Add higher power function to Super Expo
[betaflight.git] / src / main / flight / pid.c
blob11fb52abb565a1f55549b15de2a2501d91340461
1 /*
2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
18 #include <stdbool.h>
19 #include <stdint.h>
20 #include <math.h>
22 #include <platform.h>
24 #include "build_config.h"
25 #include "debug.h"
27 #include "common/axis.h"
28 #include "common/maths.h"
29 #include "common/filter.h"
31 #include "drivers/sensor.h"
32 #include "drivers/gyro_sync.h"
34 #include "drivers/accgyro.h"
35 #include "sensors/sensors.h"
36 #include "sensors/gyro.h"
37 #include "sensors/acceleration.h"
39 #include "rx/rx.h"
41 #include "io/rc_controls.h"
42 #include "io/gps.h"
44 #include "flight/pid.h"
45 #include "flight/imu.h"
46 #include "flight/navigation.h"
47 #include "flight/gtune.h"
49 #include "config/runtime_config.h"
51 extern uint8_t motorCount;
52 uint32_t targetPidLooptime;
54 int16_t axisPID[3];
56 #ifdef BLACKBOX
57 int32_t axisPID_P[3], axisPID_I[3], axisPID_D[3];
58 #endif
60 // PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction
61 uint8_t PIDweight[3];
63 static int32_t errorGyroI[3];
64 #ifndef SKIP_PID_LUXFLOAT
65 static float errorGyroIf[3];
66 #endif
68 static void pidMultiWiiRewrite(const pidProfile_t *pidProfile, const controlRateConfig_t *controlRateConfig,
69 uint16_t max_angle_inclination, const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig);
71 pidControllerFuncPtr pid_controller = pidMultiWiiRewrite; // which pid controller are we using, defaultMultiWii
73 void setTargetPidLooptime(uint8_t pidProcessDenom) {
74 targetPidLooptime = targetLooptime * pidProcessDenom;
77 float calculateExpoPlus(int axis, const rxConfig_t *rxConfig) {
78 float propFactor;
79 float superExpoFactor;
81 if (axis == YAW && !rxConfig->superExpoYawMode) {
82 propFactor = 1.0f;
83 } else {
84 float rcFactor = (ABS(rcCommand[axis]) / 500.0f);
86 superExpoFactor = (axis == YAW) ? rxConfig->superExpoFactorYaw : rxConfig->superExpoFactor;
87 propFactor = constrainf(1.0f - ((superExpoFactor / 100.0f) * rcFactor * rcFactor * rcFactor), 0.0f, 1.0f);
90 return propFactor;
93 uint16_t getDynamicKp(int axis, const pidProfile_t *pidProfile) {
94 uint16_t dynamicKp;
96 uint32_t dynamicFactor = constrain(ABS(rcCommand[axis] << 8) / DYNAMIC_PTERM_STICK_THRESHOLD, 0, 1 << 7);
98 dynamicKp = ((pidProfile->P8[axis] << 8) + (pidProfile->P8[axis] * dynamicFactor)) >> 8;
100 return dynamicKp;
103 uint16_t getDynamicKi(int axis, const pidProfile_t *pidProfile) {
104 uint16_t dynamicKi;
105 uint16_t resetRate;
107 resetRate = (axis == YAW) ? pidProfile->yawItermIgnoreRate : pidProfile->rollPitchItermIgnoreRate;
109 uint32_t dynamicFactor = (1 << 8) - constrain((ABS(gyroADC[axis]) << 6) / resetRate, 0, 1 << 8);
111 dynamicKi = (pidProfile->I8[axis] * dynamicFactor) >> 8;
113 return dynamicKi;
116 void pidResetErrorGyroState(void)
118 int axis;
120 for (axis = 0; axis < 3; axis++) {
121 errorGyroI[axis] = 0;
122 #ifndef SKIP_PID_LUXFLOAT
123 errorGyroIf[axis] = 0.0f;
124 #endif
128 float getdT (void) {
129 static float dT;
130 if (!dT) dT = (float)targetPidLooptime * 0.000001f;
132 return dT;
135 const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
137 static filterStatePt1_t deltaFilterState[3];
138 static filterStatePt1_t yawFilterState;
140 #ifndef SKIP_PID_LUXFLOAT
141 static void pidLuxFloat(const pidProfile_t *pidProfile, const controlRateConfig_t *controlRateConfig,
142 uint16_t max_angle_inclination, const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig)
144 float RateError, AngleRate, gyroRate;
145 float ITerm,PTerm,DTerm;
146 static float lastRate[3];
147 float delta;
148 int axis;
149 float horizonLevelStrength = 1;
151 float tpaFactor = PIDweight[0] / 100.0f; // tpa is now float
153 // Scaling factors for Pids to match rewrite and use same defaults
154 static const float luxPTermScale = 1.0f / 128;
155 static const float luxITermScale = 1000000.0f / 0x1000000;
156 static const float luxDTermScale = (0.000001f * (float)0xFFFF) / 508;
158 if (FLIGHT_MODE(HORIZON_MODE)) {
159 // Figure out the raw stick positions
160 const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc));
161 const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc));
162 const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle);
163 // Progressively turn off the horizon self level strength as the stick is banged over
164 horizonLevelStrength = (float)(500 - mostDeflectedPos) / 500; // 1 at centre stick, 0 = max stick deflection
165 if(pidProfile->D8[PIDLEVEL] == 0){
166 horizonLevelStrength = 0;
167 } else {
168 horizonLevelStrength = constrainf(((horizonLevelStrength - 1) * (100 / pidProfile->D8[PIDLEVEL])) + 1, 0, 1);
172 // ----------PID controller----------
173 for (axis = 0; axis < 3; axis++) {
174 uint8_t rate = controlRateConfig->rates[axis];
176 if (axis == FD_YAW) {
177 // YAW is always gyro-controlled (MAG correction is applied to rcCommand) 100dps to 1100dps max yaw rate
178 AngleRate = (float)((rate + 47) * rcCommand[YAW]) / 32.0f;
179 } else {
180 // ACRO mode, control is GYRO based, direct sticks control is applied to rate PID
181 AngleRate = (float)((rate + 27) * rcCommand[axis]) / 16.0f; // 200dps to 1200dps max roll/pitch rate
182 if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
183 // calculate error angle and limit the angle to the max inclination
184 #ifdef GPS
185 const float errorAngle = (constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
186 +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]); // 16 bits is ok here
187 #else
188 const float errorAngle = (constrain(2 * rcCommand[axis], -((int) max_angle_inclination),
189 +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis]); // 16 bits is ok here
190 #endif
191 if (FLIGHT_MODE(ANGLE_MODE)) {
192 // ANGLE mode - control is angle based, so control loop is needed
193 AngleRate = errorAngle * pidProfile->P8[PIDLEVEL] / 16.0f;
194 } else {
195 // HORIZON mode - direct sticks control is applied to rate PID
196 // mix up angle error to desired AngleRate to add a little auto-level feel
197 AngleRate += errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 16.0f;
202 gyroRate = gyroADCf[axis] / 4.0f; // gyro output scaled to rewrite scale
204 // --------low-level gyro-based PID. ----------
205 // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
206 // -----calculate scaled error.AngleRates
207 // multiplication of rcCommand corresponds to changing the sticks scaling here
208 RateError = AngleRate - gyroRate;
210 uint16_t kP = (pidProfile->dynamic_pid) ? getDynamicKp(axis, pidProfile) : pidProfile->P8[axis];
212 // -----calculate P component
213 if ((IS_RC_MODE_ACTIVE(BOXSUPEREXPO) && axis != YAW) || (axis == YAW && rxConfig->superExpoYawMode == SUPEREXPO_YAW_ALWAYS)) {
214 PTerm = (luxPTermScale * kP * tpaFactor) * (AngleRate - gyroRate * calculateExpoPlus(axis, rxConfig));
215 } else {
216 PTerm = luxPTermScale * RateError * kP * tpaFactor;
219 // Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply
220 if((motorCount >= 4 && pidProfile->yaw_p_limit) && axis == YAW) {
221 PTerm = constrainf(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit);
224 // -----calculate I component.
225 uint16_t kI = (pidProfile->dynamic_pid) ? getDynamicKi(axis, pidProfile) : pidProfile->I8[axis];
227 errorGyroIf[axis] = constrainf(errorGyroIf[axis] + luxITermScale * RateError * getdT() * kI, -250.0f, 250.0f);
229 // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
230 // I coefficient (I8) moved before integration to make limiting independent from PID settings
231 ITerm = errorGyroIf[axis];
233 //-----calculate D-term
234 if (axis == YAW) {
235 if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT());
237 axisPID[axis] = lrintf(PTerm + ITerm);
239 if (motorCount >= 4) {
240 int16_t yaw_jump_prevention_limit = constrain(YAW_JUMP_PREVENTION_LIMIT_HIGH - (pidProfile->D8[axis] << 3), YAW_JUMP_PREVENTION_LIMIT_LOW, YAW_JUMP_PREVENTION_LIMIT_HIGH);
242 // prevent "yaw jump" during yaw correction
243 axisPID[YAW] = constrain(axisPID[YAW], -yaw_jump_prevention_limit - ABS(rcCommand[YAW]), yaw_jump_prevention_limit + ABS(rcCommand[YAW]));
245 } else {
246 delta = -(gyroRate - lastRate[axis]);
247 lastRate[axis] = gyroRate;
249 // Divide delta by targetLooptime to get differential (ie dr/dt)
250 delta *= (1.0f / getdT());
252 // Filter delta
253 if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1(delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT());
255 DTerm = constrainf(luxDTermScale * delta * (float)pidProfile->D8[axis] * tpaFactor, -300.0f, 300.0f);
257 // -----calculate total PID output
258 axisPID[axis] = constrain(lrintf(PTerm + ITerm + DTerm), -1000, 1000);
261 #ifdef GTUNE
262 if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
263 calculate_Gtune(axis);
265 #endif
267 #ifdef BLACKBOX
268 axisPID_P[axis] = PTerm;
269 axisPID_I[axis] = ITerm;
270 axisPID_D[axis] = DTerm;
271 #endif
274 #endif
276 static void pidMultiWiiRewrite(const pidProfile_t *pidProfile, const controlRateConfig_t *controlRateConfig, uint16_t max_angle_inclination,
277 const rollAndPitchTrims_t *angleTrim, const rxConfig_t *rxConfig)
279 int axis;
280 int32_t PTerm, ITerm, DTerm, delta;
281 static int32_t lastRate[3];
282 int32_t AngleRateTmp, RateError, gyroRate;
284 int8_t horizonLevelStrength = 100;
286 if (FLIGHT_MODE(HORIZON_MODE)) {
287 // Figure out the raw stick positions
288 const int32_t stickPosAil = ABS(getRcStickDeflection(FD_ROLL, rxConfig->midrc));
289 const int32_t stickPosEle = ABS(getRcStickDeflection(FD_PITCH, rxConfig->midrc));
290 const int32_t mostDeflectedPos = MAX(stickPosAil, stickPosEle);
291 // Progressively turn off the horizon self level strength as the stick is banged over
292 horizonLevelStrength = (500 - mostDeflectedPos) / 5; // 100 at centre stick, 0 = max stick deflection
293 // Using Level D as a Sensitivity for Horizon. 0 more level to 255 more rate. Default value of 100 seems to work fine.
294 // For more rate mode increase D and slower flips and rolls will be possible
295 horizonLevelStrength = constrain((10 * (horizonLevelStrength - 100) * (10 * pidProfile->D8[PIDLEVEL] / 80) / 100) + 100, 0, 100);
298 // ----------PID controller----------
299 for (axis = 0; axis < 3; axis++) {
300 uint8_t rate = controlRateConfig->rates[axis];
302 // -----Get the desired angle rate depending on flight mode
303 if (axis == FD_YAW) {
304 // YAW is always gyro-controlled (MAG correction is applied to rcCommand)
305 AngleRateTmp = ((int32_t)(rate + 47) * rcCommand[YAW]) >> 5;
306 } else {
307 AngleRateTmp = ((int32_t)(rate + 27) * rcCommand[axis]) >> 4;
308 if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
309 // calculate error angle and limit the angle to max configured inclination
310 #ifdef GPS
311 const int32_t errorAngle = constrain(2 * rcCommand[axis] + GPS_angle[axis], -((int) max_angle_inclination),
312 +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
313 #else
314 const int32_t errorAngle = constrain(2 * rcCommand[axis], -((int) max_angle_inclination),
315 +max_angle_inclination) - attitude.raw[axis] + angleTrim->raw[axis];
316 #endif
317 if (FLIGHT_MODE(ANGLE_MODE)) {
318 // ANGLE mode - control is angle based, so control loop is needed
319 AngleRateTmp = (errorAngle * pidProfile->P8[PIDLEVEL]) >> 4;
320 } else {
321 // HORIZON mode - mix up angle error to desired AngleRateTmp to add a little auto-level feel,
322 // horizonLevelStrength is scaled to the stick input
323 AngleRateTmp += (errorAngle * pidProfile->I8[PIDLEVEL] * horizonLevelStrength / 100) >> 4;
328 // --------low-level gyro-based PID. ----------
329 // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
330 // -----calculate scaled error.AngleRates
331 // multiplication of rcCommand corresponds to changing the sticks scaling here
332 gyroRate = gyroADC[axis] / 4;
333 RateError = AngleRateTmp - gyroRate;
335 uint16_t kP = (pidProfile->dynamic_pid) ? getDynamicKp(axis, pidProfile) : pidProfile->P8[axis];
337 // -----calculate P component
338 if ((IS_RC_MODE_ACTIVE(BOXSUPEREXPO) && axis != YAW) || (axis == YAW && rxConfig->superExpoYawMode == SUPEREXPO_YAW_ALWAYS)) {
339 PTerm = (kP * PIDweight[axis] / 100) * (AngleRateTmp - (int32_t)(gyroRate * calculateExpoPlus(axis, rxConfig))) >> 7;
340 } else {
341 PTerm = (RateError * kP * PIDweight[axis] / 100) >> 7;
344 // Constrain YAW by yaw_p_limit value if not servo driven in that case servolimits apply
345 if((motorCount >= 4 && pidProfile->yaw_p_limit) && axis == YAW) {
346 PTerm = constrain(PTerm, -pidProfile->yaw_p_limit, pidProfile->yaw_p_limit);
349 // -----calculate I component
350 // there should be no division before accumulating the error to integrator, because the precision would be reduced.
351 // Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
352 // Time correction (to avoid different I scaling for different builds based on average cycle time)
353 // is normalized to cycle time = 2048.
354 uint16_t kI = (pidProfile->dynamic_pid) ? getDynamicKi(axis, pidProfile) : pidProfile->I8[axis];
356 errorGyroI[axis] = errorGyroI[axis] + ((RateError * (uint16_t)targetPidLooptime) >> 11) * kI;
358 // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
359 // I coefficient (I8) moved before integration to make limiting independent from PID settings
360 errorGyroI[axis] = constrain(errorGyroI[axis], (int32_t) - GYRO_I_MAX << 13, (int32_t) + GYRO_I_MAX << 13);
362 ITerm = errorGyroI[axis] >> 13;
364 //-----calculate D-term
365 if (axis == YAW) {
366 if (pidProfile->yaw_lpf_hz) PTerm = filterApplyPt1(PTerm, &yawFilterState, pidProfile->yaw_lpf_hz, getdT());
368 axisPID[axis] = PTerm + ITerm;
370 if (motorCount >= 4) {
371 int16_t yaw_jump_prevention_limit = constrain(YAW_JUMP_PREVENTION_LIMIT_HIGH - (pidProfile->D8[axis] << 3), YAW_JUMP_PREVENTION_LIMIT_LOW, YAW_JUMP_PREVENTION_LIMIT_HIGH);
373 // prevent "yaw jump" during yaw correction
374 axisPID[YAW] = constrain(axisPID[YAW], -yaw_jump_prevention_limit - ABS(rcCommand[YAW]), yaw_jump_prevention_limit + ABS(rcCommand[YAW]));
376 } else {
377 delta = -(gyroRate - lastRate[axis]);
378 lastRate[axis] = gyroRate;
380 // Divide delta by targetLooptime to get differential (ie dr/dt)
381 delta = (delta * ((uint16_t) 0xFFFF / ((uint16_t)targetPidLooptime >> 4))) >> 5;
383 // Filter delta
384 if (pidProfile->dterm_lpf_hz) delta = filterApplyPt1((float)delta, &deltaFilterState[axis], pidProfile->dterm_lpf_hz, getdT());
386 DTerm = (delta * pidProfile->D8[axis] * PIDweight[axis] / 100) >> 8;
388 // -----calculate total PID output
389 axisPID[axis] = PTerm + ITerm + DTerm;
393 #ifdef GTUNE
394 if (FLIGHT_MODE(GTUNE_MODE) && ARMING_FLAG(ARMED)) {
395 calculate_Gtune(axis);
397 #endif
399 #ifdef BLACKBOX
400 axisPID_P[axis] = PTerm;
401 axisPID_I[axis] = ITerm;
402 axisPID_D[axis] = DTerm;
403 #endif
407 void pidSetController(pidControllerType_e type)
409 switch (type) {
410 default:
411 case PID_CONTROLLER_MWREWRITE:
412 pid_controller = pidMultiWiiRewrite;
413 break;
414 #ifndef SKIP_PID_LUXFLOAT
415 case PID_CONTROLLER_LUX_FLOAT:
416 pid_controller = pidLuxFloat;
417 #endif