btrfs-progs: fix user-facing typos in docs and help strings
[btrfs-progs-unstable/devel.git] / qgroup-verify.c
blob66eb870a17769cd9f2599765ca9ed485413a5311
1 /*
2 * Copyright (C) 2014 SUSE. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 * Authors: Mark Fasheh <mfasheh@suse.de>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <uuid/uuid.h>
24 #include "kerncompat.h"
25 #include "radix-tree.h"
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "print-tree.h"
29 #include "utils.h"
30 #include "ulist.h"
31 #include "rbtree-utils.h"
32 #include "transaction.h"
33 #include "repair.h"
35 #include "qgroup-verify.h"
37 /*#define QGROUP_VERIFY_DEBUG*/
38 static unsigned long tot_extents_scanned = 0;
40 struct qgroup_count;
41 static struct qgroup_count *find_count(u64 qgroupid);
43 struct qgroup_info {
44 u64 referenced;
45 u64 referenced_compressed;
46 u64 exclusive;
47 u64 exclusive_compressed;
50 struct qgroup_count {
51 u64 qgroupid;
52 int subvol_exists;
54 struct btrfs_disk_key key;
55 struct qgroup_info diskinfo;
57 struct qgroup_info info;
59 struct rb_node rb_node;
61 /* Parents when we are a child group */
62 struct list_head groups;
65 * Children when we are a parent group (not currently used but
66 * maintained to mirror kernel handling of qgroups)
68 struct list_head members;
70 u64 cur_refcnt;
72 struct list_head bad_list;
75 static struct counts_tree {
76 struct rb_root root;
77 unsigned int num_groups;
78 unsigned int rescan_running:1;
79 unsigned int qgroup_inconsist:1;
80 } counts = { .root = RB_ROOT };
82 static LIST_HEAD(bad_qgroups);
84 static struct rb_root by_bytenr = RB_ROOT;
87 * Glue structure to represent the relations between qgroups. Mirrored
88 * from kernel.
90 struct btrfs_qgroup_list {
91 struct list_head next_group;
92 struct list_head next_member;
93 struct qgroup_count *group; /* Parent group */
94 struct qgroup_count *member;
97 /* Allow us to reset ref counts during accounting without zeroing each group. */
98 static u64 qgroup_seq = 1ULL;
100 static inline void update_cur_refcnt(struct qgroup_count *c)
102 if (c->cur_refcnt < qgroup_seq)
103 c->cur_refcnt = qgroup_seq;
104 c->cur_refcnt++;
107 static inline u64 group_get_cur_refcnt(struct qgroup_count *c)
109 if (c->cur_refcnt < qgroup_seq)
110 return 0;
111 return c->cur_refcnt - qgroup_seq;
114 static void inc_qgroup_seq(int root_count)
116 qgroup_seq += root_count + 1;
120 * List of interior tree blocks. We walk this list after loading the
121 * extent tree to resolve implied refs. For each interior node we'll
122 * place a shared ref in the ref tree against each child object. This
123 * allows the shared ref resolving code to do the actual work later of
124 * finding roots to account against.
126 * An implied ref is when a tree block has refs on it that may not
127 * exist in any of its child nodes. Even though the refs might not
128 * exist further down the tree, the fact that our interior node has a
129 * ref means we need to account anything below it to all its roots.
131 static struct ulist *tree_blocks = NULL; /* unode->val = bytenr, ->aux
132 * = tree_block pointer */
133 struct tree_block {
134 int level;
135 u64 num_bytes;
138 struct ref {
139 u64 bytenr;
140 u64 num_bytes;
141 u64 parent;
142 u64 root;
144 struct rb_node bytenr_node;
147 #ifdef QGROUP_VERIFY_DEBUG
148 static void print_ref(struct ref *ref)
150 printf("bytenr: %llu\t\tnum_bytes: %llu\t\t parent: %llu\t\t"
151 "root: %llu\n", ref->bytenr, ref->num_bytes,
152 ref->parent, ref->root);
155 static void print_all_refs(void)
157 unsigned long count = 0;
158 struct ref *ref;
159 struct rb_node *node;
161 node = rb_first(&by_bytenr);
162 while (node) {
163 ref = rb_entry(node, struct ref, bytenr_node);
165 print_ref(ref);
167 count++;
168 node = rb_next(node);
171 printf("%lu extents scanned with %lu refs in total.\n",
172 tot_extents_scanned, count);
174 #endif
177 * Store by bytenr in rbtree
179 * The tree is sorted in ascending order by bytenr, then parent, then
180 * root. Since full refs have a parent == 0, those will come before
181 * shared refs.
183 static int compare_ref(struct ref *orig, u64 bytenr, u64 root, u64 parent)
185 if (bytenr < orig->bytenr)
186 return -1;
187 if (bytenr > orig->bytenr)
188 return 1;
190 if (parent < orig->parent)
191 return -1;
192 if (parent > orig->parent)
193 return 1;
195 if (root < orig->root)
196 return -1;
197 if (root > orig->root)
198 return 1;
200 return 0;
204 * insert a new ref into the tree. returns the existing ref entry
205 * if one is already there.
207 static struct ref *insert_ref(struct ref *ref)
209 int ret;
210 struct rb_node **p = &by_bytenr.rb_node;
211 struct rb_node *parent = NULL;
212 struct ref *curr;
214 while (*p) {
215 parent = *p;
216 curr = rb_entry(parent, struct ref, bytenr_node);
218 ret = compare_ref(curr, ref->bytenr, ref->root, ref->parent);
219 if (ret < 0)
220 p = &(*p)->rb_left;
221 else if (ret > 0)
222 p = &(*p)->rb_right;
223 else
224 return curr;
227 rb_link_node(&ref->bytenr_node, parent, p);
228 rb_insert_color(&ref->bytenr_node, &by_bytenr);
229 return ref;
233 * Partial search, returns the first ref with matching bytenr. Caller
234 * can walk forward from there.
236 * Leftmost refs will be full refs - this is used to our advantage
237 * when resolving roots.
239 static struct ref *find_ref_bytenr(u64 bytenr)
241 struct rb_node *n = by_bytenr.rb_node;
242 struct ref *ref;
244 while (n) {
245 ref = rb_entry(n, struct ref, bytenr_node);
247 if (bytenr < ref->bytenr)
248 n = n->rb_left;
249 else if (bytenr > ref->bytenr)
250 n = n->rb_right;
251 else {
252 /* Walk to the left to find the first item */
253 struct rb_node *node_left = rb_prev(&ref->bytenr_node);
254 struct ref *ref_left;
256 while (node_left) {
257 ref_left = rb_entry(node_left, struct ref,
258 bytenr_node);
259 if (ref_left->bytenr != ref->bytenr)
260 break;
261 ref = ref_left;
262 node_left = rb_prev(node_left);
264 return ref;
267 return NULL;
270 static struct ref *find_ref(u64 bytenr, u64 root, u64 parent)
272 struct rb_node *n = by_bytenr.rb_node;
273 struct ref *ref;
274 int ret;
276 while (n) {
277 ref = rb_entry(n, struct ref, bytenr_node);
279 ret = compare_ref(ref, bytenr, root, parent);
280 if (ret < 0)
281 n = n->rb_left;
282 else if (ret > 0)
283 n = n->rb_right;
284 else
285 return ref;
287 return NULL;
290 static struct ref *alloc_ref(u64 bytenr, u64 root, u64 parent, u64 num_bytes)
292 struct ref *ref = find_ref(bytenr, root, parent);
294 BUG_ON(parent && root);
296 if (ref == NULL) {
297 ref = calloc(1, sizeof(*ref));
298 if (ref) {
299 ref->bytenr = bytenr;
300 ref->root = root;
301 ref->parent = parent;
302 ref->num_bytes = num_bytes;
304 insert_ref(ref);
307 return ref;
310 static void free_ref_node(struct rb_node *node)
312 struct ref *ref = rb_entry(node, struct ref, bytenr_node);
313 free(ref);
316 FREE_RB_BASED_TREE(ref, free_ref_node);
319 * Resolves all the possible roots for the ref at parent.
321 static int find_parent_roots(struct ulist *roots, u64 parent)
323 struct ref *ref;
324 struct rb_node *node;
325 int ret;
328 * Search the rbtree for the first ref with bytenr == parent.
329 * Walk forward so long as bytenr == parent, adding resolved root ids.
330 * For each unresolved root, we recurse
332 ref = find_ref_bytenr(parent);
333 node = &ref->bytenr_node;
334 BUG_ON(ref == NULL);
335 BUG_ON(ref->bytenr != parent);
339 * Random sanity check, are we actually getting the
340 * leftmost node?
342 struct rb_node *prev_node = rb_prev(&ref->bytenr_node);
343 struct ref *prev;
344 if (prev_node) {
345 prev = rb_entry(prev_node, struct ref, bytenr_node);
346 BUG_ON(prev->bytenr == parent);
350 do {
351 if (ref->root) {
352 if (is_fstree(ref->root)) {
353 ret = ulist_add(roots, ref->root, 0, 0);
354 if (ret < 0)
355 goto out;
357 } else {
358 ret = find_parent_roots(roots, ref->parent);
359 if (ret < 0)
360 goto out;
363 node = rb_next(node);
364 if (node)
365 ref = rb_entry(node, struct ref, bytenr_node);
366 } while (node && ref->bytenr == parent);
368 ret = 0;
369 out:
370 return ret;
373 static int account_one_extent(struct ulist *roots, u64 bytenr, u64 num_bytes)
375 int ret;
376 u64 id, nr_roots, nr_refs;
377 struct qgroup_count *count;
378 struct ulist *counts = ulist_alloc(0);
379 struct ulist *tmp = ulist_alloc(0);
380 struct ulist_iterator uiter;
381 struct ulist_iterator tmp_uiter;
382 struct ulist_node *unode;
383 struct ulist_node *tmp_unode;
384 struct btrfs_qgroup_list *glist;
386 if (!counts || !tmp) {
387 ulist_free(counts);
388 ulist_free(tmp);
389 return ENOMEM;
392 ULIST_ITER_INIT(&uiter);
393 while ((unode = ulist_next(roots, &uiter))) {
394 BUG_ON(unode->val == 0ULL);
397 * For each root, find their corresponding tracking group and
398 * add it to our qgroups list.
400 count = find_count(unode->val);
401 if (!count)
402 continue;
404 BUG_ON(!is_fstree(unode->val));
405 ret = ulist_add(counts, count->qgroupid, ptr_to_u64(count), 0);
406 if (ret < 0)
407 goto out;
410 * Now we look for parents (and parents of those...). Use a tmp
411 * ulist here to avoid re-walking (and re-incrementing) our
412 * already added items on every loop iteration.
414 ulist_reinit(tmp);
415 ret = ulist_add(tmp, count->qgroupid, ptr_to_u64(count), 0);
416 if (ret < 0)
417 goto out;
419 ULIST_ITER_INIT(&tmp_uiter);
420 while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) {
421 /* Bump the refcount on a node every time we see it. */
422 count = u64_to_ptr(tmp_unode->aux);
423 update_cur_refcnt(count);
425 list_for_each_entry(glist, &count->groups, next_group) {
426 struct qgroup_count *parent;
427 parent = glist->group;
428 id = parent->qgroupid;
430 BUG_ON(!count);
432 ret = ulist_add(counts, id, ptr_to_u64(parent),
434 if (ret < 0)
435 goto out;
436 ret = ulist_add(tmp, id, ptr_to_u64(parent),
438 if (ret < 0)
439 goto out;
445 * Now that we have gathered up and counted all the groups, we
446 * can add bytes for this ref.
448 nr_roots = roots->nnodes;
449 ULIST_ITER_INIT(&uiter);
450 while ((unode = ulist_next(counts, &uiter))) {
451 count = u64_to_ptr(unode->aux);
453 nr_refs = group_get_cur_refcnt(count);
454 if (nr_refs) {
455 count->info.referenced += num_bytes;
456 count->info.referenced_compressed += num_bytes;
458 if (nr_refs == nr_roots) {
459 count->info.exclusive += num_bytes;
460 count->info.exclusive_compressed += num_bytes;
463 #ifdef QGROUP_VERIFY_DEBUG
464 printf("account (%llu, %llu), qgroup %llu/%llu, rfer %llu,"
465 " excl %llu, refs %llu, roots %llu\n", bytenr, num_bytes,
466 btrfs_qgroup_level(count->qgroupid),
467 btrfs_qgroup_subvid(count->qgroupid),
468 count->info.referenced, count->info.exclusive, nr_refs,
469 nr_roots);
470 #endif
473 inc_qgroup_seq(roots->nnodes);
474 ret = 0;
475 out:
476 ulist_free(counts);
477 ulist_free(tmp);
478 return ret;
481 static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
482 struct ulist *roots);
484 * Account each ref. Walk the refs, for each set of refs in a
485 * given bytenr:
487 * - add the roots for direct refs to the ref roots ulist
489 * - resolve all possible roots for shared refs, insert each
490 * of those into ref_roots ulist (this is a recursive process)
492 * - With all roots resolved we can account the ref - this is done in
493 * account_one_extent().
495 static int account_all_refs(int do_qgroups, u64 search_subvol)
497 struct ref *ref;
498 struct rb_node *node;
499 u64 bytenr, num_bytes;
500 struct ulist *roots = ulist_alloc(0);
501 int ret;
503 node = rb_first(&by_bytenr);
504 while (node) {
505 ulist_reinit(roots);
507 ref = rb_entry(node, struct ref, bytenr_node);
509 * Walk forward through the list of refs for this
510 * bytenr, adding roots to our ulist. If it's a full
511 * ref, then we have the easy case. Otherwise we need
512 * to search for roots.
514 bytenr = ref->bytenr;
515 num_bytes = ref->num_bytes;
516 do {
517 BUG_ON(ref->bytenr != bytenr);
518 BUG_ON(ref->num_bytes != num_bytes);
519 if (ref->root) {
520 if (is_fstree(ref->root)) {
521 if (ulist_add(roots, ref->root, 0, 0) < 0)
522 goto enomem;
524 } else {
525 ret = find_parent_roots(roots, ref->parent);
526 if (ret < 0)
527 goto enomem;
531 * When we leave this inner loop, node is set
532 * to next in our tree and will be turned into
533 * a ref object up top
535 node = rb_next(node);
536 if (node)
537 ref = rb_entry(node, struct ref, bytenr_node);
538 } while (node && ref->bytenr == bytenr);
540 if (search_subvol)
541 print_subvol_info(search_subvol, bytenr, num_bytes,
542 roots);
544 if (!do_qgroups)
545 continue;
547 if (account_one_extent(roots, bytenr, num_bytes))
548 goto enomem;
551 ulist_free(roots);
552 return 0;
553 enomem:
554 error("Out of memory while accounting refs for qgroups");
555 return -ENOMEM;
558 static u64 resolve_one_root(u64 bytenr)
560 struct ref *ref = find_ref_bytenr(bytenr);
562 BUG_ON(ref == NULL);
564 if (ref->root)
565 return ref->root;
566 return resolve_one_root(ref->parent);
569 static inline struct tree_block *unode_tree_block(struct ulist_node *unode)
571 return u64_to_ptr(unode->aux);
573 static inline u64 unode_bytenr(struct ulist_node *unode)
575 return unode->val;
578 static int alloc_tree_block(u64 bytenr, u64 num_bytes, int level)
580 struct tree_block *block = calloc(1, sizeof(*block));
582 if (block) {
583 block->num_bytes = num_bytes;
584 block->level = level;
585 if (ulist_add(tree_blocks, bytenr, ptr_to_u64(block), 0) >= 0)
586 return 0;
587 free(block);
589 return -ENOMEM;
592 static void free_tree_blocks(void)
594 struct ulist_iterator uiter;
595 struct ulist_node *unode;
597 if (!tree_blocks)
598 return;
600 ULIST_ITER_INIT(&uiter);
601 while ((unode = ulist_next(tree_blocks, &uiter)))
602 free(unode_tree_block(unode));
603 ulist_free(tree_blocks);
604 tree_blocks = NULL;
607 #ifdef QGROUP_VERIFY_DEBUG
608 static void print_tree_block(u64 bytenr, struct tree_block *block)
610 struct ref *ref;
611 struct rb_node *node;
613 printf("tree block: %llu\t\tlevel: %d\n", (unsigned long long)bytenr,
614 block->level);
616 ref = find_ref_bytenr(bytenr);
617 node = &ref->bytenr_node;
618 do {
619 print_ref(ref);
620 node = rb_next(node);
621 if (node)
622 ref = rb_entry(node, struct ref, bytenr_node);
623 } while (node && ref->bytenr == bytenr);
625 printf("\n");
628 static void print_all_tree_blocks(void)
630 struct ulist_iterator uiter;
631 struct ulist_node *unode;
633 if (!tree_blocks)
634 return;
636 printf("Listing all found interior tree nodes:\n");
638 ULIST_ITER_INIT(&uiter);
639 while ((unode = ulist_next(tree_blocks, &uiter)))
640 print_tree_block(unode_bytenr(unode), unode_tree_block(unode));
642 #endif
644 static int add_refs_for_leaf_items(struct extent_buffer *eb, u64 ref_parent)
646 int nr, i;
647 int extent_type;
648 u64 bytenr, num_bytes;
649 struct btrfs_key key;
650 struct btrfs_disk_key disk_key;
651 struct btrfs_file_extent_item *fi;
653 nr = btrfs_header_nritems(eb);
654 for (i = 0; i < nr; i++) {
655 btrfs_item_key(eb, &disk_key, i);
656 btrfs_disk_key_to_cpu(&key, &disk_key);
658 if (key.type != BTRFS_EXTENT_DATA_KEY)
659 continue;
661 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
662 /* filter out: inline, disk_bytenr == 0, compressed?
663 * not if we can avoid it */
664 extent_type = btrfs_file_extent_type(eb, fi);
666 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
667 continue;
669 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
670 if (!bytenr)
671 continue;
673 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
674 if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
675 return ENOMEM;
678 return 0;
681 static int travel_tree(struct btrfs_fs_info *info, struct btrfs_root *root,
682 u64 bytenr, u64 num_bytes, u64 ref_parent)
684 int ret, nr, i;
685 struct extent_buffer *eb;
686 u64 new_bytenr;
687 u64 new_num_bytes;
689 // printf("travel_tree: bytenr: %llu\tnum_bytes: %llu\tref_parent: %llu\n",
690 // bytenr, num_bytes, ref_parent);
692 eb = read_tree_block(root, bytenr, num_bytes, 0);
693 if (!extent_buffer_uptodate(eb))
694 return -EIO;
696 ret = 0;
697 /* Don't add a ref for our starting tree block to itself */
698 if (bytenr != ref_parent) {
699 if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
700 return ENOMEM;
703 if (btrfs_is_leaf(eb)) {
704 ret = add_refs_for_leaf_items(eb, ref_parent);
705 goto out;
709 * Interior nodes are tuples of (key, bytenr) where key is the
710 * leftmost key in the tree block pointed to by bytenr. We
711 * don't have to care about key here, just follow the bytenr
712 * pointer.
714 nr = btrfs_header_nritems(eb);
715 for (i = 0; i < nr; i++) {
716 new_bytenr = btrfs_node_blockptr(eb, i);
717 new_num_bytes = root->nodesize;
719 ret = travel_tree(info, root, new_bytenr, new_num_bytes,
720 ref_parent);
723 out:
724 free_extent_buffer(eb);
725 return ret;
728 static int add_refs_for_implied(struct btrfs_fs_info *info, u64 bytenr,
729 struct tree_block *block)
731 int ret;
732 u64 root_id = resolve_one_root(bytenr);
733 struct btrfs_root *root;
734 struct btrfs_key key;
736 key.objectid = root_id;
737 key.type = BTRFS_ROOT_ITEM_KEY;
738 key.offset = (u64)-1;
741 * XXX: Don't free the root object as we don't know whether it
742 * came off our fs_info struct or not.
744 root = btrfs_read_fs_root(info, &key);
745 if (!root || IS_ERR(root))
746 return ENOENT;
748 ret = travel_tree(info, root, bytenr, block->num_bytes, bytenr);
749 if (ret)
750 return ret;
752 return 0;
756 * Place shared refs in the ref tree for each child of an interior tree node.
758 static int map_implied_refs(struct btrfs_fs_info *info)
760 int ret = 0;
761 struct ulist_iterator uiter;
762 struct ulist_node *unode;
764 ULIST_ITER_INIT(&uiter);
765 while ((unode = ulist_next(tree_blocks, &uiter))) {
766 ret = add_refs_for_implied(info, unode_bytenr(unode),
767 unode_tree_block(unode));
768 if (ret)
769 goto out;
771 out:
772 return ret;
776 * insert a new root into the tree. returns the existing root entry
777 * if one is already there. qgroupid is used
778 * as the key
780 static int insert_count(struct qgroup_count *qc)
782 struct rb_node **p = &counts.root.rb_node;
783 struct rb_node *parent = NULL;
784 struct qgroup_count *curr;
786 while (*p) {
787 parent = *p;
788 curr = rb_entry(parent, struct qgroup_count, rb_node);
790 if (qc->qgroupid < curr->qgroupid)
791 p = &(*p)->rb_left;
792 else if (qc->qgroupid > curr->qgroupid)
793 p = &(*p)->rb_right;
794 else
795 return EEXIST;
797 counts.num_groups++;
798 rb_link_node(&qc->rb_node, parent, p);
799 rb_insert_color(&qc->rb_node, &counts.root);
800 return 0;
803 static struct qgroup_count *find_count(u64 qgroupid)
805 struct rb_node *n = counts.root.rb_node;
806 struct qgroup_count *count;
808 while (n) {
809 count = rb_entry(n, struct qgroup_count, rb_node);
811 if (qgroupid < count->qgroupid)
812 n = n->rb_left;
813 else if (qgroupid > count->qgroupid)
814 n = n->rb_right;
815 else
816 return count;
818 return NULL;
821 static struct qgroup_count *alloc_count(struct btrfs_disk_key *key,
822 struct extent_buffer *leaf,
823 struct btrfs_qgroup_info_item *disk)
825 struct qgroup_count *c = calloc(1, sizeof(*c));
826 struct qgroup_info *item;
828 if (c) {
829 c->qgroupid = btrfs_disk_key_offset(key);
830 c->key = *key;
832 item = &c->diskinfo;
833 item->referenced = btrfs_qgroup_info_referenced(leaf, disk);
834 item->referenced_compressed =
835 btrfs_qgroup_info_referenced_compressed(leaf, disk);
836 item->exclusive = btrfs_qgroup_info_exclusive(leaf, disk);
837 item->exclusive_compressed =
838 btrfs_qgroup_info_exclusive_compressed(leaf, disk);
839 INIT_LIST_HEAD(&c->groups);
840 INIT_LIST_HEAD(&c->members);
841 INIT_LIST_HEAD(&c->bad_list);
843 if (insert_count(c)) {
844 free(c);
845 c = NULL;
848 return c;
851 static int add_qgroup_relation(u64 memberid, u64 parentid)
853 struct qgroup_count *member;
854 struct qgroup_count *parent;
855 struct btrfs_qgroup_list *list;
857 if (memberid > parentid)
858 return 0;
860 member = find_count(memberid);
861 parent = find_count(parentid);
862 if (!member || !parent)
863 return -ENOENT;
865 list = calloc(1, sizeof(*list));
866 if (!list)
867 return -ENOMEM;
869 list->group = parent;
870 list->member = member;
871 list_add_tail(&list->next_group, &member->groups);
872 list_add_tail(&list->next_member, &parent->members);
874 return 0;
877 static void read_qgroup_status(struct btrfs_path *path,
878 struct counts_tree *counts)
880 struct btrfs_qgroup_status_item *status_item;
881 u64 flags;
883 status_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
884 struct btrfs_qgroup_status_item);
885 flags = btrfs_qgroup_status_flags(path->nodes[0], status_item);
887 * Since qgroup_inconsist/rescan_running is just one bit,
888 * assign value directly won't work.
890 counts->qgroup_inconsist = !!(flags &
891 BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT);
892 counts->rescan_running = !!(flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN);
895 static int load_quota_info(struct btrfs_fs_info *info)
897 int ret;
898 struct btrfs_root *root = info->quota_root;
899 struct btrfs_root *tmproot;
900 struct btrfs_path path;
901 struct btrfs_key key;
902 struct btrfs_key root_key;
903 struct btrfs_disk_key disk_key;
904 struct extent_buffer *leaf;
905 struct btrfs_qgroup_info_item *item;
906 struct qgroup_count *count;
907 int i, nr;
908 int search_relations = 0;
910 loop:
912 * Do 2 passes, the first allocates group counts and reads status
913 * items. The 2nd pass picks up relation items and glues them to their
914 * respective count structures.
916 btrfs_init_path(&path);
918 key.offset = 0;
919 key.objectid = search_relations ? 0 : BTRFS_QGROUP_RELATION_KEY;
920 key.type = 0;
922 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
923 if (ret < 0) {
924 fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
925 goto out;
928 while (1) {
929 leaf = path.nodes[0];
931 nr = btrfs_header_nritems(leaf);
932 for(i = 0; i < nr; i++) {
933 btrfs_item_key(leaf, &disk_key, i);
934 btrfs_disk_key_to_cpu(&key, &disk_key);
936 if (search_relations) {
937 if (key.type == BTRFS_QGROUP_RELATION_KEY) {
938 ret = add_qgroup_relation(key.objectid,
939 key.offset);
940 if (ret) {
941 error("out of memory");
942 goto out;
945 continue;
948 if (key.type == BTRFS_QGROUP_STATUS_KEY) {
949 read_qgroup_status(&path, &counts);
950 continue;
954 * At this point, we can ignore anything that
955 * isn't a qgroup info.
957 if (key.type != BTRFS_QGROUP_INFO_KEY)
958 continue;
960 item = btrfs_item_ptr(leaf, i,
961 struct btrfs_qgroup_info_item);
963 count = alloc_count(&disk_key, leaf, item);
964 if (!count) {
965 ret = ENOMEM;
966 fprintf(stderr, "ERROR: out of memory\n");
967 goto out;
970 root_key.objectid = key.offset;
971 root_key.type = BTRFS_ROOT_ITEM_KEY;
972 root_key.offset = (u64)-1;
973 tmproot = btrfs_read_fs_root_no_cache(info, &root_key);
974 if (tmproot && !IS_ERR(tmproot)) {
975 count->subvol_exists = 1;
976 btrfs_free_fs_root(tmproot);
980 ret = btrfs_next_leaf(root, &path);
981 if (ret != 0)
982 break;
985 ret = 0;
986 btrfs_release_path(&path);
988 if (!search_relations) {
989 search_relations = 1;
990 goto loop;
993 out:
994 return ret;
997 static int add_inline_refs(struct btrfs_fs_info *info,
998 struct extent_buffer *ei_leaf, int slot,
999 u64 bytenr, u64 num_bytes, int meta_item)
1001 struct btrfs_extent_item *ei;
1002 struct btrfs_extent_inline_ref *iref;
1003 struct btrfs_extent_data_ref *dref;
1004 u64 flags, root_obj, offset, parent;
1005 u32 item_size = btrfs_item_size_nr(ei_leaf, slot);
1006 int type;
1007 unsigned long end;
1008 unsigned long ptr;
1010 ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
1011 flags = btrfs_extent_flags(ei_leaf, ei);
1013 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_item) {
1014 struct btrfs_tree_block_info *tbinfo;
1015 tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
1016 iref = (struct btrfs_extent_inline_ref *)(tbinfo + 1);
1017 } else {
1018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
1021 ptr = (unsigned long)iref;
1022 end = (unsigned long)ei + item_size;
1023 while (ptr < end) {
1024 iref = (struct btrfs_extent_inline_ref *)ptr;
1026 parent = root_obj = 0;
1027 offset = btrfs_extent_inline_ref_offset(ei_leaf, iref);
1028 type = btrfs_extent_inline_ref_type(ei_leaf, iref);
1029 switch (type) {
1030 case BTRFS_TREE_BLOCK_REF_KEY:
1031 root_obj = offset;
1032 break;
1033 case BTRFS_EXTENT_DATA_REF_KEY:
1034 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1035 root_obj = btrfs_extent_data_ref_root(ei_leaf, dref);
1036 break;
1037 case BTRFS_SHARED_DATA_REF_KEY:
1038 case BTRFS_SHARED_BLOCK_REF_KEY:
1039 parent = offset;
1040 break;
1041 default:
1042 return 1;
1045 if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
1046 return ENOMEM;
1048 ptr += btrfs_extent_inline_ref_size(type);
1051 return 0;
1054 static int add_keyed_ref(struct btrfs_fs_info *info,
1055 struct btrfs_key *key,
1056 struct extent_buffer *leaf, int slot,
1057 u64 bytenr, u64 num_bytes)
1059 u64 root_obj = 0, parent = 0;
1060 struct btrfs_extent_data_ref *dref;
1062 switch(key->type) {
1063 case BTRFS_TREE_BLOCK_REF_KEY:
1064 root_obj = key->offset;
1065 break;
1066 case BTRFS_EXTENT_DATA_REF_KEY:
1067 dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref);
1068 root_obj = btrfs_extent_data_ref_root(leaf, dref);
1069 break;
1070 case BTRFS_SHARED_DATA_REF_KEY:
1071 case BTRFS_SHARED_BLOCK_REF_KEY:
1072 parent = key->offset;
1073 break;
1074 default:
1075 return 1;
1078 if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
1079 return ENOMEM;
1081 return 0;
1085 * return value of 0 indicates leaf or not meta data. The code that
1086 * calls this does not need to make a distinction between the two as
1087 * it is only concerned with intermediate blocks which will always
1088 * have level > 0.
1090 static int get_tree_block_level(struct btrfs_key *key,
1091 struct extent_buffer *ei_leaf,
1092 int slot)
1094 int level = 0;
1095 int meta_key = key->type == BTRFS_METADATA_ITEM_KEY;
1096 u64 flags;
1097 struct btrfs_extent_item *ei;
1099 ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
1100 flags = btrfs_extent_flags(ei_leaf, ei);
1102 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_key) {
1103 struct btrfs_tree_block_info *tbinfo;
1104 tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
1105 level = btrfs_tree_block_level(ei_leaf, tbinfo);
1106 } else if (meta_key) {
1107 /* skinny metadata */
1108 level = (int)key->offset;
1110 return level;
1114 * Walk the extent tree, allocating a ref item for every ref and
1115 * storing it in the bytenr tree.
1117 static int scan_extents(struct btrfs_fs_info *info,
1118 u64 start, u64 end)
1120 int ret, i, nr, level;
1121 struct btrfs_root *root = info->extent_root;
1122 struct btrfs_key key;
1123 struct btrfs_path path;
1124 struct btrfs_disk_key disk_key;
1125 struct extent_buffer *leaf;
1126 u64 bytenr = 0, num_bytes = 0;
1128 btrfs_init_path(&path);
1130 key.objectid = start;
1131 key.type = 0;
1132 key.offset = 0;
1134 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1135 if (ret < 0) {
1136 fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
1137 goto out;
1139 path.reada = 1;
1141 while (1) {
1142 leaf = path.nodes[0];
1144 nr = btrfs_header_nritems(leaf);
1145 for(i = 0; i < nr; i++) {
1146 btrfs_item_key(leaf, &disk_key, i);
1147 btrfs_disk_key_to_cpu(&key, &disk_key);
1149 if (key.objectid < start)
1150 continue;
1152 if (key.objectid > end)
1153 goto done;
1155 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
1156 key.type == BTRFS_METADATA_ITEM_KEY) {
1157 int meta = 0;
1159 tot_extents_scanned++;
1161 bytenr = key.objectid;
1162 num_bytes = key.offset;
1163 if (key.type == BTRFS_METADATA_ITEM_KEY) {
1164 num_bytes = info->extent_root->nodesize;
1165 meta = 1;
1168 ret = add_inline_refs(info, leaf, i, bytenr,
1169 num_bytes, meta);
1170 if (ret)
1171 goto out;
1173 level = get_tree_block_level(&key, leaf, i);
1174 if (level) {
1175 if (alloc_tree_block(bytenr, num_bytes,
1176 level))
1177 return ENOMEM;
1180 continue;
1183 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1184 continue;
1185 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1186 continue;
1189 * Keyed refs should come after their extent
1190 * item in the tree. As a result, the value of
1191 * bytenr and num_bytes should be unchanged
1192 * from the above block that catches the
1193 * original extent item.
1195 BUG_ON(key.objectid != bytenr);
1197 ret = add_keyed_ref(info, &key, leaf, i, bytenr,
1198 num_bytes);
1199 if (ret)
1200 goto out;
1203 ret = btrfs_next_leaf(root, &path);
1204 if (ret != 0) {
1205 if (ret < 0) {
1206 fprintf(stderr,
1207 "ERROR: Next leaf failed: %d\n", ret);
1208 goto out;
1210 break;
1213 done:
1214 ret = 0;
1215 out:
1216 btrfs_release_path(&path);
1218 return ret;
1221 static void print_fields(u64 bytes, u64 bytes_compressed, char *prefix,
1222 char *type)
1224 printf("%s\t\t%s %llu %s compressed %llu\n",
1225 prefix, type, (unsigned long long)bytes, type,
1226 (unsigned long long)bytes_compressed);
1229 static void print_fields_signed(long long bytes,
1230 long long bytes_compressed,
1231 char *prefix, char *type)
1233 printf("%s\t\t%s %lld %s compressed %lld\n",
1234 prefix, type, bytes, type, bytes_compressed);
1237 static inline int qgroup_printable(struct qgroup_count *c)
1239 return !!(c->subvol_exists || btrfs_qgroup_level(c->qgroupid));
1242 static int report_qgroup_difference(struct qgroup_count *count, int verbose)
1244 int is_different;
1245 struct qgroup_info *info = &count->info;
1246 struct qgroup_info *disk = &count->diskinfo;
1247 long long excl_diff = info->exclusive - disk->exclusive;
1248 long long ref_diff = info->referenced - disk->referenced;
1250 is_different = excl_diff || ref_diff;
1252 if (verbose || (is_different && qgroup_printable(count))) {
1253 printf("Counts for qgroup id: %llu/%llu %s\n",
1254 btrfs_qgroup_level(count->qgroupid),
1255 btrfs_qgroup_subvid(count->qgroupid),
1256 is_different ? "are different" : "");
1258 print_fields(info->referenced, info->referenced_compressed,
1259 "our:", "referenced");
1260 print_fields(disk->referenced, disk->referenced_compressed,
1261 "disk:", "referenced");
1262 if (ref_diff)
1263 print_fields_signed(ref_diff, ref_diff,
1264 "diff:", "referenced");
1265 print_fields(info->exclusive, info->exclusive_compressed,
1266 "our:", "exclusive");
1267 print_fields(disk->exclusive, disk->exclusive_compressed,
1268 "disk:", "exclusive");
1269 if (excl_diff)
1270 print_fields_signed(excl_diff, excl_diff,
1271 "diff:", "exclusive");
1274 return is_different;
1277 void report_qgroups(int all)
1279 struct rb_node *node;
1280 struct qgroup_count *c;
1282 if (!repair && counts.rescan_running) {
1283 if (all) {
1284 printf(
1285 "Qgroup rescan is running, a difference in qgroup counts is expected\n");
1286 } else {
1287 printf(
1288 "Qgroup rescan is running, qgroups will not be printed.\n");
1289 return;
1292 if (counts.qgroup_inconsist && !counts.rescan_running)
1293 fprintf(stderr, "Qgroup are marked as inconsistent.\n");
1294 node = rb_first(&counts.root);
1295 while (node) {
1296 c = rb_entry(node, struct qgroup_count, rb_node);
1298 if (report_qgroup_difference(c, all))
1299 list_add_tail(&c->bad_list, &bad_qgroups);
1301 node = rb_next(node);
1305 void free_qgroup_counts(void)
1307 struct rb_node *node;
1308 struct qgroup_count *c;
1309 struct btrfs_qgroup_list *glist, *tmpglist;
1311 node = rb_first(&counts.root);
1312 while (node) {
1313 c = rb_entry(node, struct qgroup_count, rb_node);
1315 list_del(&c->bad_list);
1317 list_for_each_entry_safe(glist, tmpglist, &c->groups,
1318 next_group) {
1319 list_del(&glist->next_group);
1320 list_del(&glist->next_member);
1321 free(glist);
1323 list_for_each_entry_safe(glist, tmpglist, &c->members,
1324 next_group) {
1325 list_del(&glist->next_group);
1326 list_del(&glist->next_member);
1327 free(glist);
1330 node = rb_next(node);
1332 rb_erase(&c->rb_node, &counts.root);
1333 free(c);
1337 int qgroup_verify_all(struct btrfs_fs_info *info)
1339 int ret;
1341 if (!info->quota_enabled)
1342 return 0;
1344 tree_blocks = ulist_alloc(0);
1345 if (!tree_blocks) {
1346 fprintf(stderr,
1347 "ERROR: Out of memory while allocating ulist.\n");
1348 return ENOMEM;
1351 ret = load_quota_info(info);
1352 if (ret) {
1353 fprintf(stderr, "ERROR: Loading qgroups from disk: %d\n", ret);
1354 goto out;
1358 * Put all extent refs into our rbtree
1360 ret = scan_extents(info, 0, ~0ULL);
1361 if (ret) {
1362 fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
1363 goto out;
1366 ret = map_implied_refs(info);
1367 if (ret) {
1368 fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
1369 goto out;
1372 ret = account_all_refs(1, 0);
1374 out:
1376 * Don't free the qgroup count records as they will be walked
1377 * later via the print function.
1379 free_tree_blocks();
1380 free_ref_tree(&by_bytenr);
1381 return ret;
1384 static void __print_subvol_info(u64 bytenr, u64 num_bytes, struct ulist *roots)
1386 int n = roots->nnodes;
1387 struct ulist_iterator uiter;
1388 struct ulist_node *unode;
1390 printf("%llu\t%llu\t%d\t", bytenr, num_bytes, n);
1392 ULIST_ITER_INIT(&uiter);
1393 while ((unode = ulist_next(roots, &uiter))) {
1394 printf("%llu ", unode->val);
1396 printf("\n");
1399 static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
1400 struct ulist *roots)
1402 struct ulist_iterator uiter;
1403 struct ulist_node *unode;
1405 ULIST_ITER_INIT(&uiter);
1406 while ((unode = ulist_next(roots, &uiter))) {
1407 BUG_ON(unode->val == 0ULL);
1408 if (unode->val == subvolid) {
1409 __print_subvol_info(bytenr, num_bytes, roots);
1410 return;
1417 int print_extent_state(struct btrfs_fs_info *info, u64 subvol)
1419 int ret;
1421 tree_blocks = ulist_alloc(0);
1422 if (!tree_blocks) {
1423 fprintf(stderr,
1424 "ERROR: Out of memory while allocating ulist.\n");
1425 return ENOMEM;
1429 * Put all extent refs into our rbtree
1431 ret = scan_extents(info, 0, ~0ULL);
1432 if (ret) {
1433 fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
1434 goto out;
1437 ret = map_implied_refs(info);
1438 if (ret) {
1439 fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
1440 goto out;
1443 printf("Offset\t\tLen\tRoot Refs\tRoots\n");
1444 ret = account_all_refs(0, subvol);
1446 out:
1447 free_tree_blocks();
1448 free_ref_tree(&by_bytenr);
1449 return ret;
1452 static int repair_qgroup_info(struct btrfs_fs_info *info,
1453 struct qgroup_count *count)
1455 int ret;
1456 struct btrfs_root *root = info->quota_root;
1457 struct btrfs_trans_handle *trans;
1458 struct btrfs_path *path;
1459 struct btrfs_qgroup_info_item *info_item;
1460 struct btrfs_key key;
1462 printf("Repair qgroup %llu/%llu\n", btrfs_qgroup_level(count->qgroupid),
1463 btrfs_qgroup_subvid(count->qgroupid));
1465 path = btrfs_alloc_path();
1466 if (!path)
1467 return -ENOMEM;
1469 trans = btrfs_start_transaction(root, 1);
1470 if (IS_ERR(trans)) {
1471 btrfs_free_path(path);
1472 return PTR_ERR(trans);
1475 key.objectid = 0;
1476 key.type = BTRFS_QGROUP_INFO_KEY;
1477 key.offset = count->qgroupid;
1478 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1479 if (ret) {
1480 error("Could not find disk item for qgroup %llu/%llu.\n",
1481 btrfs_qgroup_level(count->qgroupid),
1482 btrfs_qgroup_subvid(count->qgroupid));
1483 if (ret > 0)
1484 ret = -ENOENT;
1485 goto out;
1488 info_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1489 struct btrfs_qgroup_info_item);
1491 btrfs_set_qgroup_info_generation(path->nodes[0], info_item,
1492 trans->transid);
1494 btrfs_set_qgroup_info_referenced(path->nodes[0], info_item,
1495 count->info.referenced);
1496 btrfs_set_qgroup_info_referenced_compressed(path->nodes[0], info_item,
1497 count->info.referenced_compressed);
1499 btrfs_set_qgroup_info_exclusive(path->nodes[0], info_item,
1500 count->info.exclusive);
1501 btrfs_set_qgroup_info_exclusive_compressed(path->nodes[0], info_item,
1502 count->info.exclusive_compressed);
1504 btrfs_mark_buffer_dirty(path->nodes[0]);
1506 out:
1507 btrfs_commit_transaction(trans, root);
1508 btrfs_free_path(path);
1510 return ret;
1513 static int repair_qgroup_status(struct btrfs_fs_info *info)
1515 int ret;
1516 struct btrfs_root *root = info->quota_root;
1517 struct btrfs_trans_handle *trans;
1518 struct btrfs_path *path;
1519 struct btrfs_key key;
1520 struct btrfs_qgroup_status_item *status_item;
1522 printf("Repair qgroup status item\n");
1524 path = btrfs_alloc_path();
1525 if (!path)
1526 return -ENOMEM;
1528 trans = btrfs_start_transaction(root, 1);
1529 if (IS_ERR(trans)) {
1530 btrfs_free_path(path);
1531 return PTR_ERR(trans);
1534 key.objectid = 0;
1535 key.type = BTRFS_QGROUP_STATUS_KEY;
1536 key.offset = 0;
1537 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1538 if (ret) {
1539 error("Could not find qgroup status item\n");
1540 if (ret > 0)
1541 ret = -ENOENT;
1542 goto out;
1545 status_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1546 struct btrfs_qgroup_status_item);
1547 btrfs_set_qgroup_status_flags(path->nodes[0], status_item,
1548 BTRFS_QGROUP_STATUS_FLAG_ON);
1549 btrfs_set_qgroup_status_rescan(path->nodes[0], status_item, 0);
1550 btrfs_set_qgroup_status_generation(path->nodes[0], status_item,
1551 trans->transid);
1553 btrfs_mark_buffer_dirty(path->nodes[0]);
1555 out:
1556 btrfs_commit_transaction(trans, root);
1557 btrfs_free_path(path);
1559 return ret;
1562 int repair_qgroups(struct btrfs_fs_info *info, int *repaired)
1564 int ret;
1565 struct qgroup_count *count, *tmpcount;
1567 *repaired = 0;
1569 if (!repair)
1570 return 0;
1572 list_for_each_entry_safe(count, tmpcount, &bad_qgroups, bad_list) {
1573 ret = repair_qgroup_info(info, count);
1574 if (ret) {
1575 goto out;
1578 (*repaired)++;
1580 list_del_init(&count->bad_list);
1584 * Do this step last as we want the latest transaction id on
1585 * our qgroup status to avoid a (useless) warning after
1586 * mount.
1588 if (*repaired || counts.qgroup_inconsist || counts.rescan_running) {
1589 ret = repair_qgroup_status(info);
1590 if (ret)
1591 goto out;
1593 (*repaired)++;
1596 out:
1597 return ret;