Propagate the kDisablePepper3d switch to the renderer
[chromium-blink-merge.git] / courgette / disassembler_win32_x86.cc
blobf182062ef017b1f39058017d74c77bcce3bdf998
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/disassembler_win32_x86.h"
7 #include <algorithm>
8 #include <string>
9 #include <vector>
11 #include "base/basictypes.h"
12 #include "base/logging.h"
14 #include "courgette/assembly_program.h"
15 #include "courgette/courgette.h"
16 #include "courgette/encoded_program.h"
18 // COURGETTE_HISTOGRAM_TARGETS prints out a histogram of how frequently
19 // different target addresses are referenced. Purely for debugging.
20 #define COURGETTE_HISTOGRAM_TARGETS 0
22 namespace courgette {
24 DisassemblerWin32X86::DisassemblerWin32X86(const void* start, size_t length)
25 : Disassembler(start, length),
26 incomplete_disassembly_(false),
27 is_PE32_plus_(false),
28 optional_header_(NULL),
29 size_of_optional_header_(0),
30 offset_of_data_directories_(0),
31 machine_type_(0),
32 number_of_sections_(0),
33 sections_(NULL),
34 has_text_section_(false),
35 size_of_code_(0),
36 size_of_initialized_data_(0),
37 size_of_uninitialized_data_(0),
38 base_of_code_(0),
39 base_of_data_(0),
40 image_base_(0),
41 size_of_image_(0),
42 number_of_data_directories_(0) {
45 // ParseHeader attempts to match up the buffer with the Windows data
46 // structures that exist within a Windows 'Portable Executable' format file.
47 // Returns 'true' if the buffer matches, and 'false' if the data looks
48 // suspicious. Rather than try to 'map' the buffer to the numerous windows
49 // structures, we extract the information we need into the courgette::PEInfo
50 // structure.
52 bool DisassemblerWin32X86::ParseHeader() {
53 if (length() < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/)
54 return Bad("Too small");
56 // Have 'MZ' magic for a DOS header?
57 if (start()[0] != 'M' || start()[1] != 'Z')
58 return Bad("Not MZ");
60 // offset from DOS header to PE header is stored in DOS header.
61 uint32 offset = ReadU32(start(),
62 kOffsetOfFileAddressOfNewExeHeader);
64 if (offset >= length())
65 return Bad("Bad offset to PE header");
67 const uint8* const pe_header = OffsetToPointer(offset);
68 const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader;
69 if (pe_header <= start() ||
70 pe_header >= end() - kMinPEHeaderSize)
71 return Bad("Bad offset to PE header");
73 if (offset % 8 != 0)
74 return Bad("Misaligned PE header");
76 // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
77 // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
79 // The first field of the IMAGE_NT_HEADERS is the signature.
80 if (!(pe_header[0] == 'P' &&
81 pe_header[1] == 'E' &&
82 pe_header[2] == 0 &&
83 pe_header[3] == 0))
84 return Bad("no PE signature");
86 // The second field of the IMAGE_NT_HEADERS is the COFF header.
87 // The COFF header is also called an IMAGE_FILE_HEADER
88 // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
89 const uint8* const coff_header = pe_header + 4;
90 machine_type_ = ReadU16(coff_header, 0);
91 number_of_sections_ = ReadU16(coff_header, 2);
92 size_of_optional_header_ = ReadU16(coff_header, 16);
94 // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
95 const uint8* const optional_header = coff_header + kSizeOfCoffHeader;
96 optional_header_ = optional_header;
98 if (optional_header + size_of_optional_header_ >= end())
99 return Bad("optional header past end of file");
101 // Check we can read the magic.
102 if (size_of_optional_header_ < 2)
103 return Bad("optional header no magic");
105 uint16 magic = ReadU16(optional_header, 0);
107 if (magic == kImageNtOptionalHdr32Magic) {
108 is_PE32_plus_ = false;
109 offset_of_data_directories_ =
110 kOffsetOfDataDirectoryFromImageOptionalHeader32;
111 } else if (magic == kImageNtOptionalHdr64Magic) {
112 is_PE32_plus_ = true;
113 offset_of_data_directories_ =
114 kOffsetOfDataDirectoryFromImageOptionalHeader64;
115 } else {
116 return Bad("unrecognized magic");
119 // Check that we can read the rest of the the fixed fields. Data directories
120 // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
121 if (size_of_optional_header_ < offset_of_data_directories_)
122 return Bad("optional header too short");
124 // The optional header is either an IMAGE_OPTIONAL_HEADER32 or
125 // IMAGE_OPTIONAL_HEADER64
126 // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
128 // Copy the fields we care about.
129 size_of_code_ = ReadU32(optional_header, 4);
130 size_of_initialized_data_ = ReadU32(optional_header, 8);
131 size_of_uninitialized_data_ = ReadU32(optional_header, 12);
132 base_of_code_ = ReadU32(optional_header, 20);
133 if (is_PE32_plus_) {
134 base_of_data_ = 0;
135 image_base_ = ReadU64(optional_header, 24);
136 } else {
137 base_of_data_ = ReadU32(optional_header, 24);
138 image_base_ = ReadU32(optional_header, 28);
140 size_of_image_ = ReadU32(optional_header, 56);
141 number_of_data_directories_ =
142 ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92));
144 if (size_of_code_ >= length() ||
145 size_of_initialized_data_ >= length() ||
146 size_of_code_ + size_of_initialized_data_ >= length()) {
147 // This validation fires on some perfectly fine executables.
148 // return Bad("code or initialized data too big");
151 // TODO(sra): we can probably get rid of most of the data directories.
152 bool b = true;
153 // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
154 // for correctness and it compiles smaller this way.
155 b &= ReadDataDirectory(0, &export_table_);
156 b &= ReadDataDirectory(1, &import_table_);
157 b &= ReadDataDirectory(2, &resource_table_);
158 b &= ReadDataDirectory(3, &exception_table_);
159 b &= ReadDataDirectory(5, &base_relocation_table_);
160 b &= ReadDataDirectory(11, &bound_import_table_);
161 b &= ReadDataDirectory(12, &import_address_table_);
162 b &= ReadDataDirectory(13, &delay_import_descriptor_);
163 b &= ReadDataDirectory(14, &clr_runtime_header_);
164 if (!b) {
165 return Bad("malformed data directory");
168 // Sections follow the optional header.
169 sections_ =
170 reinterpret_cast<const Section*>(optional_header +
171 size_of_optional_header_);
172 size_t detected_length = 0;
174 for (int i = 0; i < number_of_sections_; ++i) {
175 const Section* section = &sections_[i];
177 // TODO(sra): consider using the 'characteristics' field of the section
178 // header to see if the section contains instructions.
179 if (memcmp(section->name, ".text", 6) == 0)
180 has_text_section_ = true;
182 uint32 section_end =
183 section->file_offset_of_raw_data + section->size_of_raw_data;
184 if (section_end > detected_length)
185 detected_length = section_end;
188 // Pretend our in-memory copy is only as long as our detected length.
189 ReduceLength(detected_length);
191 if (!is_32bit()) {
192 return Bad("64 bit executables are not yet supported");
195 if (!has_text_section()) {
196 return Bad("Resource-only executables are not yet supported");
199 return Good();
202 bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) {
203 if (!ok())
204 return false;
206 target->set_image_base(image_base());
208 if (!ParseAbs32Relocs())
209 return false;
211 ParseRel32RelocsFromSections();
213 if (!ParseFile(target))
214 return false;
216 target->DefaultAssignIndexes();
218 return true;
221 ////////////////////////////////////////////////////////////////////////////////
223 bool DisassemblerWin32X86::ParseRelocs(std::vector<RVA> *relocs) {
224 relocs->clear();
226 size_t relocs_size = base_relocation_table_.size_;
227 if (relocs_size == 0)
228 return true;
230 // The format of the base relocation table is a sequence of variable sized
231 // IMAGE_BASE_RELOCATION blocks. Search for
232 // "The format of the base relocation data is somewhat quirky"
233 // at http://msdn.microsoft.com/en-us/library/ms809762.aspx
235 const uint8* relocs_start = RVAToPointer(base_relocation_table_.address_);
236 const uint8* relocs_end = relocs_start + relocs_size;
238 // Make sure entire base relocation table is within the buffer.
239 if (relocs_start < start() ||
240 relocs_start >= end() ||
241 relocs_end <= start() ||
242 relocs_end > end()) {
243 return Bad(".relocs outside image");
246 const uint8* block = relocs_start;
248 // Walk the variable sized blocks.
249 while (block + 8 < relocs_end) {
250 RVA page_rva = ReadU32(block, 0);
251 uint32 size = ReadU32(block, 4);
252 if (size < 8 || // Size includes header ...
253 size % 4 != 0) // ... and is word aligned.
254 return Bad("unreasonable relocs block");
256 const uint8* end_entries = block + size;
258 if (end_entries <= block ||
259 end_entries <= start() ||
260 end_entries > end())
261 return Bad(".relocs block outside image");
263 // Walk through the two-byte entries.
264 for (const uint8* p = block + 8; p < end_entries; p += 2) {
265 uint16 entry = ReadU16(p, 0);
266 int type = entry >> 12;
267 int offset = entry & 0xFFF;
269 RVA rva = page_rva + offset;
270 if (type == 3) { // IMAGE_REL_BASED_HIGHLOW
271 relocs->push_back(rva);
272 } else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE
273 // Ignore, used as padding.
274 } else {
275 // Does not occur in Windows x86 executables.
276 return Bad("unknown type of reloc");
280 block += size;
283 std::sort(relocs->begin(), relocs->end());
285 return true;
288 const Section* DisassemblerWin32X86::RVAToSection(RVA rva) const {
289 for (int i = 0; i < number_of_sections_; i++) {
290 const Section* section = &sections_[i];
291 uint32 offset = rva - section->virtual_address;
292 if (offset < section->virtual_size) {
293 return section;
296 return NULL;
299 int DisassemblerWin32X86::RVAToFileOffset(RVA rva) const {
300 const Section* section = RVAToSection(rva);
301 if (section) {
302 uint32 offset = rva - section->virtual_address;
303 if (offset < section->size_of_raw_data) {
304 return section->file_offset_of_raw_data + offset;
305 } else {
306 return kNoOffset; // In section but not in file (e.g. uninit data).
310 // Small RVA values point into the file header in the loaded image.
311 // RVA 0 is the module load address which Windows uses as the module handle.
312 // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
313 // DOS header.
314 if (rva == 0 || rva == 2)
315 return rva;
317 NOTREACHED();
318 return kNoOffset;
321 const uint8* DisassemblerWin32X86::RVAToPointer(RVA rva) const {
322 int file_offset = RVAToFileOffset(rva);
323 if (file_offset == kNoOffset)
324 return NULL;
325 else
326 return OffsetToPointer(file_offset);
329 std::string DisassemblerWin32X86::SectionName(const Section* section) {
330 if (section == NULL)
331 return "<none>";
332 char name[9];
333 memcpy(name, section->name, 8);
334 name[8] = '\0'; // Ensure termination.
335 return name;
338 CheckBool DisassemblerWin32X86::ParseFile(AssemblyProgram* program) {
339 // Walk all the bytes in the file, whether or not in a section.
340 uint32 file_offset = 0;
341 while (file_offset < length()) {
342 const Section* section = FindNextSection(file_offset);
343 if (section == NULL) {
344 // No more sections. There should not be extra stuff following last
345 // section.
346 // ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
347 break;
349 if (file_offset < section->file_offset_of_raw_data) {
350 uint32 section_start_offset = section->file_offset_of_raw_data;
351 if(!ParseNonSectionFileRegion(file_offset, section_start_offset,
352 program))
353 return false;
355 file_offset = section_start_offset;
357 uint32 end = file_offset + section->size_of_raw_data;
358 if (!ParseFileRegion(section, file_offset, end, program))
359 return false;
360 file_offset = end;
363 #if COURGETTE_HISTOGRAM_TARGETS
364 HistogramTargets("abs32 relocs", abs32_target_rvas_);
365 HistogramTargets("rel32 relocs", rel32_target_rvas_);
366 #endif
368 return true;
371 bool DisassemblerWin32X86::ParseAbs32Relocs() {
372 abs32_locations_.clear();
373 if (!ParseRelocs(&abs32_locations_))
374 return false;
376 std::sort(abs32_locations_.begin(), abs32_locations_.end());
378 #if COURGETTE_HISTOGRAM_TARGETS
379 for (size_t i = 0; i < abs32_locations_.size(); ++i) {
380 RVA rva = abs32_locations_[i];
381 // The 4 bytes at the relocation are a reference to some address.
382 uint32 target_address = Read32LittleEndian(RVAToPointer(rva));
383 ++abs32_target_rvas_[target_address - image_base()];
385 #endif
386 return true;
389 void DisassemblerWin32X86::ParseRel32RelocsFromSections() {
390 uint32 file_offset = 0;
391 while (file_offset < length()) {
392 const Section* section = FindNextSection(file_offset);
393 if (section == NULL)
394 break;
395 if (file_offset < section->file_offset_of_raw_data)
396 file_offset = section->file_offset_of_raw_data;
397 ParseRel32RelocsFromSection(section);
398 file_offset += section->size_of_raw_data;
400 std::sort(rel32_locations_.begin(), rel32_locations_.end());
402 #if COURGETTE_HISTOGRAM_TARGETS
403 VLOG(1) << "abs32_locations_ " << abs32_locations_.size()
404 << "\nrel32_locations_ " << rel32_locations_.size()
405 << "\nabs32_target_rvas_ " << abs32_target_rvas_.size()
406 << "\nrel32_target_rvas_ " << rel32_target_rvas_.size();
408 int common = 0;
409 std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin();
410 std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin();
411 while (abs32_iter != abs32_target_rvas_.end() &&
412 rel32_iter != rel32_target_rvas_.end()) {
413 if (abs32_iter->first < rel32_iter->first)
414 ++abs32_iter;
415 else if (rel32_iter->first < abs32_iter->first)
416 ++rel32_iter;
417 else {
418 ++common;
419 ++abs32_iter;
420 ++rel32_iter;
423 VLOG(1) << "common " << common;
424 #endif
427 void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
428 // TODO(sra): use characteristic.
429 bool isCode = strcmp(section->name, ".text") == 0;
430 if (!isCode)
431 return;
433 uint32 start_file_offset = section->file_offset_of_raw_data;
434 uint32 end_file_offset = start_file_offset + section->size_of_raw_data;
435 RVA relocs_start_rva = base_relocation_table().address_;
437 const uint8* start_pointer = OffsetToPointer(start_file_offset);
438 const uint8* end_pointer = OffsetToPointer(end_file_offset);
440 RVA start_rva = FileOffsetToRVA(start_file_offset);
441 RVA end_rva = start_rva + section->virtual_size;
443 // Quick way to convert from Pointer to RVA within a single Section is to
444 // subtract 'pointer_to_rva'.
445 const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
447 std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
449 // Find the rel32 relocations.
450 const uint8* p = start_pointer;
451 while (p < end_pointer) {
452 RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
453 if (current_rva == relocs_start_rva) {
454 uint32 relocs_size = base_relocation_table().size_;
455 if (relocs_size) {
456 p += relocs_size;
457 continue;
461 //while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
462 // ++abs32_pos;
464 // Heuristic discovery of rel32 locations in instruction stream: are the
465 // next few bytes the start of an instruction containing a rel32
466 // addressing mode?
467 const uint8* rel32 = NULL;
469 if (p + 5 <= end_pointer) {
470 if (*p == 0xE8 || *p == 0xE9) { // jmp rel32 and call rel32
471 rel32 = p + 1;
474 if (p + 6 <= end_pointer) {
475 if (*p == 0x0F && (*(p+1) & 0xF0) == 0x80) { // Jcc long form
476 if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely
477 rel32 = p + 2;
480 if (rel32) {
481 RVA rel32_rva = static_cast<RVA>(rel32 - adjust_pointer_to_rva);
483 // Is there an abs32 reloc overlapping the candidate?
484 while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3)
485 ++abs32_pos;
486 // Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
487 // region that could overlap rel32_rva.
488 if (abs32_pos != abs32_locations_.end()) {
489 if (*abs32_pos < rel32_rva + 4) {
490 // Beginning of abs32 reloc is before end of rel32 reloc so they
491 // overlap. Skip four bytes past the abs32 reloc.
492 p += (*abs32_pos + 4) - current_rva;
493 continue;
497 RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32);
498 // To be valid, rel32 target must be within image, and within this
499 // section.
500 if (IsValidRVA(target_rva) &&
501 start_rva <= target_rva && target_rva < end_rva) {
502 rel32_locations_.push_back(rel32_rva);
503 #if COURGETTE_HISTOGRAM_TARGETS
504 ++rel32_target_rvas_[target_rva];
505 #endif
506 p = rel32 + 4;
507 continue;
510 p += 1;
514 CheckBool DisassemblerWin32X86::ParseNonSectionFileRegion(
515 uint32 start_file_offset,
516 uint32 end_file_offset,
517 AssemblyProgram* program) {
518 if (incomplete_disassembly_)
519 return true;
521 const uint8* start = OffsetToPointer(start_file_offset);
522 const uint8* end = OffsetToPointer(end_file_offset);
524 const uint8* p = start;
526 while (p < end) {
527 if (!program->EmitByteInstruction(*p))
528 return false;
529 ++p;
532 return true;
535 CheckBool DisassemblerWin32X86::ParseFileRegion(
536 const Section* section,
537 uint32 start_file_offset, uint32 end_file_offset,
538 AssemblyProgram* program) {
539 RVA relocs_start_rva = base_relocation_table().address_;
541 const uint8* start_pointer = OffsetToPointer(start_file_offset);
542 const uint8* end_pointer = OffsetToPointer(end_file_offset);
544 RVA start_rva = FileOffsetToRVA(start_file_offset);
545 RVA end_rva = start_rva + section->virtual_size;
547 // Quick way to convert from Pointer to RVA within a single Section is to
548 // subtract 'pointer_to_rva'.
549 const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
551 std::vector<RVA>::iterator rel32_pos = rel32_locations_.begin();
552 std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
554 if (!program->EmitOriginInstruction(start_rva))
555 return false;
557 const uint8* p = start_pointer;
559 while (p < end_pointer) {
560 RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
562 // The base relocation table is usually in the .relocs section, but it could
563 // actually be anywhere. Make sure we skip it because we will regenerate it
564 // during assembly.
565 if (current_rva == relocs_start_rva) {
566 if (!program->EmitPeRelocsInstruction())
567 return false;
568 uint32 relocs_size = base_relocation_table().size_;
569 if (relocs_size) {
570 p += relocs_size;
571 continue;
575 while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
576 ++abs32_pos;
578 if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
579 uint32 target_address = Read32LittleEndian(p);
580 RVA target_rva = target_address - image_base();
581 // TODO(sra): target could be Label+offset. It is not clear how to guess
582 // which it might be. We assume offset==0.
583 if (!program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva)))
584 return false;
585 p += 4;
586 continue;
589 while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva)
590 ++rel32_pos;
592 if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) {
593 RVA target_rva = current_rva + 4 + Read32LittleEndian(p);
594 if (!program->EmitRel32(program->FindOrMakeRel32Label(target_rva)))
595 return false;
596 p += 4;
597 continue;
600 if (incomplete_disassembly_) {
601 if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) &&
602 (rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) &&
603 (end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) {
604 // No more relocs in this section, don't bother encoding bytes.
605 break;
609 if (!program->EmitByteInstruction(*p))
610 return false;
611 p += 1;
614 return true;
617 #if COURGETTE_HISTOGRAM_TARGETS
618 // Histogram is printed to std::cout. It is purely for debugging the algorithm
619 // and is only enabled manually in 'exploration' builds. I don't want to add
620 // command-line configuration for this feature because this code has to be
621 // small, which means compiled-out.
622 void DisassemblerWin32X86::HistogramTargets(const char* kind,
623 const std::map<RVA, int>& map) {
624 int total = 0;
625 std::map<int, std::vector<RVA> > h;
626 for (std::map<RVA, int>::const_iterator p = map.begin();
627 p != map.end();
628 ++p) {
629 h[p->second].push_back(p->first);
630 total += p->second;
633 std::cout << total << " " << kind << " to "
634 << map.size() << " unique targets" << std::endl;
636 std::cout << "indegree: #targets-with-indegree (example)" << std::endl;
637 const int kFirstN = 15;
638 bool someSkipped = false;
639 int index = 0;
640 for (std::map<int, std::vector<RVA> >::reverse_iterator p = h.rbegin();
641 p != h.rend();
642 ++p) {
643 ++index;
644 if (index <= kFirstN || p->first <= 3) {
645 if (someSkipped) {
646 std::cout << "..." << std::endl;
648 size_t count = p->second.size();
649 std::cout << std::dec << p->first << ": " << count;
650 if (count <= 2) {
651 for (size_t i = 0; i < count; ++i)
652 std::cout << " " << DescribeRVA(p->second[i]);
654 std::cout << std::endl;
655 someSkipped = false;
656 } else {
657 someSkipped = true;
661 #endif // COURGETTE_HISTOGRAM_TARGETS
664 // DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except
665 // that during development I'm finding I need to call it when compiled in
666 // Release mode. Hence:
667 // TODO(sra): make this compile only for debug mode.
668 std::string DisassemblerWin32X86::DescribeRVA(RVA rva) const {
669 const Section* section = RVAToSection(rva);
670 std::ostringstream s;
671 s << std::hex << rva;
672 if (section) {
673 s << " (";
674 s << SectionName(section) << "+"
675 << std::hex << (rva - section->virtual_address)
676 << ")";
678 return s.str();
681 const Section* DisassemblerWin32X86::FindNextSection(uint32 fileOffset) const {
682 const Section* best = 0;
683 for (int i = 0; i < number_of_sections_; i++) {
684 const Section* section = &sections_[i];
685 if (section->size_of_raw_data > 0) { // i.e. has data in file.
686 if (fileOffset <= section->file_offset_of_raw_data) {
687 if (best == 0 ||
688 section->file_offset_of_raw_data < best->file_offset_of_raw_data) {
689 best = section;
694 return best;
697 RVA DisassemblerWin32X86::FileOffsetToRVA(uint32 file_offset) const {
698 for (int i = 0; i < number_of_sections_; i++) {
699 const Section* section = &sections_[i];
700 uint32 offset = file_offset - section->file_offset_of_raw_data;
701 if (offset < section->size_of_raw_data) {
702 return section->virtual_address + offset;
705 return 0;
708 bool DisassemblerWin32X86::ReadDataDirectory(
709 int index,
710 ImageDataDirectory* directory) {
712 if (index < number_of_data_directories_) {
713 size_t offset = index * 8 + offset_of_data_directories_;
714 if (offset >= size_of_optional_header_)
715 return Bad("number of data directories inconsistent");
716 const uint8* data_directory = optional_header_ + offset;
717 if (data_directory < start() ||
718 data_directory + 8 >= end())
719 return Bad("data directory outside image");
720 RVA rva = ReadU32(data_directory, 0);
721 size_t size = ReadU32(data_directory, 4);
722 if (size > size_of_image_)
723 return Bad("data directory size too big");
725 // TODO(sra): validate RVA.
726 directory->address_ = rva;
727 directory->size_ = static_cast<uint32>(size);
728 return true;
729 } else {
730 directory->address_ = 0;
731 directory->size_ = 0;
732 return true;
736 } // namespace courgette