
pktgen the linux packet generator
Robert Olsson

Uppsala Universitet & SLU

Abstract
pktgen is a high-performance testing tool included in the Linux kernel. Being part of the
kernel is currently best way to test the TX process of device driver and NIC. pktgen can also
be used to generate ordinary packets to test other network devices. Especially of interest is
the use of pktgen to test routers or bridges which use the Linux network stack. Because
pktgen is "in-kernel", it can generate very high packet rates and with few systems saturate
network devices as routers or bridges.

Introduction
This paper describes a novel, major rework of pktgen intended for Linux 2.7 and is now
publicly available for testing. Much of the rework has been focused on multi-threaded, SMP
support. The main goal is to have one pktgen thread per CPU which can then drive one or
more NICs. An in-kernel pseudo driver offers unique possibilities in performance and
capabilities. The trade-off is additional responsibility in terms of robustness and avoiding
kernel bloat (vs user mode application). Pktgen is not an all-in-one testing tool. It offers a
very efficient direct access to the host system NIC driver/chip TX-process and bypasses
most of the Linux networking stack. Because of this, use of pktgen requires root access. The
packet stream generated by pktgen can be used as input to other network devices. Pktgen
also tests other subsystems as packet memory allocators and I/O buses. The author has done
tests sending packets from memory to several GIGE interfaces on different PCI-buses using
several CPU's. Rates > 10 GBit/s have been seen.

Other testing tools
There are lots of good testing tools for network and TCP testing. netperf and ttcp is
probably among the most widespread. Pktgen is not a substitute for those tools and
complements for some types of tests. The test possibilities is described later in this
paper. Worth to note that pktgen cannot do any TCP testing.

Pktgen performance
Performance varies of course with hardware and type of test. Some examples. A single flow
of 870 kpps is seen with a PIII 733 MHz over e1000 NIC (64 byte packets) also with
bcm5703 in rx2600 (Itanium2, 1Ghz). Aggregated performance of >10 Gbit/s (1500 byte
packets) from 12 GIGE NIC's with DUAL XEON 2.66 MHz with hyperthreading
(motherboard with 4 independent PCI-X buses) and of 2.4 Mpps with DUAL1.6 GHz
Opterons. Tests involving lots of alloc's results in lower sending performance see clone_skb.

Many other things also effects performance: PCI bus speed, PCI vs PCI-X, PCI-PCI Bridge,
CPU speed, memory latency, DMA latency, number of MMIO reads/writes etc.

The graph below shows performance on an Dual Opteron 242 with Linux 2.6.7 64 bit with
e1000 driver with Intels DUAL NIC (2 x 82546EB) and Intels QUAD NIC (4 x 82546EB
and PCI-X bridge towards the NIC uses 120 Mhz). Sending small packets involves many
PCI transactions. The graph shows a faster I/O bus gives higher performance as this
probably lowers DMA latency. We also see the effects of the PCI-X bridge as the bridge is
the difference between the DUAL and QUAD boards,

Getting pktgen to run
Enable CONFIG_NET_PKTGEN in the .config, compile and build pktgen.o either in-kernel
or as module, insmod pktgen if needed. Once running, pktgen creates a kernel process on
each running CPU. Each process has CPU-affinity. Devices are added to different processes.
A device can only belong to one process to give full control of the device to CPU
relationship. Modern platforms allow interrupts to be assigned to a CPU (aka IRQ affinity)
and this is necessary to minimize cache-line bouncing. Generally, we want the same CPU
that generates the packets to also take the interrupts given a symmetrical configuration
(several CPUs, several NICs).

On a dual system we see two pktgen processes: [pktgen/0], [pktgen/1]

pktgen is controlled and monitored via the /proc file system. To help document a test
configuration and parameters, shell scripts are recommended to setup and start a test.
Again referring to our dual system, at start up the files below are created in
 /proc/net/pktgen/ kpktgend_0, kpktgend_1, pgctrl

Assigning devices (e.g. eth1, eth2) to kpktgend_X thread, makes instances of the devices
show up in /proc/net/pktgen/ to be further configured at the device level.

A test can be configured to run forever or terminate after a fixed number of packets. Ctrl-C
aborts the run. pktgen sends UDP packets to port 9 (discard port) by default. IP, MAC
addresses, etc. can be configured. Pktgen packets can hence be identified within the kernel
network stack for profiling and testing.

Pktgen versioninfo
The pktgen version is printed in dmesg when pktgen starts. Version info is also in
 /proc/net/pktgen/pgctrl.

133 MHz 100 MHz 66 MHz

0

100

200

300

400

500

600

700

800

900

TX performance with Intel 82546EB
at differnt bus speeds

2-port

4-port

Interrupt affinity
When adding a device to a specific pktgen thread, setting /proc/irq/X/smp_affinity binds the
associated NIC to the same CPU. This reduces cache line bouncing when freeing skb's. The
clone_skb can, to some extent, mitigate the effect of cache line bouncing as skb's is not fully
freed. Some experimentation might be required to achieve maximum performance.

The irq numbers assigned to particular NICs can be seen in /proc/interrupts In the example
below, eth0 uses irq 26, eth1 uses irq 27 etc.

 26: 933931 0 IO-APIC-level eth0
 27: 936392 0 IO-APIC-level eth1
 28: 8 936457 IO-APIC-level eth2
 29: 8 939310 IO-APIC-level eth3

The example below assigns eth0, eth1 to CPU0, and eth2, eth3 to CPU1

echo 1 > /proc/irq/26/smp_affinity
echo 1 > /proc/irq/27/smp_affinity
echo 2 > /proc/irq/28/smp_affinity
echo 2 > /proc/irq/29/smp_affinity

The graph below illustrates the performance effects of affinity assignment of PII system.

Controlling memory allocation
pktgen uses a trick to increment the skb's refcnt to avoid full path of kfree and alloc when
sending identical skb's. This generally gives very high sending rates. For Denial of Service
(DoS) and flow tests this technique can not be used as each skb has to be modified.
The parameter clone_skb controls this functionality. Think of clone_skb as the number of
packet clones followed by a master packet. Setting clone_skb=0 gives no clones just
master packets and clone_skb=1000000 givs 1 master packet followed by one million
clones.

Inter-Packet Gap
pktgen can insert an extra artificial delay (ipg) between packets, the unit is nanoseconds. For
small delays pktgen busywaits before putting this skb on TX-ring this means traffic is still
bursty and somewhat hard to control. Experimentation is probably needed.

TX in Kpps

0

20

40

60

80

100

120

140

160

TX performance IRQ affinty w. tulip
PII 2x350 MHz

Correct Affinity

Incorrect Affinity

Setup examples
Below a very simple example of pktgen sending on eth0. One only needs to bring up the
link.

Keeping link up can be done even with the same box using a crossover cable. If generated
packets should be seen (ie Received) by the same host just set dstmac to match the NIC on
the cross over cable.

On SMP systems, it's better if the TX flow (pktgen thread) is on a different CPU from the
RX flow (set IRQ affinity). One way to test Full Duplex functionality is to connect two
hosts and point the TX flows to each other's NIC.

Next, the box with pktgen is used just a packet source to inject packets into a local or remote
system. Note you need to configure dstmac of localhost or gateway appropriate.

Below pktgen in a forwarding setup. The sink host receives and discards packets. Of course,
forwarding has to be configured on all boxes. It might be possible to use a dummy device
instead of sink box.

Forwarding setup using dual devices. Pktgen can use different threads to achieve high load
in terms of small packets or concurrent flows.

eth0
pktgen/0

eth0
pktgen/0

eth0
pktgen/0

eth1

eth0
pktgen/0

eth0
pktgen/0 Router/

switch
sink

eth1

pktgen/0
Router/
switch

sink
pktgen/1

Viewing pktgen processes
/proc/net/pktgen/kpktgend_0

Name: kpktgend_0 max_before_softirq: 10000
Running:
Stopped: eth1
Result: OK: max_before_softirq=10000

Viewing pktgen devices
'Parm sections holds configured info. Current holds running stats. Result is printed
after run or after interruption for example:

/proc/net/pktgen/eth1

Params: count 10000000 min_pkt_size: 60 max_pkt_size: 60
 frags: 0 ipg: 0 clone_skb: 1000000 ifname: eth1
 flows: 0 flowlen: 0
 dst_min: 10.10.11.2 dst_max:
 src_min: src_max:
 src_mac: 00:00:00:00:00:00 dst_mac: 00:07:E9:13:5C:3E
 udp_src_min: 9 udp_src_max: 9 udp_dst_min: 9 udp_dst_max: 9
 src_mac_count: 0 dst_mac_count: 0
 Flags:
Current:
 pkts-sofar: 10000000 errors: 39192
 started: 1076616572728240us stopped: 1076616585502839us idle: 1037781us
 seq_num: 11 cur_dst_mac_offset: 0 cur_src_mac_offset: 0
 cur_saddr: 0x10a0a0a cur_daddr: 0x20b0a0a
 cur_udp_dst: 9 cur_udp_src: 9
 flows: 0
Result: OK: 12774599(c11736818+d1037781) usec, 10000000 (64byte) 782840pps 382Mb/sec
(400814080bps) errors: 39192

10 millon 64 byte packets were sent on eth1 with a rate at 783 kpps

Configuring
Configuring is done via the /proc interface this is easiest done via scripts. Select a suitable
script and customize. See the section with example scripts in this paper.

ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/examples/
Other examples has been contributed by Grant Grundler <grundler@parisc-linux.org>
ftp://gsyprf10.external.hp.com/pub/pktgen-testing/

Below is short description for current implemented commands.
Pgcontrol commands
start Starts sending on all processes
stop

Process commands
add_device Add a device to process i.e eth0
rem_device_all Removes all devices from this process config
max_before_softirq do_softirq() after sending a number of packets

Device commands
debug
clone_skb Number of identical copies of the same packet

 0 means alloc for each skb. For DoS etc we must
 alloc new skb's.
clear_counters

pkt_size Link packet size minus CRC (4)
min_pkt_size Range pkt_size setting If < max_pkt_size, then
 cycle through the port range.
max_pkt_size
frags Number of fragments for a packet
count Number of packets to send, zero for continious sending
ipg Inter-Packet Gap. Artificial gap inserted between packets
 in nanoseconds
dst IP destination address i.e 10.0.0.1
dst_min Same as dst If < dst_max, then
 cycle through the port range.
dst_max Maximum destination IP. i.e 10.0.0..1

src_min Minimum (or only) source IP. i.e 10.0.0.254 If < src_max, then
 cycle through the port range.
src_max Maximum source IP.
dst6 IPV6 destination address i.e fec0::1
src6 IPV6 source address i.e fec0::2
dstmac MAC destination adress 00:00:00:00:00:00
srcmac MAC source adress. If omitted it's automatically taken

from source device
src_mac_count Number of MACs we'll range through.
 Minimum' MAC is what you set with srcmac.
dst_mac_count Number of MACs we'll range through.
 Minimum' MAC is what you set with dstmac.

flag [name] Flag to modify behaviour.
 IPSRC_RND IP Source is random (between min/max),

 IPDST_RND Etc
TXSIZE_RND
UDPSRC_RND

 UDPDST_RND
MACSRC_RND
MACDST_RND

udp_src_min UDP source port min, If < udp_src_max, then
 cycle through the port range.
udp_src_max UDP source port max.
udp_dst_min UDP destination port min, If < udp_dst_max, then
 cycle through the port range.
udp_dst_max UDP destination port max.

stop Aborts packet injection. Ctrl-C also aborts generator.
Note: It is generally better to use count 0 (forever)
and stop the run with Ctrl-C when multiple devices
are assigned to one pktgen thread.
This avoids some devices finishing before others and
skewing the results since we are primarily interested
in packets over time, not absolute number of packets.

flows Number of concurrent flows
flowlen Length flows

Example scripts
A collection of small tutorial scripts for pktgen are in examples dir.

pktgen.conf-1-1 # 1 CPU 1 dev
pktgen.conf-1-2 # 1 CPU 2 dev
pktgen.conf-2-1 # 2 CPU's 1 dev
pktgen.conf-2-2 # 2 CPU's 2 dev
pktgen.conf-1-1-rdos # 1 CPU 1 dev w. route DoS
pktgen.conf-1-1-ip6 # 1 CPU 1 dev ipv6
pktgen.conf-1-1-ip6-rdos # 1 CPU 1 dev ipv6 w. route DoS
pktgen.conf-1-1-flows # 1 CPU 1 dev multiple flows.

Run in shell: ./pktgen.conf-X-Y It does all the setup including sending. The scripts will need

to be adjusted for actually configuration based on which NICs one wishes to test.

The full pktgen.conf-1-1 script

#! /bin/sh

#modprobe pktgen

function pgset() {
 local result

 echo $1 > $PGDEV

 result=`cat $PGDEV | fgrep "Result: OK:"`
 if ["$result" = ""]; then
 cat $PGDEV | fgrep Result:
 fi
}

function pg() {
 echo inject > $PGDEV
 cat $PGDEV
}

Config Start Here ---

thread config
Each CPU has own thread. Two CPU exammple. We add eth1, eth2 respectivly.

PGDEV=/proc/net/pktgen/kpktgend_0
 echo "Removing all devices"
 pgset "rem_device_all"
 echo "Adding eth1"
 pgset "add_device eth1"
 echo "Setting max_before_softirq 10000"
 pgset "max_before_softirq 10000"

device config
ipg is inter packet gap. 0 means maximum speed.

CLONE_SKB="clone_skb 1000000"
NIC adds 4 bytes CRC
PKT_SIZE="pkt_size 60"

COUNT 0 means forever
#COUNT="count 0"
COUNT="count 10000000"
IPG="ipg 0"

PGDEV=/proc/net/pktgen/eth1
 echo "Configuring $PGDEV"
 pgset "$COUNT"
 pgset "$CLONE_SKB"
 pgset "$PKT_SIZE"
 pgset "$IPG"
 pgset "dst 10.10.11.2"
 pgset "dst_mac 00:04:23:08:91:dc"

Time to run
PGDEV=/proc/net/pktgen/pgctrl

 echo "Running... ctrl^C to stop"

 pgset "start"
 echo "Done"

Result can be vieved in /proc/net/pktgen/eth1

Configuration examples
Below is concentrated anatomi of the example scripts. This should be easy to follow.

pktgen.conf-1-2
A script fragment assigning eth1, eth2 to CPU on single CPU system.

PGDEV=/proc/net/pktgen/kpktgend_0
 pgset "rem_device_all"
 pgset "add_device eth1"
 pgset "add_device eth2"

pktgen.conf-2-2
A script fragment assigning eth1 to CPU0 respectivly eth2 to CPU1.

PGDEV=/proc/net/pktgen/kpktgend_0
 pgset "rem_device_all"
 pgset "add_device eth1"

PGDEV=/proc/net/pktgen/kpktgend_1
 pgset "rem_device_all"
 pgset "add_device eth2"

pktgen.conf-2-1
A script fragment assigning eth1 and eth2 to CPU0 on a dual CPU system.

PGDEV=/proc/net/pktgen/kpktgend_0
 pgset "rem_device_all"
 pgset "add_device eth1"
 pgset "add_device eth2"

PGDEV=/proc/net/pktgen/kpktgend_1
 pgset "rem_device_all"

pktgen.conf-1-2
A script fragment assigning eth1, eth2 to CPU on single CPU system.

PGDEV=/proc/net/pktgen/kpktgend_0
 pgset "rem_device_all"
 pgset "add_device eth1"
 pgset "add_device eth2"

pktgen.conf-1-1-rdos
A script fragment for route DoS testing. Note clone_skb 0

PGDEV=/proc/net/pktgen/eth1
 pgset ”clone_skb 0”
 # Random address with in the min-max range
 # pgset "flag IPDST_RND"
 pgset "dst_min 10.0.0.0"
 pgset "dst_max 10.255.255.255"

pktgen.conf-1-1-ipv6
Setting device ipv6 addresses.
 PGDEV=/proc/net/pktgen/eth1
 pgset "dst6 fec0::1"
 pgset "src6 fec0::2"

pktgen.conf-1-1-ipv6-rdos
 PGDEV=/proc/net/pktgen/eth1
 pgset ”clone_skb 0”
pgset "flag IPDST_RND"
 pgset "dst6_min fec0::1"
 pgset "dst6_max fec0::FFFF:FFFF"

pktgen.conf-1-1-flows
A script fragment for route flow testing. Note clone_skb 0

PGDEV=/proc/net/pktgen/eth1
 pgset ”clone_skb 0”
 # Random address with in the min-max range
 # pgset "flag IPDST_RND"
 pgset "dst_min 10.0.0.0"
 pgset "dst_max 10.255.255.255"
8k Concurrent flows at 4 pkts
 pgset "flows 8192"
 pgset "flowlen 4"

2x4+2 script
Script contributed by Grant Grundler <grundler@parisc-linux.org>
Note! 10 devices

PGDEV=/proc/net/pktgen/kpktgend_0
pgset "rem_device_all"
pgset "add_device eth3"
pgset "add_device eth5"
pgset "add_device eth7"
pgset "add_device eth9"
pgset "add_device eth11"
pgset "max_before_softirq 10000"

PGDEV=/proc/net/pktgen/kpktgend_1
pgset "rem_device_all"
pgset "add_device eth2"
pgset "add_device eth4"
pgset "add_device eth6"
pgset "add_device eth8"
pgset "add_device eth10"
pgset "max_before_softirq 10000"

Configure the individual devices

for i in 2 3 4 5 6 7 8 9 10 11
do
 PGDEV=/proc/net/pktgen/eth$i
 echo "Configuring $PGDEV"

 pgset "clone_skb 500000"
 pgset "min_pkt_size 60"
 pgset "max_pkt_size 60"
 pgset "dst 192.168.3.10$i"
 pgset "dst_mac 01:02:03:04:05:0$i"
 pgset "count 0"
done
echo "Running... ctrl^C to stop"
PGDEV=/proc/net/pktgen/pgctrl
pgset "start"

cat /proc/net/pktgen/eth* | fgrep Result

Some suggestions for driver/chip testing
When testing a particular driver/chip/platform, start with TX flows using pktgen on the host
system to get a sense of which ptkgen parameters are optimal and how well a particular NIC
can perform. Try with a range of packet sizes from 64 bytes to 1500 bytes or jumbo frames.

Then start looking at the RX flows on the target platform. Use pktgen to inject packets
directed at (or routed through) the target system. Again, vary the packet size as with the TX
to get a sense of how many packets a particular NIC (or pair of NICs) can handle a single
flow. To isolate driver/chip from other parts of kernel stack pktgen packets can be counted
and dropped at various points. See section on detecting pktgen packets.

Then repeat the process with additional flows, one at a time. Multiple flows are trickier
since one needs to know I/O bus topology. Typically one tries to balance I/O loads by
installing the NICs in the "right" slots or utilizing built-in devices appropriately.

With multiple flows, it is best to use ^C to stop a test run. This prevents any pktgen thread
from stopping before others and skewing the test results. Sometimes, one NIC will TX
packets faster than another NIC just because of bias in the DMA latency or PCI bus arbiter
(to name only two of several possibilities). Using ^C to stop a test run aborts all pktgen
threads at once and results in a much better snapshot of how many packets a given
configuration could generate. After the ^C is received, pktgen will print the statistics the
same as if the test had been stopped by a counter going to zero.

If the tested system has only one interface the dummy interface can be setup as the output
device. The advantage with this test is we can test the system at very high load and that
results are very reproduceable. Of course other functions as different types of offload and
checksumming should be tested as well.

Other testing aspects
Besides knowing the hardware topology, one also needs to know what other workloads are
expected to be present on the target system when places in production eg real world use. An
FTP server can see quite a different workload than a web server, mail handler, or router etc.

Roughly about 160 kpps seems fill a Gbit link with a FTP server. Of course this can change
but may give some idea about packet per second (pps) versus bandwidth for this type of
production systems.

For routers the number of routes in the routing table is also an issue as lookup times and
other behaviour may be affected. The author has taken snapshots from current Internet
routing table IPV4 and IPV6 (BGP) and formed into scripts for this purpose. The routes are
added via the ip utility so the tested system does not need any routing connectivity nor
routing daemon. Some scripts are available from:

ftp://robur.slu.se/pub/Linux/net-development/inet_routes/

Detecting pktgen packets in kernel
Detecting pktgen packets in kernel. Some times it's very useful to monitor/drop pktgen
packets within the driver/network stack either at ingress or egress. The technique is very
much the same. The little patchlet below drops at ingress and uses an unused counter.

--- linux/net/ipv4/ip_input.c.orig Mon Feb 10 19:37:57 2003
+++ linux/net/ipv4/ip_input.c Fri Feb 21 21:42:45 2003
@@ -372,6 +372,23 @@
 IP_INC_STATS_BH(IpInDiscards);
 goto out;
 }

+ {
+ __u8 *data = (__u8 *) skb->data+20;
+
+ /* src and dst port 9 --> pktgen */
+
+ if(data[0] == 0 &&
+ data[1] == 9 &&
+ data[2] == 0 &&
+ data[3] == 9) {
+ netdev_rx_stat[smp_processor_id()].
fastroute_hit+
+;
+ goto drop;
+ }
+ }
+

 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
 goto inhdr_error;

Thanks to Grant Grundler, Jamal Hadi Salim Jens Låås, Hans Wassen for comments and
useful insights on this paper.

Relevant site ftp://robur.slu.se://pub/Linux/net-development/pktgen-testing/
Good luck with the linux net-development!

