
An introduction to error correcting codes

Martin Leslie

Department of Mathematics
University of Arizona

April 10, 2009



First example: ISBNs

I A 10 digit ISBN (International Standard Book Number) is of
the form

x1x2 · · ·x9x10

where

x10 ≡ 1x1 + 2x2 + 3x3 + . . .+ 9x9 (mod 11).

I This ‘parity digit’, x10, is used to detect input errors. In
particular, if a valid ISBN has exactly one digit altered or two
adjacent digits transposed it will no longer be a valid ISBN.



Some algebra: a field of order 2

I A field is a ‘set of numbers’ that has a 0, a 1 and is such that
you can add, subtract, multiply and divide.

I For example: Q, R, C. These are all infinite fields.

I But there are finite fields as well. For example F2 = {0, 1}
with addition and multiplication modulo 2.

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

I We can work with polynomials and also do linear algebra over
any field.



Communication

I Communication systems look something like

Coding and Capacity 3

Figure 1.1 Basic digital communication (or storage) system block diagram due to Shannon.

channel code invented, the (7, 4) Hamming code, by which we mean a code that
assigns to each 4-bit information word a 7-bit codeword according to a recipe
specified by R. Hamming in 1950 [2]. This will introduce to the novice some of
the elements of channel codes and will serve as a launching point for subsequent
chapters. After the introduction to the (7, 4) Hamming code, we present code
(and decoder) design criteria and code performance measures, all of which are
used throughout this book.

1.2 Channel Coding Overview

The large number of coding techniques for error prevention may be partitioned
into the set of automatic request for repeat (ARQ) schemes and the set of forward
error correction (FEC) schemes. In ARQ schemes, the role of the code is simply to
reliably detect whether or not the received word (e.g., received packet) contains
one or more errors. In the event a received word does contain one or more errors,
a request for retransmission of the same word is sent out from the receiver back to
the transmitter. The codes in this case are said to be error detection codes. In FEC
schemes, the code is endowed with characteristics that permit error correction
through an appropriately devised decoding algorithm. The codes for this approach
are said to be error correction codes, or sometimes, error control codes. There also
exist hybrid FEC/ARQ schemes in which a request for retransmission occurs if
the decoder fails to correct the errors incurred over the channel and detects this
fact. Note that this is a natural approach for data storage systems: if the FEC
decoder fails, an attempt to re-read the data is made. The codes in this case are
said to be error-detection-and-correction codes.

I Today we’re just talking about channel coding so our picture is



A noisy channel

I The channel model we will use is the binary symmetric
channel (BSC) which takes a binary input and with probability
p < 1/2 switches it.

I This is a good model for deep space communications but not
so good for hard drives or for terrestrial communications
where errors often come in bursts.



Repetition codes

I We’re sending binary messages over a channel which
introduces some errors. How can we try to make sure we can
correct these errors?

I The first idea is to use a repetition code: repeat each bit n
times for some odd n. Then decode the message using
majority rule.

I For example if n = 3 we would encode the message 10011 as
111 000 000 111 111. If an error, say in the 5th position, is
added by the channel we will receive 111 010 000 111 111 and
successfully decode the message. If we’re unlucky and have
two errors in the same three bit codeword then we will decode
the message incorrectly.



How good are repetition codes?

I The information rate of this repetition code is R = 1/n
information bits/code bit.

I The chance of incorrectly decoding a given block is the
chance that there is an error in more than half of the n bits
sent over the channel. This is

pcw =
∑

n/2<i≤n

(
n

i

)
pi(1− p)n−i.

I As n→∞ this probability goes to zero. But also the
information rate goes to zero. Can we do better?



Noisy–channel coding theorem

Theorem (Shannon, 1948)

A given channel has a capacity C. If R < C then for all ε > 0 there
exists a code with information rate R and probability of decoding a
block incorrectly less than ε. This is not true for R > C.



BSC capacity

I The capacity of the binary symmetric channel with crossover
probability p is

C = 1 + p log2(p) + (1− p) log2(1− p).

0 0.25 0.5

0.25

0.5

0.75

1



Linear codes

I An [n, k]2 code C is a k-dimensional linear subspace of Fn
2 .

I The basis vectors of C are the rows of the generating matrix
G.

I With this matrix we can carry out encoding by the function
from Fk

2 → Fn
2 that sends u 7→ uG.

I Then the information rate is R = k/n.



The Hamming [7,4] code

I Let G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1


I Then the codewords of C are

0000 000 1000 110 0010 111
1111 111 0100 011 1001 011

1010 001 1100 101
1101 000 1110 010
0110 100 0111 001
0011 010 1011 100
0001 101 0101 110



The Parity Check Matrix

I If a code C has generating matrix G = (I P ) then define its

parity check matrix to be HT =
(
P
I

)
.

I Notice that GHT = P + P = 0.

I So if c ∈ C we know c = uG and thus

cHT = uGHT = 0.

I For the Hamming [7,4] code we have HT =



1 1 0
0 1 1
1 1 1
1 0 1
1 0 0
0 1 0
0 0 1





Hamming distance

I The Hamming distance dH(u, v) for u, v ∈ Fn
2 is the number

of places in which u and v differ.

I This satisfies all the axioms of a metric on Fn
2 .

I The Hamming weight is the number of 1’s in a vector,

wt(u) = dH(u, 0).

I Define d to be the minimum Hamming distance between any
two vectors in C. Then

d = min
u6=v∈C

dH(u, v) = min
u∈C\{0}

wt(u).

I Then we talk about an [n, k, d]2 code.



Nearest neighbour decoding

I If we receive u ∈ Fn
2 we decode it to an element v of C for

which dH(u, v) is minimum.

I It’s possible that this is incorrect decoding but it is certainly
the best choice on average.

I If d is the minimum distance of C then we can correct at least
t =

⌊
d−1
2

⌋
errors.



Syndrome decoding

I If we send codeword c but the channel adds error e, we receive
r = c+ e and then can find the syndrome
rHT = (c+ e)HT = eHT .

I We can find syndromes for all the possible errors (elements of
Fn

2 ) added by the channel and for each syndrome find a most
likely error that leads to it - one with minimum weight.

I This gives us a syndrome table which allows us to decode
more easily. For example for the Hamming [7,4] code we have

syndrome 000 110 011 111 101 100 010 001

likely error 0 e1 e2 e3 e4 e5 e6 e7



The Hamming bound

I We want [n, k, d] codes with large R = k/n and large d.
These two requirements pull in opposite directions.

I In particular, by thinking about packing spheres of radius d
inside Fn

2 we get the Hamming bound

2k

(
t∑

i=0

(
n

i

))
≤ 2n.

I If the Hamming bound is satisfied with equality we say a code
is perfect. This means that there is never any ambiguity about
where to decode a received message to: every element of Fn

2

is inside exactly one radius d sphere centred at a codeword.



Some (families of) codes

I The repetition code for odd n is a [n, 1, n] code.

I The parity check code for even n is an [n, n− 1, 1] code

I Hamming codes are [2m − 1, 2m −m− 1, 3] codes

I Golay codes

I BCH codes, Reed-Muller codes, Reed-Solomon codes

I Algebraic geometry codes

I Convolutional codes

I Turbo codes

I Low Density Parity Check (LDPC) codes



More finite fields

I It is possible to construct finite fields of order 2m for each
positive integer m. We construct F4 = F22 .

I To do this we take α to be a root of x2 +x+1 so α2 = α+1.

I Then F4 = F2[α] = {0, 1, α, α+ 1} = {0, 1, α, α2} with
operations

+ 0 1 α α+ 1
0 0 1 α α+ 1
1 1 0 α+ 1 α
α α α+ 1 0 1

α+ 1 α+ 1 α 1 0

× 1 α α+ 1
1 1 α α+ 1
α α α+ 1 1

α+ 1 α+ 1 1 α



A Reed-Solomon code

I Take F28 = F256 = {0, 1, α, . . . , α254} for our finite field.
Each element of this field can be described with 8 bits.

I Consider our messages to be polynomials over F256 of degree
≤ 222. Then encode such an f to a codeword(

f(1), f(α), . . . , f(α254)
)
.

I The resulting code is a [255, 223]256 linear code.

I The way to think about this code is that the redundancy is
coming from giving 255 different values of a degree 222
polynomial when in fact 223 values determine it.



How many errors can it correct?

I If d is minimum weight then some f has 255− d zeros so
255− d ≤ deg(f) ≤ 222 and thus d ≥ 33.

I So we can correct at least (33− 1)/2 = 16 errors.

I These errors are errors in F256 so if there are multiple errors
within a byte it only counts as one error. This makes
Reed-Solomon codes good at correcting burst errors.



CDs
I CDs use a “cross interleaved”,“shortened” version of this

Reed-Solomon code that can correct error bursts of up to
3500 bits (2.4mm radial distance).



The End

I Any questions?


