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ABSTRACT

Network programming is widely understood as programming
strictly defined socket interfaces. Omnly some frameworks
(e.g., ANA, Click, Active Networking) have made a step
towards real network programming by decomposing net-
working functionality into small modular blocks that can
be assembled in a flexible manner. In this paper, we tackle
the challenge of accommodating 3 partially conflicting ob-
jectives: (i) high flexibility for network programmers and
network application designers, (ii) re-configuration of the
network stack at runtime, and (iii) high packet forwarding
rates. First experiences with a prototype implementation in
Linux suggest little performance overhead compared to the
standard Linux protocol stack.

1. INTRODUCTION

Beyond doubt, the Internet has grown out of its infancy. A
huge variety of networked applications and a diverse range
of protocols are available, ranging from protocols for the
communication over fibre, catb or over the air to protocols
supporting specific applications such as p2p, web or volP.
However, the architecture is not designed to also allow for
an easy integration of new protocols between these two lay-
ers. We argue that an architecture that would not limit
innovation to the outer layers would give the Internet an-
other boost. Additionally, nowadays protocol stacks assume
that the timely variances in a communication channel can
be covered by adaptive parameters inside a single protocol.
However, this might not be true for long lasting commu-
nications (e.g. in sensor networks). Network characteris-
tics, privacy or security concerns might change with time.
The protocol stack should be able to accommodate for such
changes without the need of application restart.

Some research with this goal was already done in active
networking [3], with the Click modular router [4] or with
openflow [5]. However, none of the available implementa-
tions fulfils the following three partially conflicting objec-
tives.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ANCS 2011 Brooklyn, New York, USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. Simple integration and testing of new protocols on end

nodes on all layers of the protocol stack.

2. Runtime reconfiguration of the protocol stack in order

to allow for even bigger flexibility.

3. High performance packet forwarding rate.

Therefore we propose another architecture that was de-
signed with these goals in mind. The architecture is based
on the ideas of the Autonomic Network Architecture (ANA).
[2]. In ANA network functionality is divided into functional
blocks (FB) that can be combined as required. Each FB
implements a protocol such as ip, udp, encryption, content
centric routing, etc. ANA does not impose any protocols to
be used other than Ethernet, rather it provides a framework
that allows for the flexible composition and recomposition
of FBs to a protocol stack. This allows for the experimen-
tation with protocol stacks that are not known by todays
standard operating system and it allows for the optimiza-
tion of the protocol stack at runtime without communication
tear down or application support. The existing implemen-
tation of ANA shows the feasibility of such a flexible archi-
tecture but it suffers sever performance issues. In this paper
we present the Lightweight Autonomic Network Architecture
(LANA). 1t allows for a similar functionality than ANA but
demonstrates that flexibility does not have to come at the
cost of reduced performance.

2. LANA

Generally, the LANA network system is built similarly to
the network subsystem of the Linux kernel. Applications
can send and transmit packets via the BSD socket interface
and the actual packet processing is done in a packet process-
ing engine (PPE) in the kernel space. An overview of the
architecture is presented in (Figure 1).

The hardware and device driver interfaces are hidden from
the PPE behind a virtual link interface, which allows a sim-
ple integration of different underlaying networking technolo-
gies such as Ethernet, Bluetooth or InfiniBand.

Each functional block is implemented as a Linux kernel
module. Upon module insertion a constructor for the cre-
ation of an instance of the FB is registered with the PPE.
Upon configuration of the protocol stack the instances of
the FB are created. The instances register a receive func-
tion with the PPE. This function is called when a packet
needs to be processed.

Functional blocks can either drop a packet, forward a
packet to either ingress or egress direction or duplicate a
packet. After having processed the packet it returns the
identifier of the next FB that should process this packet. In
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Figure 1: Packet flow in LANA

addition FB belonging to the virtual link interface will queue
the packets in the network drivers transmit queue and FB
communicating with BSD sockets will queue the packets in
the sockets receive queue.

The PPE is responsible for calling one FB after the other
and for queuing packets that need to be processed.

2.1 Configuration Interface

The protocol stack can be configured from user space with
the help of a command line tool. The most important com-
mands are summarized below.

e add, rm: Adds (removes) an FB from the list of avail-
able FBs in the kernel.

e set: sets specific properties of a FB with a key=value
semantic

e bind, unbind: Binds (unbinds) an FB to another in
order to be able to send messages to it.

e replace: Replaces one FB with another FB. The con-
nections between the blocks are maintained. Private
data can either be transferred to the new block or
dropped.

Within the Linux kernel the notification chain framework
is used to propagate those configuration messages to the
individual FBs.

2.2 Improving the Performance

We have evaluated different possibilities for the integra-
tion of the PPE with the Linux kernel. We summarize our
insights to provide guidance for researchers that have to do
fundamental changes on the Linux protocol stack.

We compared the maximum packet reception rate of the
Linux kernel while not doing any packet processing with our
architecture. Here packets are forwarded between three FBs
that do only packet forwarding.

e One high priority LANA thread per CPU achieves ap-
prox. half the performance of the default stack. The
performance degradation is due to ’starvation’ of the
software interrupt handler (ksoftirqd). Changing the
priority of the LANA thread only slightly increases
the throughput (since the ksoftirqd is a low-priority
thread).

e Explicit preemption and scheduling control achieves
approx. two third of the performance of the default
stack. The performance is still reduced by scheduling
overhead.

e Execution of the PPE in ksoftirqd context. This ap-
proach achieves approximately 95% of the performance
of the Linux kernel.

The corresponding numbers are listed in Table 1.

2.3 Software Available

The current sofware is available under the GNU General

Mechanism Performance

Dedicated kernel thread (high priority) 700.000
Dedicated kernel thread (normal priority) 750.000
Dedicated kernel thread (controlled scheduling) 900.000
Execution in ksoftirqd 1.300.000
Linux kernel networking stack 1.380.000

Table 1: Performance evaluation in pps with 64 Byte
packets. (Intel Core 2 Quad Q6600 with 2.40GHz,
4GB RAM, Intel 82566DC-2 NIC, Linux 3.0rcl)

Public License from [1]. In addition to the framework it also
includes four functional blocks: Ethernet, Berkeley Packet
Filter, Tee (duplication of packets), Packet Counter and For-
ward (an empty block that just forwards the packets to an-
other block). The framework does not need any patching of
the Linux kernel but it requires a new Linux 3.X kernel.

3. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to implement a flexi-
ble protocol stack that has a similar performance than the
default protocol stack in the Linux kernel. The flexibility
allows for the easy inclusion of new, still to be developed
protocols and for the change of the protocol stack at run-
time. Both might lead to a protocol stack that is better
suited for a given networking situation than the well known
TCP/IP protocol stack.

In the short-term we will compare the performance of our
system with the performance of other systems (e.g., default
Linux stack, Click router, etc.). In the mid-term we will
work on mechanisms that automatically configures protocol
stacks based on the applications as well as the networks
needs. The end goal is have a networked system that requires
less configuration as compared to todays networks and that
is able to adapt itself to changing network conditions.
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