More code to read in and create security descriptor entries ...
[Samba/vl.git] / source3 / utils / editreg.c
blob0a526e5abe1eca13f76c9f528f464df350f166ad
1 /*
2 Samba Unix/Linux SMB client utility editreg.c
3 Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19 /*************************************************************************
21 A utility to edit a Windows NT/2K etc registry file.
23 Many of the ideas in here come from other people and software.
24 I first looked in Wine in misc/registry.c and was also influenced by
25 http://www.wednesday.demon.co.uk/dosreg.html
27 Which seems to contain comments from someone else. I reproduce them here
28 incase the site above disappears. It actually comes from
29 http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt.
31 The goal here is to read the registry into memory, manipulate it, and then
32 write it out if it was changed by any actions of the user.
34 The windows NT registry has 2 different blocks, where one can occur many
35 times...
37 the "regf"-Block
38 ================
40 "regf" is obviosly the abbreviation for "Registry file". "regf" is the
41 signature of the header-block which is always 4kb in size, although only
42 the first 64 bytes seem to be used and a checksum is calculated over
43 the first 0x200 bytes only!
45 Offset Size Contents
46 0x00000000 D-Word ID: ASCII-"regf" = 0x66676572
47 0x00000004 D-Word ???? //see struct REGF
48 0x00000008 D-Word ???? Always the same value as at 0x00000004
49 0x0000000C Q-Word last modify date in WinNT date-format
50 0x00000014 D-Word 1
51 0x00000018 D-Word 3
52 0x0000001C D-Word 0
53 0x00000020 D-Word 1
54 0x00000024 D-Word Offset of 1st key record
55 0x00000028 D-Word Size of the data-blocks (Filesize-4kb)
56 0x0000002C D-Word 1
57 0x000001FC D-Word Sum of all D-Words from 0x00000000 to
58 0x000001FB //XOR of all words. Nigel
60 I have analyzed more registry files (from multiple machines running
61 NT 4.0 german version) and could not find an explanation for the values
62 marked with ???? the rest of the first 4kb page is not important...
64 the "hbin"-Block
65 ================
66 I don't know what "hbin" stands for, but this block is always a multiple
67 of 4kb in size.
69 Inside these hbin-blocks the different records are placed. The memory-
70 management looks like a C-compiler heap management to me...
72 hbin-Header
73 ===========
74 Offset Size Contents
75 0x0000 D-Word ID: ASCII-"hbin" = 0x6E696268
76 0x0004 D-Word Offset from the 1st hbin-Block
77 0x0008 D-Word Offset to the next hbin-Block
78 0x001C D-Word Block-size
80 The values in 0x0008 and 0x001C should be the same, so I don't know
81 if they are correct or swapped...
83 From offset 0x0020 inside a hbin-block data is stored with the following
84 format:
86 Offset Size Contents
87 0x0000 D-Word Data-block size //this size must be a
88 multiple of 8. Nigel
89 0x0004 ???? Data
91 If the size field is negative (bit 31 set), the corresponding block
92 is free and has a size of -blocksize!
94 That does not seem to be true. All block lengths seem to be negative! (Richard Sharpe)
96 The data is stored as one record per block. Block size is a multiple
97 of 4 and the last block reaches the next hbin-block, leaving no room.
99 Records in the hbin-blocks
100 ==========================
102 nk-Record
104 The nk-record can be treated as a kombination of tree-record and
105 key-record of the win 95 registry.
107 lf-Record
109 The lf-record is the counterpart to the RGKN-record (the
110 hash-function)
112 vk-Record
114 The vk-record consists information to a single value.
116 sk-Record
118 sk (? Security Key ?) is the ACL of the registry.
120 Value-Lists
122 The value-lists contain information about which values are inside a
123 sub-key and don't have a header.
125 Datas
127 The datas of the registry are (like the value-list) stored without a
128 header.
130 All offset-values are relative to the first hbin-block and point to the
131 block-size field of the record-entry. to get the file offset, you have to add
132 the header size (4kb) and the size field (4 bytes)...
134 the nk-Record
135 =============
136 Offset Size Contents
137 0x0000 Word ID: ASCII-"nk" = 0x6B6E
138 0x0002 Word for the root-key: 0x2C, otherwise 0x20 //key symbolic links 0x10. Nigel
139 0x0004 Q-Word write-date/time in windows nt notation
140 0x0010 D-Word Offset of Owner/Parent key
141 0x0014 D-Word number of sub-Keys
142 0x001C D-Word Offset of the sub-key lf-Records
143 0x0024 D-Word number of values
144 0x0028 D-Word Offset of the Value-List
145 0x002C D-Word Offset of the sk-Record
147 0x0030 D-Word Offset of the Class-Name //see NK structure for the use of these fields. Nigel
148 0x0044 D-Word Unused (data-trash) //some kind of run time index. Does not appear to be important. Nigel
149 0x0048 Word name-length
150 0x004A Word class-name length
151 0x004C ???? key-name
153 the Value-List
154 ==============
155 Offset Size Contents
156 0x0000 D-Word Offset 1st Value
157 0x0004 D-Word Offset 2nd Value
158 0x???? D-Word Offset nth Value
160 To determine the number of values, you have to look at the owner-nk-record!
162 Der vk-Record
163 =============
164 Offset Size Contents
165 0x0000 Word ID: ASCII-"vk" = 0x6B76
166 0x0002 Word name length
167 0x0004 D-Word length of the data //if top bit is set when offset contains data. Nigel
168 0x0008 D-Word Offset of Data
169 0x000C D-Word Type of value
170 0x0010 Word Flag
171 0x0012 Word Unused (data-trash)
172 0x0014 ???? Name
174 If bit 0 of the flag-word is set, a name is present, otherwise the value has no name (=default)
176 If the data-size is lower 5, the data-offset value is used to store the data itself!
178 The data-types
179 ==============
180 Wert Beteutung
181 0x0001 RegSZ: character string (in UNICODE!)
182 0x0002 ExpandSZ: string with "%var%" expanding (UNICODE!)
183 0x0003 RegBin: raw-binary value
184 0x0004 RegDWord: Dword
185 0x0007 RegMultiSZ: multiple strings, seperated with 0
186 (UNICODE!)
188 The "lf"-record
189 ===============
190 Offset Size Contents
191 0x0000 Word ID: ASCII-"lf" = 0x666C
192 0x0002 Word number of keys
193 0x0004 ???? Hash-Records
195 Hash-Record
196 ===========
197 Offset Size Contents
198 0x0000 D-Word Offset of corresponding "nk"-Record
199 0x0004 D-Word ASCII: the first 4 characters of the key-name, padded with 0's. Case sensitiv!
201 Keep in mind, that the value at 0x0004 is used for checking the data-consistency! If you change the
202 key-name you have to change the hash-value too!
204 //These hashrecords must be sorted low to high within the lf record. Nigel.
206 The "sk"-block
207 ==============
208 (due to the complexity of the SAM-info, not clear jet)
209 (This is just a security descriptor in the data. R Sharpe.)
212 Offset Size Contents
213 0x0000 Word ID: ASCII-"sk" = 0x6B73
214 0x0002 Word Unused
215 0x0004 D-Word Offset of previous "sk"-Record
216 0x0008 D-Word Offset of next "sk"-Record
217 0x000C D-Word usage-counter
218 0x0010 D-Word Size of "sk"-record in bytes
219 ???? //standard self
220 relative security desciptor. Nigel
221 ???? ???? Security and auditing settings...
222 ????
224 The usage counter counts the number of references to this
225 "sk"-record. You can use one "sk"-record for the entire registry!
227 Windows nt date/time format
228 ===========================
229 The time-format is a 64-bit integer which is incremented every
230 0,0000001 seconds by 1 (I don't know how accurate it realy is!)
231 It starts with 0 at the 1st of january 1601 0:00! All values are
232 stored in GMT time! The time-zone is important to get the real
233 time!
235 Common values for win95 and win-nt
236 ==================================
237 Offset values marking an "end of list", are either 0 or -1 (0xFFFFFFFF).
238 If a value has no name (length=0, flag(bit 0)=0), it is treated as the
239 "Default" entry...
240 If a value has no data (length=0), it is displayed as empty.
242 simplyfied win-3.?? registry:
243 =============================
245 +-----------+
246 | next rec. |---+ +----->+------------+
247 | first sub | | | | Usage cnt. |
248 | name | | +-->+------------+ | | length |
249 | value | | | | next rec. | | | text |------->+-------+
250 +-----------+ | | | name rec. |--+ +------------+ | xxxxx |
251 +------------+ | | value rec. |-------->+------------+ +-------+
252 v | +------------+ | Usage cnt. |
253 +-----------+ | | length |
254 | next rec. | | | text |------->+-------+
255 | first sub |------+ +------------+ | xxxxx |
256 | name | +-------+
257 | value |
258 +-----------+
260 Greatly simplyfied structure of the nt-registry:
261 ================================================
263 +---------------------------------------------------------------+
266 +---------+ +---------->+-----------+ +----->+---------+ |
267 | "nk" | | | lf-rec. | | | nk-rec. | |
268 | ID | | | # of keys | | | parent |---+
269 | Date | | | 1st key |--+ | .... |
270 | parent | | +-----------+ +---------+
271 | suk-keys|-----+
272 | values |--------------------->+----------+
273 | SK-rec. |---------------+ | 1. value |--> +----------+
274 | class |--+ | +----------+ | vk-rec. |
275 +---------+ | | | .... |
276 v | | data |--> +-------+
277 +------------+ | +----------+ | xxxxx |
278 | Class name | | +-------+
279 +------------+ |
281 +---------+ +---------+
282 +----->| next sk |--->| Next sk |--+
283 | +---| prev sk |<---| prev sk | |
284 | | | .... | | ... | |
285 | | +---------+ +---------+ |
286 | | ^ |
287 | | | |
288 | +--------------------+ |
289 +----------------------------------+
291 ---------------------------------------------------------------------------
293 Hope this helps.... (Although it was "fun" for me to uncover this things,
294 it took me several sleepless nights ;)
296 B.D.
298 *************************************************************************/
300 #include <stdio.h>
301 #include <stdlib.h>
302 #include <errno.h>
303 #include <assert.h>
304 #include <sys/types.h>
305 #include <sys/stat.h>
306 #include <unistd.h>
307 #include <sys/mman.h>
308 #include <string.h>
309 #include <fcntl.h>
311 static int verbose = 0;
314 * These definitions are for the in-memory registry structure.
315 * It is a tree structure that mimics what you see with tools like regedit
319 * DateTime struct for Windows
322 typedef struct date_time_s {
323 unsigned int low, high;
324 } NTTIME;
327 * Definition of a Key. It has a name, classname, date/time last modified,
328 * sub-keys, values, and a security descriptor
331 #define REG_ROOT_KEY 1
332 #define REG_SUB_KEY 2
333 #define REG_SYM_LINK 3
335 typedef struct reg_key_s {
336 char *name; /* Name of the key */
337 char *class_name;
338 int type; /* One of REG_ROOT_KEY or REG_SUB_KEY */
339 NTTIME last_mod; /* Time last modified */
340 struct reg_key_s *owner;
341 struct key_list_s *sub_keys;
342 struct val_list_s *values;
343 struct key_sec_desc_s *security;
344 } REG_KEY;
347 * The KEY_LIST struct lists sub-keys.
350 typedef struct key_list_s {
351 int key_count;
352 REG_KEY *keys[1];
353 } KEY_LIST;
355 typedef struct val_key_s {
356 char *name;
357 int has_name;
358 int data_type;
359 int data_len;
360 void *data_blk; /* Might want a separate block */
361 } VAL_KEY;
363 typedef struct val_list_s {
364 int val_count;
365 VAL_KEY *vals[1];
366 } VAL_LIST;
368 #ifndef MAXSUBAUTHS
369 #define MAXSUBAUTHS 15
370 #endif
372 typedef struct dom_sid_s {
373 unsigned char ver, auths;
374 unsigned char auth[6];
375 unsigned int sub_auths[MAXSUBAUTHS];
376 } DOM_SID;
378 typedef struct ace_struct_s {
379 unsigned char type, flags;
380 unsigned int perms; /* Perhaps a better def is in order */
381 DOM_SID trustee;
382 } ACE;
384 typedef struct acl_struct_s {
385 unsigned short rev, refcnt;
386 unsigned short num_aces;
387 ACE *aces[1];
388 } ACL;
390 typedef struct sec_desc_s {
391 unsigned int rev, type;
392 DOM_SID *owner, *group;
393 ACL *sacl, *dacl;
394 } SEC_DESC;
396 #define SEC_DESC_NON 0
397 #define SEC_DESC_RES 1
398 #define SEC_DESC_OCU 2
400 typedef struct key_sec_desc_s {
401 struct key_sec_desc_s *prev, *next;
402 int ref_cnt;
403 int state;
404 SEC_DESC *sec_desc;
405 } KEY_SEC_DESC;
409 * An API for accessing/creating/destroying items above
413 * Iterate over the keys, depth first, calling a function for each key
414 * and indicating if it is terminal or non-terminal and if it has values.
416 * In addition, for each value in the list, call a value list function
420 * There should eventually be one to deal with security keys as well
423 typedef int (*key_print_f)(char *path, char *key_name, char *class_name,
424 int root, int terminal, int values);
426 typedef int (*val_print_f)(char *path, char *val_name, int val_type,
427 int data_len, void *data_blk, int terminal,
428 int first, int last);
430 typedef struct regf_struct_s REGF;
432 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, char *path,
433 key_print_f key_print, val_print_f val_print);
435 int nt_val_list_iterator(REGF *regf, VAL_LIST *val_list, int bf, char *path,
436 int terminal, val_print_f val_print)
438 int i;
440 if (!val_list) return 1;
442 if (!val_print) return 1;
444 for (i=0; i<val_list->val_count; i++) {
445 if (!val_print(path, val_list->vals[i]->name, val_list->vals[i]->data_type,
446 val_list->vals[i]->data_len, val_list->vals[i]->data_blk,
447 terminal,
448 (i == 0),
449 (i == val_list->val_count))) {
451 return 0;
456 return 1;
459 int nt_key_list_iterator(REGF *regf, KEY_LIST *key_list, int bf, char *path,
460 key_print_f key_print, val_print_f val_print)
462 int i;
464 if (!key_list) return 1;
466 for (i=0; i< key_list->key_count; i++) {
467 if (!nt_key_iterator(regf, key_list->keys[i], bf, path, key_print,
468 val_print)) {
469 return 0;
472 return 1;
475 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, char *path,
476 key_print_f key_print, val_print_f val_print)
478 int path_len = strlen(path);
479 char *new_path;
481 if (!regf || !key_tree)
482 return -1;
484 /* List the key first, then the values, then the sub-keys */
486 if (key_print) {
488 if (!(*key_print)(path, key_tree->name,
489 key_tree->class_name,
490 (key_tree->type == REG_ROOT_KEY),
491 (key_tree->sub_keys == NULL),
492 (key_tree->values?(key_tree->values->val_count):0)))
493 return 0;
496 new_path = (char *)malloc(path_len + 1 + strlen(key_tree->name) + 1);
497 if (!new_path) return 0; /* Errors? */
498 new_path[0] = '\0';
499 strcat(new_path, path);
500 strcat(new_path, "\\");
501 strcat(new_path, key_tree->name);
504 * Now, iterate through the values in the val_list
507 if (key_tree->values &&
508 !nt_val_list_iterator(regf, key_tree->values, bf, new_path,
509 (key_tree->values!=NULL),
510 val_print)) {
512 free(new_path);
513 return 0;
517 * Now, iterate through the keys in the key list
520 if (key_tree->sub_keys &&
521 !nt_key_list_iterator(regf, key_tree->sub_keys, bf, new_path, key_print,
522 val_print)) {
523 free(new_path);
524 return 0;
527 free(new_path);
528 return 1;
531 /* Make, delete keys */
533 int nt_delete_val_list(VAL_LIST *vl)
536 return 1;
539 int nt_delete_reg_key(REG_KEY *key)
542 return 1;
546 * Create/delete key lists and add delete keys to/from a list, count the keys
551 * Create/delete value lists, add/delete values, count them
556 * Create/delete security descriptors, add/delete SIDS, count SIDS, etc.
557 * We reference count the security descriptors. Any new reference increments
558 * the ref count. If we modify an SD, we copy the old one, dec the ref count
559 * and make the change. We also want to be able to check for equality so
560 * we can reduce the number of SDs in use.
565 * Load and unload a registry file.
567 * Load, loads it into memory as a tree, while unload sealizes/flattens it
571 * Get the starting record for NT Registry file
574 /* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */
575 typedef struct sk_map_s {
576 int sk_off;
577 KEY_SEC_DESC *key_sec_desc;
578 } SK_MAP;
581 * Where we keep all the regf stuff for one registry.
582 * This is the structure that we use to tie the in memory tree etc
583 * together. By keeping separate structs, we can operate on different
584 * registries at the same time.
585 * Currently, the SK_MAP is an array of mapping structure.
586 * Since we only need this on input and output, we fill in the structure
587 * as we go on input. On output, we know how many SK items we have, so
588 * we can allocate the structure as we need to.
589 * If you add stuff here that is dynamically allocated, add the
590 * appropriate free statements below.
593 #define REGF_REGTYPE_NONE 0
594 #define REGF_REGTYPE_NT 1
595 #define REGF_REGTYPE_W9X 2
597 #define TTTONTTIME(r, t1, t2) (r)->last_mod_time.low = (t1); \
598 (r)->last_mod_time.high = (t2);
600 #define REGF_HDR_BLKSIZ 0x1000
602 struct regf_struct_s {
603 int reg_type;
604 char *regfile_name, *outfile_name;
605 int fd;
606 struct stat sbuf;
607 char *base;
608 int modified;
609 NTTIME last_mod_time;
610 REG_KEY *root; /* Root of the tree for this file */
611 int sk_count, sk_map_size;
612 SK_MAP **sk_map;
616 * Structures for dealing with the on-disk format of the registry
619 #define IVAL(buf) ((unsigned int) \
620 (unsigned int)*((unsigned char *)(buf)+3)<<24| \
621 (unsigned int)*((unsigned char *)(buf)+2)<<16| \
622 (unsigned int)*((unsigned char *)(buf)+1)<<8| \
623 (unsigned int)*((unsigned char *)(buf)+0))
625 #define SVAL(buf) ((unsigned short) \
626 (unsigned short)*((unsigned char *)(buf)+1)<<8| \
627 (unsigned short)*((unsigned char *)(buf)+0))
629 #define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4)
630 #define LOCN(base, f) ((base) + OFF(f))
633 * All of the structures below actually have a four-byte lenght before them
634 * which always seems to be negative. The following macro retrieves that
635 * size as an integer
638 #define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1))
640 typedef unsigned int DWORD;
641 typedef unsigned short WORD;
643 #define REG_REGF_ID 0x66676572
645 typedef struct regf_block {
646 DWORD REGF_ID; /* regf */
647 DWORD uk1;
648 DWORD uk2;
649 DWORD tim1, tim2;
650 DWORD uk3; /* 1 */
651 DWORD uk4; /* 3 */
652 DWORD uk5; /* 0 */
653 DWORD uk6; /* 1 */
654 DWORD first_key; /* offset */
655 unsigned int dblk_size;
656 DWORD uk7[116]; /* 1 */
657 DWORD chksum;
658 } REGF_HDR;
660 typedef struct hbin_sub_struct {
661 DWORD dblocksize;
662 char data[1];
663 } HBIN_SUB_HDR;
665 #define REG_HBIN_ID 0x6E696268
667 typedef struct hbin_struct {
668 DWORD HBIN_ID; /* hbin */
669 DWORD next_off;
670 DWORD prev_off;
671 DWORD uk1;
672 DWORD uk2;
673 DWORD uk3;
674 DWORD uk4;
675 DWORD blk_size;
676 HBIN_SUB_HDR hbin_sub_hdr;
677 } HBIN_HDR;
679 #define REG_NK_ID 0x6B6E
681 typedef struct nk_struct {
682 WORD NK_ID;
683 WORD type;
684 DWORD t1, t2;
685 DWORD uk1;
686 DWORD own_off;
687 DWORD subk_num;
688 DWORD uk2;
689 DWORD lf_off;
690 DWORD uk3;
691 DWORD val_cnt;
692 DWORD val_off;
693 DWORD sk_off;
694 DWORD clsnam_off;
695 DWORD unk4[4];
696 DWORD unk5;
697 WORD nam_len;
698 WORD clsnam_len;
699 char key_nam[1]; /* Actual length determined by nam_len */
700 } NK_HDR;
702 #define REG_SK_ID 0x6B73
704 typedef struct sk_struct {
705 WORD SK_ID;
706 WORD uk1;
707 DWORD prev_off;
708 DWORD next_off;
709 DWORD ref_cnt;
710 DWORD rec_size;
711 char sec_desc[1];
712 } SK_HDR;
714 typedef struct sec_desc_rec {
715 WORD rev;
716 WORD type;
717 DWORD owner_off;
718 DWORD group_off;
719 DWORD sacl_off;
720 DWORD dacl_off;
721 } REG_SEC_DESC;
723 typedef struct hash_struct {
724 DWORD nk_off;
725 char hash[4];
726 } HASH_REC;
728 #define REG_LF_ID 0x666C
730 typedef struct lf_struct {
731 WORD LF_ID;
732 WORD key_count;
733 struct hash_struct hr[1]; /* Array of hash records, depending on key_count */
734 } LF_HDR;
736 typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */
738 #define REG_VK_ID 0x6B76
740 typedef struct vk_struct {
741 WORD VK_ID;
742 WORD nam_len;
743 DWORD dat_len; /* If top-bit set, offset contains the data */
744 DWORD dat_off;
745 DWORD dat_type;
746 WORD flag; /* =1, has name, else no name (=Default). */
747 WORD unk1;
748 char dat_name[1]; /* Name starts here ... */
749 } VK_HDR;
751 #define REG_TYPE_REGSZ 1
752 #define REG_TYPE_EXPANDSZ 2
753 #define REG_TYPE_BIN 3
754 #define REG_TYPE_DWORD 4
755 #define REG_TYPE_MULTISZ 7
757 typedef struct _val_str {
758 unsigned int val;
759 char * str;
760 } VAL_STR;
762 VAL_STR reg_type_names[] = {
763 { 1, "REG_SZ" },
764 { 2, "REG_EXPAND_SZ" },
765 { 3, "REG_BIN" },
766 { 4, "REG_DWORD" },
767 { 7, "REG_MULTI_SZ" },
768 { 0, NULL },
771 char *val_to_str(unsigned int val, VAL_STR *val_array)
773 int i = 0;
775 if (!val_array) return NULL;
777 while (val_array[i].val && val_array[i].str) {
779 if (val_array[i].val == val) return val_array[i].str;
780 i++;
784 return NULL;
788 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size);
790 int nt_set_regf_input_file(REGF *regf, char *filename)
792 return ((regf->regfile_name = strdup(filename)) != NULL);
795 int nt_set_regf_output_file(REGF *regf, char *filename)
797 return ((regf->outfile_name = strdup(filename)) != NULL);
800 /* Create a regf structure and init it */
802 REGF *nt_create_regf(void)
804 REGF *tmp = (REGF *)malloc(sizeof(REGF));
805 if (!tmp) return tmp;
806 bzero(tmp, sizeof(REGF));
807 return tmp;
810 /* Free all the bits and pieces ... Assumes regf was malloc'd */
811 /* If you add stuff to REGF, add the relevant free bits here */
812 int nt_free_regf(REGF *regf)
814 if (!regf) return 0;
816 if (regf->regfile_name) free(regf->regfile_name);
817 if (regf->outfile_name) free(regf->outfile_name);
819 /* Free the mmap'd area */
821 if (regf->base) munmap(regf->base, regf->sbuf.st_size);
822 regf->base = NULL;
823 close(regf->fd); /* Ignore the error :-) */
825 nt_delete_reg_key(regf->root); /* Free the tree */
826 free(regf->sk_map);
827 regf->sk_count = regf->sk_map_size = 0;
829 free(regf);
831 return 1;
835 * Convert from UniCode to Ascii ... Does not take into account other lang
836 * Restrict by ascii_max if > 0
838 int uni_to_ascii(unsigned char *uni, unsigned char *ascii, int ascii_max,
839 int uni_max)
841 int i = 0;
843 while (i < ascii_max && !(!uni[i*2] && !uni[i*2+1])) {
844 if (uni_max > 0 && (i*2) >= uni_max) break;
845 ascii[i] = uni[i*2];
846 i++;
850 ascii[i] = '\0';
852 return i;
855 /* Get the header of the registry. Return a pointer to the structure
856 * If the mmap'd area has not been allocated, then mmap the input file
858 REGF_HDR *nt_get_regf_hdr(REGF *regf)
860 if (!regf)
861 return NULL; /* What about errors */
863 if (!regf->regfile_name)
864 return NULL; /* What about errors */
866 if (!regf->base) { /* Try to mmap etc the file */
868 if ((regf->fd = open(regf->regfile_name, O_RDONLY, 0000)) <0) {
869 return NULL; /* What about errors? */
872 if (fstat(regf->fd, &regf->sbuf) < 0) {
873 return NULL;
876 regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0);
878 if ((int)regf->base == 1) {
879 fprintf(stderr, "Could not mmap file: %s, %s\n", regf->regfile_name,
880 strerror(errno));
881 return NULL;
886 * At this point, regf->base != NULL, and we should be able to read the
887 * header
890 assert(regf->base != NULL);
892 return (REGF_HDR *)regf->base;
896 * Validate a regf header
897 * For now, do nothing, but we should check the checksum
899 int valid_regf_hdr(REGF_HDR *regf_hdr)
901 if (!regf_hdr) return 0;
903 return 1;
907 * Process an SK header ...
908 * Every time we see a new one, add it to the map. Otherwise, just look it up.
909 * We will do a simple linear search for the moment, since many KEYs have the
910 * same security descriptor.
911 * We allocate the map in increments of 10 entries.
915 * Create a new entry in the map, and increase the size of the map if needed
918 SK_MAP **alloc_sk_map_entry(REGF *regf, KEY_SEC_DESC *tmp, int sk_off)
920 if (!regf->sk_map) { /* Allocate a block of 10 */
921 regf->sk_map = (SK_MAP **)malloc(sizeof(SK_MAP) * 10);
922 if (!regf->sk_map) {
923 free(tmp);
924 return NULL;
926 regf->sk_map_size = 10;
927 regf->sk_count = 1;
928 (*regf->sk_map)[0].sk_off = sk_off;
929 (*regf->sk_map)[0].key_sec_desc = tmp;
931 else { /* Simply allocate a new slot, unless we have to expand the list */
932 int index = regf->sk_count;
933 if (regf->sk_count == regf->sk_map_size) {
934 regf->sk_map = (SK_MAP **)realloc(regf->sk_map, regf->sk_map_size + 10);
935 if (!regf->sk_map) {
936 free(tmp);
937 return NULL;
939 index++;
941 (*regf->sk_map)[index].sk_off = sk_off;
942 (*regf->sk_map)[index].key_sec_desc = tmp;
943 regf->sk_count++;
945 return regf->sk_map;
949 * Search for a KEY_SEC_DESC in the sk_map, but dont create one if not
950 * found
953 KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off)
955 int i;
957 if (!sk_map) return NULL;
959 for (i = 0; i < count; i++) {
961 if (sk_map[i].sk_off == sk_off)
962 return sk_map[i].key_sec_desc;
966 return NULL;
971 * Allocate a KEY_SEC_DESC if we can't find one in the map
974 KEY_SEC_DESC *lookup_create_sec_key(REGF *regf, SK_MAP *sk_map, int sk_off)
976 KEY_SEC_DESC *tmp = lookup_sec_key(*regf->sk_map, regf->sk_count, sk_off);
978 if (tmp) {
979 return tmp;
981 else { /* Allocate a new one */
982 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
983 if (!tmp) {
984 return NULL;
986 tmp->state = SEC_DESC_RES;
987 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
988 return NULL;
990 return tmp;
994 SEC_DESC *process_sec_desc(REGF *regf, REG_SEC_DESC *sec_desc)
996 SEC_DESC *tmp = NULL;
998 return tmp;
1001 KEY_SEC_DESC *process_sk(REGF *regf, SK_HDR *sk_hdr, int sk_off, int size)
1003 KEY_SEC_DESC *tmp = NULL;
1004 int sk_next_off, sk_prev_off;
1005 REG_SEC_DESC *sec_desc;
1007 if (!sk_hdr) return NULL;
1009 if (SVAL(&sk_hdr->SK_ID) != REG_SK_ID) {
1010 fprintf(stderr, "Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr,
1011 regf->regfile_name);
1012 return NULL;
1016 * Now, we need to look up the SK Record in the map, and return it
1017 * Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can
1018 * use that
1021 if (((tmp = lookup_sec_key(*regf->sk_map, regf->sk_count, sk_off)) != NULL)
1022 && (tmp->state == SEC_DESC_OCU)) {
1023 tmp->ref_cnt++;
1024 return tmp;
1027 /* Here, we have an item in the map that has been reserved, or tmp==NULL. */
1029 assert(tmp && tmp->state != SEC_DESC_NON);
1032 * Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the
1033 * new KEY_SEC_DESC to the mapping structure, since the offset supplied is
1034 * the actual offset of structure. The same offset will be used by all
1035 * all future references to this structure
1036 * We chould put all this unpleasantness in a function.
1039 if (!tmp) {
1040 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1041 if (!tmp) return NULL;
1042 bzero(tmp, sizeof(KEY_SEC_DESC));
1045 * Allocate an entry in the SK_MAP ...
1048 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
1049 return NULL;
1053 tmp->ref_cnt++;
1054 tmp->state = SEC_DESC_OCU;
1057 * Now, process the actual sec desc and plug the values in
1060 sec_desc = (REG_SEC_DESC *)&sk_hdr->sec_desc[0];
1061 tmp->sec_desc = process_sec_desc(regf, sec_desc);
1064 * Now forward and back links. Here we allocate an entry in the sk_map
1065 * if it does not exist, and mark it reserved
1068 sk_prev_off = IVAL(&sk_hdr->prev_off);
1069 tmp->prev = lookup_create_sec_key(regf, *regf->sk_map, sk_prev_off);
1070 assert(tmp->prev != NULL);
1071 sk_next_off = IVAL(&sk_hdr->prev_off);
1072 tmp->next = lookup_create_sec_key(regf, *regf->sk_map, sk_next_off);
1073 assert(tmp->next != NULL);
1075 return tmp;
1079 * Process a VK header and return a value
1081 VAL_KEY *process_vk(REGF *regf, VK_HDR *vk_hdr, int size)
1083 char val_name[1024];
1084 int nam_len, dat_len, flag, dat_type, dat_off, vk_id;
1085 char *val_type;
1086 VAL_KEY *tmp = NULL;
1088 if (!vk_hdr) return NULL;
1090 if ((vk_id = SVAL(&vk_hdr->VK_ID)) != REG_VK_ID) {
1091 fprintf(stderr, "Unrecognized VK header ID: %0X, block: %0X, %s\n",
1092 vk_id, (int)vk_hdr, regf->regfile_name);
1093 return NULL;
1096 nam_len = SVAL(&vk_hdr->nam_len);
1097 val_name[nam_len] = '\0';
1098 flag = SVAL(&vk_hdr->flag);
1099 dat_type = IVAL(&vk_hdr->dat_type);
1100 dat_len = IVAL(&vk_hdr->dat_len); /* If top bit, offset contains data */
1101 dat_off = IVAL(&vk_hdr->dat_off);
1103 tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY));
1104 if (!tmp) {
1105 goto error;
1107 bzero(tmp, sizeof(VAL_KEY));
1108 tmp->has_name = flag;
1109 tmp->data_type = dat_type;
1111 if (flag & 0x01) {
1112 strncpy(val_name, vk_hdr->dat_name, nam_len);
1113 tmp->name = strdup(val_name);
1114 if (!tmp->name) {
1115 goto error;
1118 else
1119 strncpy(val_name, "<No Name>", 10);
1122 * Allocate space and copy the data as a BLOB
1125 if (dat_len) {
1127 char *dtmp = (char *)malloc(dat_len&0x7FFFFFFF);
1129 if (!dtmp) {
1130 goto error;
1133 tmp->data_blk = dtmp;
1135 if ((dat_len&0x80000000) == 0) { /* The data is pointed to by the offset */
1136 char *dat_ptr = LOCN(regf->base, dat_off);
1137 bcopy(dat_ptr, dtmp, dat_len);
1139 else { /* The data is in the offset */
1140 dat_len = dat_len & 0x7FFFFFFF;
1141 bcopy(&dat_off, dtmp, dat_len);
1146 val_type = val_to_str(dat_type, reg_type_names);
1149 * We need to save the data area as well
1152 if (verbose) fprintf(stdout, " %s : %s : \n", val_name, val_type);
1154 return tmp;
1156 error:
1157 /* XXX: FIXME, free the partially allocated struct */
1158 return NULL;
1163 * Process a VL Header and return a list of values
1165 VAL_LIST *process_vl(REGF *regf, VL_TYPE vl, int count, int size)
1167 int i, vk_off;
1168 VK_HDR *vk_hdr;
1169 VAL_LIST *tmp = NULL;
1171 if (!vl) return NULL;
1173 if (-size < (count+1)*sizeof(int)){
1174 fprintf(stderr, "Error in VL header format. Size less than space required. %d\n", -size);
1175 return NULL;
1178 tmp = (VAL_LIST *)malloc(sizeof(VAL_LIST) + (count - 1) * sizeof(VAL_KEY *));
1179 if (!tmp) {
1180 goto error;
1183 for (i=0; i<count; i++) {
1184 vk_off = IVAL(&vl[i]);
1185 vk_hdr = (VK_HDR *)LOCN(regf->base, vk_off);
1186 tmp->vals[i] = process_vk(regf, vk_hdr, BLK_SIZE(vk_hdr));
1187 if (!tmp->vals[i]){
1188 goto error;
1192 tmp->val_count = count;
1194 return tmp;
1196 error:
1197 /* XXX: FIXME, free the partially allocated structure */
1198 return NULL;
1202 * Process an LF Header and return a list of sub-keys
1204 KEY_LIST *process_lf(REGF *regf, LF_HDR *lf_hdr, int size)
1206 int count, i, nk_off;
1207 unsigned int lf_id;
1208 KEY_LIST *tmp;
1210 if (!lf_hdr) return NULL;
1212 if ((lf_id = SVAL(&lf_hdr->LF_ID)) != REG_LF_ID) {
1213 fprintf(stderr, "Unrecognized LF Header format: %0X, Block: %0X, %s.\n",
1214 lf_id, (int)lf_hdr, regf->regfile_name);
1215 return NULL;
1218 assert(size < 0);
1220 count = SVAL(&lf_hdr->key_count);
1222 if (count <= 0) return NULL;
1224 /* Now, we should allocate a KEY_LIST struct and fill it in ... */
1226 tmp = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (count - 1) * sizeof(REG_KEY *));
1227 if (!tmp) {
1228 goto error;
1231 tmp->key_count = count;
1233 for (i=0; i<count; i++) {
1234 NK_HDR *nk_hdr;
1236 nk_off = IVAL(&lf_hdr->hr[i].nk_off);
1237 nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off);
1238 tmp->keys[i] = nt_get_key_tree(regf, nk_hdr, BLK_SIZE(nk_hdr));
1239 if (!tmp->keys[i]) {
1240 goto error;
1244 return tmp;
1246 error:
1247 /* XXX: FIXME, free the partially allocated structure */
1248 return NULL;
1252 * This routine is passed a NK_HDR pointer and retrieves the entire tree
1253 * from there down. It return a REG_KEY *.
1255 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size)
1257 REG_KEY *tmp = NULL;
1258 int name_len, clsname_len, lf_off, val_off, val_count, sk_off;
1259 unsigned int nk_id;
1260 LF_HDR *lf_hdr;
1261 VL_TYPE *vl;
1262 SK_HDR *sk_hdr;
1263 char key_name[1024], cls_name[1024];
1265 if (!nk_hdr) return NULL;
1267 if ((nk_id = SVAL(&nk_hdr->NK_ID)) != REG_NK_ID) {
1268 fprintf(stderr, "Unrecognized NK Header format: %08X, Block: %0X. %s\n",
1269 nk_id, (int)nk_hdr, regf->regfile_name);
1270 return NULL;
1273 assert(size < 0);
1275 name_len = SVAL(&nk_hdr->nam_len);
1276 clsname_len = SVAL(&nk_hdr->clsnam_len);
1279 * The value of -size should be ge
1280 * (sizeof(NK_HDR) - 1 + name_len)
1281 * The -1 accounts for the fact that we included the first byte of
1282 * the name in the structure. clsname_len is the length of the thing
1283 * pointed to by clsnam_off
1286 if (-size < (sizeof(NK_HDR) - 1 + name_len)) {
1287 fprintf(stderr, "Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr);
1288 fprintf(stderr, "Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n",
1289 sizeof(NK_HDR), name_len, clsname_len);
1290 /*return NULL;*/
1293 if (verbose) fprintf(stdout, "NK HDR: Name len: %d, class name len: %d\n",
1294 name_len, clsname_len);
1296 /* Fish out the key name and process the LF list */
1298 assert(name_len < sizeof(key_name));
1300 /* Allocate the key struct now */
1301 tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
1302 if (!tmp) return tmp;
1303 bzero(tmp, sizeof(REG_KEY));
1305 tmp->type = (SVAL(&nk_hdr->type)==0x2C?REG_ROOT_KEY:REG_SUB_KEY);
1307 strncpy(key_name, nk_hdr->key_nam, name_len);
1308 key_name[name_len] = '\0';
1310 if (verbose) fprintf(stdout, "Key name: %s\n", key_name);
1312 tmp->name = strdup(key_name);
1313 if (!tmp->name) {
1314 goto error;
1318 * Fish out the class name, it is in UNICODE, while the key name is
1319 * ASCII :-)
1322 if (clsname_len) { /* Just print in Ascii for now */
1323 char *clsnamep;
1324 int clsnam_off;
1326 clsnam_off = IVAL(&nk_hdr->clsnam_off);
1327 clsnamep = LOCN(regf->base, clsnam_off);
1329 bzero(cls_name, clsname_len);
1330 uni_to_ascii(clsnamep, cls_name, sizeof(cls_name), clsname_len);
1333 * I am keeping class name as an ascii string for the moment.
1334 * That means it needs to be converted on output.
1335 * XXX: FIXME
1338 tmp->class_name = strdup(cls_name);
1339 if (!tmp->class_name) {
1340 goto error;
1343 if (verbose) fprintf(stdout, " Class Name: %s\n", cls_name);
1348 * If there are any values, process them here
1351 val_count = IVAL(&nk_hdr->val_cnt);
1353 if (val_count) {
1355 val_off = IVAL(&nk_hdr->val_off);
1356 vl = (VL_TYPE *)LOCN(regf->base, val_off);
1358 tmp->values = process_vl(regf, *vl, val_count, BLK_SIZE(vl));
1359 if (!tmp->values) {
1360 goto error;
1366 * Also handle the SK header ...
1369 sk_off = IVAL(&nk_hdr->sk_off);
1370 sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off);
1372 if (sk_off != -1) {
1374 /* To be coded */
1378 lf_off = IVAL(&nk_hdr->lf_off);
1381 * No more subkeys if lf_off == -1
1384 if (lf_off != -1) {
1386 lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off);
1388 tmp->sub_keys = process_lf(regf, lf_hdr, BLK_SIZE(lf_hdr));
1389 if (!tmp->sub_keys){
1390 goto error;
1395 return tmp;
1397 error:
1398 if (tmp) nt_delete_reg_key(tmp);
1399 return NULL;
1402 int nt_load_registry(REGF *regf)
1404 REGF_HDR *regf_hdr;
1405 unsigned int regf_id, hbin_id;
1406 HBIN_HDR *hbin_hdr;
1407 NK_HDR *first_key;
1409 /* Get the header */
1411 if ((regf_hdr = nt_get_regf_hdr(regf)) == NULL) {
1412 return -1;
1415 /* Now process that header and start to read the rest in */
1417 if ((regf_id = IVAL(&regf_hdr->REGF_ID)) != REG_REGF_ID) {
1418 fprintf(stderr, "Unrecognized NT registry header id: %0X, %s\n",
1419 regf_id, regf->regfile_name);
1420 return -1;
1424 * Validate the header ...
1426 if (!valid_regf_hdr(regf_hdr)) {
1427 fprintf(stderr, "Registry file header does not validate: %s\n",
1428 regf->regfile_name);
1429 return -1;
1432 /* Update the last mod date, and then go get the first NK record and on */
1434 TTTONTTIME(regf, IVAL(&regf_hdr->tim1), IVAL(&regf_hdr->tim2));
1437 * The hbin hdr seems to be just uninteresting garbage. Check that
1438 * it is there, but that is all.
1441 hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ);
1443 if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID)) != REG_HBIN_ID) {
1444 fprintf(stderr, "Unrecognized registry hbin hdr ID: %0X, %s\n",
1445 hbin_id, regf->regfile_name);
1446 return -1;
1450 * Get a pointer to the first key from the hreg_hdr
1453 first_key = (NK_HDR *)LOCN(regf->base, IVAL(&regf_hdr->first_key));
1456 * Now, get the registry tree by processing that NK recursively
1459 regf->root = nt_get_key_tree(regf, first_key, BLK_SIZE(first_key));
1461 assert(regf->root != NULL);
1463 return 1;
1467 * Main code from here on ...
1471 * key print function here ...
1474 int print_key(char *path, char *name, char *class_name, int root,
1475 int terminal, int vals)
1478 if (terminal) fprintf(stdout, "%s\\%s\n", path, name);
1480 return 1;
1484 * Value print function here ...
1486 int print_val(char *path, char *val_name, int val_type, int data_len,
1487 void *data_blk, int terminal, int first, int last)
1489 if (!terminal && first)
1490 fprintf(stdout, "%s\n", path);
1491 fprintf(stdout, " %s : %s : \n", (val_name?val_name:"<No Name>"),
1492 val_to_str(val_type, reg_type_names));
1493 return 1;
1496 void usage(void)
1498 fprintf(stderr, "Usage: editreg [-v] [-k] <registryfile>\n");
1499 fprintf(stderr, "Version: 0.1\n\n");
1500 fprintf(stderr, "\n\t-v\t sets verbose mode");
1503 int main(int argc, char *argv[])
1505 REGF *regf;
1506 extern char *optarg;
1507 extern int optind;
1508 int opt;
1510 if (argc < 2) {
1511 usage();
1512 exit(1);
1516 * Now, process the arguments
1519 while ((opt = getopt(argc, argv, "vk")) != EOF) {
1520 switch (opt) {
1521 case 'v':
1522 verbose++;
1523 break;
1525 case 'k':
1526 break;
1528 default:
1529 usage();
1530 exit(1);
1531 break;
1535 if ((regf = nt_create_regf()) == NULL) {
1536 fprintf(stderr, "Could not create registry object: %s\n", strerror(errno));
1537 exit(2);
1540 if (!nt_set_regf_input_file(regf, argv[optind])) {
1541 fprintf(stderr, "Could not set name of registry file: %s, %s\n",
1542 argv[1], strerror(errno));
1543 exit(3);
1546 /* Now, open it, and bring it into memory :-) */
1548 if (nt_load_registry(regf) < 0) {
1549 fprintf(stderr, "Could not load registry: %s\n", argv[1]);
1550 exit(4);
1554 * At this point, we should have a registry in memory and should be able
1555 * to iterate over it.
1558 nt_key_iterator(regf, regf->root, 0, "", print_key, print_val);
1559 return 0;