tsan: add proper cfi directives to assembly code
[blocksruntime.git] / lib / tsan / rtl / tsan_rtl.h
blob4d17f3ae4b6cbd95b4aac812e026579b1efc89c4
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
12 // Main internal TSan header file.
14 // Ground rules:
15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 // function-scope locals)
17 // - All functions/classes/etc reside in namespace __tsan, except for those
18 // declared in tsan_interface.h.
19 // - Platform-specific files should be used instead of ifdefs (*).
20 // - No system headers included in header files (*).
21 // - Platform specific headres included only into platform-specific files (*).
23 // (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_libignore.h"
33 #include "sanitizer_common/sanitizer_suppressions.h"
34 #include "sanitizer_common/sanitizer_thread_registry.h"
35 #include "tsan_clock.h"
36 #include "tsan_defs.h"
37 #include "tsan_flags.h"
38 #include "tsan_sync.h"
39 #include "tsan_trace.h"
40 #include "tsan_vector.h"
41 #include "tsan_report.h"
42 #include "tsan_platform.h"
43 #include "tsan_mutexset.h"
45 #if SANITIZER_WORDSIZE != 64
46 # error "ThreadSanitizer is supported only on 64-bit platforms"
47 #endif
49 namespace __tsan {
51 // Descriptor of user's memory block.
52 struct MBlock {
54 u64 mtx : 1; // must be first
55 u64 lst : 44;
56 u64 stk : 31; // on word boundary
57 u64 tid : kTidBits;
58 u64 siz : 128 - 1 - 31 - 44 - kTidBits; // 39
60 u64 raw[2];
62 void Init(uptr siz, u32 tid, u32 stk) {
63 raw[0] = raw[1] = 0;
64 raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
65 raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
66 raw[0] |= (u64)stk << (1 + 44);
67 raw[1] |= (u64)stk >> (64 - 44 - 1);
68 DCHECK_EQ(Size(), siz);
69 DCHECK_EQ(Tid(), tid);
70 DCHECK_EQ(StackId(), stk);
73 u32 Tid() const {
74 return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
77 uptr Size() const {
78 return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
81 u32 StackId() const {
82 return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
85 SyncVar *ListHead() const {
86 return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
89 void ListPush(SyncVar *v) {
90 SyncVar *lst = ListHead();
91 v->next = lst;
92 u64 x = (u64)v ^ (u64)lst;
93 x = (x >> 3) << 1;
94 raw[0] ^= x;
95 DCHECK_EQ(ListHead(), v);
98 SyncVar *ListPop() {
99 SyncVar *lst = ListHead();
100 SyncVar *nxt = lst->next;
101 lst->next = 0;
102 u64 x = (u64)lst ^ (u64)nxt;
103 x = (x >> 3) << 1;
104 raw[0] ^= x;
105 DCHECK_EQ(ListHead(), nxt);
106 return lst;
109 void ListReset() {
110 SyncVar *lst = ListHead();
111 u64 x = (u64)lst;
112 x = (x >> 3) << 1;
113 raw[0] ^= x;
114 DCHECK_EQ(ListHead(), 0);
117 void Lock();
118 void Unlock();
119 typedef GenericScopedLock<MBlock> ScopedLock;
122 #ifndef TSAN_GO
123 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
124 const uptr kAllocatorSpace = 0x7d0000000000ULL;
125 #else
126 const uptr kAllocatorSpace = 0x7d0000000000ULL;
127 #endif
128 const uptr kAllocatorSize = 0x10000000000ULL; // 1T.
130 struct MapUnmapCallback;
131 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
132 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
133 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
134 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
135 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
136 SecondaryAllocator> Allocator;
137 Allocator *allocator();
138 #endif
140 void TsanCheckFailed(const char *file, int line, const char *cond,
141 u64 v1, u64 v2);
143 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
145 // FastState (from most significant bit):
146 // ignore : 1
147 // tid : kTidBits
148 // epoch : kClkBits
149 // unused : -
150 // history_size : 3
151 class FastState {
152 public:
153 FastState(u64 tid, u64 epoch) {
154 x_ = tid << kTidShift;
155 x_ |= epoch << kClkShift;
156 DCHECK_EQ(tid, this->tid());
157 DCHECK_EQ(epoch, this->epoch());
158 DCHECK_EQ(GetIgnoreBit(), false);
161 explicit FastState(u64 x)
162 : x_(x) {
165 u64 raw() const {
166 return x_;
169 u64 tid() const {
170 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
171 return res;
174 u64 TidWithIgnore() const {
175 u64 res = x_ >> kTidShift;
176 return res;
179 u64 epoch() const {
180 u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
181 return res;
184 void IncrementEpoch() {
185 u64 old_epoch = epoch();
186 x_ += 1 << kClkShift;
187 DCHECK_EQ(old_epoch + 1, epoch());
188 (void)old_epoch;
191 void SetIgnoreBit() { x_ |= kIgnoreBit; }
192 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
193 bool GetIgnoreBit() const { return (s64)x_ < 0; }
195 void SetHistorySize(int hs) {
196 CHECK_GE(hs, 0);
197 CHECK_LE(hs, 7);
198 x_ = (x_ & ~7) | hs;
201 int GetHistorySize() const {
202 return (int)(x_ & 7);
205 void ClearHistorySize() {
206 x_ &= ~7;
209 u64 GetTracePos() const {
210 const int hs = GetHistorySize();
211 // When hs == 0, the trace consists of 2 parts.
212 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
213 return epoch() & mask;
216 private:
217 friend class Shadow;
218 static const int kTidShift = 64 - kTidBits - 1;
219 static const int kClkShift = kTidShift - kClkBits;
220 static const u64 kIgnoreBit = 1ull << 63;
221 static const u64 kFreedBit = 1ull << 63;
222 u64 x_;
225 // Shadow (from most significant bit):
226 // freed : 1
227 // tid : kTidBits
228 // epoch : kClkBits
229 // is_atomic : 1
230 // is_read : 1
231 // size_log : 2
232 // addr0 : 3
233 class Shadow : public FastState {
234 public:
235 explicit Shadow(u64 x)
236 : FastState(x) {
239 explicit Shadow(const FastState &s)
240 : FastState(s.x_) {
241 ClearHistorySize();
244 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
245 DCHECK_EQ(x_ & 31, 0);
246 DCHECK_LE(addr0, 7);
247 DCHECK_LE(kAccessSizeLog, 3);
248 x_ |= (kAccessSizeLog << 3) | addr0;
249 DCHECK_EQ(kAccessSizeLog, size_log());
250 DCHECK_EQ(addr0, this->addr0());
253 void SetWrite(unsigned kAccessIsWrite) {
254 DCHECK_EQ(x_ & kReadBit, 0);
255 if (!kAccessIsWrite)
256 x_ |= kReadBit;
257 DCHECK_EQ(kAccessIsWrite, IsWrite());
260 void SetAtomic(bool kIsAtomic) {
261 DCHECK(!IsAtomic());
262 if (kIsAtomic)
263 x_ |= kAtomicBit;
264 DCHECK_EQ(IsAtomic(), kIsAtomic);
267 bool IsAtomic() const {
268 return x_ & kAtomicBit;
271 bool IsZero() const {
272 return x_ == 0;
275 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
276 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
277 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
278 return shifted_xor == 0;
281 static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
282 u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
283 return masked_xor == 0;
286 static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
287 unsigned kS2AccessSize) {
288 bool res = false;
289 u64 diff = s1.addr0() - s2.addr0();
290 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
291 // if (s1.addr0() + size1) > s2.addr0()) return true;
292 if (s1.size() > -diff) res = true;
293 } else {
294 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
295 if (kS2AccessSize > diff) res = true;
297 DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
298 DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
299 return res;
302 // The idea behind the offset is as follows.
303 // Consider that we have 8 bool's contained within a single 8-byte block
304 // (mapped to a single shadow "cell"). Now consider that we write to the bools
305 // from a single thread (which we consider the common case).
306 // W/o offsetting each access will have to scan 4 shadow values at average
307 // to find the corresponding shadow value for the bool.
308 // With offsetting we start scanning shadow with the offset so that
309 // each access hits necessary shadow straight off (at least in an expected
310 // optimistic case).
311 // This logic works seamlessly for any layout of user data. For example,
312 // if user data is {int, short, char, char}, then accesses to the int are
313 // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
314 // from a single thread won't need to scan all 8 shadow values.
315 unsigned ComputeSearchOffset() {
316 return x_ & 7;
318 u64 addr0() const { return x_ & 7; }
319 u64 size() const { return 1ull << size_log(); }
320 bool IsWrite() const { return !IsRead(); }
321 bool IsRead() const { return x_ & kReadBit; }
323 // The idea behind the freed bit is as follows.
324 // When the memory is freed (or otherwise unaccessible) we write to the shadow
325 // values with tid/epoch related to the free and the freed bit set.
326 // During memory accesses processing the freed bit is considered
327 // as msb of tid. So any access races with shadow with freed bit set
328 // (it is as if write from a thread with which we never synchronized before).
329 // This allows us to detect accesses to freed memory w/o additional
330 // overheads in memory access processing and at the same time restore
331 // tid/epoch of free.
332 void MarkAsFreed() {
333 x_ |= kFreedBit;
336 bool IsFreed() const {
337 return x_ & kFreedBit;
340 bool GetFreedAndReset() {
341 bool res = x_ & kFreedBit;
342 x_ &= ~kFreedBit;
343 return res;
346 bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
347 // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
348 bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
349 | (kIsAtomic << kAtomicShift));
350 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
351 return v;
354 bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
355 bool v = ((x_ >> kReadShift) & 3)
356 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
357 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
358 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
359 return v;
362 bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
363 bool v = ((x_ >> kReadShift) & 3)
364 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
365 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
366 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
367 return v;
370 private:
371 static const u64 kReadShift = 5;
372 static const u64 kReadBit = 1ull << kReadShift;
373 static const u64 kAtomicShift = 6;
374 static const u64 kAtomicBit = 1ull << kAtomicShift;
376 u64 size_log() const { return (x_ >> 3) & 3; }
378 static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
379 if (s1.addr0() == s2.addr0()) return true;
380 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
381 return true;
382 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
383 return true;
384 return false;
388 struct SignalContext;
390 struct JmpBuf {
391 uptr sp;
392 uptr mangled_sp;
393 uptr *shadow_stack_pos;
396 // This struct is stored in TLS.
397 struct ThreadState {
398 FastState fast_state;
399 // Synch epoch represents the threads's epoch before the last synchronization
400 // action. It allows to reduce number of shadow state updates.
401 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
402 // if we are processing write to X from the same thread at epoch=200,
403 // we do nothing, because both writes happen in the same 'synch epoch'.
404 // That is, if another memory access does not race with the former write,
405 // it does not race with the latter as well.
406 // QUESTION: can we can squeeze this into ThreadState::Fast?
407 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
408 // taken by epoch between synchs.
409 // This way we can save one load from tls.
410 u64 fast_synch_epoch;
411 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
412 // We do not distinguish beteween ignoring reads and writes
413 // for better performance.
414 int ignore_reads_and_writes;
415 int ignore_sync;
416 // C/C++ uses fixed size shadow stack embed into Trace.
417 // Go uses malloc-allocated shadow stack with dynamic size.
418 uptr *shadow_stack;
419 uptr *shadow_stack_end;
420 uptr *shadow_stack_pos;
421 u64 *racy_shadow_addr;
422 u64 racy_state[2];
423 MutexSet mset;
424 ThreadClock clock;
425 #ifndef TSAN_GO
426 AllocatorCache alloc_cache;
427 InternalAllocatorCache internal_alloc_cache;
428 Vector<JmpBuf> jmp_bufs;
429 #endif
430 u64 stat[StatCnt];
431 const int tid;
432 const int unique_id;
433 int in_rtl;
434 bool in_symbolizer;
435 bool in_ignored_lib;
436 bool is_alive;
437 bool is_freeing;
438 bool is_vptr_access;
439 const uptr stk_addr;
440 const uptr stk_size;
441 const uptr tls_addr;
442 const uptr tls_size;
444 DeadlockDetector deadlock_detector;
446 bool in_signal_handler;
447 SignalContext *signal_ctx;
449 #ifndef TSAN_GO
450 u32 last_sleep_stack_id;
451 ThreadClock last_sleep_clock;
452 #endif
454 // Set in regions of runtime that must be signal-safe and fork-safe.
455 // If set, malloc must not be called.
456 int nomalloc;
458 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
459 uptr stk_addr, uptr stk_size,
460 uptr tls_addr, uptr tls_size);
463 Context *CTX();
465 #ifndef TSAN_GO
466 extern THREADLOCAL char cur_thread_placeholder[];
467 INLINE ThreadState *cur_thread() {
468 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
470 #endif
472 class ThreadContext : public ThreadContextBase {
473 public:
474 explicit ThreadContext(int tid);
475 ~ThreadContext();
476 ThreadState *thr;
477 #ifdef TSAN_GO
478 StackTrace creation_stack;
479 #else
480 u32 creation_stack_id;
481 #endif
482 SyncClock sync;
483 // Epoch at which the thread had started.
484 // If we see an event from the thread stamped by an older epoch,
485 // the event is from a dead thread that shared tid with this thread.
486 u64 epoch0;
487 u64 epoch1;
489 // Override superclass callbacks.
490 void OnDead();
491 void OnJoined(void *arg);
492 void OnFinished();
493 void OnStarted(void *arg);
494 void OnCreated(void *arg);
495 void OnReset();
498 struct RacyStacks {
499 MD5Hash hash[2];
500 bool operator==(const RacyStacks &other) const {
501 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
502 return true;
503 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
504 return true;
505 return false;
509 struct RacyAddress {
510 uptr addr_min;
511 uptr addr_max;
514 struct FiredSuppression {
515 ReportType type;
516 uptr pc;
517 Suppression *supp;
520 struct Context {
521 Context();
523 bool initialized;
525 SyncTab synctab;
527 Mutex report_mtx;
528 int nreported;
529 int nmissed_expected;
530 atomic_uint64_t last_symbolize_time_ns;
532 ThreadRegistry *thread_registry;
534 Vector<RacyStacks> racy_stacks;
535 Vector<RacyAddress> racy_addresses;
536 // Number of fired suppressions may be large enough.
537 InternalMmapVector<FiredSuppression> fired_suppressions;
539 Flags flags;
541 u64 stat[StatCnt];
542 u64 int_alloc_cnt[MBlockTypeCount];
543 u64 int_alloc_siz[MBlockTypeCount];
546 class ScopedInRtl {
547 public:
548 ScopedInRtl();
549 ~ScopedInRtl();
550 private:
551 ThreadState*thr_;
552 int in_rtl_;
553 int errno_;
556 class ScopedReport {
557 public:
558 explicit ScopedReport(ReportType typ);
559 ~ScopedReport();
561 void AddStack(const StackTrace *stack);
562 void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
563 const MutexSet *mset);
564 void AddThread(const ThreadContext *tctx);
565 void AddMutex(const SyncVar *s);
566 void AddLocation(uptr addr, uptr size);
567 void AddSleep(u32 stack_id);
568 void SetCount(int count);
570 const ReportDesc *GetReport() const;
572 private:
573 Context *ctx_;
574 ReportDesc *rep_;
576 void AddMutex(u64 id);
578 ScopedReport(const ScopedReport&);
579 void operator = (const ScopedReport&);
582 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
584 void StatAggregate(u64 *dst, u64 *src);
585 void StatOutput(u64 *stat);
586 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
587 if (kCollectStats)
588 thr->stat[typ] += n;
590 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
591 if (kCollectStats)
592 thr->stat[typ] = n;
595 void MapShadow(uptr addr, uptr size);
596 void MapThreadTrace(uptr addr, uptr size);
597 void DontNeedShadowFor(uptr addr, uptr size);
598 void InitializeShadowMemory();
599 void InitializeInterceptors();
600 void InitializeLibIgnore();
601 void InitializeDynamicAnnotations();
603 void ReportRace(ThreadState *thr);
604 bool OutputReport(Context *ctx,
605 const ScopedReport &srep,
606 const ReportStack *suppress_stack1 = 0,
607 const ReportStack *suppress_stack2 = 0,
608 const ReportLocation *suppress_loc = 0);
609 bool IsFiredSuppression(Context *ctx,
610 const ScopedReport &srep,
611 const StackTrace &trace);
612 bool IsExpectedReport(uptr addr, uptr size);
613 void PrintMatchedBenignRaces();
614 bool FrameIsInternal(const ReportStack *frame);
615 ReportStack *SkipTsanInternalFrames(ReportStack *ent);
617 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
618 # define DPrintf Printf
619 #else
620 # define DPrintf(...)
621 #endif
623 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
624 # define DPrintf2 Printf
625 #else
626 # define DPrintf2(...)
627 #endif
629 u32 CurrentStackId(ThreadState *thr, uptr pc);
630 void PrintCurrentStack(ThreadState *thr, uptr pc);
631 void PrintCurrentStackSlow(); // uses libunwind
633 void Initialize(ThreadState *thr);
634 int Finalize(ThreadState *thr);
636 SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
637 bool write_lock, bool create);
638 SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
640 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
641 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
642 void MemoryAccessImpl(ThreadState *thr, uptr addr,
643 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
644 u64 *shadow_mem, Shadow cur);
645 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
646 uptr size, bool is_write);
647 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
648 uptr size, uptr step, bool is_write);
649 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
650 int size, bool kAccessIsWrite, bool kIsAtomic);
652 const int kSizeLog1 = 0;
653 const int kSizeLog2 = 1;
654 const int kSizeLog4 = 2;
655 const int kSizeLog8 = 3;
657 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
658 uptr addr, int kAccessSizeLog) {
659 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
662 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
663 uptr addr, int kAccessSizeLog) {
664 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
667 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
668 uptr addr, int kAccessSizeLog) {
669 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
672 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
673 uptr addr, int kAccessSizeLog) {
674 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
677 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
678 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
679 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
681 void ThreadIgnoreBegin(ThreadState *thr);
682 void ThreadIgnoreEnd(ThreadState *thr);
683 void ThreadIgnoreSyncBegin(ThreadState *thr);
684 void ThreadIgnoreSyncEnd(ThreadState *thr);
686 void FuncEntry(ThreadState *thr, uptr pc);
687 void FuncExit(ThreadState *thr);
689 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
690 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
691 void ThreadFinish(ThreadState *thr);
692 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
693 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
694 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
695 void ThreadFinalize(ThreadState *thr);
696 void ThreadSetName(ThreadState *thr, const char *name);
697 int ThreadCount(ThreadState *thr);
698 void ProcessPendingSignals(ThreadState *thr);
700 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
701 bool rw, bool recursive, bool linker_init);
702 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
703 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1);
704 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
705 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
706 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
707 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
709 void Acquire(ThreadState *thr, uptr pc, uptr addr);
710 void AcquireGlobal(ThreadState *thr, uptr pc);
711 void Release(ThreadState *thr, uptr pc, uptr addr);
712 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
713 void AfterSleep(ThreadState *thr, uptr pc);
714 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
715 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
716 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
717 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
719 // The hacky call uses custom calling convention and an assembly thunk.
720 // It is considerably faster that a normal call for the caller
721 // if it is not executed (it is intended for slow paths from hot functions).
722 // The trick is that the call preserves all registers and the compiler
723 // does not treat it as a call.
724 // If it does not work for you, use normal call.
725 #if TSAN_DEBUG == 0
726 // The caller may not create the stack frame for itself at all,
727 // so we create a reserve stack frame for it (1024b must be enough).
728 #define HACKY_CALL(f) \
729 __asm__ __volatile__("sub $1024, %%rsp;" \
730 ".cfi_adjust_cfa_offset 1024;" \
731 ".hidden " #f "_thunk;" \
732 "call " #f "_thunk;" \
733 "add $1024, %%rsp;" \
734 ".cfi_adjust_cfa_offset -1024;" \
735 ::: "memory", "cc");
736 #else
737 #define HACKY_CALL(f) f()
738 #endif
740 void TraceSwitch(ThreadState *thr);
741 uptr TraceTopPC(ThreadState *thr);
742 uptr TraceSize();
743 uptr TraceParts();
744 Trace *ThreadTrace(int tid);
746 extern "C" void __tsan_trace_switch();
747 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
748 EventType typ, u64 addr) {
749 DCHECK_GE((int)typ, 0);
750 DCHECK_LE((int)typ, 7);
751 DCHECK_EQ(GetLsb(addr, 61), addr);
752 StatInc(thr, StatEvents);
753 u64 pos = fs.GetTracePos();
754 if (UNLIKELY((pos % kTracePartSize) == 0)) {
755 #ifndef TSAN_GO
756 HACKY_CALL(__tsan_trace_switch);
757 #else
758 TraceSwitch(thr);
759 #endif
761 Event *trace = (Event*)GetThreadTrace(fs.tid());
762 Event *evp = &trace[pos];
763 Event ev = (u64)addr | ((u64)typ << 61);
764 *evp = ev;
767 } // namespace __tsan
769 #endif // TSAN_RTL_H