
Efficient Implementation of Dynamic Protocol Stacks in
Linux

Ariane Keller
ETH Zurich, Switzerland

ariane.keller@tik.ee.ethz.ch

Daniel Borkmann
ETH Zurich, Switzerland
HTWK Leipzig, Germany

dborkma@tik.ee.ethz.ch

Wolfgang Mühlbauer
ETH Zurich, Switzerland

muehlbauer@tik.ee.ethz.ch

ABSTRACT
TODO: rewrite abstract - beginning is copied from an old
paper... Future network architectures aim at solving the
shortcomings of the traditional, static Internet architecture.
In order to provide optimal service they have to adapt their
functionality to different networking situations. This can be
achieved by dividing the networking functionality into mod-
ular blocks and combining them as required at runtime. In
this paper we address the performance aspect of such archi-
tectures and we show that their performance is comparable
with the performance of a standard Linux protocol stack.

1. INTRODUCTION
Some references that might be useful: [3] (ANA) and [7]

(Click) and [4] (From protocol stack to protcol heap: role-
based architecture) and [5] (PLUTARCH:an arbument for
network pluralism) and [1] (netgraph) and [8] (survey of
next generation internet) and [6] (xKernel) and [9] (model
for flexible high-performance communication subsystem). -
should we explicitly say something on active networking or
should we try to avoid it completely?

Placeholder: Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Pellentesque eu arcu ut est volutpat conse-
quat sit amet dignissim enim. Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nunc magna purus, vehicula sit
amet fringilla ac, interdum ut dui. Ut in magna tortor, vi-
tae dignissim lorem. Praesent condimentum eros aliquam
mi pharetra egestas. Sed sem tortor, iaculis non ornare con-
sequat, auctor eget velit. Nam nibh nibh, ullamcorper vitae
gravida non, rhoncus vitae mi. Nunc vestibulum suscipit
justo in laoreet. Praesent ac porta ante. Integer sem urna,
pretium sed dignissim id, laoreet sit amet sem. Cras ac
risus nec nibh tempor gravida. Integer ac ligula sed orci
luctus condimentum at quis dui. Etiam dignissim dignis-
sim tellus, et dapibus elit venenatis nec. Sed hendrerit im-
perdiet lacinia. Sed enim purus, mattis vel ullamcorper vel,
malesuada vitae turpis. Pellentesque nec lacus tortor, eget
scelerisque lectus. Suspendisse lectus mauris, tempor eget

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS 2011 Brooklyn, New York, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

porttitor id, consectetur vel sem.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Pellentesque eu arcu ut est volutpat consequat sit amet dig-
nissim enim. Lorem ipsum dolor sit amet, consectetur adip-
iscing elit. Nunc magna purus, vehicula sit amet fringilla
ac, interdum ut dui. Ut in magna tortor, vitae dignissim
lorem. Praesent condimentum eros aliquam mi pharetra
egestas. Sed sem tortor, iaculis non ornare consequat, auc-
tor eget velit. Nam nibh nibh, ullamcorper vitae gravida
non, rhoncus vitae mi. Nunc vestibulum suscipit justo in
laoreet. Praesent ac porta ante. Integer sem urna, pretium
sed dignissim id, laoreet sit amet sem. Cras ac risus nec
nibh tempor gravida. Integer ac ligula sed orci luctus condi-
mentum at quis dui. Etiam dignissim dignissim tellus, et
dapibus elit venenatis nec. Sed hendrerit imperdiet lacinia.
Sed enim purus, mattis vel ullamcorper vel, malesuada vi-
tae turpis. Pellentesque nec lacus tortor, eget scelerisque
lectus. Suspendisse lectus mauris, tempor eget porttitor id,
consectetur vel sem. Praesent ac porta ante. Integer sem
urna, pretium sed dignissim id, laoreet sit amet sem. Cras
ac risus nec nibh tempor gravida. Integer ac ligula sed orci
luctus condimentum at quis dui. Etiam dignissim dignis-
sim tellus, et dapibus elit venenatis nec. Sed hendrerit im-
perdiet lacinia. Sed enim purus, mattis vel ullamcorper vel,
malesuada vitae turpis. Pellentesque nec lacus tortor, eget
scelerisque lectus. Suspendisse lectus mauris, tempor eget
porttitor id, consectetur vel sem.

2. LIGHTWEIGHT AUTONOMIC NETWORK
ARCHITECTURE (LANA)

LANA provides a framework for setting up protocol stacks
not known by todays standard operating systems. Within
LANA it is also possible to change the protocol stack at
runtime, without communication teardown or application
support. These properties build the basis for a networking
system that provides protocol stacks that are better targeted
to a networking situation than the well known TCP/IP pro-
tocol stack.

Similar to the protocol stack of Linux’ networking subsys-
tem the protocol stack of LANA is implemented in kernel
space and applications can access it over the BSD socket
interface. On the other hand, hardware and device drivers
are hidden between a virtual link interface. This interface
allows on the one side to have multiple virtual interfaces or
networks similar to VLANs on different underlying network-
ing technoligies such as Ethernet, Bluetooth or InfiniBand
and on the other side ingress and egress points to LANA
functional blocks with its packet processing engine. Ad-

Figure 1: Lana architecture

ditionally, virtual link interface devices are represented as
usual kernel networking devices and can be managed with
standard tools such as ifconfig, ifpps or ethtool.

The setup of the control flow between functional blocks
is done with event messages by the Linux notification chain
framework. They are used for setup and teardown of data
flow paths between functional blocks or for exchange of other
internal functional block data.

Data is transmitted between the functional blocks by func-
tion calls and is therefore not being copied between func-
tional blocks. A network packet is processed by the LANAs
packet processing engine, which calls receive handlers of
functional blocks that are bound to each other in the pro-
cessing path. Data is then either forwarded to the subse-
quent functional block or discarded. A certain path can
be traversed in ingress or egress direction, thus functional
blocks can also flip the packets direction within the packet
processing engine. Moreover, the packet processing engine
has per-CPU backlog queues so that functional blocks which
spawn new network packets can enqueue the like for process-
ing.

There are two special functional blocks - those of the vir-
tual link interface communicating with a network driver and
those communicating with BSD sockets. These functional
blocks push network packets either in the drivers transmit
queue or in the sockets receive queue.

2.1 Configuration Interface
The protocol stack can be configured from user space with

the help of a command line tool. The most important com-
mands are summarized below.

• add, rm: Adds (removes) a functional block from the
list of available functional blocks in the kernel.

• set: sets properties of a functional block with a key=value

semantic
• bind, unbind: Binds (unbinds) a functional block to

another in order to be able to send messages to it.
• replace: Replaces one functional block with another

functional block. The connections between the blocks
are maintained. Private data can either be transferred
to the new block or dropped.

• subscribe, unsubscribe: Subscribes (Unsubscribes)

one functional block to receive control messages from
another functional block.

2.2 Improving the Performance
During the implementation of our framework we have eval-

uated different possibilities for the integration of our packet
processing engine with the Linux kernel. We think the in-
sights gained are interesting for other researcher that have
to do fundamental changes on the Linux protocol stack and
hence, we summarize them here. Our goal was to be able
to process as many minimum sized Ethernet frames as the
Linux kernel is able to process. In order to compare the
performance of the Linux Kernel and the performance of
our engine we have dropped all packets in the Linux Kernel
protocol stack as soon as they were arrived (TODO: where
exactly?). In our system the packets were processed by the
fb eth functional block followed by two fb dummy functional
blocks that were simply forwarding the packets. We can dis-
tinguish the following three approaches:

• On each CPU there exists one high priority thread that
is responsible for processing LANA packets. This ap-
proach leads to a starvation of the interrupt handler
(ksoftirqd) and hence the maximal achieved packet
rate is only about half as what is achieved by the pro-
tocol stack of the Linux kernel. Also changing the
priority of the LANA thread to normal only slightly
increases the throughput.

• Instead of relying completely on the Scheduler of the
Linux Kernel we control preemption and scheduling ex-
plicitly. This approach still exhibits scheduling over-
head, but it increases the performance to about two
thirds of the performance of the Linux Kernel.

• Instead of executing the LANA functions in a dedi-
cated thread they are executed directly in the ksoftirqd
function. With this approach approximately 95% of
the performance of the Linux kernel is achieved.

The corresponding numbers are listed in Table 1.

mechanism performance
dedicated kernel thread (high priority) 700000
dedicated kernel thread (normal priority) 750000
dedicated kernel thread (controlled scheduling) 900000
execution in ksoftirqd 1300000
Linux kernel stack 1380000

Table 1: Performance evaluation (pps) of dif-
ferent approaches to receiving packets in the
Linux kernel. The packets are 64 Bytes
long. The evaluation was done on a TODO:
CPU/RAM/NETWORKCARD/KERNEL

2.3 Software Available
The current sofware is available under the GNU General

Public License from [2]. In addition to the framework it also
includes four functional blocks: Ethernet, Berkeley Packet
Filter, Tee (duplicate a packet), and Forward (an empty
Block that just forwards the packets to another block). The
framework does not need any patching of the Linux kernel
but needs a new, 2.6.X kernel.

3. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to implement a flexible
protocol stack that has a similar performance than the de-
fault protocol stack in the Linux kernel. This allows for the
easy inclusion of new, still to be developed protocols and
for the change of the protocol stack at runtime to include
for example compression or encryption as the networking
conditions change.

In the short term we will compare the performance of
real scenarios implemented in our system with the perfor-
mance of an implementation in other systems (for example
default Linux protocol stack or the Click router). In the
midterm we will develop a mechanism that automatically
sets up a protocol stack for an Application whereby the Ap-
plication can specify some characteristics the communica-
tion channel should have, but not exactly how this has to be
achieved. For example the application could require a ”reli-
able communication channel” and a controller would choose
between different protocols that provide reliability (e.g., one
for wired communication, one for wireless communication,
one for wireless, multi-hop communication). The setup of
the protocol stack will have to be negotiated between the
source and destination node. The end goal will be to have
a networked system that requires less configuration as com-
pared to todays networks and that is able to adapt itself to
changing network conditions.

4. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union Seventh Framework Programme
under grant agreement no257906.

5. REFERENCES
[1] All About Netgraph.

http://people.freebsd.org/~julian/netgraph.html

(Aug 10).

[2] Lightweight Autonomic Network Architecture for the
Linux kernel. http://repo.or.cz/w/ana-net.git (Jul
11).

[3] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid,
A. Keller, and M. May. The autonomic network
architecture (ANA). Selected Areas in Communications,
IEEE Journal on, 28(1):4 –14, Jan. 2010.

[4] R. Braden, T. Faber, and M. Handley. From protocol
stack to protocol heap: role-based architecture.
SIGCOMM Comput. Commun. Rev., 33(1):17–22, 2003.

[5] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and
A. Warfield. Plutarch: an argument for network
pluralism. In Proceedings of ACM SIGCOMM FDNA
Workshop, August 2003. Karlsruhe, Germany.

[6] N. C. Hutchinson and L. L. Peterson. The X-Kernel:
An architecture for implementing network protocols.
IEEE Trans. Softw. Eng., 17(1):64–76, 1991.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. Kaashoek. The click modular router. ACM Trans.
Comput. Syst., 18(3):263–297, 2000.

[8] Subharthi Paul, Jianli Pan and Raj Jain. Architectures
for the Future Networks and the Next Generation
Internet: A Survey, 2009. http:
//www.cse.wustl.edu/~jain/papers/i3survey.htm

(Oct 09).

[9] M. Zitterbart, B. Stiller, and A. N. Tantawy. A model
for flexible high-performance communication

subsystems. IEEE Journal on Selected Areas in
Communications, 11(4):507–518, May 1993.

