matching data arguments? If so, stop.
527 if (!HasVAListArg && numConversions > numDataArgs) break;
529 // Handle "\0"
530 if (Str[StrIdx] == '\0') {
531 // The string returned by getStrData() is not null-terminated,
532 // so the presence of a null character is likely an error.
533 Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
534 diag::warn_printf_format_string_contains_null_char,
535 OrigFormatExpr->getSourceRange());
536 return;
539 // Ordinary characters (not processing a format conversion).
540 if (CurrentState == state_OrdChr) {
541 if (Str[StrIdx] == '%') {
542 CurrentState = state_Conversion;
543 LastConversionIdx = StrIdx;
545 continue;
548 // Seen '%'. Now processing a format conversion.
549 switch (Str[StrIdx]) {
550 // Handle dynamic precision or width specifier.
551 case '*': {
552 ++numConversions;
554 if (!HasVAListArg && numConversions > numDataArgs) {
555 SourceLocation Loc = FExpr->getLocStart();
556 Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
558 if (Str[StrIdx-1] == '.')
559 Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg,
560 OrigFormatExpr->getSourceRange());
561 else
562 Diag(Loc, diag::warn_printf_asterisk_width_missing_arg,
563 OrigFormatExpr->getSourceRange());
565 // Don't do any more checking. We'll just emit spurious errors.
566 return;
569 // Perform type checking on width/precision specifier.
570 Expr *E = TheCall->getArg(format_idx+numConversions);
571 if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
572 if (BT->getKind() == BuiltinType::Int)
573 break;
575 SourceLocation Loc =
576 PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
578 if (Str[StrIdx-1] == '.')
579 Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type,
580 E->getType().getAsString(), E->getSourceRange());
581 else
582 Diag(Loc, diag::warn_printf_asterisk_width_wrong_type,
583 E->getType().getAsString(), E->getSourceRange());
585 break;
588 // Characters which can terminate a format conversion
589 // (e.g. "%d"). Characters that specify length modifiers or
590 // other flags are handled by the default case below.
592 // FIXME: additional checks will go into the following cases.
593 case 'i':
594 case 'd':
595 case 'o':
596 case 'u':
597 case 'x':
598 case 'X':
599 case 'D':
600 case 'O':
601 case 'U':
602 case 'e':
603 case 'E':
604 case 'f':
605 case 'F':
606 case 'g':
607 case 'G':
608 case 'a':
609 case 'A':
610 case 'c':
611 case 'C':
612 case 'S':
613 case 's':
614 case 'p':
615 ++numConversions;
616 CurrentState = state_OrdChr;
617 break;
619 // CHECK: Are we using "%n"? Issue a warning.
620 case 'n': {
621 ++numConversions;
622 CurrentState = state_OrdChr;
623 SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
624 LastConversionIdx+1);
626 Diag(Loc, diag::warn_printf_write_back, OrigFormatExpr->getSourceRange());
627 break;
630 // Handle "%@"
631 case '@':
632 // %@ is allowed in ObjC format strings only.
633 if(ObjCFExpr != NULL)
634 CurrentState = state_OrdChr;
635 else {
636 // Issue a warning: invalid format conversion.
637 SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
638 LastConversionIdx+1);
640 Diag(Loc, diag::warn_printf_invalid_conversion,
641 std::string(Str+LastConversionIdx,
642 Str+std::min(LastConversionIdx+2, StrLen)),
643 OrigFormatExpr->getSourceRange());
645 ++numConversions;
646 break;
648 // Handle "%%"
649 case '%':
650 // Sanity check: Was the first "%" character the previous one?
651 // If not, we will assume that we have a malformed format
652 // conversion, and that the current "%" character is the start
653 // of a new conversion.
654 if (StrIdx - LastConversionIdx == 1)
655 CurrentState = state_OrdChr;
656 else {
657 // Issue a warning: invalid format conversion.
658 SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
659 LastConversionIdx+1);
661 Diag(Loc, diag::warn_printf_invalid_conversion,
662 std::string(Str+LastConversionIdx, Str+StrIdx),
663 OrigFormatExpr->getSourceRange());
665 // This conversion is broken. Advance to the next format
666 // conversion.
667 LastConversionIdx = StrIdx;
668 ++numConversions;
670 break;
672 default:
673 // This case catches all other characters: flags, widths, etc.
674 // We should eventually process those as well.
675 break;
679 if (CurrentState == state_Conversion) {
680 // Issue a warning: invalid format conversion.
681 SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
682 LastConversionIdx+1);
684 Diag(Loc, diag::warn_printf_invalid_conversion,
685 std::string(Str+LastConversionIdx,
686 Str+std::min(LastConversionIdx+2, StrLen)),
687 OrigFormatExpr->getSourceRange());
688 return;
691 if (!HasVAListArg) {
692 // CHECK: Does the number of format conversions exceed the number
693 // of data arguments?
694 if (numConversions > numDataArgs) {
695 SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
696 LastConversionIdx);
698 Diag(Loc, diag::warn_printf_insufficient_data_args,
699 OrigFormatExpr->getSourceRange());
701 // CHECK: Does the number of data arguments exceed the number of
702 // format conversions in the format string?
703 else if (numConversions < numDataArgs)
704 Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
705 diag::warn_printf_too_many_data_args,
706 OrigFormatExpr->getSourceRange());
710 //===--- CHECK: Return Address of Stack Variable --------------------------===//
712 static DeclRefExpr* EvalVal(Expr *E);
713 static DeclRefExpr* EvalAddr(Expr* E);
715 /// CheckReturnStackAddr - Check if a return statement returns the address
716 /// of a stack variable.
717 void
718 Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
719 SourceLocation ReturnLoc) {
721 // Perform checking for returned stack addresses.
722 if (lhsType->isPointerType() || lhsType->isBlockPointerType()) {
723 if (DeclRefExpr *DR = EvalAddr(RetValExp))
724 Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
725 DR->getDecl()->getIdentifier()->getName(),
726 RetValExp->getSourceRange());
728 // Skip over implicit cast expressions when checking for block expressions.
729 if (ImplicitCastExpr *IcExpr =
730 dyn_cast_or_null<ImplicitCastExpr>(RetValExp))
731 RetValExp = IcExpr->getSubExpr();
733 if (BlockExpr *C = dyn_cast_or_null<BlockExpr>(RetValExp))
734 Diag(C->getLocStart(), diag::err_ret_local_block,
735 C->getSourceRange());
737 // Perform checking for stack values returned by reference.
738 else if (lhsType->isReferenceType()) {
739 // Check for an implicit cast to a reference.
740 if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
741 if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
742 Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
743 DR->getDecl()->getIdentifier()->getName(),
744 RetValExp->getSourceRange());
748 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
749 /// check if the expression in a return statement evaluates to an address
750 /// to a location on the stack. The recursion is used to traverse the
751 /// AST of the return expression, with recursion backtracking when we
752 /// encounter a subexpression that (1) clearly does not lead to the address
753 /// of a stack variable or (2) is something we cannot determine leads to
754 /// the address of a stack variable based on such local checking.
756 /// EvalAddr processes expressions that are pointers that are used as
757 /// references (and not L-values). EvalVal handles all other values.
758 /// At the base case of the recursion is a check for a DeclRefExpr* in
759 /// the refers to a stack variable.
761 /// This implementation handles:
763 /// * pointer-to-pointer casts
764 /// * implicit conversions from array references to pointers
765 /// * taking the address of fields
766 /// * arbitrary interplay between "&" and "*" operators
767 /// * pointer arithmetic from an address of a stack variable
768 /// * taking the address of an array element where the array is on the stack
769 static DeclRefExpr* EvalAddr(Expr *E) {
770 // We should only be called for evaluating pointer expressions.
771 assert((E->getType()->isPointerType() ||
772 E->getType()->isBlockPointerType() ||
773 E->getType()->isObjCQualifiedIdType()) &&
774 "EvalAddr only works on pointers");
776 // Our "symbolic interpreter" is just a dispatch off the currently
777 // viewed AST node. We then recursively traverse the AST by calling
778 // EvalAddr and EvalVal appropriately.
779 switch (E->getStmtClass()) {
780 case Stmt::ParenExprClass:
781 // Ignore parentheses.
782 return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
784 case Stmt::UnaryOperatorClass: {
785 // The only unary operator that make sense to handle here
786 // is AddrOf. All others don't make sense as pointers.
787 UnaryOperator *U = cast<UnaryOperator>(E);
789 if (U->getOpcode() == UnaryOperator::AddrOf)
790 return EvalVal(U->getSubExpr());
791 else
792 return NULL;
795 case Stmt::BinaryOperatorClass: {
796 // Handle pointer arithmetic. All other binary operators are not valid
797 // in this context.
798 BinaryOperator *B = cast<BinaryOperator>(E);
799 BinaryOperator::Opcode op = B->getOpcode();
801 if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
802 return NULL;
804 Expr *Base = B->getLHS();
806 // Determine which argument is the real pointer base. It could be
807 // the RHS argument instead of the LHS.
808 if (!Base->getType()->isPointerType()) Base = B->getRHS();
810 assert (Base->getType()->isPointerType());
811 return EvalAddr(Base);
814 // For conditional operators we need to see if either the LHS or RHS are
815 // valid DeclRefExpr*s. If one of them is valid, we return it.
816 case Stmt::ConditionalOperatorClass: {
817 ConditionalOperator *C = cast<ConditionalOperator>(E);
819 // Handle the GNU extension for missing LHS.
820 if (Expr *lhsExpr = C->getLHS())
821 if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
822 return LHS;
824 return EvalAddr(C->getRHS());
827 // For casts, we need to handle conversions from arrays to
828 // pointer values, and pointer-to-pointer conversions.
829 case Stmt::ExplicitCastExprClass:
830 case Stmt::ImplicitCastExprClass: {
832 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
833 QualType T = SubExpr->getType();
835 if (SubExpr->getType()->isPointerType() ||
836 SubExpr->getType()->isBlockPointerType() ||
837 SubExpr->getType()->isObjCQualifiedIdType())
838 return EvalAddr(SubExpr);
839 else if (T->isArrayType())
840 return EvalVal(SubExpr);
841 else
842 return 0;
845 // C++ casts. For dynamic casts, static casts, and const casts, we
846 // are always converting from a pointer-to-pointer, so we just blow
847 // through the cast. In the case the dynamic cast doesn't fail
848 // (and return NULL), we take the conservative route and report cases
849 // where we return the address of a stack variable. For Reinterpre
850 case Stmt::CXXCastExprClass: {
851 CXXCastExpr *C = cast<CXXCastExpr>(E);
853 if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
854 Expr *S = C->getSubExpr();
855 if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
856 return EvalAddr(S);
857 else
858 return NULL;
860 else
861 return EvalAddr(C->getSubExpr());
864 // Everything else: we simply don't reason about them.
865 default:
866 return NULL;
871 /// EvalVal - This function is complements EvalAddr in the mutual recursion.
872 /// See the comments for EvalAddr for more details.
873 static DeclRefExpr* EvalVal(Expr *E) {
875 // We should only be called for evaluating non-pointer expressions, or
876 // expressions with a pointer type that are not used as references but instead
877 // are l-values (e.g., DeclRefExpr with a pointer type).
879 // Our "symbolic interpreter" is just a dispatch off the currently
880 // viewed AST node. We then recursively traverse the AST by calling
881 // EvalAddr and EvalVal appropriately.
882 switch (E->getStmtClass()) {
883 case Stmt::DeclRefExprClass: {
884 // DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
885 // at code that refers to a variable's name. We check if it has local
886 // storage within the function, and if so, return the expression.
887 DeclRefExpr *DR = cast<DeclRefExpr>(E);
889 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
890 if(V->hasLocalStorage()) return DR;
892 return NULL;
895 case Stmt::ParenExprClass:
896 // Ignore parentheses.
897 return EvalVal(cast<ParenExpr>(E)->getSubExpr());
899 case Stmt::UnaryOperatorClass: {
900 // The only unary operator that make sense to handle here
901 // is Deref. All others don't resolve to a "name." This includes
902 // handling all sorts of rvalues passed to a unary operator.
903 UnaryOperator *U = cast<UnaryOperator>(E);
905 if (U->getOpcode() == UnaryOperator::Deref)
906 return EvalAddr(U->getSubExpr());
908 return NULL;
911 case Stmt::ArraySubscriptExprClass: {
912 // Array subscripts are potential references to data on the stack. We
913 // retrieve the DeclRefExpr* for the array variable if it indeed
914 // has local storage.
915 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
918 case Stmt::ConditionalOperatorClass: {
919 // For conditional operators we need to see if either the LHS or RHS are
920 // non-NULL DeclRefExpr's. If one is non-NULL, we return it.
921 ConditionalOperator *C = cast<ConditionalOperator>(E);
923 // Handle the GNU extension for missing LHS.
924 if (Expr *lhsExpr = C->getLHS())
925 if (DeclRefExpr *LHS = EvalVal(lhsExpr))
926 return LHS;
928 return EvalVal(C->getRHS());
931 // Accesses to members are potential references to data on the stack.
932 case Stmt::MemberExprClass: {
933 MemberExpr *M = cast<MemberExpr>(E);
935 // Check for indirect access. We only want direct field accesses.
936 if (!M->isArrow())
937 return EvalVal(M->getBase());
938 else
939 return NULL;
942 // Everything else: we simply don't reason about them.
943 default:
944 return NULL;
948 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
950 /// Check for comparisons of floating point operands using != and ==.
951 /// Issue a warning if these are no self-comparisons, as they are not likely
952 /// to do what the programmer intended.
953 void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
954 bool EmitWarning = true;
956 Expr* LeftExprSansParen = lex->IgnoreParens();
957 Expr* RightExprSansParen = rex->IgnoreParens();
959 // Special case: check for x == x (which is OK).
960 // Do not emit warnings for such cases.
961 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
962 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
963 if (DRL->getDecl() == DRR->getDecl())
964 EmitWarning = false;
967 // Special case: check for comparisons against literals that can be exactly
968 // represented by APFloat. In such cases, do not emit a warning. This
969 // is a heuristic: often comparison against such literals are used to
970 // detect if a value in a variable has not changed. This clearly can
971 // lead to false negatives.
972 if (EmitWarning) {
973 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
974 if (FLL->isExact())
975 EmitWarning = false;
977 else
978 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
979 if (FLR->isExact())
980 EmitWarning = false;
984 // Check for comparisons with builtin types.
985 if (EmitWarning)
986 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
987 if (isCallBuiltin(CL))
988 EmitWarning = false;
990 if (EmitWarning)
991 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
992 if (isCallBuiltin(CR))
993 EmitWarning = false;
995 // Emit the diagnostic.
996 if (EmitWarning)
997 Diag(loc, diag::warn_floatingpoint_eq,
998 lex->getSourceRange(),rex->getSourceRange());