From a26acf6337d2ec77595036b8e17b2d859e88e908 Mon Sep 17 00:00:00 2001 From: Sven Verdoolaege Date: Thu, 15 Mar 2007 12:38:22 +0100 Subject: [PATCH] doc: proof of existence of suitable y for primal decomposition: fix notation --- doc/implementation.tex | 26 ++++++++++++++------------ 1 file changed, 14 insertions(+), 12 deletions(-) diff --git a/doc/implementation.tex b/doc/implementation.tex index b00ef45..c5ede0c 100644 --- a/doc/implementation.tex +++ b/doc/implementation.tex @@ -670,7 +670,9 @@ Without loss of generality, we can therefore assume for the purpose of showing that $R \cap S$ is non-empty that the $\vec u_i$ indeed form an orthogonal basis. -In the orthogonal basis, the $\vec b_i^*$ are either $\vec u_i$ or $-\vec u_i$. +In the orthogonal basis, we have $\vec b_i^* = \vec u_i$ +and the corresponding inward normal $\vec N_i$ is either +$\vec u_i$ or $-\vec u_i$. Furthermore, each normal of a facet of $S$ of the first type is of the form $\vec {\tilde n}_{i_kj_k} = a_k \vec u_{i_k} - b_k \vec u_{j_k}$, with $a_k, b_k > 0$ and ${i_k} < {j_k}$, @@ -680,36 +682,36 @@ $a_k, b_k > 0$. If $\vec {\tilde n}_{i_kj_k} = a_k \vec u_{i_k} - b_k \vec u_{j_k}$ is the normal of a facet of $S$ then either -$(\vec b_{i_k}^*, \vec b_{j_k}*) = (\vec u_{i_k}, \vec u_{j_k})$ +$(\vec N_{i_k}, \vec N_{j_k}) = (\vec u_{i_k}, \vec u_{j_k})$ or -$(\vec b_{i_k}^*, \vec b_{j_k}*) = (-\vec u_{i_k}, -\vec u_{j_k})$. +$(\vec N_{i_k}, \vec N_{j_k}) = (-\vec u_{i_k}, -\vec u_{j_k})$. Otherwise, the facet would not cut $R$. Similarly, if $\vec {\tilde n}_{i_kj_k} = -a_k \vec u_{i_k} - b_k \vec u_{j_k}$ is the normal of a facet of $S$ then either -$(\vec b_{i_k}^*, \vec b_{j_k}*) = (\vec u_{i_k}, -\vec u_{j_k})$ +$(\vec N_{i_k}, \vec N_{j_k}) = (\vec u_{i_k}, -\vec u_{j_k})$ or -$(\vec b_{i_k}^*, \vec b_{j_k}*) = (-\vec u_{i_k}, \vec u_{j_k})$. +$(\vec N_{i_k}, \vec N_{j_k}) = (-\vec u_{i_k}, \vec u_{j_k})$. Assume now that $R \cap S$ is empty, then there exist $\lambda_k, \mu_i \ge 0$ not all zero such that -$\sum_k \lambda_k \vec {\tilde n}_{i_kj_k} + \sum_l \mu_i \vec b_i^* = \vec 0$. +$\sum_k \lambda_k \vec {\tilde n}_{i_kj_k} + \sum_l \mu_i \vec N_i = \vec 0$. Assume $\lambda_k > 0$ for some facet of the first type. -If $\vec b_{j_k}^* = -\vec u_{j_k}$, then $-b_k$ can only be cancelled +If $\vec N_{j_k} = -\vec u_{j_k}$, then $-b_k$ can only be cancelled by another facet $k'$ of the first type with $j_k = i_{k'}$, but then -also $\vec b_{j_{k'}}^* = -\vec u_{j_{k'}}$. Since the $j_k$ are strictly +also $\vec N_{j_{k'}} = -\vec u_{j_{k'}}$. Since the $j_k$ are strictly increasing, this sequence has to stop with a strictly positive coefficient for the largest $\vec u_{j_k}$ in this sequence. -If, on the other hand, $\vec b_{i_k}^* = \vec u_{i_k}$, then $a_k$ can only +If, on the other hand, $\vec N_{i_k} = \vec u_{i_k}$, then $a_k$ can only be cancelled by the normal of a facet $k'$ of the second kind with $i_k = j_{k'}$, but then -$\vec b_{i_{k'}}^* = -\vec u_{i_{k'}}$ and we return to the first case. +$\vec N_{i_{k'}} = -\vec u_{i_{k'}}$ and we return to the first case. Finally, if $\lambda_k > 0$ only for normals of facets of the second type, -then either $\vec b_{i_k}^* = -\vec u_{i_k}$ or $\vec b_{j_k}* = -\vec u_{j_k}$ +then either $\vec N_{i_k} = -\vec u_{i_k}$ or $\vec N_{j_k} = -\vec u_{j_k}$ and so the coefficient of one of these basis vectors will be strictly negative. -That is, the sum of the normals will never by zero and +That is, the sum of the normals will never be zero and the set $R \cap S$ is non-empty. For each ray $\vec u_j$ of cone $K_i$, i.e., the cone with $\vec u_i$ replaced -- 2.11.4.GIT