Efficient Implementation of Dynamic Protocol Stacks in
Linux

Ariane Keller
ETH Zurich, Switzerland

Daniel Borkmann
. _ ETH Zurich, Switzerland
ariane.keller@tik.ee.ethz.ch HTWK Leipzig, Germany

Wolfgang Mihlbauer
ETH Zurich, Switzerland
muehlbauer@tik.ee.ethz.ch

dborkma@tik.ee.ethz.ch

ABSTRACT

TODO: rewrite abstract - beginning is copied from an old
paper... Future network architectures aim at solving the
shortcomings of the traditional, static Internet architecture.
In order to provide optimal service they have to adapt their
functionality to different networking situations. This can be
achieved by dividing the networking functionality into mod-
ular blocks and combining them as required at runtime. In
this paper we address the performance aspect of such archi-
tectures and we show that their performance is comparable
with the performance of a standard Linux protocol stack.

1. INTRODUCTION

The fast speed of the growth of the Internet and the huge
effect on everyday life could lead to the thought that it is
perfectly designed and nothing should be changed on the un-
derlying architecture. However, researcher are working con-
tinuously on new protocols that improve the communication
performance for different communication scenarios. Be it in
the area of routing, transport or completely new network
architectures. The evaluation of such protocols has shown
to be difficult as simulations are not realistic enough and
as it is difficult to change anything in standard operating
systems protocol stacks. To overcome this difficulty some
environments dedicated for testing were built, for example
Click [3] and openflow [5] in the routing area or NetFPGA
[4] for the evaluation of hardware implementations.

None of these platforms is specifically designed for evalu-
ating protocols on the end nodes and none of these platforms
are designed for an adaptation of the protocol stack at run
time.

In this paper we present the architecture of a framework
that is designed for the following three goals.

1. Provide a platform in which it is easy to test new proto-
cols on end nodes. In order to simplify testing further
it should not require any specialized hardware.

2. Provide a platform that imposes as little overhead as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ANCS 2011 Brooklyn, New York, USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

possible. This is required that the evaluation of new
protocols delivers meaningful results.

3. Provide a platform which allows us to continuously
optimize the protocol stack. This is especially use-
ful in mobile scenarios where network characteristics
such as delay or packet loss change frequently. Being
able to use a protocol optimized for the given network
characteristics might improve the connection quality
drastically.

Our architecture is based on the ideas of ANA (Autonomic
Network Architecture) [2]. In ANA networking functional-
ity is divided into functional blocks that can be arranged as
required. ANA does not impose any protocols to be used
other than Ethernet rather a path through several func-
tional blocks is built dynamically whenever an application
is started. While there exists an implementation of ANA
it was only designed as a proof of concept architecture and
is not useful for the performance evaluation of actual pro-
tocols. Whereas in our work achieving a good performance
was one of the main driving goals.

2. LIGHTWEIGHT AUTONOMIC NETWORK

ARCHITECTURE (LANA)

LANA provides a framework for setting up protocol stacks
not known by todays standard operating systems. Within
LANA it is also possible to change the protocol stack at
runtime, without communication teardown or application
support. These properties build the basis for a networking
system that provides protocol stacks that are better targeted
to a networking situation than the well known TCP/IP pro-
tocol stack.

Similar to the protocol stack of Linux’ networking subsys-
tem the protocol stack of LANA is implemented in kernel
space and applications can access it over the BSD socket in-
terface. On the other hand, hardware and device drivers are
hidden behind a virtual link interface. This interface allows
on the one side to have multiple virtual interfaces or net-
works similar to VLANSs on different underlying networking
technologies such as Ethernet, Bluetooth or InfiniBand and
on the other side ingress and egress points to LANA func-
tional blocks with its packet processing engine. Additionally,
virtual link interface devices are represented as usual kernel
networking devices and can be managed with standard tools
such as ifconfig, ifpps or ethtool.

The setup of the control flow between functional blocks
is done with event messages by the Linux notification chain
framework. They are used for setup and teardown of data

LANA-Applications

Userspace

e Linux Socket API - PF_LANA PF_NETLINK

Kernelspace
Flow Scheduling P

Fanctona | '\

unctional

\.
\

Functional
Block ¢

Functional
Block D

Event-Message

EJ
Functional
Block B
Functional
Block A

Flow Scheduling

Functional Block
Notifier

A

Configuration via
Netlink from Userspace

Vlink Ethernet Vlink InfiniBand

| Viink ...

Viink Subsystems <

Kernel Device Driver Layer Kernelspace

PHY | | | | PHY Hardware

Figure 1: LANA architecture

flow paths between functional blocks or for exchange of other
internal functional block data.

Data is transmitted between the functional blocks by func-
tion calls and is therefore not being copied between func-
tional blocks. A network packet is processed by the LANAs
packet processing engine, which calls receive handlers of
functional blocks that are bound to each other in the pro-
cessing path. Data is then either forwarded to the subse-
quent functional block or discarded. A certain path can
be traversed in ingress or egress direction, thus functional
blocks can also flip the packets direction within the packet
processing engine. Moreover, the packet processing engine
has per-CPU backlog queues so that functional blocks which
spawn new network packets can enqueue the like for process-
ing.

uated different possibilities for the integration of our packet
processing engine with the Linux kernel. We think the in-
sights gained are interesting for other researchers that have
to do fundamental changes on the Linux protocol stack and
hence, we summarize them here.

Our goal was to be able to process as many minimum sized
Ethernet frames as the Linux kernel is able to process. In
order to compare the performance of the Linux Kernel and
the performance of our engine we have bypassed all packets
from the Linux Kernel protocol stack into the LANA stack
via a netdev_rx_handler in bottom half context as soon as
they arrived.

In our system the packets were processed by the fb_eth
functional block followed by two £b_dummy functional blocks
that were simply forwarding the packets. We can distinguish
the following three approaches:

e On each CPU there exists one high priority thread that
is responsible for processing LANA packets. This ap-
proach leads to a ’'starvation’ of the software interrupt
handler (ksoftirqd) and hence the maximal achieved
packet rate is only about half as what is achieved by
the protocol stack of the Linux kernel. Also chang-
ing the priority of the LANA thread to normal only
slightly increases the throughput (since the ksoftirqd
is a low-priority thread).

e Instead of relying completely on the process sched-
uler of the Linux Kernel we control preemption and

scheduling explicitly. This approach still exhibits schedul-

ing overhead, but it increases the performance to about
two thirds of the performance of the Linux Kernel.

e Instead of executing the LANA functions in a dedi-
cated thread they are executed directly in the ksoftirqd
context. With this approach approximately 95% of the
performance of the Linux kernel is achieved.

The corresponding numbers are listed in Table 1.

There are two special functional blocks - those of the vir- Mec.hamsm . _ Performance
tual link interface communicating with a network driver and Ded}cated kernel thread (high prlor%ty.) 700.000
those communicating with BSD sockets. These functional Ded}cated kernel thread (normal priority) . 750.000
blocks push network packets either in the drivers transmit Dedlca?ed kernel thread (controlled scheduling) 900.000
queue or in the sockets receive queue. Execution in ksoftirqd 1.300.000

Linux kernel networking stack 1.380.000

2.1 Configuration Interface

The protocol stack can be configured from user space with
the help of a command line tool. The most important com-
mands are summarized below.

e add, rm: Adds (removes) a functional block from the
list of available functional blocks in the kernel.

e set: sets specific properties of a functional block with
a key=value semantic

e bind, unbind: Binds (unbinds) a functional block to
another in order to be able to send messages to it.

e replace: Replaces one functional block with another
functional block. The connections between the blocks
are maintained. Private data can either be transferred
to the new block or dropped.

e subscribe, unsubscribe: Subscribes (Unsubscribes)
one functional block to receive event messages from
another functional block. (An implicit subscribtion
(unsubscribtion) is done on bind (unbind).)

2.2 Improving the Performance

During the implementation of our framework we have eval-

Table 1: Performance evaluation (pps) of different
approaches to receiving packets in the Linux kernel.
The packets are 64 Bytes long. The evaluation was
done with the kernel packet generator pktgen on two
directly connected machines with Intel Core 2 Quad
Q6600 with 2.40GHz, 4GB RAM, an Intel 82566DC-
2 NIC and Linux 3.0rcl.

2.3 Software Available

The current sofware is available under the GNU General
Public License from [1]. In addition to the framework it also
includes four functional blocks: Ethernet, Berkeley Packet
Filter, Tee (duplicate a packet), Packet Counter and For-
ward (an empty Block that just forwards the packets to an-
other block). The framework does not need any patching of
the Linux kernel but needs a new 3.X kernel.

3. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to implement a flexible

protocol stack that has a similar performance than the de-
fault protocol stack in the Linux kernel. This allows for the
easy inclusion of new, still to be developed protocols and
for the change of the protocol stack at runtime to include
for example compression or encryption as the networking
conditions change.

In the short term we will compare the performance of
real scenarios implemented in our system with the perfor-
mance of an implementation in other systems (for example
default Linux protocol stack or the Click router). In the
midterm we will develop a mechanism that automatically
sets up a protocol stack for an Application whereby the Ap-
plication can specify some characteristics the communica-
tion channel should have, but not exactly how this has to be
achieved. For example the application could require a "reli-
able communication channel” and a controller would choose
between different protocols that provide reliability (e.g., one
for wired communication, one for wireless communication,
one for wireless, multi-hop communication). The setup of
the protocol stack will have to be negotiated between the
source and destination node. The end goal will be to have
a networked system that requires less configuration as com-
pared to todays networks and that is able to adapt itself to
changing network conditions.

4. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme
under grant agreement n°257906.

S. REFERENCES

[1] Lightweight Autonomic Network Architecture for the
Linux kernel. http://repo.or.cz/w/ana-net.git (Jul
11).

[2] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid,

A. Keller, and M. May. The autonomic network
architecture (ANA). Selected Areas in Communications,
IEEE Journal on, 28(1):4 —14, Jan. 2010.

[3] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. Kaashoek. The click modular router. ACM Trans.
Comput. Syst., 18(3):263-297, 2000.

[4] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
NetFPGA-an open platform for gigabit-rate network
switching and routing. In MSE ’07: Proceedings of the
2007 IEEE International Conference on Microelectronic
Systems Education, pages 160-161, Washington, DC,
USA, 2007. IEEE Computer Society.

[5] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38:69-74, March 2008.

