
Open∇FOAM
The Open Source CFD Toolbox

User Guide

Version 2.0.0
16th June 2011

U-2

Copyright c© 2004-2011 OpenCFD Limited.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 published by the Free Software Foundation;
with no Invariant Sections, no Back-Cover Texts and one Front-Cover Text: “Available free
from openfoam.org.” A copy of the license is included in the section entitled “GNU Free
Documentation License”.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

Typeset in LATEX.

Open∇FOAM-2.0.0

U-3

GNU Free Documentation License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Sec-
ondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

Open∇FOAM-2.0.0

U-4

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or absence
of markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Exam-
ples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on

Open∇FOAM-2.0.0

U-5

the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

Open∇FOAM-2.0.0

U-6

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties–for example, statements of peer review or that
the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

Open∇FOAM-2.0.0

U-7

name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have

Open∇FOAM-2.0.0

U-8

received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

Open∇FOAM-2.0.0

http://www.gnu.org/copyleft/

U-9

Trademarks

ANSYS is a registered trademark of ANSYS Inc.
CFX is a registered trademark of Ansys Inc.
CHEMKIN is a registered trademark of Reaction Design Corporation
EnSight is a registered trademark of Computational Engineering International Ltd.
Fieldview is a registered trademark of Intelligent Light
Fluent is a registered trademark of Ansys Inc.
GAMBIT is a registered trademark of Ansys Inc.
Icem-CFD is a registered trademark of Ansys Inc.
I-DEAS is a registered trademark of Structural Dynamics Research Corporation
JAVA is a registered trademark of Sun Microsystems Inc.
Linux is a registered trademark of Linus Torvalds
OpenFOAM is a registered trademark of OpenCFD Ltd
ParaView is a registered trademark of Kitware
STAR-CD is a registered trademark of Computational Dynamics Ltd.
UNIX is a registered trademark of The Open Group

Open∇FOAM-2.0.0

U-10

Open∇FOAM-2.0.0

Contents

Copyright Notice U-2

GNU Free Documentation Licence U-3
1. APPLICABILITY AND DEFINITIONS U-3
2. VERBATIM COPYING . U-4
3. COPYING IN QUANTITY . U-4
4. MODIFICATIONS . U-5
5. COMBINING DOCUMENTS . U-6
6. COLLECTIONS OF DOCUMENTS . U-7
7. AGGREGATION WITH INDEPENDENT WORKS U-7
8. TRANSLATION . U-7
9. TERMINATION . U-7
10. FUTURE REVISIONS OF THIS LICENSE U-8

Trademarks U-9

Contents U-11

1 Introduction U-17

2 Tutorials U-19
2.1 Lid-driven cavity flow . U-19

2.1.1 Pre-processing . U-20
2.1.1.1 Mesh generation . U-20
2.1.1.2 Boundary and initial conditions U-22
2.1.1.3 Physical properties . U-23
2.1.1.4 Control . U-24
2.1.1.5 Discretisation and linear-solver settings U-25

2.1.2 Viewing the mesh . U-25
2.1.3 Running an application . U-27
2.1.4 Post-processing . U-27

2.1.4.1 Isosurface and contour plots U-27
2.1.4.2 Vector plots . U-29
2.1.4.3 Streamline plots . U-31

2.1.5 Increasing the mesh resolution U-31
2.1.5.1 Creating a new case using an existing case U-31
2.1.5.2 Creating the finer mesh U-33
2.1.5.3 Mapping the coarse mesh results onto the fine mesh . . U-33

U-12 Contents

2.1.5.4 Control adjustments U-33
2.1.5.5 Running the code as a background process U-34
2.1.5.6 Vector plot with the refined mesh U-34
2.1.5.7 Plotting graphs . U-34

2.1.6 Introducing mesh grading . U-37
2.1.6.1 Creating the graded mesh U-38
2.1.6.2 Changing time and time step U-39
2.1.6.3 Mapping fields . U-40

2.1.7 Increasing the Reynolds number U-40
2.1.7.1 Pre-processing . U-40
2.1.7.2 Running the code . U-40

2.1.8 High Reynolds number flow . U-41
2.1.8.1 Pre-processing . U-42
2.1.8.2 Running the code . U-44

2.1.9 Changing the case geometry . U-44
2.1.10 Post-processing the modified geometry U-46

2.2 Stress analysis of a plate with a hole U-48
2.2.1 Mesh generation . U-49

2.2.1.1 Boundary and initial conditions U-51
2.2.1.2 Mechanical properties U-53
2.2.1.3 Thermal properties . U-53
2.2.1.4 Control . U-53
2.2.1.5 Discretisation schemes and linear-solver control U-54

2.2.2 Running the code . U-56
2.2.3 Post-processing . U-56
2.2.4 Exercises . U-57

2.2.4.1 Increasing mesh resolution U-57
2.2.4.2 Introducing mesh grading U-57
2.2.4.3 Changing the plate size U-58

2.3 Breaking of a dam . U-58
2.3.1 Mesh generation . U-59
2.3.2 Boundary conditions . U-60
2.3.3 Setting initial field . U-61
2.3.4 Fluid properties . U-62
2.3.5 Turbulence modelling . U-63
2.3.6 Time step control . U-63
2.3.7 Discretisation schemes . U-64
2.3.8 Linear-solver control . U-65
2.3.9 Running the code . U-66
2.3.10 Post-processing . U-66
2.3.11 Running in parallel . U-66
2.3.12 Post-processing a case run in parallel U-69

3 Applications and libraries U-71
3.1 The programming language of OpenFOAM U-71

3.1.1 Language in general . U-71
3.1.2 Object-orientation and C++ . U-72
3.1.3 Equation representation . U-72

Open∇FOAM-2.0.0

Contents U-13

3.1.4 Solver codes . U-73
3.2 Compiling applications and libraries . U-73

3.2.1 Header .H files . U-73
3.2.2 Compiling with wmake . U-75

3.2.2.1 Including headers . U-75
3.2.2.2 Linking to libraries . U-76
3.2.2.3 Source files to be compiled U-77
3.2.2.4 Running wmake . U-77
3.2.2.5 wmake environment variables U-78

3.2.3 Removing dependency lists: wclean and rmdepall U-78
3.2.4 Compilation example: the pisoFoam application U-79
3.2.5 Debug messaging and optimisation switches U-82
3.2.6 Linking new user-defined libraries to existing applications U-82

3.3 Running applications . U-83
3.4 Running applications in parallel . U-84

3.4.1 Decomposition of mesh and initial field data U-84
3.4.2 Running a decomposed case . U-85
3.4.3 Distributing data across several disks U-87
3.4.4 Post-processing parallel processed cases U-87

3.4.4.1 Reconstructing mesh and data U-87
3.4.4.2 Post-processing decomposed cases U-88

3.5 Standard solvers . U-88
3.6 Standard utilities . U-92
3.7 Standard libraries . U-100

4 OpenFOAM cases U-107
4.1 File structure of OpenFOAM cases . U-107
4.2 Basic input/output file format . U-108

4.2.1 General syntax rules . U-108
4.2.2 Dictionaries . U-109
4.2.3 The data file header . U-109
4.2.4 Lists . U-110
4.2.5 Scalars, vectors and tensors . U-111
4.2.6 Dimensional units . U-111
4.2.7 Dimensioned types . U-112
4.2.8 Fields . U-112
4.2.9 Directives and macro substitutions U-113
4.2.10 The #include and #inputMode directives U-114
4.2.11 The #codeStream directive . U-114

4.3 Time and data input/output control U-115
4.4 Numerical schemes . U-118

4.4.1 Interpolation schemes . U-119
4.4.1.1 Schemes for strictly bounded scalar fields U-120
4.4.1.2 Schemes for vector fields U-120

4.4.2 Surface normal gradient schemes U-121
4.4.3 Gradient schemes . U-122
4.4.4 Laplacian schemes . U-122
4.4.5 Divergence schemes . U-123

Open∇FOAM-2.0.0

U-14 Contents

4.4.6 Time schemes . U-124
4.4.7 Flux calculation . U-124

4.5 Solution and algorithm control . U-125
4.5.1 Linear solver control . U-125

4.5.1.1 Solution tolerances . U-126
4.5.1.2 Preconditioned conjugate gradient solvers U-127
4.5.1.3 Smooth solvers . U-127
4.5.1.4 Geometric-algebraic multi-grid solvers U-127

4.5.2 Solution under-relaxation . U-128
4.5.3 PISO and SIMPLE algorithms U-129

4.5.3.1 Pressure referencing U-130
4.5.4 Other parameters . U-130

5 Mesh generation and conversion U-131
5.1 Mesh description . U-131

5.1.1 Mesh specification and validity constraints U-131
5.1.1.1 Points . U-132
5.1.1.2 Faces . U-132
5.1.1.3 Cells . U-133
5.1.1.4 Boundary . U-133

5.1.2 The polyMesh description . U-133
5.1.3 The cellShape tools . U-134
5.1.4 1- and 2-dimensional and axi-symmetric problems U-135

5.2 Boundaries . U-135
5.2.1 Specification of patch types in OpenFOAM U-135
5.2.2 Base types . U-139
5.2.3 Primitive types . U-140
5.2.4 Derived types . U-140

5.3 Mesh generation with the blockMesh utility U-141
5.3.1 Writing a blockMeshDict file . U-144

5.3.1.1 The vertices . U-144
5.3.1.2 The edges . U-144
5.3.1.3 The blocks . U-145
5.3.1.4 The boundary . U-146

5.3.2 Multiple blocks . U-147
5.3.3 Creating blocks with fewer than 8 vertices U-149
5.3.4 Running blockMesh . U-149

5.4 Mesh generation with the snappyHexMesh utility U-150
5.4.1 The mesh generation process of snappyHexMesh U-151
5.4.2 Creating the background hex mesh U-152
5.4.3 Cell splitting at feature edges and surfaces U-153
5.4.4 Cell removal . U-154
5.4.5 Cell splitting in specified regions U-155
5.4.6 Snapping to surfaces . U-156
5.4.7 Mesh layers . U-156
5.4.8 Mesh quality controls . U-159

5.5 Mesh conversion . U-159
5.5.1 fluentMeshToFoam . U-160

Open∇FOAM-2.0.0

Contents U-15

5.5.2 starToFoam . U-160
5.5.2.1 General advice on conversion U-161
5.5.2.2 Eliminating extraneous data U-161
5.5.2.3 Removing default boundary conditions U-162
5.5.2.4 Renumbering the model U-163
5.5.2.5 Writing out the mesh data U-163
5.5.2.6 Problems with the .vrt file U-164
5.5.2.7 Converting the mesh to OpenFOAM format U-165

5.5.3 gambitToFoam . U-165
5.5.4 ideasToFoam . U-165
5.5.5 cfx4ToFoam . U-165

5.6 Mapping fields between different geometries U-166
5.6.1 Mapping consistent fields . U-166
5.6.2 Mapping inconsistent fields . U-166
5.6.3 Mapping parallel cases . U-167

6 Post-processing U-169
6.1 paraFoam . U-169

6.1.1 Overview of paraFoam . U-169
6.1.2 The Properties panel . U-171
6.1.3 The Display panel . U-171
6.1.4 The button toolbars . U-173
6.1.5 Manipulating the view . U-173

6.1.5.1 View settings . U-173
6.1.5.2 General settings . U-174

6.1.6 Contour plots . U-174
6.1.6.1 Introducing a cutting plane U-174

6.1.7 Vector plots . U-174
6.1.7.1 Plotting at cell centres U-175

6.1.8 Streamlines . U-175
6.1.9 Image output . U-175
6.1.10 Animation output . U-175

6.2 Post-processing with Fluent . U-176
6.3 Post-processing with Fieldview . U-177
6.4 Post-processing with EnSight . U-178

6.4.1 Converting data to EnSight format U-178
6.4.2 The ensight74FoamExec reader module U-179

6.4.2.1 Configuration of EnSight for the reader module U-179
6.4.2.2 Using the reader module U-179

6.5 Sampling data . U-180
6.6 Monitoring and managing jobs . U-183

6.6.1 The foamJob script for running jobs U-183
6.6.2 The foamLog script for monitoring jobs U-184

7 Models and physical properties U-187
7.1 Thermophysical models . U-187

7.1.1 Thermophysical property data U-189
7.2 Turbulence models . U-191

Open∇FOAM-2.0.0

U-16 Contents

7.2.1 Model coefficients . U-192
7.2.2 Wall functions . U-192

Index U-195

Open∇FOAM-2.0.0

Chapter 1

Introduction

This guide accompanies the release of version 2.0.0 of the Open Source Field Operation and
Manipulation (OpenFOAM) C++ libraries. It provides a description of the basic operation
of OpenFOAM, first through a set of tutorial exercises in chapter 2 and later by a more
detailed description of the individual components that make up OpenFOAM.

OpenFOAM is first and foremost a C++ library, used primarily to create executables,
known as applications. The applications fall into two categories: solvers, that are each
designed to solve a specific problem in continuum mechanics; and utilities, that are designed
to perform tasks that involve data manipulation. The OpenFOAM distribution contains
numerous solvers and utilities covering a wide range of problems, as described in chapter 3.

One of the strengths of OpenFOAM is that new solvers and utilities can be created by its
users with some pre-requisite knowledge of the underlying method, physics and programming
techniques involved.

OpenFOAM is supplied with pre- and post-processing environments. The interface to the
pre- and post-processing are themselves OpenFOAM utilities, thereby ensuring consistent
data handling across all environments. The overall structure of OpenFOAM is shown in
Figure 1.1. The pre-processing and running of OpenFOAM cases is described in chapter 4.

Applications
User

Tools
MeshingUtilities Standard

Applications
Others

e.g.EnSight

Post-processingSolvingPre-processing

Open Source Field Operation and Manipulation (OpenFOAM) C++ Library

ParaView

Figure 1.1: Overview of OpenFOAM structure.

In chapter 5, we cover both the generation of meshes using the mesh generator supplied
with OpenFOAM and conversion of mesh data generated by third-party products. Post-
processing is described in chapter 6.

U-18 Introduction

Open∇FOAM-2.0.0

Chapter 2

Tutorials

In this chapter we shall describe in detail the process of setup, simulation and post-processing
for some OpenFOAM test cases, with the principal aim of introducing a user to the basic
procedures of running OpenFOAM. The $FOAM TUTORIALS directory contains many more
cases that demonstrate the use of all the solvers and many utilities supplied with Open-
FOAM. Before attempting to run the tutorials, the user must first make sure that they have
installed OpenFOAM correctly.

The tutorial cases describe the use of the blockMesh pre-processing tool, case setup and
running OpenFOAM solvers and post-processing using paraFoam. Those users with access to
third-party post-processing tools supported in OpenFOAM have an option: either they can
follow the tutorials using paraFoam; or refer to the description of the use of the third-party
product in chapter 6 when post-processing is required.

Copies of all tutorials are available from the tutorials directory of the OpenFOAM instal-
lation. The tutorials are organised into a set of directories according to the type of flow and
then subdirectories according to solver. For example, all the icoFoam cases are stored within
a subdirectory incompressible/icoFoam, where incompressible indicates the type of flow. If
the user wishes to run a range of example cases, it is recommended that the user copy the
tutorials directory into their local run directory. They can be easily copied by typing:

mkdir -p $FOAM RUN

cp -r $FOAM TUTORIALS $FOAM RUN

2.1 Lid-driven cavity flow

This tutorial will describe how to pre-process, run and post-process a case involving isother-
mal, incompressible flow in a two-dimensional square domain. The geometry is shown in
Figure 2.1 in which all the boundaries of the square are walls. The top wall moves in the
x-direction at a speed of 1 m/s while the other 3 are stationary. Initially, the flow will be
assumed laminar and will be solved on a uniform mesh using the icoFoam solver for laminar,
isothermal, incompressible flow. During the course of the tutorial, the effect of increased
mesh resolution and mesh grading towards the walls will be investigated. Finally, the flow
Reynolds number will be increased and the pisoFoam solver will be used for turbulent,
isothermal, incompressible flow.

U-20 Tutorials

x

Ux = 1 m/s

d = 0.1 m

y

Figure 2.1: Geometry of the lid driven cavity.

2.1.1 Pre-processing

Cases are setup in OpenFOAM by editing case files. Users should select an xeditor of choice
with which to do this, such as emacs, vi, gedit, kate, nedit, etc. Editing files is possible in
OpenFOAM because the I/O uses a dictionary format with keywords that convey sufficient
meaning to be understood by even the least experienced users.

A case being simulated involves data for mesh, fields, properties, control parameters,
etc. As described in section 4.1, in OpenFOAM this data is stored in a set of files within a
case directory rather than in a single case file, as in many other CFD packages. The case
directory is given a suitably descriptive name, e.g. the first example case for this tutorial is
simply named cavity. In preparation of editing case files and running the first cavity case,
the user should change to the case directory

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity

2.1.1.1 Mesh generation

OpenFOAM always operates in a 3 dimensional Cartesian coordinate system and all geome-
tries are generated in 3 dimensions. OpenFOAM solves the case in 3 dimensions by default
but can be instructed to solve in 2 dimensions by specifying a ‘special’ empty boundary
condition on boundaries normal to the (3rd) dimension for which no solution is required.

The cavity domain consists of a square of side length d = 0.1 m in the x-y plane. A
uniform mesh of 20 by 20 cells will be used initially. The block structure is shown in Fig-
ure 2.2. The mesh generator supplied with OpenFOAM, blockMesh, generates meshes from a
description specified in an input dictionary, blockMeshDict located in the constant/polyMesh
directory for a given case. The blockMeshDict entries for this case are as follows:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 2.0.0 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-21

3 2

4 5

7 6

0
z

x 1
y

Figure 2.2: Block structure of the mesh for the cavity.

9 {
10 version 2.0;
11 format ascii;
12 class dictionary;
13 object blockMeshDict;
14 }
15 // * //
16

17 convertToMeters 0.1;
18

19 vertices
20 (
21 (0 0 0)
22 (1 0 0)
23 (1 1 0)
24 (0 1 0)
25 (0 0 0.1)
26 (1 0 0.1)
27 (1 1 0.1)
28 (0 1 0.1)
29);
30

31 blocks
32 (
33 hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)
34);
35

36 edges
37 (
38);
39

40 boundary
41 (
42

43 movingWall
44 {
45 type wall;
46 faces
47 (
48 (3 7 6 2)
49);
50 }
51 fixedWalls
52 {
53 type wall;
54 faces
55 (
56 (0 4 7 3)
57 (2 6 5 1)
58 (1 5 4 0)
59);
60 }
61 frontAndBack

Open∇FOAM-2.0.0

U-22 Tutorials

62 {
63 type empty;
64 faces
65 (
66 (0 3 2 1)
67 (4 5 6 7)
68);
69 }
70);
71

72 mergePatchPairs
73 (
74);
75

76 // *** //

The file first contains header information in the form of a banner (lines 1-7), then file
information contained in a FoamFile sub-dictionary, delimited by curly braces ({...}).

For the remainder of the manual:

For the sake of clarity and to save space, file headers, including the banner and
FoamFile sub-dictionary, will be removed from verbatim quoting of case files

The file first specifies coordinates of the block vertices; it then defines the blocks

(here, only 1) from the vertex labels and the number of cells within it; and finally, it defines
the boundary patches. The user is encouraged to consult section 5.3 to understand the
meaning of the entries in the blockMeshDict file.

The mesh is generated by running blockMesh on this blockMeshDict file. From within
the case directory, this is done, simply by typing in the terminal:

blockMesh

The running status of blockMesh is reported in the terminal window. Any mistakes in the
blockMeshDict file are picked up by blockMesh and the resulting error message directs the
user to the line in the file where the problem occurred. There should be no error messages
at this stage.

2.1.1.2 Boundary and initial conditions

Once the mesh generation is complete, the user can look at this initial fields set up for this
case. The case is set up to start at time t = 0 s, so the initial field data is stored in a 0
sub-directory of the cavity directory. The 0 sub-directory contains 2 files, p and U, one for
each of the pressure (p) and velocity (U) fields whose initial values and boundary conditions
must be set. Let us examine file p:

17 dimensions [0 2 -2 0 0 0 0];
18

19 internalField uniform 0;
20

21 boundaryField
22 {
23 movingWall
24 {
25 type zeroGradient;
26 }
27

28 fixedWalls
29 {
30 type zeroGradient;
31 }
32

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-23

33 frontAndBack
34 {
35 type empty;
36 }
37 }
38

39 // *** //

There are 3 principal entries in field data files:

dimensions specifies the dimensions of the field, here kinematic pressure, i.e. m2 s−2 (see
section 4.2.6 for more information);

internalField the internal field data which can be uniform, described by a single value;
or nonuniform, where all the values of the field must be specified (see section 4.2.8
for more information);

boundaryField the boundary field data that includes boundary conditions and data for all
the boundary patches (see section 4.2.8 for more information).

For this case cavity, the boundary consists of walls only, split into 2 patches named: (1)
fixedWalls for the fixed sides and base of the cavity; (2) movingWall for the moving top
of the cavity. As walls, both are given a zeroGradient boundary condition for p, meaning
“the normal gradient of pressure is zero”. The frontAndBack patch represents the front
and back planes of the 2D case and therefore must be set as empty.

In this case, as in most we encounter, the initial fields are set to be uniform. Here the
pressure is kinematic, and as an incompressible case, its absolute value is not relevant, so is
set to uniform 0 for convenience.

The user can similarly examine the velocity field in the 0/U file. The dimensions are
those expected for velocity, the internal field is initialised as uniform zero, which in the case of
velocity must be expressed by 3 vector components, i.e.uniform (0 0 0) (see section 4.2.5
for more information).

The boundary field for velocity requires the same boundary condition for the frontAnd-
Back patch. The other patches are walls: a no-slip condition is assumed on the fixedWalls,
hence a fixedValue condition with a value of uniform (0 0 0). The top surface moves at
a speed of 1 m/s in the x-direction so requires a fixedValue condition also but with uniform

(1 0 0).

2.1.1.3 Physical properties

The physical properties for the case are stored in dictionaries whose names are given the
suffix . . . Properties, located in the Dictionaries directory tree. For an icoFoam case,
the only property that must be specified is the kinematic viscosity which is stored from
the transportProperties dictionary. The user can check that the kinematic viscosity is set
correctly by opening the transportProperties dictionary to view/edit its entries. The keyword
for kinematic viscosity is nu, the phonetic label for the Greek symbol ν by which it is
represented in equations. Initially this case will be run with a Reynolds number of 10,
where the Reynolds number is defined as:

Re =
d|U|
ν

(2.1)

where d and |U| are the characteristic length and velocity respectively and ν is the kinematic
viscosity. Here d = 0.1 m, |U| = 1 m s−1, so that for Re = 10, ν = 0.01 m2 s−1. The correct
file entry for kinematic viscosity is thus specified below:

Open∇FOAM-2.0.0

U-24 Tutorials

17

18 nu nu [0 2 -1 0 0 0 0] 0.01;
19

20

21 // *** //

2.1.1.4 Control

Input data relating to the control of time and reading and writing of the solution data are
read in from the controlDict dictionary. The user should view this file; as a case control file,
it is located in the system directory.

The start/stop times and the time step for the run must be set. OpenFOAM offers great
flexibility with time control which is described in full in section 4.3. In this tutorial we
wish to start the run at time t = 0 which means that OpenFOAM needs to read field data
from a directory named 0 — see section 4.1 for more information of the case file structure.
Therefore we set the startFrom keyword to startTime and then specify the startTime

keyword to be 0.
For the end time, we wish to reach the steady state solution where the flow is circulating

around the cavity. As a general rule, the fluid should pass through the domain 10 times to
reach steady state in laminar flow. In this case the flow does not pass through this domain
as there is no inlet or outlet, so instead the end time can be set to the time taken for the
lid to travel ten times across the cavity, i.e. 1 s; in fact, with hindsight, we discover that
0.5 s is sufficient so we shall adopt this value. To specify this end time, we must specify the
stopAt keyword as endTime and then set the endTime keyword to 0.5.

Now we need to set the time step, represented by the keyword deltaT. To achieve
temporal accuracy and numerical stability when running icoFoam, a Courant number of less
than 1 is required. The Courant number is defined for one cell as:

Co =
δt|U|
δx

(2.2)

where δt is the time step, |U| is the magnitude of the velocity through that cell and δx is
the cell size in the direction of the velocity. The flow velocity varies across the domain and
we must ensure Co < 1 everywhere. We therefore choose δt based on the worst case: the
maximum Co corresponding to the combined effect of a large flow velocity and small cell
size. Here, the cell size is fixed across the domain so the maximum Co will occur next to
the lid where the velocity approaches 1 m s−1. The cell size is:

δx =
d

n
=

0.1

20
= 0.005 m (2.3)

Therefore to achieve a Courant number less than or equal to 1 throughout the domain the
time step deltaT must be set to less than or equal to:

δt =
Co δx

|U| =
1× 0.005

1
= 0.005 s (2.4)

As the simulation progresses we wish to write results at certain intervals of time that we
can later view with a post-processing package. The writeControl keyword presents several
options for setting the time at which the results are written; here we select the timeStep

option which specifies that results are written every nth time step where the value n is
specified under the writeInterval keyword. Let us decide that we wish to write our

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-25

results at times 0.1, 0.2,. . . , 0.5 s. With a time step of 0.005 s, we therefore need to output
results at every 20th time time step and so we set writeInterval to 20.

OpenFOAM creates a new directory named after the current time, e.g. 0.1 s, on each
occasion that it writes a set of data, as discussed in full in section 4.1. In the icoFoam solver,
it writes out the results for each field, U and p, into the time directories. For this case, the
entries in the controlDict are shown below:

17

18 application icoFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.5;
27

28 deltaT 0.005;
29

30 writeControl timeStep;
31

32 writeInterval 20;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48

49 // *** //

2.1.1.5 Discretisation and linear-solver settings

The user specifies the choice of finite volume discretisation schemes in the fvSchemes dictio-
nary in the system directory. The specification of the linear equation solvers and tolerances
and other algorithm controls is made in the fvSolution dictionary, similarly in the system
directory. The user is free to view these dictionaries but we do not need to discuss all their
entries at this stage except for pRefCell and pRefValue in the PISO sub-dictionary of the
fvSolution dictionary. In a closed incompressible system such as the cavity, pressure is rel-
ative: it is the pressure range that matters not the absolute values. In cases such as this,
the solver sets a reference level by pRefValue in cell pRefCell. In this example both are
set to 0. Changing either of these values will change the absolute pressure field, but not, of
course, the relative pressures or velocity field.

2.1.2 Viewing the mesh

Before the case is run it is a good idea to view the mesh to check for any errors. The mesh
is viewed in paraFoam, the post-processing tool supplied with OpenFOAM. The paraFoam
post-processing is started by typing in the terminal from within the case directory

paraFoam

Open∇FOAM-2.0.0

U-26 Tutorials

Alternatively, it can be launched from another directory location with an optional -case
argument giving the case directory, e.g.

paraFoam -case $FOAM RUN/tutorials/incompressible/icoFoam/cavity

This launches the ParaView window as shown in Figure 6.1. In the Pipeline Browser,
the user can see that ParaView has opened cavity.OpenFOAM, the module for the cavity
case. Before clicking the Apply button, the user needs to select some geometry from the
Mesh Parts panel. Because the case is small, it is easiest to select all the data by checking
the box adjacent to the Mesh Parts panel title, which automatically checks all individual
components within the respective panel. The user should then click the Apply button to
load the geometry into ParaView. There are some general settings are applied as described
in section 6.1.5.1. Please consult this section about these settings.

The user should then open the Display panel that controls the visual representation of the
selected module. Within the Display panel the user should do the following as shown in Fig-
ure 2.3: (1) set Color By Solid Color; (2) click Set Ambient Color and select an appropriate
colour e.g. black (for a white background); (3) in the Style panel, select Wireframe from the
Representation menu. The background colour can be set by selecting View Settings...

from Edit in the top menu panel.

Open Display panel
Select Color by Solid Color

Set Solid Color, e.g. black
Select Wireframe

Figure 2.3: Viewing the mesh in paraFoam.

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-27

Especially the first time the user starts ParaView, it is recommended that they ma-
nipulate the view as described in section 6.1.5. In particular, since this is a 2D case, it is
recommended that Use Parallel Projection is selected in the General panel of View Settings

window selected from the Edit menu. The Orientation Axes can be toggled on and off in the
Annotation window or moved by drag and drop with the mouse.

2.1.3 Running an application

Like any UNIX/Linux executable, OpenFOAM applications can be run in two ways: as
a foreground process, i.e. one in which the shell waits until the command has finished
before giving a command prompt; as a background process, one which does not have to be
completed before the shell accepts additional commands.

On this occasion, we will run icoFoam in the foreground. The icoFoam solver is executed
either by entering the case directory and typing

icoFoam

at the command prompt, or with the optional -case argument giving the case directory,
e.g.

icoFoam -case $FOAM RUN/tutorials/incompressible/icoFoam/cavity

The progress of the job is written to the terminal window. It tells the user the current
time, maximum Courant number, initial and final residuals for all fields.

2.1.4 Post-processing

As soon as results are written to time directories, they can be viewed using paraFoam.
Return to the paraFoam window and select the Properties panel for the cavity.OpenFOAM

case module. If the correct window panels for the case module do not seem to be present at
any time, please ensure that: cavity.OpenFOAM is highlighted in blue; eye button alongside
it is switched on to show the graphics are enabled;

To prepare paraFoam to display the data of interest, we must first load the data at the
required run time of 0.5 s. If the case was run while ParaView was open, the output data
in time directories will not be automatically loaded within ParaView. To load the data the
user should click Refresh Times in the Properties window. The time data will be loaded into
ParaView.

2.1.4.1 Isosurface and contour plots

To view pressure, the user should open the Display panel since it that controls the visual
representation of the selected module. To make a simple plot of pressure, the user should
select the following, as described in detail in Figure 2.4: in the Style panel, select Surface
from the Representation menu; in the Color panel, select Color by and Rescale to Data
Range. Now in order to view the solution at t = 0.5 s, the user can use the VCR Controls

or Current Time Controls to change the current time to 0.5. These are located in the
toolbars below the menus at the top of the ParaView window, as shown in Figure 6.4. The

Open∇FOAM-2.0.0

U-28 Tutorials

Open Display panel

Rescale to Data Range
Select Surface

Select Color by interpolated p

Figure 2.4: Displaying pressure contours for the cavity case.

Figure 2.5: Pressures in the cavity case.

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-29

pressure field solution has, as expected, a region of low pressure at the top left of the cavity
and one of high pressure at the top right of the cavity as shown in Figure 2.5.

With the point icon () the pressure field is interpolated across each cell to give a
continuous appearance. Instead if the user selects the cell icon, , from the Color by

menu, a single value for pressure will be attributed to each cell so that each cell will be
denoted by a single colour with no grading.

A colour bar can be included by either by clicking the Toggle Color Legend Visibility button
in the Active Variable Controls toolbar, or by selecting Show Color Legend from the
View menu. Clicking the Edit Color Map button, either in the Active Variable Controls

toolbar or in the Color panel of the Display window, the user can set a range of attributes
of the colour bar, such as text size, font selection and numbering format for the scale. The
colour bar can be located in the image window by drag and drop with the mouse.

New versions of ParaView default to using a colour scale of blue to white to red rather
than the more common blue to green to red (rainbow). Therefore the first time that the
user executes ParaView, they may wish to change the colour scale. This can be done by
selecting Choose Preset in the Color Scale Editor and selecting Blue to Red Rainbow. After
clicking the OK confirmation button, the user can click the Make Default button so that
ParaView will always adopt this type of colour bar.

If the user rotates the image, they can see that they have now coloured the complete
geometry surface by the pressure. In order to produce a genuine contour plot the user
should first create a cutting plane, or ‘slice’, through the geometry using the Slice filter as
described in section 6.1.6.1. The cutting plane should be centred at (0.05, 0.05, 0.005) and its
normal should be set to (0, 0, 1) (clcik the Z Normal button). Having generated the cutting
plane, the contours can be created using by the Contour filter described in section 6.1.6.

2.1.4.2 Vector plots

Before we start to plot the vectors of the flow velocity, it may be useful to remove other
modules that have been created, e.g. using the Slice and Contour filters described above.
These can: either be deleted entirely, by highlighting the relevant module in the Pipeline
Browser and clicking Delete in their respective Properties panel; or, be disabled by toggling
the eye button for the relevant module in the Pipeline Browser.

We now wish to generate a vector glyph for velocity at the centre of each cell. We first
need to filter the data to cell centres as described in section 6.1.7.1. With the cavity.OpenFOAM
module highlighted in the Pipeline Browser, the user should select Cell Centers from the
Filter->Alphabetical menu and then click Apply.

With these Centers highlighted in the Pipeline Browser, the user should then select
Glyph from the Filter->Alphabetical menu. The Properties window panel should appear
as shown in Figure 2.6. In the resulting Properties panel, the velocity field, U, is automatically
selected in the vectors menu, since it is the only vector field present. By default the Scale
Mode for the glyphs will be Vector Magnitude of velocity but, since the we may wish to
view the velocities throughout the domain, the user should instead select off and Set Scale
Factor to 0.005. On clicking Apply, the glyphs appear but, probably as a single colour,
e.g. white. The user should colour the glyphs by velocity magnitude which, as usual, is
controlled by setting Color by U in the Display panel. The user should also select Show
Color Legend in Edit Color Map. The output is shown in Figure 2.7, in which uppercase
Times Roman fonts are selected for the Color Legend headings and the labels are specified
to 2 fixed significant figures by deselecting Automatic Label Format and entering %-#6.2f in

Open∇FOAM-2.0.0

U-30 Tutorials

Open Parameters panel

Select Scale Mode off

Select Glyph Type Arrow

Specify Set Scale Factor 0.005

Figure 2.6: Properties panel for the Glyph filter.

Figure 2.7: Velocities in the cavity case.

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-31

the Label Format text box. The background colour is set to white in the General panel of
View Settings as described in section 6.1.5.1.

Note that at the left and right walls, glyphs appear to indicate flow through the walls.
On closer examination, however, the user can see that while the flow direction is normal
to the wall, its magnitude is 0. This slightly confusing situation is caused by ParaView
choosing to orientate the glyphs in the x-direction when the glyph scaling off and the
velocity magnitude is 0.

2.1.4.3 Streamline plots

Again, before the user continues to post-process in ParaView, they should disable modules
such as those for the vector plot described above. We now wish to plot a streamlines of
velocity as described in section 6.1.8.

With the cavity.OpenFOAM module highlighted in the Pipeline Browser, the user should
then select Stream Tracer from the Filter menu and then click Apply. The Properties
window panel should appear as shown in Figure 2.8. The Seed points should be speci-
fied along a Line Source running vertically through the centre of the geometry, i.e. from
(0.05, 0, 0.005) to (0.05, 0.1, 0.005). For the image in this guide we used: a point Resolu-
tion of 21; Max Propagation by Length 0.5; Initial Step Length by Cell Length 0.01; and,
Integration Direction BOTH. The Runge-Kutta 2 IntegratorType was used with default
parameters.

On clicking Apply the tracer is generated. The user should then select Tube from the
Filter menu to produce high quality streamline images. For the image in this report, we
used: Num. sides 6; Radius 0.0003; and, Radius factor 10. The streamtubes are coloured by
velocity magnitude. On clicking Apply the image in Figure 2.9 should be produced.

2.1.5 Increasing the mesh resolution

The mesh resolution will now be increased by a factor of two in each direction. The results
from the coarser mesh will be mapped onto the finer mesh to use as initial conditions for
the problem. The solution from the finer mesh will then be compared with those from the
coarser mesh.

2.1.5.1 Creating a new case using an existing case

We now wish to create a new case named cavityFine that is created from cavity. The user
should therefore clone the cavity case and edit the necessary files. First the user should
create a new case directory at the same directory level as the cavity case, e.g.

cd $FOAM RUN/tutorials/incompressible/icoFoam

mkdir cavityFine

The user should then copy the base directories from the cavity case into cavityFine, and then
enter the cavityFine case.

cp -r cavity/constant cavityFine

cp -r cavity/system cavityFine

cd cavityFine

Open∇FOAM-2.0.0

U-32 Tutorials

Open Parameters panel

Set Integration Direction to BOTH

Set Max Propagation to Length 0.5
Set Initial Step Length to Cell Length 0.01

Specify Line Source and set points and resolution

Figure 2.8: Properties panel for the Stream Tracer filter.

Figure 2.9: Streamlines in the cavity case.

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-33

2.1.5.2 Creating the finer mesh

We now wish to increase the number of cells in the mesh by using blockMesh. The user
should open the blockMeshDict file in an editor and edit the block specification. The blocks
are specified in a list under the blocks keyword. The syntax of the block definitions is
described fully in section 5.3.1.3; at this stage it is sufficient to know that following hex

is first the list of vertices in the block, then a list (or vector) of numbers of cells in each
direction. This was originally set to (20 20 1) for the cavity case. The user should now
change this to (40 40 1) and save the file. The new refined mesh should then be created
by running blockMesh as before.

2.1.5.3 Mapping the coarse mesh results onto the fine mesh

The mapFields utility maps one or more fields relating to a given geometry onto the cor-
responding fields for another geometry. In our example, the fields are deemed ‘consistent’
because the geometry and the boundary types, or conditions, of both source and target fields
are identical. We use the -consistent command line option when executing mapFields in
this example.

The field data thatmapFieldsmaps is read from the time directory specified by startFrom/startTime
in the controlDict of the target case, i.e. those into which the results are being mapped. In
this example, we wish to map the final results of the coarser mesh from case cavity onto the
finer mesh of case cavityFine. Therefore, since these results are stored in the 0.5 directory
of cavity, the startTime should be set to 0.5 s in the controlDict dictionary and startFrom

should be set to startTime.
The case is ready to run mapFields. Typing mapFields -help quickly shows that map-

Fields requires the source case directory as an argument. We are using the -consistent

option, so the utility is executed from withing the cavityFine directory by

mapFields ../cavity -consistent

The utility should run with output to the terminal including:

Source: ".." "cavity"
Target: "." "cavityFine"

Create databases as time

Source time: 0.5
Target time: 0.5
Create meshes

Source mesh size: 400 Target mesh size: 1600

Consistently creating and mapping fields for time 0.5

interpolating p
interpolating U

End

2.1.5.4 Control adjustments

To maintain a Courant number of less that 1, as discussed in section 2.1.1.4, the time step
must now be halved since the size of all cells has halved. Therefore deltaT should be set to
to 0.0025 s in the controlDict dictionary. Field data is currently written out at an interval

Open∇FOAM-2.0.0

U-34 Tutorials

of a fixed number of time steps. Here we demonstrate how to specify data output at fixed
intervals of time. Under the writeControl keyword in controlDict, instead of requesting
output by a fixed number of time steps with the timeStep entry, a fixed amount of run time
can be specified between the writing of results using the runTime entry. In this case the
user should specify output every 0.1 and therefore should set writeInterval to 0.1 and
writeControl to runTime. Finally, since the case is starting with a the solution obtained on
the coarse mesh we only need to run it for a short period to achieve reasonable convergence
to steady-state. Therefore the endTime should be set to 0.7 s. Make sure these settings are
correct and then save the file.

2.1.5.5 Running the code as a background process

The user should experience running icoFoam as a background process, redirecting the ter-
minal output to a log file that can be viewed later. From the cavityFine directory, the user
should execute:

icoFoam > log &

cat log

2.1.5.6 Vector plot with the refined mesh

The user can open multiple cases simultaneously in ParaView; essentially because each new
case is simply another module that appears in the Pipeline Browser. There is one minor
inconvenience when opening a new case in ParaView because there is a prerequisite that the
selected data is a file with a name that has an extension. However, in OpenFOAM, each
case is stored in a multitude of files with no extensions within a specific directory structure.
The solution, that the paraFoam script performs automatically, is to create a dummy file
with the extension .OpenFOAM — hence, the cavity case module is called cavity.OpenFOAM.

However, if the user wishes to open another case directly from within ParaView, they
need to create such a dummy file. For example, to load the cavityFine case the file would be
created by typing at the command prompt:

cd $FOAM RUN/tutorials/incompressible/icoFoam

touch cavityFine/cavityFine.OpenFOAM

Now the cavityFine case can be loaded into ParaView by selecting Open from the File

menu, and having navigated the directory tree, selecting cavityFine.OpenFOAM. The user
can now make a vector plot of the results from the refined mesh in ParaView. The plot can
be compared with the cavity case by enabling glyph images for both case simultaneously.

2.1.5.7 Plotting graphs

The user may wish to visualise the results by extracting some scalar measure of velocity and
plotting 2-dimensional graphs along lines through the domain. OpenFOAM is well equipped
for this kind of data manipulation. There are numerous utilities that do specialised data
manipulations, and some, simpler calculations are incorporated into a single utility foamCalc.
As a utility, it is unique in that it is executed by

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-35

Open Display panel

Select Scatter Plot

Select Ux from Line Series
Select arc length

Figure 2.10: Selecting fields for graph plotting.

foamCalc <calcType> <fieldName1 ... fieldNameN>

The calculator operation is specified in <calcType>; at the time of writing, the following
operations are implemented: addSubtract; randomise; div; components; mag; magGrad;
magSqr; interpolate. The user can obtain the list of <calcType> by deliberately calling
one that does not exist, so that foamCalc throws up an error message and lists the types
available, e.g.

>> foamCalc xxxx
Selecting calcType xxxx

unknown calcType type xxxx, constructor not in hash table
Valid calcType selections are:

8
(
randomise
magSqr
magGrad
addSubtract
div
mag
interpolate
components
)

Open∇FOAM-2.0.0

U-36 Tutorials

The components and mag calcTypes provide useful scalar measures of velocity. When
“foamCalc components U” is run on a case, say cavity, it reads in the velocity vector field
from each time directory and, in the corresponding time directories, writes scalar fields Ux,
Uy and Uz representing the x, y and z components of velocity. Similarly “foamCalc mag U”
writes a scalar field magU to each time directory representing the magnitude of velocity.

The user can run foamCalc with the components calcType on both cavity and cavityFine
cases. For example, for the cavity case the user should do into the cavity directory and
execute foamCalc as follows:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavity

foamCalc components U

The individual components can be plotted as a graph in ParaView. It is quick, convenient
and has reasonably good control over labelling and formatting, so the printed output is a
fairly good standard. However, to produce graphs for publication, users may prefer to write
raw data and plot it with a dedicated graphing tool, such as gnuplot or Grace/xmgr. To do
this, we recommend using the sample utility, described in section 6.5 and section 2.2.3.

Before commencing plotting, the user needs to load the newly generated Ux, Uy and
Uz fields into ParaView. To do this, the user should click the Refresh Times at the top
of the Properties panel for the cavity.OpenFOAM module which will cause the new fields
to be loaded into ParaView and appear in the Volume Fields window. Ensure the new
fields are selected and the changes are applied, i.e. click Apply again if necessary. Also,
data is interpolated incorrectly at boundaries if the boundary regions are selected in the
Mesh Parts panel. Therefore the user should deselect the patches in the Mesh Parts panel,
i.e.movingWall, fixedWall and frontAndBack, and apply the changes.

Now, in order to display a graph in ParaView the user should select the module of
interest, e.g.cavity.OpenFOAM and apply the Plot Over Line filter from the Filter->Data
Analysis menu. This opens up a new XY Plot window below or beside the existing 3D View
window. A PlotOverLine module is created in which the user can specify the end points of
the line in the Properties panel. In this example, the user should position the line vertically
up the centre of the domain, i.e. from (0.05, 0, 0.005) to (0.05, 0.1, 0.005), in the Point1 and
Point2 text boxes. The Resolution can be set to 100.

On clicking Apply, a graph is generated in the XY Plot window. In the Display panel,
the user should set Attribute Mode to Point Data. The Use Data Array option can be
selected for the X Axis Data, taking the arc length option so that the x-axis of the graph
represents distance from the base of the cavity.

The user can choose the fields to be displayed in the Line Series panel of the Display
window. From the list of scalar fields to be displayed, it can be seen that the magnitude
and components of vector fields are available by default, e.g. displayed as U:X, so that it
was not necessary to create Ux using foamCalc. Nevertheless, the user should deselect all
series except Ux (or U:x). A square colour box in the adjacent column to the selected series
indicates the line colour. The user can edit this most easily by a double click of the mouse
over that selection.

In order to format the graph, the user should modify the settings below the Line Series
panel, namely Line Color, Line Thickness, Line Style, Marker Style and Chart Axes.

Also the user can click one of the buttons above the top left corner of the XY Plot. The
third button, for example, allows the user to control View Settings in which the user can set
title and legend for each axis, for example. Also, the user can set font, colour and alignment

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-37

Figure 2.11: Plotting graphs in paraFoam.

of the axes titles, and has several options for axis range and labels in linear or logarithmic
scales.

Figure 2.11 is a graph produced using ParaView. The user can produce a graph however
he/she wishes. For information, the graph in Figure 2.11 was produced with the options for
axes of: Standard type of Notation; Specify Axis Range selected; titles in Sans Serif 12

font. The graph is displayed as a set of points rather than a line by activating the Enable
Line Series button in the Display window. Note: if this button appears to be inactive by
being “greyed out”, it can be made active by selecting and deselecting the sets of variables
in the Line Series panel. Once the Enable Line Series button is selected, the Line Style and
Marker Style can be adjusted to the user’s preference.

2.1.6 Introducing mesh grading

The error in any solution will be more pronounced in regions where the form of the true
solution differ widely from the form assumed in the chosen numerical schemes. For example
a numerical scheme based on linear variations of variables over cells can only generate an
exact solution if the true solution is itself linear in form. The error is largest in regions
where the true solution deviates greatest from linear form, i.e. where the change in gradient
is largest. Error decreases with cell size.

It is useful to have an intuitive appreciation of the form of the solution before setting
up any problem. It is then possible to anticipate where the errors will be largest and to
grade the mesh so that the smallest cells are in these regions. In the cavity case the large
variations in velocity can be expected near a wall and so in this part of the tutorial the
mesh will be graded to be smaller in this region. By using the same number of cells, greater
accuracy can be achieved without a significant increase in computational cost.

A mesh of 20× 20 cells with grading towards the walls will be created for the lid-driven
cavity problem and the results from the finer mesh of section 2.1.5.2 will then be mapped
onto the graded mesh to use as an initial condition. The results from the graded mesh will
be compared with those from the previous meshes. Since the changes to the blockMeshDict
dictionary are fairly substantial, the case used for this part of the tutorial, cavityGrade, is
supplied in the $FOAM RUN/tutorials/incompressible/icoFoam directory.

Open∇FOAM-2.0.0

U-38 Tutorials

2.1.6.1 Creating the graded mesh

The mesh now needs 4 blocks as different mesh grading is needed on the left and right and top
and bottom of the domain. The block structure for this mesh is shown in Figure 2.12. The

0
z

x
y

3 4 5

6 87

1 2

1715

9 1110

16

12 13 14

0 1

2 3

Figure 2.12: Block structure of the graded mesh for the cavity (block numbers encircled).

user can view the blockMeshDict file in the constant/polyMesh subdirectory of cavityGrade;
for completeness the key elements of the blockMeshDict file are also reproduced below. Each
block now has 10 cells in the x and y directions and the ratio between largest and smallest
cells is 2.

17 convertToMeters 0.1;
18

19 vertices
20 (
21 (0 0 0)
22 (0.5 0 0)
23 (1 0 0)
24 (0 0.5 0)
25 (0.5 0.5 0)
26 (1 0.5 0)
27 (0 1 0)
28 (0.5 1 0)
29 (1 1 0)
30 (0 0 0.1)
31 (0.5 0 0.1)
32 (1 0 0.1)
33 (0 0.5 0.1)
34 (0.5 0.5 0.1)
35 (1 0.5 0.1)
36 (0 1 0.1)
37 (0.5 1 0.1)
38 (1 1 0.1)
39);
40

41 blocks
42 (
43 hex (0 1 4 3 9 10 13 12) (10 10 1) simpleGrading (2 2 1)
44 hex (1 2 5 4 10 11 14 13) (10 10 1) simpleGrading (0.5 2 1)
45 hex (3 4 7 6 12 13 16 15) (10 10 1) simpleGrading (2 0.5 1)
46 hex (4 5 8 7 13 14 17 16) (10 10 1) simpleGrading (0.5 0.5 1)
47);
48

49 edges
50 (
51);
52

53 boundary
54 (

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-39

55 movingWall
56 {
57 type wall;
58 faces
59 (
60 (6 15 16 7)
61 (7 16 17 8)
62);
63 }
64 fixedWalls
65 {
66 type wall;
67 faces
68 (
69 (3 12 15 6)
70 (0 9 12 3)
71 (0 1 10 9)
72 (1 2 11 10)
73 (2 5 14 11)
74 (5 8 17 14)
75);
76 }
77 frontAndBack
78 {
79 type empty;
80 faces
81 (
82 (0 3 4 1)
83 (1 4 5 2)
84 (3 6 7 4)
85 (4 7 8 5)
86 (9 10 13 12)
87 (10 11 14 13)
88 (12 13 16 15)
89 (13 14 17 16)
90);
91 }
92);
93

94 mergePatchPairs
95 (
96);
97

98 // *** //

Once familiar with the blockMeshDict file for this case, the user can execute blockMesh from
the command line. The graded mesh can be viewed as before using paraFoam as described
in section 2.1.2.

2.1.6.2 Changing time and time step

The highest velocities and smallest cells are next to the lid, therefore the highest Courant
number will be generated next to the lid, for reasons given in section 2.1.1.4. It is therefore
useful to estimate the size of the cells next to the lid to calculate an appropriate time step
for this case.

When a nonuniform mesh grading is used, blockMesh calculates the cell sizes using a
geometric progression. Along a length l, if n cells are requested with a ratio of R between
the last and first cells, the size of the smallest cell, δxs, is given by:

δxs = l
r − 1

αr − 1
(2.5)

where r is the ratio between one cell size and the next which is given by:

r = R
1

n−1 (2.6)

and

α =

{

R for R > 1,

1− r−n + r−1 for R < 1.
(2.7)

Open∇FOAM-2.0.0

U-40 Tutorials

For the cavityGrade case the number of cells in each direction in a block is 10, the ratio
between largest and smallest cells is 2 and the block height and width is 0.05 m. Therefore
the smallest cell length is 3.45 mm. From Equation 2.2, the time step should be less than 3.45
ms to maintain a Courant of less than 1. To ensure that results are written out at convenient
time intervals, the time step deltaT should be reduced to 2.5 ms and the writeInterval

set to 40 so that results are written out every 0.1 s. These settings can be viewed in the
cavityGrade/system/controlDict file.

The startTime needs to be set to that of the final conditions of the case cavityFine,
i.e.0.7. Since cavity and cavityFine converged well within the prescribed run time, we can
set the run time for case cavityGrade to 0.1 s, i.e. the endTime should be 0.8.

2.1.6.3 Mapping fields

As in section 2.1.5.3, use mapFields to map the final results from case cavityFine onto the
mesh for case cavityGrade. Enter the cavityGrade directory and execute mapFields by:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavityGrade

mapFields ../cavityFine -consistent

Now run icoFoam from the case directory and monitor the run time information. View
the converged results for this case and compare with other results using post-processing
tools described previously in section 2.1.5.6 and section 2.1.5.7.

2.1.7 Increasing the Reynolds number

The cases solved so far have had a Reynolds number of 10. This is very low and leads to
a stable solution quickly with only small secondary vortices at the bottom corners of the
cavity. We will now increase the Reynolds number to 100, at which point the solution takes
a noticeably longer time to converge. The coarsest mesh in case cavity will be used initially.
The user should make a copy of the cavity case and name it cavityHighRe by typing:

cd $FOAM_RUN/tutorials/incompressible/icoFoam

cp -r cavity cavityHighRe

2.1.7.1 Pre-processing

Enter the the cavityHighRe case and edit the transportProperties dictionary. Since the
Reynolds number is required to be increased by a factor of 10, decrease the kinematic
viscosity by a factor of 10, i.e. to 1× 10−3 m2 s−1. We can now run this case by restarting
from the solution at the end of the cavity case run. To do this we can use the option of
setting the startFrom keyword to latestTime so that icoFoam takes as its initial data the
values stored in the directory corresponding to the most recent time, i.e. 0.5. The endTime
should be set to 2 s.

2.1.7.2 Running the code

Run icoFoam for this case from the case directory and view the run time information. When
running a job in the background, the following UNIX commands can be useful:

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-41

nohup enables a command to keep running after the user who issues the command has
logged out;

nice changes the priority of the job in the kernel’s scheduler; a niceness of -20 is the highest
priority and 19 is the lowest priority.

This is useful, for example, if a user wishes to set a case running on a remote machine and
does not wish to monitor it heavily, in which case they may wish to give it low priority
on the machine. In that case the nohup command allows the user to log out of a remote
machine he/she is running on and the job continues running, while nice can set the priority
to 19. For our case of interest, we can execute the command in this manner as follows:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavityHighRe

nohup nice -n 19 icoFoam > log &

cat log

In previous runs you may have noticed that icoFoam stops solving for velocity U quite quickly
but continues solving for pressure p for a lot longer or until the end of the run. In practice,
once icoFoam stops solving for U and the initial residual of p is less than the tolerance set
in the fvSolution dictionary (typically 10−6), the run has effectively converged and can be
stopped once the field data has been written out to a time directory. For example, at
convergence a sample of the log file from the run on the cavityHighRe case appears as follows
in which the velocity has already converged after 1.62 s and initial pressure residuals are
small; No Iterations 0 indicates that the solution of U has stopped:

1

2 Time = 1.63
3

4 Courant Number mean: 0.108642 max: 0.818175
5 DILUPBiCG: Solving for Ux, Initial residual = 7.86044e-06, Final residual = 7.86044e-06,
6 No Iterations 0
7 DILUPBiCG: Solving for Uy, Initial residual = 9.4171e-06, Final residual = 9.4171e-06,
8 No Iterations 0
9 DICPCG: Solving for p, Initial residual = 3.54721e-06, Final residual = 7.13506e-07,

10 No Iterations 4
11 time step continuity errors : sum local = 6.46788e-09, global = -9.44516e-19,
12 cumulative = 1.04595e-17
13 DICPCG: Solving for p, Initial residual = 2.15824e-06, Final residual = 9.95068e-07,
14 No Iterations 3
15 time step continuity errors : sum local = 8.67501e-09, global = 7.54182e-19,
16 cumulative = 1.12136e-17
17 ExecutionTime = 1.02 s ClockTime = 1 s
18

19 Time = 1.635
20

21 Courant Number mean: 0.108643 max: 0.818176
22 DILUPBiCG: Solving for Ux, Initial residual = 7.6728e-06, Final residual = 7.6728e-06,
23 No Iterations 0
24 DILUPBiCG: Solving for Uy, Initial residual = 9.19442e-06, Final residual = 9.19442e-06,
25 No Iterations 0
26 DICPCG: Solving for p, Initial residual = 3.13107e-06, Final residual = 8.60504e-07,
27 No Iterations 4
28 time step continuity errors : sum local = 8.15435e-09, global = -5.84817e-20,
29 cumulative = 1.11552e-17
30 DICPCG: Solving for p, Initial residual = 2.16689e-06, Final residual = 5.27197e-07,
31 No Iterations 14
32 time step continuity errors : sum local = 3.45666e-09, global = -5.62297e-19,
33 cumulative = 1.05929e-17
34 ExecutionTime = 1.02 s ClockTime = 1 s

2.1.8 High Reynolds number flow

View the results in paraFoam and display the velocity vectors. The secondary vortices in
the corners have increased in size somewhat. The user can then increase the Reynolds
number further by decreasing the viscosity and then rerun the case. The number of vortices
increases so the mesh resolution around them will need to increase in order to resolve

Open∇FOAM-2.0.0

U-42 Tutorials

the more complicated flow patterns. In addition, as the Reynolds number increases the
time to convergence increases. The user should monitor residuals and extend the endTime

accordingly to ensure convergence.
The need to increase spatial and temporal resolution then becomes impractical as the

flow moves into the turbulent regime, where problems of solution stability may also occur. Of
course, many engineering problems have very high Reynolds numbers and it is infeasible to
bear the huge cost of solving the turbulent behaviour directly. Instead Reynolds-averaged
simulation (RAS) turbulence models are used to solve for the mean flow behaviour and
calculate the statistics of the fluctuations. The standard k − ε model with wall functions
will be used in this tutorial to solve the lid-driven cavity case with a Reynolds number of 104.
Two extra variables are solved for: k, the turbulent kinetic energy; and, ε, the turbulent
dissipation rate. The additional equations and models for turbulent flow are implemented
into a OpenFOAM solver called pisoFoam.

2.1.8.1 Pre-processing

Change directory to the cavity case in the $FOAM RUN/tutorials/incompressible/pisoFoam/-
ras directory (N.B: the pisoFoam/ras directory). Generate the mesh by running blockMesh
as before. Mesh grading towards the wall is not necessary when using the standard k − ε
model with wall functions since the flow in the near wall cell is modelled, rather than having
to be resolved.

A range of wall function models is available in OpenFOAM that are applied as boundary
conditions on individual patches. This enables different wall function models to be applied to
different wall regions. The choice of wall function models are specified through the turbulent
viscosity field, νt in the 0/nut file:

17

18 dimensions [0 2 -1 0 0 0 0];
19

20 internalField uniform 0;
21

22 boundaryField
23 {
24 movingWall
25 {
26 type nutkWallFunction;
27 value uniform 0;
28 }
29 fixedWalls
30 {
31 type nutkWallFunction;
32 value uniform 0;
33 }
34 frontAndBack
35 {
36 type empty;
37 }
38 }
39

40

41 // *** //

This case uses standard wall functions, specified by the nutWallFunction keyword entry
one the movingWall and fixedWalls patches. Other wall function models include the rough
wall functions, specified though the nutRoughWallFunction keyword.

The user should now open the field files for k and ε (0/k and 0/epsilon) and examine
their boundary conditions. For a wall boundary condition, ε is assigned a epsilonWallFunction
boundary condition and a kqRwallFunction boundary condition is assigned to k. The latter
is a generic boundary condition that can be applied to any field that are of a turbulent

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-43

kinetic energy type, e.g. k, q or Reynolds Stress R. The initial values for k and ε are set
using an estimated fluctuating component of velocity U′ and a turbulent length scale, l. k
and ε are defined in terms of these parameters as follows:

k =
1

2
U′

•U′ (2.8)

ε =
C0.75

µ k1.5

l
(2.9)

where Cµ is a constant of the k− ε model equal to 0.09. For a Cartesian coordinate system,
k is given by:

k =
1

2
(U ′ 2

x + U ′ 2

y + U ′ 2

z) (2.10)

where U ′ 2
x , U ′ 2

y and U ′ 2
z are the fluctuating components of velocity in the x, y and z

directions respectively. Let us assume the initial turbulence is isotropic, i.e. U ′ 2
x = U ′ 2

y =
U ′ 2
z , and equal to 5% of the lid velocity and that l, is equal to 20% of the box width, 0.1

m, then k and ε are given by:

U ′

x = U ′

y = U ′

z =
5

100
1 m s−1 (2.11)

⇒ k =
3

2

(

5

100

)2

m2 s−2 = 3.75× 10−3 m2 s−2 (2.12)

ε =
C0.75

µ k1.5

l
≈ 7.65× 10−4 m2s−3 (2.13)

These form the initial conditions for k and ε. The initial conditions for U and p are (0, 0, 0)
and 0 respectively as before.

Turbulence modelling includes a range of methods, e.g. RAS or large-eddy simulation
(LES), that are provided in OpenFOAM. In most transient solvers, the choice of turbu-
lence modelling method is selectable at run-time through the simulationType keyword in
turbulenceProperties dictionary. The user can view this file in the constant directory:

17

18 simulationType RASModel;
19

20

21 // *** //

The options for simulationType are laminar, RASModel and LESModel. With RASModel

selected in this case, the choice of RAS modelling is specified in a RASProperties file, also
in the constant directory. The turbulence model is selected by the RASModel entry from a
long list of available models that are listed in Table 3.9. The kEpsilon model should be
selected which is is the standard k − ε model; the user should also ensure that turbulence
calculation is switched on.

The coefficients for each turbulence model are stored within the respective code with a
set of default values. Setting the optional switch called printCoeffs to on will make the
default values be printed to standard output, i.e. the terminal, when the model is called
at run time. The coefficients are printed out as a sub-dictionary whose name is that of
the model name with the word Coeffs appended, e.g. kEpsilonCoeffs in the case of the
kEpsilonmodel. The coefficients of the model, e.g. kEpsilon, can be modified by optionally

Open∇FOAM-2.0.0

U-44 Tutorials

including (copying and pasting) that sub-dictionary within the RASProperties dictionary
and adjusting values accordingly.

The user should next set the laminar kinematic viscosity in the transportProperties dic-
tionary. To achieve a Reynolds number of 104, a kinematic viscosity of 10−5 m is required
based on the Reynolds number definition given in Equation 2.1.

Finally the user should set the startTime, stopTime, deltaT and the writeInterval

in the controlDict. Set deltaT to 0.005 s to satisfy the Courant number restriction and the
endTime to 10 s.

2.1.8.2 Running the code

Execute pisoFoam by entering the case directory and typing “pisoFoam” in a terminal. In
this case, where the viscosity is low, the boundary layer next to the moving lid is very thin
and the cells next to the lid are comparatively large so the velocity at their centres are
much less than the lid velocity. In fact, after ≈ 100 time steps it becomes apparent that
the velocity in the cells adjacent to the lid reaches an upper limit of around 0.2 m s−1 hence
the maximum Courant number does not rise much above 0.2. It is sensible to increase the
solution time by increasing the time step to a level where the Courant number is much closer
to 1. Therefore reset deltaT to 0.02 s and, on this occasion, set startFrom to latestTime.
This instructs pisoFoam to read the start data from the latest time directory, i.e.10.0. The
endTime should be set to 20 s since the run converges a lot slower than the laminar case.
Restart the run as before and monitor the convergence of the solution. View the results at
consecutive time steps as the solution progresses to see if the solution converges to a steady-
state or perhaps reaches some periodically oscillating state. In the latter case, convergence
may never occur but this does not mean the results are inaccurate.

2.1.9 Changing the case geometry

A user may wish to make changes to the geometry of a case and perform a new simulation.
It may be useful to retain some or all of the original solution as the starting conditions for
the new simulation. This is a little complex because the fields of the original solution are
not consistent with the fields of the new case. However the mapFields utility can map fields
that are inconsistent, either in terms of geometry or boundary types or both.

As an example, let us go to the cavityClipped case in the icoFoam directory which consists
of the standard cavity geometry but with a square of length 0.04 m removed from the bottom
right of the cavity, according to the blockMeshDict below:

17 convertToMeters 0.1;
18

19 vertices
20 (
21 (0 0 0)
22 (0.6 0 0)
23 (0 0.4 0)
24 (0.6 0.4 0)
25 (1 0.4 0)
26 (0 1 0)
27 (0.6 1 0)
28 (1 1 0)
29

30 (0 0 0.1)
31 (0.6 0 0.1)
32 (0 0.4 0.1)
33 (0.6 0.4 0.1)
34 (1 0.4 0.1)
35 (0 1 0.1)
36 (0.6 1 0.1)

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-45

37 (1 1 0.1)
38

39);
40

41 blocks
42 (
43 hex (0 1 3 2 8 9 11 10) (12 8 1) simpleGrading (1 1 1)
44 hex (2 3 6 5 10 11 14 13) (12 12 1) simpleGrading (1 1 1)
45 hex (3 4 7 6 11 12 15 14) (8 12 1) simpleGrading (1 1 1)
46);
47

48 edges
49 (
50);
51

52 boundary
53 (
54 lid
55 {
56 type wall;
57 faces
58 (
59 (5 13 14 6)
60 (6 14 15 7)
61);
62 }
63 fixedWalls
64 {
65 type wall;
66 faces
67 (
68 (0 8 10 2)
69 (2 10 13 5)
70 (7 15 12 4)
71 (4 12 11 3)
72 (3 11 9 1)
73 (1 9 8 0)
74);
75 }
76 frontAndBack
77 {
78 type empty;
79 faces
80 (
81 (0 2 3 1)
82 (2 5 6 3)
83 (3 6 7 4)
84 (8 9 11 10)
85 (10 11 14 13)
86 (11 12 15 14)
87);
88 }
89);
90

91 mergePatchPairs
92 (
93);
94

95 // *** //

Generate the mesh with blockMesh. The patches are set accordingly as in previous cavity
cases. For the sake of clarity in describing the field mapping process, the upper wall patch
is renamed lid, previously the movingWall patch of the original cavity.

In an inconsistent mapping, there is no guarantee that all the field data can be mapped
from the source case. The remaining data must come from field files in the target case itself.
Therefore field data must exist in the time directory of the target case before mapping
takes place. In the cavityClipped case the mapping is set to occur at time 0.5 s, since the
startTime is set to 0.5 s in the controlDict. Therefore the user needs to copy initial field
data to that directory, e.g. from time 0:

cd $FOAM RUN/tutorials/incompressible/icoFoam/cavityClipped

cp -r 0 0.5

Open∇FOAM-2.0.0

U-46 Tutorials

Before mapping the data, the user should view the geometry and fields at 0.5 s.

Now we wish to map the velocity and pressure fields from cavity onto the new fields of
cavityClipped. Since the mapping is inconsistent, we need to edit the mapFieldsDict dictio-
nary, located in the system directory. The dictionary contains 2 keyword entries: patchMap
and cuttingPatches. The patchMap list contains a mapping of patches from the source
fields to the target fields. It is used if the user wishes a patch in the target field to inherit
values from a corresponding patch in the source field. In cavityClipped, we wish to inherit the
boundary values on the lid patch from movingWall in cavity so we must set the patchMap
as:

patchMap

(

lid movingWall

);

The cuttingPatches list contains names of target patches whose values are to be
mapped from the source internal field through which the target patch cuts. In this case
we will include the fixedWalls to demonstrate the interpolation process.

cuttingPatches

(

fixedWalls

);

Now the user should run mapFields, from within the cavityClipped directory:

mapFields ../cavity

The user can view the mapped field as shown in Figure 2.13. The boundary patches have
inherited values from the source case as we expected. Having demonstrated this, however,
we actually wish to reset the velocity on the fixedWalls patch to (0, 0, 0). Edit the U field,
go to the fixedWalls patch and change the field from nonuniform to uniform (0, 0, 0). The
nonuniform field is a list of values that requires deleting in its entirety. Now run the case
with icoFoam.

2.1.10 Post-processing the modified geometry

Velocity glyphs can be generated for the case as normal, first at time 0.5 s and later at
time 0.6 s, to compare the initial and final solutions. In addition, we provide an outline of
the geometry which requires some care to generate for a 2D case. The user should select
Extract Block from the Filter menu and, in the Parameter panel, highlight the patches
of interest, namely the lid and fixedWalls. On clicking Apply, these items of geometry can be
displayed by selecting Wireframe in the Display panel. Figure 2.14 displays the patches in
black and shows vortices forming in the bottom corners of the modified geometry.

Open∇FOAM-2.0.0

2.1 Lid-driven cavity flow U-47

Figure 2.13: cavity solution velocity field mapped onto cavityClipped.

Figure 2.14: cavityClipped solution for velocity field.

Open∇FOAM-2.0.0

U-48 Tutorials

2.2 Stress analysis of a plate with a hole

This tutorial describes how to pre-process, run and post-process a case involving linear-
elastic, steady-state stress analysis on a square plate with a circular hole at its centre. The
plate dimensions are: side length 4 m and radius R = 0.5 m. It is loaded with a uniform
traction of σ = 10 kPa over its left and right faces as shown in Figure 2.15. Two symmetry
planes can be identified for this geometry and therefore the solution domain need only cover
a quarter of the geometry, shown by the shaded area in Figure 2.15.

xsymmetry plane

4.0 m

y
σ = 10 kPaσ = 10 kPa

R = 0.5 m

sy
m
m
et
ry

p
la
n
e

Figure 2.15: Geometry of the plate with a hole.

The problem can be approximated as 2-dimensional since the load is applied in the plane
of the plate. In a Cartesian coordinate system there are two possible assumptions to take
in regard to the behaviour of the structure in the third dimension: (1) the plane stress
condition, in which the stress components acting out of the 2D plane are assumed to be
negligible; (2) the plane strain condition, in which the strain components out of the 2D
plane are assumed negligible. The plane stress condition is appropriate for solids whose
third dimension is thin as in this case; the plane strain condition is applicable for solids
where the third dimension is thick.

An analytical solution exists for loading of an infinitely large, thin plate with a circular
hole. The solution for the stress normal to the vertical plane of symmetry is

(σxx)x=0
=







σ

(

1 +
R2

2y2
+

3R4

2y4

)

for |y| ≥ R

0 for |y| < R
(2.14)

Results from the simulation will be compared with this solution. At the end of the tutorial,
the user can: investigate the sensitivity of the solution to mesh resolution and mesh grading;
and, increase the size of the plate in comparison to the hole to try to estimate the error in

Open∇FOAM-2.0.0

2.2 Stress analysis of a plate with a hole U-49

comparing the analytical solution for an infinite plate to the solution of this problem of a
finite plate.

2.2.1 Mesh generation

The domain consists of four blocks, some of which have arc-shaped edges. The block struc-
ture for the part of the mesh in the x−y plane is shown in Figure 2.16. As already mentioned
in section 2.1.1.1, all geometries are generated in 3 dimensions in OpenFOAM even if the
case is to be as a 2 dimensional problem. Therefore a dimension of the block in the z
direction has to be chosen; here, 0.5 m is selected. It does not affect the solution since the
traction boundary condition is specified as a stress rather than a force, thereby making the
solution independent of the cross-sectional area.

x

y x2

x1 x1

x2

x2

x1

x1

x2

x2

x1

left

left

up 7 up

right

3

down

hole

0

down

right

6

9

8

4

10

10 2

5
2

1

4 3

Figure 2.16: Block structure of the mesh for the plate with a hole.

The user should change into the plateHole case in the $FOAM RUN/tutorials/stress-
Analysis/solidDisplacementFoam directory and open the constant/polyMesh/blockMeshDict
file in an editor, as listed below

17 convertToMeters 1;
18

19 vertices
20 (
21 (0.5 0 0)
22 (1 0 0)
23 (2 0 0)
24 (2 0.707107 0)
25 (0.707107 0.707107 0)

Open∇FOAM-2.0.0

U-50 Tutorials

26 (0.353553 0.353553 0)
27 (2 2 0)
28 (0.707107 2 0)
29 (0 2 0)
30 (0 1 0)
31 (0 0.5 0)
32 (0.5 0 0.5)
33 (1 0 0.5)
34 (2 0 0.5)
35 (2 0.707107 0.5)
36 (0.707107 0.707107 0.5)
37 (0.353553 0.353553 0.5)
38 (2 2 0.5)
39 (0.707107 2 0.5)
40 (0 2 0.5)
41 (0 1 0.5)
42 (0 0.5 0.5)
43);
44

45 blocks
46 (
47 hex (5 4 9 10 16 15 20 21) (10 10 1) simpleGrading (1 1 1)
48 hex (0 1 4 5 11 12 15 16) (10 10 1) simpleGrading (1 1 1)
49 hex (1 2 3 4 12 13 14 15) (20 10 1) simpleGrading (1 1 1)
50 hex (4 3 6 7 15 14 17 18) (20 20 1) simpleGrading (1 1 1)
51 hex (9 4 7 8 20 15 18 19) (10 20 1) simpleGrading (1 1 1)
52);
53

54 edges
55 (
56 arc 0 5 (0.469846 0.17101 0)
57 arc 5 10 (0.17101 0.469846 0)
58 arc 1 4 (0.939693 0.34202 0)
59 arc 4 9 (0.34202 0.939693 0)
60 arc 11 16 (0.469846 0.17101 0.5)
61 arc 16 21 (0.17101 0.469846 0.5)
62 arc 12 15 (0.939693 0.34202 0.5)
63 arc 15 20 (0.34202 0.939693 0.5)
64);
65

66 boundary
67 (
68 left
69 {
70 type symmetryPlane;
71 faces
72 (
73 (8 9 20 19)
74 (9 10 21 20)
75);
76 }
77 right
78 {
79 type patch;
80 faces
81 (
82 (2 3 14 13)
83 (3 6 17 14)
84);
85 }
86 down
87 {
88 type symmetryPlane;
89 faces
90 (
91 (0 1 12 11)
92 (1 2 13 12)
93);
94 }
95 up
96 {
97 type patch;
98 faces
99 (

100 (7 8 19 18)
101 (6 7 18 17)
102);
103 }
104 hole
105 {

Open∇FOAM-2.0.0

2.2 Stress analysis of a plate with a hole U-51

106 type patch;
107 faces
108 (
109 (10 5 16 21)
110 (5 0 11 16)
111);
112 }
113 frontAndBack
114 {
115 type empty;
116 faces
117 (
118 (10 9 4 5)
119 (5 4 1 0)
120 (1 4 3 2)
121 (4 7 6 3)
122 (4 9 8 7)
123 (21 16 15 20)
124 (16 11 12 15)
125 (12 13 14 15)
126 (15 14 17 18)
127 (15 18 19 20)
128);
129 }
130);
131

132 mergePatchPairs
133 (
134);
135

136 // *** //

Until now, we have only specified straight edges in the geometries of previous tutorials but
here we need to specify curved edges. These are specified under the edges keyword entry
which is a list of non-straight edges. The syntax of each list entry begins with the type of
curve, including arc, simpleSpline, polyLine etc., described further in section 5.3.1. In
this example, all the edges are circular and so can be specified by the arc keyword entry.
The following entries are the labels of the start and end vertices of the arc and a point vector
through which the circular arc passes.

The blocks in this blockMeshDict do not all have the same orientation. As can be seen in
Figure 2.16 the x2 direction of block 0 is equivalent to the −x1 direction for block 4. This
means care must be taken when defining the number and distribution of cells in each block
so that the cells match up at the block faces.

6 patches are defined: one for each side of the plate, one for the hole and one for the
front and back planes. The left and down patches are both a symmetry plane. Since this is
a geometric constraint, it is included in the definition of the mesh, rather than being purely
a specification on the boundary condition of the fields. Therefore they are defined as such
using a special symmetryPlane type as shown in the blockMeshDict.

The frontAndBack patch represents the plane which is ignored in a 2D case. Again this
is a geometric constraint so is defined within the mesh, using the empty type as shown in the
blockMeshDict. For further details of boundary types and geometric constraints, the user
should refer to section 5.2.1.

The remaining patches are of the regular patch type. The mesh should be generated
using blockMesh and can be viewed in paraFoam as described in section 2.1.2. It should
appear as in Figure 2.17.

2.2.1.1 Boundary and initial conditions

Once the mesh generation is complete, the initial field with boundary conditions must be
set. For a stress analysis case without thermal stresses, only displacement D needs to be set.
The 0/D is as follows:

Open∇FOAM-2.0.0

U-52 Tutorials

Figure 2.17: Mesh of the hole in a plate problem.

17 dimensions [0 1 0 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 left
24 {
25 type symmetryPlane;
26 }
27 right
28 {
29 type tractionDisplacement;
30 traction uniform (10000 0 0);
31 pressure uniform 0;
32 value uniform (0 0 0);
33 }
34 down
35 {
36 type symmetryPlane;
37 }
38 up
39 {
40 type tractionDisplacement;
41 traction uniform (0 0 0);
42 pressure uniform 0;
43 value uniform (0 0 0);
44 }
45 hole
46 {
47 type tractionDisplacement;
48 traction uniform (0 0 0);
49 pressure uniform 0;
50 value uniform (0 0 0);
51 }
52 frontAndBack
53 {
54 type empty;
55 }
56 }
57

58 // *** //

Firstly, it can be seen that the displacement initial conditions are set to (0, 0, 0) m. The
left and down patches must be both of symmetryPlane type since they are specified as such
in the mesh description in the constant/polyMesh/boundary file. Similarly the frontAndBack
patch is declared empty.

Open∇FOAM-2.0.0

2.2 Stress analysis of a plate with a hole U-53

The other patches are traction boundary conditions, set by a specialist traction bound-
ary type. The traction boundary conditions are specified by a linear combination of: (1) a
boundary traction vector under keyword traction; (2) a pressure that produces a traction
normal to the boundary surface that is defined as negative when pointing out of the surface,
under keyword pressure. The up and hole patches are zero traction so the boundary trac-
tion and pressure are set to zero. For the right patch the traction should be (1e4, 0, 0) Pa
and the pressure should be 0 Pa.

2.2.1.2 Mechanical properties

The physical properties for the case are set in the mechanicalProperties dictionary in the con-
stant directory. For this problem, we need to specify the mechanical properties of steel given
in Table 2.1. In the mechanical properties dictionary, the user must also set planeStress
to yes.

Property Units Keyword Value
Density kgm−3 rho 7854
Young’s modulus Pa E 2× 1011

Poisson’s ratio — nu 0.3

Table 2.1: Mechanical properties for steel

2.2.1.3 Thermal properties

The temperature field variable T is present in the solidDisplacementFoam solver since the user
may opt to solve a thermal equation that is coupled with the momentum equation through
the thermal stresses that are generated. The user specifies at run time whether OpenFOAM
should solve the thermal equation by the thermalStress switch in the thermalProperties
dictionary. This dictionary also sets the thermal properties for the case, e.g. for steel as
listed in Table 2.2.

Property Units Keyword Value

Specific heat capacity Jkg−1K−1 C 434
Thermal conductivity Wm−1K−1 k 60.5
Thermal expansion coeff. K−1 alpha 1.1× 10−5

Table 2.2: Thermal properties for steel

In this case we do not want to solve for the thermal equation. Therefore we must set
the thermalStress keyword entry to no in the thermalProperties dictionary.

2.2.1.4 Control

As before, the information relating to the control of the solution procedure are read in
from the controlDict dictionary. For this case, the startTime is 0 s. The time step is not
important since this is a steady state case; in this situation it is best to set the time step
deltaT to 1 so it simply acts as an iteration counter for the steady-state case. The endTime,

Open∇FOAM-2.0.0

U-54 Tutorials

set to 100, then acts as a limit on the number of iterations. The writeInterval can be set
to 20.

The controlDict entries are as follows:

17

18 application solidDisplacementFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 100;
27

28 deltaT 1;
29

30 writeControl timeStep;
31

32 writeInterval 20;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 graphFormat raw;
47

48 runTimeModifiable true;
49

50

51 // *** //

2.2.1.5 Discretisation schemes and linear-solver control

Let us turn our attention to the fvSchemes dictionary. Firstly, the problem we are analysing
is steady-state so the user should select SteadyState for the time derivatives in timeScheme.
This essentially switches off the time derivative terms. Not all solvers, especially in fluid
dynamics, work for both steady-state and transient problems but solidDisplacementFoam
does work, since the base algorithm is the same for both types of simulation.

The momentum equation in linear-elastic stress analysis includes several explicit terms
containing the gradient of displacement. The calculations benefit from accurate and smooth
evaluation of the gradient. Normally, in the finite volume method the discretisation is based
on Gauss’s theorem The Gauss method is sufficiently accurate for most purposes but, in this
case, the least squares method will be used. The user should therefore open the fvSchemes
dictionary in the system directory and ensure the leastSquares method is selected for the
grad(U) gradient discretisation scheme in the gradSchemes sub-dictionary:

17

18 d2dt2Schemes
19 {
20 default steadyState;
21 }
22

23 gradSchemes
24 {
25 default leastSquares;
26 grad(D) leastSquares;
27 grad(T) leastSquares;
28 }
29

30 divSchemes

Open∇FOAM-2.0.0

2.2 Stress analysis of a plate with a hole U-55

31 {
32 default none;
33 div(sigmaD) Gauss linear;
34 }
35

36 laplacianSchemes
37 {
38 default none;
39 laplacian(DD,D) Gauss linear corrected;
40 laplacian(DT,T) Gauss linear corrected;
41 }
42

43 interpolationSchemes
44 {
45 default linear;
46 }
47

48 snGradSchemes
49 {
50 default none;
51 }
52

53 fluxRequired
54 {
55 default no;
56 D yes;
57 T no;
58 }
59

60

61 // *** //

The fvSolution dictionary in the system directory controls the linear equation solvers and
algorithms used in the solution. The user should first look at the solvers sub-dictionary
and notice that the choice of solver for D is GAMG. The solver tolerance should be set to
10−6 for this problem. The solver relative tolerance, denoted by relTol, sets the required
reduction in the residuals within each iteration. It is uneconomical to set a tight (low)
relative tolerance within each iteration since a lot of terms in each equation are explicit and
are updated as part of the segregated iterative procedure. Therefore a reasonable value for
the relative tolerance is 0.01, or possibly even higher, say 0.1, or in some cases even 0.9 (as
in this case).

17

18 solvers
19 {
20 "(D|T)"
21 {
22 solver GAMG;
23 tolerance 1e-06;
24 relTol 0.9;
25 smoother GaussSeidel;
26 cacheAgglomeration true;
27 nCellsInCoarsestLevel 20;
28 agglomerator faceAreaPair;
29 mergeLevels 1;
30 }
31 }
32

33 stressAnalysis
34 {
35 compactNormalStress yes;
36 nCorrectors 1;
37 D 1e-06;
38 }
39

40

41 // *** //

The fvSolution dictionary contains a sub-dictionary, stressAnalysis that contains some control
parameters specific to the application solver. Firstly there is nCorrectors which specifies
the number of outer loops around the complete system of equations, including traction

Open∇FOAM-2.0.0

U-56 Tutorials

boundary conditions within each time step. Since this problem is steady-state, we are
performing a set of iterations towards a converged solution with the ’time step’ acting as an
iteration counter. We can therefore set nCorrectors to 1.

The D keyword specifies a convergence tolerance for the outer iteration loop, i.e. sets a
level of initial residual below which solving will cease. It should be set to the desired solver
tolerance specified earlier, 10−6 for this problem.

2.2.2 Running the code

The user should run the code here in the background from the command line as specified
below, so he/she can look at convergence information in the log file afterwards.

cd $FOAM RUN/tutorials/stressAnalysis/solidDisplacementFoam/plateHole

solidDisplacementFoam > log &

The user should check the convergence information by viewing the generated log file which
shows the number of iterations and the initial and final residuals of the displacement in each
direction being solved. The final residual should always be less than 0.9 times the initial
residual as this iteration tolerance set. Once both initial residuals have dropped below the
convergence tolerance of 10−6 the run has converged and can be stopped by killing the batch
job.

2.2.3 Post-processing

Post processing can be performed as in section 2.1.4. The solidDisplacementFoam solver
outputs the stress field σ as a symmetric tensor field sigma. This is consistent with the way
variables are usually represented in OpenFOAM solvers by the mathematical symbol by
which they are represented; in the case of Greek symbols, the variable is named phonetically.

For post-processing individual scalar field components, σxx, σxy etc., can be generated
by running the foamCalc utility as before in section 2.1.5.7, this time on sigma:

foamCalc components sigma

Components named sigmaxx, sigmaxy etc. are written to time directories of the case. The
σxx stresses can be viewed in paraFoam as shown in Figure 2.18.

We would like to compare the analytical solution of Equation 2.14 to our solution. We
therefore must output a set of data of σxx along the left edge symmetry plane of our domain.
The user may generate the required graph data using the sample utility. The utility uses
a sampleDict dictionary located in the system directory, whose entries are summarised in
Table 6.3. The sample line specified in sets is set between (0.0, 0.5, 0.25) and (0.0, 2.0, 0.25),
and the fields are specified in the fields list:

17

18 interpolationScheme cellPoint;
19

20 setFormat raw;
21

22 sets
23 (
24 leftPatch
25 {
26 type uniform;
27 axis y;

Open∇FOAM-2.0.0

2.2 Stress analysis of a plate with a hole U-57

0

5

10

15

20

25

30

σ
x
x
(k
P
a)

Figure 2.18: σxx stress field in the plate with hole.

28 start (0 0.5 0.25);
29 end (0 2 0.25);
30 nPoints 100;
31 }
32);
33

34 fields (sigmaxx);
35

36

37 // *** //

The user should execute sample as normal. The writeFormat is raw 2 column format.
The data is written into files within time subdirectories of a sets directory, e.g. the data at
t = 100 s is found within the file sets/100/leftPatch sigmaxx.xy. In an application such as
GnuPlot, one could type the following at the command prompt would be sufficient to plot
both the numerical data and analytical solution:

plot [0.5:2] [0:] ’sets/100/leftPatch sigmaxx.xy’,

1e4*(1+(0.125/(x**2))+(0.09375/(x**4)))

An example plot is shown in Figure 2.19.

2.2.4 Exercises

The user may wish to experiment with solidDisplacementFoam by trying the following exer-
cises:

2.2.4.1 Increasing mesh resolution

Increase the mesh resolution in each of the x and y directions. Use mapFields to map the
final coarse mesh results from section 2.2.3 to the initial conditions for the fine mesh.

2.2.4.2 Introducing mesh grading

Grade the mesh so that the cells near the hole are finer than those away from the hole.
Design the mesh so that the ratio of sizes between adjacent cells is no more than 1.1 and so

Open∇FOAM-2.0.0

U-58 Tutorials

0

5

10

15

20

25

30

35

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

S
tr
es
s
(σ

x
x
) x

=
0
(k
P
a)

Distance, y (m)

Numerical prediction Analytical solution

Figure 2.19: Normal stress along the vertical symmetry (σxx)x=0

that the ratio of cell sizes between blocks is similar to the ratios within blocks. Mesh grading
is described in section 2.1.6. Again use mapFields to map the final coarse mesh results from
section 2.2.3 to the initial conditions for the graded mesh. Compare the results with those
from the analytical solution and previous calculations. Can this solution be improved upon
using the same number of cells with a different solution?

2.2.4.3 Changing the plate size

The analytical solution is for an infinitely large plate with a finite sized hole in it. Therefore
this solution is not completely accurate for a finite sized plate. To estimate the error,
increase the plate size while maintaining the hole size at the same value.

2.3 Breaking of a dam

In this tutorial we shall solve a problem of simplified dam break in 2 dimensions using the
interFoam.The feature of the problem is a transient flow of two fluids separated by a sharp
interface, or free surface. The two-phase algorithm in interFoam is based on the volume of
fluid (VOF) method in which a specie transport equation is used to determine the relative
volume fraction of the two phases, or phase fraction α1, in each computational cell. Physical
properties are calculated as weighted averages based on this fraction. The nature of the VOF
method means that an interface between the species is not explicitly computed, but rather
emerges as a property of the phase fraction field. Since the phase fraction can have any
value between 0 and 1, the interface is never sharply defined, but occupies a volume around
the region where a sharp interface should exist.

The test setup consists of a column of water at rest located behind a membrane on the
left side of a tank. At time t = 0 s, the membrane is removed and the column of water
collapses. During the collapse, the water impacts an obstacle at the bottom of the tank
and creates a complicated flow structure, including several captured pockets of air. The
geometry and the initial setup is shown in Figure 2.20.

Open∇FOAM-2.0.0

2.3 Breaking of a dam U-59

0.584 m

0.048 m

0.024 m

0.584 m

0.292 m

0.1459 m0.1461 m

water column

Figure 2.20: Geometry of the dam break.

2.3.1 Mesh generation

The user should go to the damBreak case in their $FOAM RUN/tutorials/multiphase/inter-
Foam/laminar directory. Generate the mesh running blockMesh as described previously. The
damBreak mesh consist of 5 blocks; the blockMeshDict entries are given below.

17 convertToMeters 0.146;
18

19 vertices
20 (
21 (0 0 0)
22 (2 0 0)
23 (2.16438 0 0)
24 (4 0 0)
25 (0 0.32876 0)
26 (2 0.32876 0)
27 (2.16438 0.32876 0)
28 (4 0.32876 0)
29 (0 4 0)
30 (2 4 0)
31 (2.16438 4 0)
32 (4 4 0)
33 (0 0 0.1)
34 (2 0 0.1)
35 (2.16438 0 0.1)
36 (4 0 0.1)
37 (0 0.32876 0.1)
38 (2 0.32876 0.1)
39 (2.16438 0.32876 0.1)
40 (4 0.32876 0.1)
41 (0 4 0.1)
42 (2 4 0.1)
43 (2.16438 4 0.1)
44 (4 4 0.1)
45);
46

47 blocks
48 (
49 hex (0 1 5 4 12 13 17 16) (23 8 1) simpleGrading (1 1 1)
50 hex (2 3 7 6 14 15 19 18) (19 8 1) simpleGrading (1 1 1)
51 hex (4 5 9 8 16 17 21 20) (23 42 1) simpleGrading (1 1 1)
52 hex (5 6 10 9 17 18 22 21) (4 42 1) simpleGrading (1 1 1)

Open∇FOAM-2.0.0

U-60 Tutorials

53 hex (6 7 11 10 18 19 23 22) (19 42 1) simpleGrading (1 1 1)
54);
55

56 edges
57 (
58);
59

60 boundary
61 (
62 leftWall
63 {
64 type wall;
65 faces
66 (
67 (0 12 16 4)
68 (4 16 20 8)
69);
70 }
71 rightWall
72 {
73 type wall;
74 faces
75 (
76 (7 19 15 3)
77 (11 23 19 7)
78);
79 }
80 lowerWall
81 {
82 type wall;
83 faces
84 (
85 (0 1 13 12)
86 (1 5 17 13)
87 (5 6 18 17)
88 (2 14 18 6)
89 (2 3 15 14)
90);
91 }
92 atmosphere
93 {
94 type patch;
95 faces
96 (
97 (8 20 21 9)
98 (9 21 22 10)
99 (10 22 23 11)

100);
101 }
102);
103

104 mergePatchPairs
105 (
106);
107

108 // *** //

2.3.2 Boundary conditions

The user can examine the boundary geometry generated by blockMesh by viewing the bound-
ary file in the constant/polyMesh directory. The file contains a list of 5 boundary patches:
leftWall, rightWall, lowerWall, atmosphere and defaultFaces. The user should notice
the type of the patches. The atmosphere is a standard patch, i.e. has no special attributes,
merely an entity on which boundary conditions can be specified. The defaultFaces patch
is empty since the patch normal is in the direction we will not solve in this 2D case. The
leftWall, rightWall and lowerWall patches are each a wall. Like the plain patch, the wall
type contains no geometric or topological information about the mesh and only differs from
the plain patch in that it identifies the patch as a wall, should an application need to know,
e.g. to apply special wall surface modelling.

A good example is that the interFoam solver includes modelling of surface tension at the

Open∇FOAM-2.0.0

2.3 Breaking of a dam U-61

contact point between the interface and wall surface. The models are applied by specifying
the alphaContactAngle boundary condition on the alpha1 (α1) field. With it, the user must
specify the following: a static contact angle, theta0 θ0; leading and trailing edge dynamic
contact angles, thetaA θA and thetaR θR respectively; and a velocity scaling function for
dynamic contact angle, uTheta.

In this tutorial we would like to ignore surface tension effects between the wall and
interface. We can do this by setting the static contact angle, θ0 = 90◦ and the velocity
scaling function to 0. However, the simpler option which we shall choose here is to specify
a zeroGradient type on alpha1, rather than use the alphaContactAngle boundary condition.

The top boundary is free to the atmosphere so needs to permit both outflow and inflow
according to the internal flow. We therefore use a combination of boundary conditions for
pressure and velocity that does this while maintaining stability. They are:

• totalPressure which is a fixedValue condition calculated from specified total pressure
p0 and local velocity U;

• pressureInletOutletVelocity, which applies zeroGradient on all components, except where
there is inflow, in which case a fixedValue condition is applied to the tangential com-
ponent;

• inletOutlet, which is a zeroGradient condition when flow outwards, fixedValue when flow
is inwards.

At all wall boundaries, the buoyantPressure boundary condition is applied to the pressure
field, which calculates the normal gradient from the local density gradient.

The defaultFaces patch representing the front and back planes of the 2D problem, is,
as usual, an empty type.

2.3.3 Setting initial field

Unlike the previous cases, we shall now specify a non-uniform initial condition for the phase
fraction α1 where

α1 =

{

1 for the liquid phase

0 for the gas phase
(2.15)

This will be done by running the setFields utility. It requires a setFieldsDict dictionary,
located in the system directory, whose entries for this case are shown below.

17

18 defaultFieldValues
19 (
20 volScalarFieldValue alpha1 0
21);
22

23 regions
24 (
25 boxToCell
26 {
27 box (0 0 -1) (0.1461 0.292 1);
28 fieldValues
29 (
30 volScalarFieldValue alpha1 1
31);
32 }
33);
34

35

36 // *** //

Open∇FOAM-2.0.0

U-62 Tutorials

The defaultFieldValues sets the default value of the fields, i.e. the value the field takes
unless specified otherwise in the regions sub-dictionary. That sub-dictionary contains a list
of subdictionaries containing fieldValues that override the defaults in a specified region.
The region is expressed in terms of a topoSetSource that creates a set of points, cells or
faces based on some topological constraint. Here, boxToCell creates a bounding box within
a vector minimum and maximum to define the set of cells of the liquid region. The phase
fraction α1 is defined as 1 in this region.

The setFields utility reads fields from file and, after re-calculating those fields, will write
them back to file. Because the files are then overridden, it is recommended that a backup
is made before setFields is executed. In the damBreak tutorial, the alpha1 field is initially
stored as a backup only, named alpha1.org. Before running setFields, the user first needs
to copy alpha1.org to alpha1, e.g. by typing:

cp 0/alpha1.org 0/alpha1

The user should then execute setFields as any other utility is executed. Using paraFoam,
check that the initial alpha1 field corresponds to the desired distribution as in Figure 2.21.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

Figure 2.21: Initial conditions for phase fraction alpha1.

2.3.4 Fluid properties

Let us examine the transportProperties file in the constant directory. It dictionary con-
tains the material properties for each fluid, separated into two subdictionaries phase1 and
phase2. The transport model for each phase is selected by the transportModel key-
word. The user should select Newtonian in which case the kinematic viscosity is sin-
gle valued and specified under the keyword nu. The viscosity parameters for the other
models, e.g.CrossPowerLaw, are specified within subdictionaries with the generic name
<model>Coeffs, i.e.CrossPowerLawCoeffs in this example. The density is specified under
the keyword rho.

Open∇FOAM-2.0.0

2.3 Breaking of a dam U-63

phase1 properties
Kinematic viscosity m2 s−1 nu 1.0× 10−6

Density kgm−3 rho 1.0× 103

phase2 properties
Kinematic viscosity m2 s−1 nu 1.48× 10−5

Density kgm−3 rho 1.0

Properties of both phases
Surface tension Nm−1 sigma 0.07

Table 2.3: Fluid properties for the damBreak tutorial

The surface tension between the two phases is specified under the keyword sigma. The
values used in this tutorial are listed in Table 2.3.

Gravitational acceleration is uniform across the domain and is specified in a file named
g in the constant directory. Unlike a normal field file, e.g. U and p, g is a uniformDimen-
sionedVectorField and so simply contains a set of dimensions and a value that represents
(0, 9.81, 0) m s−2 for this tutorial:

17

18 dimensions [0 1 -2 0 0 0 0];
19 value (0 -9.81 0);
20

21

22 // *** //

2.3.5 Turbulence modelling

As in the cavity example, the choice of turbulence modelling method is selectable at run-time
through the simulationType keyword in turbulenceProperties dictionary. In this example,
we wish to run without turbulence modelling so we set laminar:

17

18 simulationType laminar;
19

20

21 // *** //

2.3.6 Time step control

Time step control is an important issue in free surface tracking since the surface-tracking
algorithm is considerably more sensitive to the Courant number Co than in standard fluid
flow calculations. Ideally, we should not exceed an upper limit Co ≈ 0.5 in the region of
the interface. In some cases, where the propagation velocity is easy to predict, the user
should specify a fixed time-step to satisfy the Co criterion. For more complex cases, this
is considerably more difficult. interFoam therefore offers automatic adjustment of the time
step as standard in the controlDict. The user should specify adjustTimeStep to be on and
the the maximum Co for the phase fields, maxAlphaCo, and other fields, maxCo, to be 0.5.
The upper limit on time step maxDeltaT can be set to a value that will not be exceeded in
this simulation, e.g. 1.0.

By using automatic time step control, the steps themselves are never rounded to a
convenient value. Consequently if we request that OpenFOAM saves results at a fixed

Open∇FOAM-2.0.0

U-64 Tutorials

number of time step intervals, the times at which results are saved are somewhat arbitrary.
However even with automatic time step adjustment, OpenFOAM allows the user to specify
that results are written at fixed times; in this case OpenFOAM forces the automatic time
stepping procedure to adjust time steps so that it ‘hits’ on the exact times specified for
write output. The user selects this with the adjustableRunTime option for writeControl
in the controlDict dictionary. The controlDict dictionary entries should be:

17

18 application interFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 1;
27

28 deltaT 0.001;
29

30 writeControl adjustableRunTime;
31

32 writeInterval 0.05;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression uncompressed;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable yes;
47

48 adjustTimeStep yes;
49

50 maxCo 0.5;
51 maxAlphaCo 0.5;
52

53 maxDeltaT 1;
54

55

56 // *** //

2.3.7 Discretisation schemes

The interFoam solver uses the multidimensional universal limiter for explicit solution (MULES)
method, created by OpenCFD, to maintain boundedness of the phase fraction independent
of underlying numerical scheme, mesh structure, etc. The choice of schemes for convec-
tion are therfore not restricted to those that are strongly stable or bounded, e.g. upwind
differencing.

The convection schemes settings are made in the divSchemes sub-dictionary of the
fvSchemes dictionary. In this example, the convection term in the momentum equation
(∇ • (ρUU)), denoted by the div(rho*phi,U) keyword, uses Gauss limitedLinearV 1.0

to produce good accuracy. The limited linear schemes require a coefficient φ as described in
section 4.4.1. Here, we have opted for best stability with φ = 1.0. The ∇ • (Uα1) term, rep-
resented by the div(phi,alpha) keyword uses the vanLeer scheme. The ∇ • (Urbα1) term,
represented by the div(phirb,alpha) keyword, can similarly use the vanLeer scheme,
but generally produces smoother interfaces using the specialised interfaceCompression

scheme.

Open∇FOAM-2.0.0

2.3 Breaking of a dam U-65

The other discretised terms use commonly employed schemes so that the fvSchemes
dictionary entries should therefore be:

17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 }
27

28 divSchemes
29 {
30 div(rho*phi,U) Gauss limitedLinearV 1;
31 div(phi,alpha) Gauss vanLeer;
32 div(phirb,alpha) Gauss interfaceCompression;
33 }
34

35 laplacianSchemes
36 {
37 default Gauss linear corrected;
38 }
39

40 interpolationSchemes
41 {
42 default linear;
43 }
44

45 snGradSchemes
46 {
47 default corrected;
48 }
49

50 fluxRequired
51 {
52 default no;
53 p_rgh;
54 pcorr;
55 alpha1;
56 }
57

58

59 // *** //

2.3.8 Linear-solver control

In the fvSolution, the PISO sub-dictionary contains elements that are specific to interFoam.
There are the usual correctors to the momentum equation but also correctors to a PISO loop
around the α1 phase equation. Of particular interest are the nAlphaSubCycles and cAlpha

keywords. nAlphaSubCycles represents the number of sub-cycles within the α1 equation;
sub-cycles are additional solutions to an equation within a given time step. It is used to
enable the solution to be stable without reducing the time step and vastly increasing the
solution time. Here we specify 2 sub-cycles, which means that the α1 equation is solved in
2× half length time steps within each actual time step.

The cAlpha keyword is a factor that controls the compression of the interface where: 0
corresponds to no compression; 1 corresponds to conservative compression; and, anything
larger than 1, relates to enhanced compression of the interface. We generally recommend a
value of 1.0 which is employed in this example.

Open∇FOAM-2.0.0

U-66 Tutorials

2.3.9 Running the code

Running of the code has been described in detail in previous tutorials. Try the following,
that uses tee, a command that enables output to be written to both standard output and
files:

cd $FOAM RUN/tutorials/multiphase/interFoam/laminar/damBreak

interFoam | tee log

The code will now be run interactively, with a copy of output stored in the log file.

2.3.10 Post-processing

Post-processing of the results can now be done in the usual way. The user can monitor the
development of the phase fraction alpha1 in time, e.g. see Figure 2.22.

2.3.11 Running in parallel

The results from the previous example are generated using a fairly coarse mesh. We now
wish to increase the mesh resolution and re-run the case. The new case will typically take
a few hours to run with a single processor so, should the user have access to multiple
processors, we can demonstrate the parallel processing capability of OpenFOAM.

The user should first make a copy of the damBreak case, e.g. by

cd $FOAM RUN/tutorials/multiphase/interFoam/laminar

mkdir damBreakFine

cp -r damBreak/0 damBreakFine

cp -r damBreak/system damBreakFine

cp -r damBreak/constant damBreakFine

Enter the new case directory and change the blocks description in the blockMeshDict dic-
tionary to

blocks

(

hex (0 1 5 4 12 13 17 16) (46 10 1) simpleGrading (1 1 1)

hex (2 3 7 6 14 15 19 18) (40 10 1) simpleGrading (1 1 1)

hex (4 5 9 8 16 17 21 20) (46 76 1) simpleGrading (1 2 1)

hex (5 6 10 9 17 18 22 21) (4 76 1) simpleGrading (1 2 1)

hex (6 7 11 10 18 19 23 22) (40 76 1) simpleGrading (1 2 1)

);

Here, the entry is presented as printed from the blockMeshDict file; in short the user must
change the mesh densities, e.g. the 46 10 1 entry, and some of the mesh grading entries to
1 2 1. Once the dictionary is correct, generate the mesh.

As the mesh has now changed from the damBreak example, the user must re-initialise
the phase field alpha1 in the 0 time directory since it contains a number of elements that
is inconsistent with the new mesh. Note that there is no need to change the U and p rgh

Open∇FOAM-2.0.0

2.3 Breaking of a dam U-67

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

(a) At t = 0.25 s.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

(b) At t = 0.50 s.

Figure 2.22: Snapshots of phase α1.

Open∇FOAM-2.0.0

U-68 Tutorials

fields since they are specified as uniform which is independent of the number of elements
in the field. We wish to initialise the field with a sharp interface, i.e. it elements would
have α1 = 1 or α1 = 0. Updating the field with mapFields may produce interpolated values
0 < α1 < 1 at the interface, so it is better to rerun the setFields utility. There is a backup
copy of the initial uniform α1 field named 0/alpha1.org that the user should copy to 0/alpha1
before running setFields:

cd $FOAM RUN/tutorials/multiphase/interFoam/laminar/damBreakFine

cp -r 0/alpha1.org 0/alpha1

setFields

The method of parallel computing used by OpenFOAM is known as domain decomposi-
tion, in which the geometry and associated fields are broken into pieces and allocated to sep-
arate processors for solution. The first step required to run a parallel case is therefore to de-
compose the domain using the decomposePar utility. There is a dictionary associated with de-
composePar named decomposeParDict which is located in the system directory of the tutorial
case; also, like with many utilities, a default dictionary can be found in the directory of the
source code of the specific utility, i.e. in $FOAM UTILITIES/parallelProcessing/decomposePar
for this case.

The first entry is numberOfSubdomains which specifies the number of subdomains into
which the case will be decomposed, usually corresponding to the number of processors
available for the case.

In this tutorial, the method of decomposition should be simple and the corresponding
simpleCoeffs should be edited according to the following criteria. The domain is split
into pieces, or subdomains, in the x, y and z directions, the number of subdomains in each
direction being given by the vector n. As this geometry is 2 dimensional, the 3rd direction,
z, cannot be split, hence nz must equal 1. The nx and ny components of n split the domain
in the x and y directions and must be specified so that the number of subdomains specified
by nx and ny equals the specified numberOfSubdomains, i.e. nxny = numberOfSubdomains.
It is beneficial to keep the number of cell faces adjoining the subdomains to a minimum so,
for a square geometry, it is best to keep the split between the x and y directions should be
fairly even. The delta keyword should be set to 0.001.

For example, let us assume we wish to run on 4 processors. We would set numberOfSub-
domains to 4 and n = (2, 2, 1). When running decomposePar, we can see from the screen
messages that the decomposition is distributed fairly even between the processors.

The user should consult section 3.4 for details of how to run a case in parallel; in
this tutorial we merely present an example of running in parallel. We use the openMPI
implementation of the standard message-passing interface (MPI). As a test here, the user
can run in parallel on a single node, the local host only, by typing:

mpirun -np 4 interFoam -parallel > log &

The user may run on more nodes over a network by creating a file that lists the host
names of the machines on which the case is to be run as described in section 3.4.2. The case
should run in the background and the user can follow its progress by monitoring the log file
as usual.

Open∇FOAM-2.0.0

2.3 Breaking of a dam U-69

Figure 2.23: Mesh of processor 2 in parallel processed case.

2.3.12 Post-processing a case run in parallel

Once the case has completed running, the decomposed fields and mesh must be reassembled
for post-processing using the reconstructPar utility. Simply execute it from the command
line. The results from the fine mesh are shown in Figure 2.24. The user can see that the
resolution of interface has improved significantly compared to the coarse mesh.

The user may also post-process a segment of the decomposed domain individually by
simply treating the individual processor directory as a case in its own right. For example if
the user starts paraFoam by

paraFoam -case processor1

then processor1 will appear as a case module in ParaView. Figure 2.23 shows the mesh from
processor 1 following the decomposition of the domain using the simple method.

Open∇FOAM-2.0.0

U-70 Tutorials

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

(a) At t = 0.25 s.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Phase fraction, α1

(b) At t = 0.50 s.

Figure 2.24: Snapshots of phase α1 with refined mesh.

Open∇FOAM-2.0.0

Chapter 3

Applications and libraries

We should reiterate from the outset that OpenFOAM is a C++ library used primarily to
create executables, known as applications. OpenFOAM is distributed with a large set of
precompiled applications but users also have the freedom to create their own or modify
existing ones. Applications are split into two main categories:

solvers that are each designed to solve a specific problem in computational continuum
mechanics;

utilities that perform simple pre-and post-processing tasks, mainly involving data manip-
ulation and algebraic calculations.

OpenFOAM is divided into a set of precompiled libraries that are dynamically linked during
compilation of the solvers and utilities. Libraries such as those for physical models are
supplied as source code so that users may conveniently add their own models to the libraries.
This chapter gives an overview of solvers, utilities and libraries, their creation, modification,
compilation and execution.

3.1 The programming language of OpenFOAM

In order to understand the way in which the OpenFOAM library works, some background
knowledge of C++, the base language of OpenFOAM, is required; the necessary information
will be presented in this chapter. Before doing so, it is worthwhile addressing the concept of
language in general terms to explain some of the ideas behind object-oriented programming
and our choice of C++ as the main programming language of OpenFOAM.

3.1.1 Language in general

The success of verbal language and mathematics is based on efficiency, especially in express-
ing abstract concepts. For example, in fluid flow, we use the term “velocity field”, which has
meaning without any reference to the nature of the flow or any specific velocity data. The
term encapsulates the idea of movement with direction and magnitude and relates to other
physical properties. In mathematics, we can represent velocity field by a single symbol, e.g.
U, and express certain concepts using symbols, e.g. “the field of velocity magnitude” by
|U|. The advantage of mathematics over verbal language is its greater efficiency, making it
possible to express complex concepts with extreme clarity.

U-72 Applications and libraries

The problems that we wish to solve in continuum mechanics are not presented in terms of
intrinsic entities, or types, known to a computer, e.g. bits, bytes, integers. They are usually
presented first in verbal language, then as partial differential equations in 3 dimensions of
space and time. The equations contain the following concepts: scalars, vectors, tensors,
and fields thereof; tensor algebra; tensor calculus; dimensional units. The solution to these
equations involves discretisation procedures, matrices, solvers, and solution algorithms.

3.1.2 Object-orientation and C++

Progamming languages that are object-oriented, such as C++, provide the mechanism —
classes — to declare types and associated operations that are part of the verbal and math-
ematical languages used in science and engineering. Our velocity field introduced earlier
can be represented in programming code by the symbol U and “the field of velocity mag-
nitude” can be mag(U). The velocity is a vector field for which there should exist, in an
object-oriented code, a vectorField class. The velocity field U would then be an instance, or
object, of the vectorField class; hence the term object-oriented.

The clarity of having objects in programming that represent physical objects and abstract
entities should not be underestimated. The class structure concentrates code development
to contained regions of the code, i.e. the classes themselves, thereby making the code easier
to manage. New classes can be derived or inherit properties from other classes, e.g. the
vectorField can be derived from a vector class and a Field class. C++ provides the mechanism
of template classes such that the template class Field<Type> can represent a field of any
<Type>, e.g.scalar, vector, tensor. The general features of the template class are passed on
to any class created from the template. Templating and inheritance reduce duplication of
code and create class hierarchies that impose an overall structure on the code.

3.1.3 Equation representation

A central theme of the OpenFOAM design is that the solver applications, written using the
OpenFOAM classes, have a syntax that closely resembles the partial differential equations
being solved. For example the equation

∂ρU

∂t
+∇ •φU−∇ •µ∇U = −∇p

is represented by the code

solve

(

fvm::ddt(rho, U)

+ fvm::div(phi, U)

- fvm::laplacian(mu, U)

==

- fvc::grad(p)

);

This and other requirements demand that the principal programming language of Open-
FOAM has object-oriented features such as inheritance, template classes, virtual functions
and operator overloading. These features are not available in many languages that purport

Open∇FOAM-2.0.0

3.2 Compiling applications and libraries U-73

to be object-orientated but actually have very limited object-orientated capability, such
as FORTRAN-90. C++, however, possesses all these features while having the additional
advantage that it is widely used with a standard specification so that reliable compilers
are available that produce efficient executables. It is therefore the primary language of
OpenFOAM.

3.1.4 Solver codes

Solver codes are largely procedural since they are a close representation of solution algo-
rithms and equations, which are themselves procedural in nature. Users do not need a deep
knowledge of object-orientation and C++ programming to write a solver but should know
the principles behind object-orientation and classes, and to have a basic knowledge of some
C++ code syntax. An understanding of the underlying equations, models and solution
method and algorithms is far more important.

There is often little need for a user to immerse themselves in the code of any of the
OpenFOAM classes. The essence of object-orientation is that the user should not have
to; merely the knowledge of the class’ existence and its functionality are sufficient to use
the class. A description of each class, its functions etc. is supplied with the OpenFOAM
distribution in HTML documentation generated with Doxygen at $WM PROJECT DIR/-
doc/Doxygen/html/index.html.

3.2 Compiling applications and libraries

Compilation is an integral part of application development that requires careful management
since every piece of code requires its own set instructions to access dependent components
of the OpenFOAM library. In UNIX/Linux systems these instructions are often organised
and delivered to the compiler using the standard UNIXmake utility. OpenFOAM, however,
is supplied with the wmake compilation script that is based on make but is considerably
more versatile and easier to use; wmake can, in fact, be used on any code, not simply the
OpenFOAM library. To understand the compilation process, we first need to explain certain
aspects of C++ and its file structure, shown schematically in Figure 3.1. A class is defined
through a set of instructions such as object construction, data storage and class member
functions. The file containing the class definition takes a .C extension, e.g. a class nc would
be written in the file nc.C. This file can be compiled independently of other code into a binary
executable library file known as a shared object library with the .so file extension, i.e.nc.so.
When compiling a piece of code, say newApp.C, that uses the nc class, nc.C need not be
recompiled, rather newApp.C calls nc.so at runtime. This is known as dynamic linking.

3.2.1 Header .H files

As a means of checking errors, the piece of code being compiled must know that the classes
it uses and the operations they perform actually exist. Therefore each class requires a class
declaration, contained in a header file with a .H file extension, e.g.nc.H, that includes the
names of the class and its functions. This file is included at the beginning of any piece
of code using the class, including the class declaration code itself. Any piece of .C code
can resource any number of classes and must begin with all the .H files required to declare
these classes. The classes in turn can resource other classes and begin with the relevant .H

Open∇FOAM-2.0.0

U-74 Applications and libraries

int main()

...

...

return(0);

{

}

nc.so

Library

option-I#include "nc.H"

Main code

Code...

Compiled

nc.H

nc.C
#include "nc.H"

nc class

Definition...

Compiled

Executable

Header file

Linked

option-l

newApp.C

newApp

Figure 3.1: Header files, source files, compilation and linking

files. By searching recursively down the class hierarchy we can produce a complete list of
header files for all the classes on which the top level .C code ultimately depends; these .H
files are known as the dependencies. With a dependency list, a compiler can check whether
the source files have been updated since their last compilation and selectively compile only
those that need to be.

Header files are included in the code using # include statements, e.g.

include "otherHeader.H";

causes the compiler to suspend reading from the current file to read the file specified. Any
self-contained piece of code can be put into a header file and included at the relevant location
in the main code in order to improve code readability. For example, in most OpenFOAM
applications the code for creating fields and reading field input data is included in a file
createFields.H which is called at the beginning of the code. In this way, header files are
not solely used as class declarations. It is wmake that performs the task of maintaining file
dependency lists amongst other functions listed below.

• Automatic generation and maintenance of file dependency lists, i.e. lists of files which
are included in the source files and hence on which they depend.

• Multi-platform compilation and linkage, handled through appropriate directory struc-
ture.

• Multi-language compilation and linkage, e.g. C, C++, Java.

• Multi-option compilation and linkage, e.g. debug, optimised, parallel and profiling.

• Support for source code generation programs, e.g. lex, yacc, IDL, MOC.

• Simple syntax for source file lists.

• Automatic creation of source file lists for new codes.

Open∇FOAM-2.0.0

3.2 Compiling applications and libraries U-75

• Simple handling of multiple shared or static libraries.

• Extensible to new machine types.

• Extremely portable, works on any machine with: make; sh, ksh or csh; lex, cc.

• Has been tested on Apollo, SUN, SGI, HP (HPUX), Compaq (DEC), IBM (AIX),
Cray, Ardent, Stardent, PC Linux, PPC Linux, NEC, SX4, Fujitsu VP1000.

3.2.2 Compiling with wmake

OpenFOAM applications are organised using a standard convention that the source code
of each application is placed in a directory whose name is that of the application. The top
level source file takes the application name with the .C extension. For example, the source
code for an application called newApp would reside is a directory newApp and the top level
file would be newApp.C as shown in Figure 3.2. The directory must also contain a Make

newApp

newApp.C

otherHeader.H

Make

files

options

Figure 3.2: Directory structure for an application

subdirectory containing 2 files, options and files, that are described in the following sections.

3.2.2.1 Including headers

The compiler searches for the included header files in the following order, specified with the
-I option in wmake:

1. the $WM PROJECT DIR/src/OpenFOAM/lnInclude directory;

2. a local lnInclude directory, i.e.newApp/lnInclude;

3. the local directory, i.e.newApp;

4. platform dependent paths set in files in the $WM PROJECT DIR/wmake/rules/$WM -
ARCH/ directory, e.g./usr/X11/include and $(MPICH ARCH PATH)/include;

5. other directories specified explicitly in the Make/options file with the -I option.

TheMake/options file contains the full directory paths to locate header files using the syntax:

Open∇FOAM-2.0.0

U-76 Applications and libraries

EXE INC = \

-I<directoryPath1> \

-I<directoryPath2> \

... \

-I<directoryPathN>

Notice first that the directory names are preceeded by the -I flag and that the syntax uses
the \ to continue the EXE INC across several lines, with no \ after the final entry.

3.2.2.2 Linking to libraries

The compiler links to shared object library files in the following directory paths, specified
with the -L option in wmake:

1. the $FOAM LIBBIN directory;

2. platform dependent paths set in files in the $WM DIR/rules/$WM ARCH/ directory,
e.g./usr/X11/lib and $(MPICH ARCH PATH)/lib;

3. other directories specified in the Make/options file.

The actual library files to be linked must be specified using the -l option and removing
the lib prefix and .so extension from the library file name, e.g.libnew.so is included with
the flag -lnew. By default, wmake loads the following libraries:

1. the libOpenFOAM.so library from the $FOAM LIBBIN directory;

2. platform dependent libraries specified in set in files in the $WM DIR/rules/$WM ARCH/
directory, e.g.libm.so from /usr/X11/lib and liblam.so from $(LAM ARCH PATH)/lib;

3. other libraries specified in the Make/options file.

The Make/options file contains the full directory paths and library names using the syntax:

EXE LIBS = \

-L<libraryPath1> \

-L<libraryPath2> \

... \

-L<libraryPathN> \

-l<library1> \

-l<library2> \

... \

-l<libraryN>

Let us reiterate that the directory paths are preceeded by the -L flag, the library names are
preceeded by the -l flag.

Open∇FOAM-2.0.0

3.2 Compiling applications and libraries U-77

3.2.2.3 Source files to be compiled

The compiler requires a list of .C source files that must be compiled. The list must contain
the main .C file but also any other source files that are created for the specific application
but are not included in a class library. For example, users may create a new class or some
new functionality to an existing class for a particular application. The full list of .C source
files must be included in the Make/files file. As might be expected, for many applications
the list only includes the name of the main .C file, e.g.newApp.C in the case of our earlier
example.

TheMake/files file also includes a full path and name of the compiled executable, specified
by the EXE = syntax. Standard convention stipulates the name is that of the application,
i.e.newApp in our example. The OpenFOAM release offers two useful choices for path:
standard release applications are stored in $FOAM APPBIN; applications developed by the
user are stored in $FOAM USER APPBIN.

If the user is developing their own applications, we recommend they create an applica-
tions subdirectory in their $WM PROJECT USER DIR directory containing the source code
for personal OpenFOAM applications. As with standard applications, the source code for
each OpenFOAM application should be stored within its own directory. The only differ-
ence between a user application and one from the standard release is that the Make/files
file should specify that the user’s executables are written into their $FOAM USER APPBIN
directory. The Make/files file for our example would appear as follows:

newApp.C

EXE = $(FOAM_USER_APPBIN)/newApp

3.2.2.4 Running wmake

The wmake script is executed by typing:

wmake <optionalArguments> <optionalDirectory>

The <optionalDirectory> is the directory path of the application that is being compiled.
Typically, wmake is executed from within the directory of the application being compiled,
in which case <optionalDirectory> can be omitted.

If a user wishes to build an application executable, then no <optionalArguments> are
required. However <optionalArguments> may be specified for building libraries etc. as
described in Table 3.1.

Argument Type of compilation
lib Build a statically-linked library
libso Build a dynamically-linked library
libo Build a statically-linked object file library
jar Build a JAVA archive
exe Build an application independent of the specified project

Table 3.1: Optional compilation arguments to wmake.

Open∇FOAM-2.0.0

U-78 Applications and libraries

3.2.2.5 wmake environment variables

For information, the environment variable settings used by wmake are listed in Table 3.2.

Main paths
$WM PROJECT INST DIR Full path to installation directory,

e.g.$HOME/OpenFOAM
$WM PROJECT Name of the project being compiled: OpenFOAM
$WM PROJECT VERSION Version of the project being compiled: 2.0.0
$WM PROJECT DIR Full path to locate binary executables of OpenFOAM

release, e.g.$HOME/OpenFOAM/OpenFOAM-2.0.0
$WM PROJECT USER DIR Full path to locate binary executables of the user

e.g.$HOME/OpenFOAM/${USER}-2.0.0

Other paths/settings
$WM ARCH Machine architecture: Linux, SunOS
$WM ARCH OPTION 32 or 64 bit architecture
$WM COMPILER Compiler being used: Gcc43 - gcc 4.4.3, ICC - Intel
$WM COMPILER DIR Compiler installation directory
$WM COMPILER BIN Compiler installation binaries $WM COMPILER BIN/bin
$WM COMPILER LIB Compiler installation libraries $WM COMPILER BIN/lib
$WM COMPILE OPTION Compilation option: Debug - debugging, Opt optimisa-

tion.
$WM DIR Full path of the wmake directory
$WM MPLIB Parallel communications library: LAM, MPI, MPICH, PVM
$WM OPTIONS = $WM ARCH$WM COMPILER...

...$WM COMPILE OPTION$WM MPLIB
e.g.linuxGcc3OptMPICH

$WM PRECISION OPTION Precision of the compiled binares, SP, single precision or
DP, double precision

Table 3.2: Environment variable settings for wmake.

3.2.3 Removing dependency lists: wclean and rmdepall

On execution, wmake builds a dependency list file with a .dep file extension, e.g.newApp.dep
in our example, and a list of files in a Make/$WM OPTIONS directory. If the user wishes
to remove these files, perhaps after making code changes, the user can run the wclean script
by typing:

wclean <optionalArguments> <optionalDirectory>

Again, the <optionalDirectory> is a path to the directory of the application that is being
compiled. Typically, wclean is executed from within the directory of the application, in
which case the path can be omitted.

Open∇FOAM-2.0.0

3.2 Compiling applications and libraries U-79

If a user wishes to remove the dependency files and files from the Make directory, then no
<optionalArguments> are required. However if lib is specified in <optionalArguments>

a local lnInclude directory will be deleted also.
An additional script, rmdepall removes all dependency .dep files recursively down the

directory tree from the point at which it is executed. This can be useful when updating
OpenFOAM libraries.

3.2.4 Compilation example: the pisoFoam application

The source code for application pisoFoam is in the $FOAM APP/solvers/incompressible/pisoFoam
directory and the top level source file is named pisoFoam.C. The pisoFoam.C source code is:

1 /*---*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright (C) 2004-2010 OpenCFD Ltd.
6 \\/ M anipulation |
7 ---
8 License
9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20

21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 Application
25 pisoFoam
26

27 Description
28 Transient solver for incompressible flow.
29

30 Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
31

32 *---*/
33

34 #include "fvCFD.H"
35 #include "singlePhaseTransportModel.H"
36 #include "turbulenceModel.H"
37

38 // * //
39

40 int main(int argc, char *argv[])
41 {
42 #include "setRootCase.H"
43

44 #include "createTime.H"
45 #include "createMesh.H"
46 #include "createFields.H"
47 #include "initContinuityErrs.H"
48

49 // * //
50

51 Info<< "\nStarting time loop\n" << endl;
52

53 while (runTime.loop())
54 {
55 Info<< "Time = " << runTime.timeName() << nl << endl;
56

57 #include "readPISOControls.H"
58 #include "CourantNo.H"
59

60 // Pressure-velocity PISO corrector
61 {

Open∇FOAM-2.0.0

U-80 Applications and libraries

62 // Momentum predictor
63

64 fvVectorMatrix UEqn
65 (
66 fvm::ddt(U)
67 + fvm::div(phi, U)
68 + turbulence->divDevReff(U)
69);
70

71 UEqn.relax();
72

73 if (momentumPredictor)
74 {
75 solve(UEqn == -fvc::grad(p));
76 }
77

78 // --- PISO loop
79

80 for (int corr=0; corr<nCorr; corr++)
81 {
82 volScalarField rAU(1.0/UEqn.A());
83

84 U = rAU*UEqn.H();
85 phi = (fvc::interpolate(U) & mesh.Sf())
86 + fvc::ddtPhiCorr(rAU, U, phi);
87

88 adjustPhi(phi, U, p);
89

90 // Non-orthogonal pressure corrector loop
91 for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
92 {
93 // Pressure corrector
94

95 fvScalarMatrix pEqn
96 (
97 fvm::laplacian(rAU, p) == fvc::div(phi)
98);
99

100 pEqn.setReference(pRefCell, pRefValue);
101

102 if
103 (
104 corr == nCorr-1
105 && nonOrth == nNonOrthCorr
106)
107 {
108 pEqn.solve(mesh.solver("pFinal"));
109 }
110 else
111 {
112 pEqn.solve();
113 }
114

115 if (nonOrth == nNonOrthCorr)
116 {
117 phi -= pEqn.flux();
118 }
119 }
120

121 #include "continuityErrs.H"
122

123 U -= rAU*fvc::grad(p);
124 U.correctBoundaryConditions();
125 }
126 }
127

128 turbulence->correct();
129

130 runTime.write();
131

132 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
133 << " ClockTime = " << runTime.elapsedClockTime() << " s"
134 << nl << endl;
135 }
136

137 Info<< "End\n" << endl;
138

139 return 0;

Open∇FOAM-2.0.0

3.2 Compiling applications and libraries U-81

140 }
141

142

143 // *** //

The code begins with a brief description of the application contained within comments over 1
line (//) and multiple lines (/*...*/). Following that, the code contains several # include

statements, e.g.# include "fvCFD.H", which causes the compiler to suspend reading from
the current file, pisoFoam.C to read the fvCFD.H.

pisoFoam resources the incompressibleRASModels, incompressibleLESModels and incom-
pressibleTransportModels libraries and therefore requires the necessary header files, specified
by the EXE INC = -I... option, and links to the libraries with the EXE LIBS = -l...

option. The Make/options therefore contains the following:

1 EXE_INC = \
2 -I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
3 -I$(LIB_SRC)/transportModels \
4 -I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
5 -I$(LIB_SRC)/finiteVolume/lnInclude
6

7 EXE_LIBS = \
8 -lincompressibleTurbulenceModel \
9 -lincompressibleRASModels \

10 -lincompressibleLESModels \
11 -lincompressibleTransportModels \
12 -lfiniteVolume \
13 -lmeshTools

pisoFoam contains only the pisoFoam.C source and the executable is written to the $FOAM APPBIN
directory as all standard applications are. The Make/files therefore contains:

1 pisoFoam.C
2

3 EXE = $(FOAM_APPBIN)/pisoFoam

The user can compile pisoFoam by going to the $FOAM SOLVERS/incompressible/pisoFoam
directory and typing:

wmake

The code should compile and produce a message similar to the following

Making dependency list for source file pisoFoam.C

SOURCE DIR=.

SOURCE=pisoFoam.C ;

g++ -DFOAM EXCEPTION -Dlinux -DlinuxOptMPICH

-DscalarMachine -DoptSolvers -DPARALLEL -DUSEMPI -Wall -O2 -DNoRepository

-ftemplate-depth-17 -I.../OpenFOAM/OpenFOAM-2.0.0/src/OpenFOAM/lnInclude

-IlnInclude

-I.

......

-lmpich -L/usr/X11/lib -lm

-o .../OpenFOAM/OpenFOAM-2.0.0/applications/bin/linuxOptMPICH/pisoFoam

The user can now try recompiling and will receive a message similar to the following to say
that the executable is up to date and compiling is not necessary:

Open∇FOAM-2.0.0

U-82 Applications and libraries

make: Nothing to be done for ‘allFiles’.

make: ‘Make/linuxOptMPICH/dependencies’ is up to date.

make: ‘.../OpenFOAM/OpenFOAM-2.0.0/applications/bin/linuxOptMPICH/pisoFoam’

is up to date.

The user can compile the application from scratch by removing the dependency list with

wclean

and running wmake.

3.2.5 Debug messaging and optimisation switches

OpenFOAM provides a system of messaging that is written during runtime, most of which
are to help debugging problems encountered during running of a OpenFOAM case. The
switches are listed in the $WM PROJECT DIR/etc/controlDict file; should the user wish
to change the settings they should make a copy to their $HOME directory, i.e.$HOME/-
.OpenFOAM/2.0.0/controlDict file. The list of possible switches is extensive and can be
viewed by running the foamDebugSwitches application. Most of the switches correspond to a
class or range of functionality and can be switched on by their inclusion in the controlDict file,
and by being set to 1. For example, OpenFOAM can perform the checking of dimensional
units in all calculations by setting the dimensionSet switch to 1. There are some switches
that control messaging at a higher level than most, listed in Table 3.3.

In addition, there are some switches that control certain operational and optimisa-
tion issues. These switches are also listed in Table 3.3. Of particular importance is
fileModificationSkew. OpenFOAM scans the write time of data files to check for mod-
ification. When running over a NFS with some disparity in the clock settings on different
machines, field data files appear to be modified ahead of time. This can cause a problem
if OpenFOAM views the files as newly modified and attempting to re-read this data. The
fileModificationSkew keyword is the time in seconds that OpenFOAM will subtract from
the file write time when assessing whether the file has been newly modified.

3.2.6 Linking new user-defined libraries to existing applications

The situation may arise that a user creates a new library, say new, and wishes the features
within that library to be available across a range of applications. For example, the user
may create a new boundary condition, compiled into new, that would need to be recognised
by a range of solver applications, pre- and post-processing utilities, mesh tools, etc. Under
normal circumstances, the user would need to recompile every application with the new
linked to it.

Instead there is a simple mechanism to link one or more shared object libraries dy-
namically at run-time in OpenFOAM. Simply add the optional keyword entry libs to the
controlDict file for a case and enter the full names of the libraries within a list (as quoted
string entries). For example, if a user wished to link the libraries new1 and new2 at run-time,
they would simply need to add the following to the case controlDict file:

Open∇FOAM-2.0.0

3.3 Running applications U-83

High level debugging switches - sub-dictionary DebugSwitches
level Overall level of debugging messaging for OpenFOAM- - 3 levels 0,

1, 2
lduMatrix Messaging for solver convergence during a run - 3 levels 0, 1, 2

Optimisation switches - sub-dictionary OptimisationSwitches
fileModific-

ationSkew

A time in seconds that should be set higher than the maximum
delay in NFS updates and clock difference for running OpenFOAM
over a NFS.

fileModific-

ationChecking

Method of checking whether files have been modified during a
simulation, either reading the timeStamp or using inotify; ver-
sions that read only master-node data exist, timeStampMaster,
inotifyMaster.

commsType Parallel communications type: nonBlocking, scheduled,
blocking.

floatTransfer If 1, will compact numbers to float precision before transfer; de-
fault is 0

nProcsSimpleSum Optimises global sum for parallel processing; sets number of pro-
cessors above which hierarchical sum is performed rather than a
linear sum (default 16)

Table 3.3: Runtime message switches.

libs

(

"libnew1.so"

"libnew2.so"

);

3.3 Running applications

Each application is designed to be executed from a terminal command line, typically reading
and writing a set of data files associated with a particular case. The data files for a case are
stored in a directory named after the case as described in section 4.1; the directory name
with full path is here given the generic name <caseDir>.

For any application, the form of the command line entry for any can be found by simply
entering the application name at the command line with the -help option, e.g. typing

blockMesh -help

returns the usage

Usage: blockMesh [-region region name] [-case dir] [-blockTopology]

[-help] [-doc] [-srcDoc]

Open∇FOAM-2.0.0

U-84 Applications and libraries

The arguments in square brackets, [], are optional flags. If the application is executed from
within a case directory, it will operate on that case. Alternatively, the -case <caseDir>

option allows the case to be specified directly so that the application can be executed from
anywhere in the filing system.

Like any UNIX/Linux executable, applications can be run as as a background process,
i.e. one which does not have to be completed before the user can give the shell additional
commands. If the user wished to run the blockMesh example as a background process and
output the case progress to a log file, they could enter:

blockMesh > log &

3.4 Running applications in parallel

This section describes how to run OpenFOAM in parallel on distributed processors. The
method of parallel computing used by OpenFOAM is known as domain decomposition, in
which the geometry and associated fields are broken into pieces and allocated to separate
processors for solution. The process of parallel computation involves: decomposition of
mesh and fields; running the application in parallel; and, post-processing the decomposed
case as described in the following sections. The parallel running uses the public domain
openMPI implementation of the standard message passing interface (MPI).

3.4.1 Decomposition of mesh and initial field data

The mesh and fields are decomposed using the decomposePar utility. The underlying aim
is to break up the domain with minimal effort but in such a way to guarantee a fairly eco-
nomic solution. The geometry and fields are broken up according to a set of parameters
specified in a dictionary named decomposeParDict that must be located in the system direc-
tory of the case of interest. An example decomposeParDict dictionary can be copied from
the interFoam/damBreak tutorial if the user requires one; the dictionary entries within it are
reproduced below:

17

18 numberOfSubdomains 4;
19

20 method simple;
21

22 simpleCoeffs
23 {
24 n (2 2 1);
25 delta 0.001;
26 }
27

28 hierarchicalCoeffs
29 {
30 n (1 1 1);
31 delta 0.001;
32 order xyz;
33 }
34

35 manualCoeffs
36 {
37 dataFile "";
38 }
39

40 distributed no;
41

42 roots ();
43

44

45 // *** //

Open∇FOAM-2.0.0

3.4 Running applications in parallel U-85

The user has a choice of four methods of decomposition, specified by the method keyword
as described below.

simple Simple geometric decomposition in which the domain is split into pieces by direction,
e.g. 2 pieces in the x direction, 1 in y etc.

hierarchical Hierarchical geometric decomposition which is the same as simple except
the user specifies the order in which the directional split is done, e.g. first in the
y-direction, then the x-direction etc.

scotch Scotch decomposition which requires no geometric input from the user and attempts
to minimise the number of processor boundaries. The user can specify a weighting
for the decomposition between processors, through an optional processorWeights
keyword which can be useful on machines with differing performance between proces-
sors. There is also an optional keyword entry strategy that controls the decompo-
sition strategy through a complex string supplied to Scotch. For more information,
see the source code file: $FOAM SRC/decompositionMethods/decompositionMethods/-
scotchDecomp/scotchDecomp.C

manual Manual decomposition, where the user directly specifies the allocation of each cell
to a particular processor.

For each method there are a set of coefficients specified in a sub-dictionary of decomposi-
tionDict, named <method>Coeffs as shown in the dictionary listing. The full set of keyword
entries in the decomposeParDict dictionary are explained in Table 3.4.

The decomposePar utility is executed in the normal manner by typing

decomposePar

On completion, a set of subdirectories will have been created, one for each processor, in the
case directory. The directories are named processorN where N = 0, 1, . . . represents a pro-
cessor number and contains a time directory, containing the decomposed field descriptions,
and a constant/polyMesh directory containing the decomposed mesh description.

3.4.2 Running a decomposed case

A decomposed OpenFOAM case is run in parallel using the openMPI implementation of
MPI.

openMPI can be run on a local multiprocessor machine very simply but when running
on machines across a network, a file must be created that contains the host names of
the machines. The file can be given any name and located at any path. In the following
description we shall refer to such a file by the generic name, including full path, <machines>.

The <machines> file contains the names of the machines listed one machine per line. The
names must correspond to a fully resolved hostname in the /etc/hosts file of the machine
on which the openMPI is run. The list must contain the name of the machine running the
openMPI. Where a machine node contains more than one processor, the node name may be
followed by the entry cpu=n where n is the number of processors openMPI should run on
that node.

For example, let us imagine a user wishes to run openMPI from machine aaa on the
following machines: aaa; bbb, which has 2 processors; and ccc. The <machines> would
contain:

Open∇FOAM-2.0.0

U-86 Applications and libraries

Compulsory entries
numberOfSubdomains Total number of subdomains N
method Method of decomposition simple/

hierarchical/
scotch/ metis/
manual/

simpleCoeffs entries
n Number of subdomains in x, y, z (nx ny nz)

delta Cell skew factor Typically, 10−3

hierarchicalCoeffs entries
n Number of subdomains in x, y, z (nx ny nz)

delta Cell skew factor Typically, 10−3

order Order of decomposition xyz/xzy/yxz. . .

scotchCoeffs entries
processorWeights

(optional)
List of weighting factors for allocation
of cells to processors; <wt1> is the
weighting factor for processor 1, etc.;
weights are normalised so can take any
range of values.

(<wt1>...<wtN>)

strategy Decomposition strategy (optional); de-
faults to "b"

manualCoeffs entries
dataFile Name of file containing data of alloca-

tion of cells to processors
"<fileName>"

Distributed data entries (optional) — see section 3.4.3
distributed Is the data distributed across several

disks?
yes/no

roots Root paths to case directories; <rt1>

is the root path for node 1, etc.
(<rt1>...<rtN>)

Table 3.4: Keywords in decompositionDict dictionary.

aaa

bbb cpu=2

ccc

An application is run in parallel using mpirun.

mpirun --hostfile <machines> -np <nProcs>

<foamExec> <otherArgs> -parallel > log &

Open∇FOAM-2.0.0

3.4 Running applications in parallel U-87

where: <nProcs> is the number of processors; <foamExec> is the executable, e.g.icoFoam;
and, the output is redirected to a file named log. For example, if icoFoam is run on 4 nodes,
specified in a file named machines, on the cavity tutorial in the $FOAM RUN/tutorials/-
incompressible/icoFoam directory, then the following command should be executed:

mpirun --hostfile machines -np 4 icoFoam -parallel > log &

3.4.3 Distributing data across several disks

Data files may need to be distributed if, for example, if only local disks are used in order to
improve performance. In this case, the user may find that the root path to the case directory
may differ between machines. The paths must then be specified in the decomposeParDict
dictionary using distributed and roots keywords. The distributed entry should read

distributed yes;

and the roots entry is a list of root paths, <root0>, <root1>, . . . , for each node

roots

<nRoots>

(

"<root0>"

"<root1>"

...

);

where <nRoots> is the number of roots.
Each of the processorN directories should be placed in the case directory at each of

the root paths specified in the decomposeParDict dictionary. The system directory and files

within the constant directory must also be present in each case directory. Note: the files in
the constant directory are needed, but the polyMesh directory is not.

3.4.4 Post-processing parallel processed cases

When post-processing cases that have been run in parallel the user has two options:

• reconstruction of the mesh and field data to recreate the complete domain and fields,
which can be post-processed as normal;

• post-processing each segment of decomposed domain individually.

3.4.4.1 Reconstructing mesh and data

After a case has been run in parallel, it can be reconstructed for post-processing. The case
is reconstructed by merging the sets of time directories from each processorN directory into
a single set of time directories. The reconstructPar utility performs such a reconstruction by
executing the command:

reconstructPar

Open∇FOAM-2.0.0

U-88 Applications and libraries

When the data is distributed across several disks, it must be first copied to the local case
directory for reconstruction.

3.4.4.2 Post-processing decomposed cases

The user may post-process decomposed cases using the paraFoam post-processor, described
in section 6.1. The whole simulation can be post-processed by reconstructing the case or
alternatively it is possible to post-process a segment of the decomposed domain individually
by simply treating the individual processor directory as a case in its own right.

3.5 Standard solvers

The solvers with the OpenFOAM distribution are in the $FOAM SOLVERS directory, reached
quickly by typing app at the command line. This directory is further subdivided into several
directories by category of continuum mechanics, e.g. incompressible flow, combustion and
solid body stress analysis. Each solver is given a name that is reasonably descriptive,
e.g.icoFoam solves incompressible, laminar flow. The current list of solvers distributed with
OpenFOAM is given in Table 3.5.

‘Basic’ CFD codes
laplacianFoam Solves a simple Laplace equation, e.g. for thermal diffusion

in a solid
potentialFoam Simple potential flow solver which can be used to generate

starting fields for full Navier-Stokes codes
scalarTransportFoam Solves a transport equation for a passive scalar

Incompressible flow
adjointShapeOptimiz-
ationFoam

Steady-state solver for incompressible, turbulent flow of non-
Newtonian fluids with optimisation of duct shape by applying
”blockage” in regions causing pressure loss as estimated using
an adjoint formulation

boundaryFoam Steady-state solver for incompressible, 1D turbulent flow, typ-
ically to generate boundary layer conditions at an inlet, for
use in a simulation

channelFoam Incompressible LES solver for flow in a channel
icoFoam Transient solver for incompressible, laminar flow of Newtonian

fluids
MRFSimpleFoam Steady-state solver for incompressible, turbulent flow of non-

Newtonian fluids with MRF regions
nonNewtonianIcoFoam Transient solver for incompressible, laminar flow of non-

Newtonian fluids
pimpleDyMFoam Transient solver for incompressible, flow of Newtonian flu-

ids on a moving mesh using the PIMPLE (merged PISO-
SIMPLE) algorithm

pimpleFoam Large time-step transient solver for incompressible, flow using
the PIMPLE (merged PISO-SIMPLE) algorithm

Continued on next page

Open∇FOAM-2.0.0

3.5 Standard solvers U-89

Continued from previous page

pisoFoam Transient solver for incompressible flow
porousSimpleFoam Steady-state solver for incompressible, turbulent flow with im-

plicit or explicit porosity treatment
shallowWaterFoam Transient solver for inviscid shallow-water equations with ro-

tation
simpleFoam Steady-state solver for incompressible, turbulent flow
SRFSimpleFoam Steady-state solver for incompressible, turbulent flow of non-

Newtonian fluids in a single rotating frame
windSimpleFoam Steady-state solver for incompressible, turbulent flow with ex-

ternal source in the momentum equation

Compressible flow
rhoCentralFoam Density-based compressible flow solver based on central-

upwind schemes of Kurganov and Tadmor
rhoCentralDyMFoam Density-based compressible flow solver based on central-

upwind schemes of Kurganov and Tadmor with moving mesh
capability and turbulence modelling

rhoPimpleFoam Transient solver for laminar or turbulent flow of compressible
fluids for HVAC and similar applications

rhoPorousMRFLTS-
PimpleFoam

Transient solver for laminar or turbulent flow of compressible
fluids with support for porous media and MRF for HVAC
and similar applications, with local time-stepping for efficient
steady-state solution

rhoPorousMRFSimple-
Foam

Steady-state solver for turbulent flow of compressible fluids
with RANS turbulence modelling, implicit or explicit porosity
treatment and MRF for HVAC and similar applications

rhoPorousMRFPimple-
Foam

Transient solver for laminar or turbulent flow of compressible
fluids with support for porous media and MRF for HVAC and
similar applications

rhoSimplecFoam Steady-state SIMPLEC solver for laminar or turbulent RANS
flow of compressible fluids

rhoSimpleFoam Steady-state SIMPLE solver for laminar or turbulent RANS
flow of compressible fluids

sonicDyMFoam Transient solver for trans-sonic/supersonic, laminar or turbu-
lent flow of a compressible gas with mesh motion

sonicFoam Transient solver for trans-sonic/supersonic, laminar or turbu-
lent flow of a compressible gas

sonicLiquidFoam Transient solver for trans-sonic/supersonic, laminar flow of a
compressible liquid

Multiphase flow
bubbleFoam Solver for a system of 2 incompressible fluid phases with one

phase dispersed, e.g. gas bubbles in a liquid
cavitatingFoam Transient cavitation code based on the homogeneous equi-

librium model from which the compressibility of the liq-
uid/vapour ”mixture” is obtained

Continued on next page

Open∇FOAM-2.0.0

U-90 Applications and libraries

Continued from previous page

compressibleInterFoam Solver for 2 compressible, isothermal immiscible fluids using
a VOF (volume of fluid) phase-fraction based interface cap-
turing approach

interFoam Solver for 2 incompressible, isothermal immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface
capturing approach

interDyMFoam Solver for 2 incompressible, isothermal immiscible fluids using
a VOF (volume of fluid) phase-fraction based interface captur-
ing approach, with optional mesh motion and mesh topology
changes including adaptive re-meshing.

interMixingFoam Solver for 3 incompressible fluids, two of which are miscible,
using a VOF method to capture the interface

interPhaseChangeFoam Solver for 2 incompressible, isothermal immiscible fluids with
phase-change (e.g. cavitation). Uses a VOF (volume of fluid)
phase-fraction based interface capturing approach

LTSInterFoam Local time stepping (LTS, steady-state) solver for 2 incom-
pressible, isothermal immiscible fluids using a VOF (volume
of fluid) phase-fraction based interface capturing approach

MRFInterFoam Multiple reference frame (MRF) solver for 2 incompressible,
isothermal immiscible fluids using a VOF (volume of fluid)
phase-fraction based interface capturing approach

MRFMultiphaseInter-
Foam

Multiple reference frame (MRF) solver for n incompressible
fluids which captures the interfaces and includes surface-
tension and contact-angle effects for each phase

multiphaseInterFoam Solver for n incompressible fluids which captures the interfaces
and includes surface-tension and contact-angle effects for each
phase

porousInterFoam Solver for 2 incompressible, isothermal immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface
capturing approach, with explicit handling of porous zones

settlingFoam Solver for 2 incompressible fluids for simulating the settling
of the dispersed phase

twoLiquidMixingFoam Solver for mixing 2 incompressible fluids
twoPhaseEulerFoam Solver for a system of 2 incompressible fluid phases with one

phase dispersed, e.g. gas bubbles in a liquid

Direct numerical simulation (DNS)
dnsFoam Direct numerical simulation solver for boxes of isotropic tur-

bulence

Combustion
chemFoam Solver for chemistry problems - designed for use on single cell

cases to provide comparison against other chemistry solvers -
single cell mesh created on-the-fly - fields created on the fly
from the initial conditions

coldEngineFoam Solver for cold-flow in internal combustion engines
Continued on next page

Open∇FOAM-2.0.0

3.5 Standard solvers U-91

Continued from previous page

dieselEngineFoam Solver for diesel engine spray and combustion
dieselFoam Solver for diesel spray and combustion
engineFoam Solver for internal combustion engines
fireFoam Transient Solver for Fires and turbulent diffusion flames
PDRFoam Solver for compressible premixed/partially-premixed combus-

tion with turbulence modelling
reactingFoam Solver for combustion with chemical reactions
rhoReactingFoam Solver for combustion with chemical reactions using density

based thermodynamics package
XiFoam Solver for compressible premixed/partially-premixed combus-

tion with turbulence modelling

Heat transfer and buoyancy-driven flows
buoyantBaffleSimple-
Foam

Steady-state solver for buoyant, turbulent flow of compressible
fluids using thermal baffles

buoyantBoussinesqPim-
pleFoam

Transient solver for buoyant, turbulent flow of incompressible
fluids

buoyantBoussinesqSim-
pleFoam

Steady-state solver for buoyant, turbulent flow of incompress-
ible fluids

buoyantPimpleFoam Transient solver for buoyant, turbulent flow of compressible
fluids for ventilation and heat-transfer

buoyantSimpleFoam Steady-state solver for buoyant, turbulent flow of compressible
fluids

buoyantSimpleRadiation-
Foam

Steady-state solver for buoyant, turbulent flow of compressible
fluids, including radiation, for ventilation and heat-transfer

chtMultiRegionFoam Combination of heatConductionFoam and buoyantFoam for
conjugate heat transfer between a solid region and fluid re-
gion

Particle-tracking flows
coalChemistryFoam Transient solver for: - compressible, - turbulent flow, with -

coal and limestone parcel injections, - energy source, and -
combustion

icoUncoupledKinem-
aticParcelDyMFoam

Transient solver for the passive transport of a single kinematic
particle could

icoUncoupledKinem-
aticParcelFoam

Transient solver for the passive transport of a single kinematic
particle could

LTSReactingParcelFoam Local time stepping (LTS) solver for steady, compressible,
laminar or turbulent reacting and non-reacting flow with mul-
tiphase Lagrangian parcels and porous media, including ex-
plicit sources for mass, momentum and energy

porousExplicitSource-
ReactingParcelFoam

Transient PISO solver for compressible, laminar or turbulent
flow with reacting multiphase Lagrangian parcels for porous
media, including explicit sources for mass, momentum and
energy

Continued on next page

Open∇FOAM-2.0.0

U-92 Applications and libraries

Continued from previous page

reactingParcelFilmFoam Transient PISO solver for compressible, laminar or turbulent
flow with reacting Lagrangian parcels, and surface film mod-
elling

reactingParcelFoam Transient PISO solver for compressible, laminar or turbulent
flow with reacting Lagrangian parcels

uncoupledKinematic-
ParcelFoam

Transient solver for the passive transport of a single kinematic
particle could

Molecular dynamics methods
mdEquilibrationFoam Equilibrates and/or preconditions molecular dynamics sys-

tems
mdFoam Molecular dynamics solver for fluid dynamics

Direct simulation Monte Carlo methods
dsmcFoam Direct simulation Monte Carlo (DSMC) solver for 3D, tran-

sient, multi- species flows

Electromagnetics
electrostaticFoam Solver for electrostatics
magneticFoam Solver for the magnetic field generated by permanent magnets
mhdFoam Solver for magnetohydrodynamics (MHD): incompressible,

laminar flow of a conducting fluid under the influence of a
magnetic field

Stress analysis of solids
solidDisplacement-
Foam

Transient segregated finite-volume solver of linear-elastic,
small-strain deformation of a solid body, with optional ther-
mal diffusion and thermal stresses

solidEquilibriumDis-
placementFoam

Steady-state segregated finite-volume solver of linear-elastic,
small-strain deformation of a solid body, with optional ther-
mal diffusion and thermal stresses

Finance
financialFoam Solves the Black-Scholes equation to price commodities

Table 3.5: Standard library solvers.

3.6 Standard utilities

The utilities with the OpenFOAM distribution are in the $FOAM UTILITIES directory,
reached quickly by typing util at the command line. Again the names are reasonably
descriptive, e.g.ideasToFoam converts mesh data from the format written by I-DEAS to the
OpenFOAM format. The current list of utilities distributed with OpenFOAM is given in
Table 3.6.

Open∇FOAM-2.0.0

3.6 Standard utilities U-93

Pre-processing
applyBoundaryLayer Apply a simplified boundary-layer model to the velocity and

turbulence fields based on the 1/7th power-law
applyWallFunction-
BoundaryConditions

Updates OpenFOAM RAS cases to use the new (v1.6) wall
function framework

boxTurb Makes a box of turbulence which conforms to a given energy
spectrum and is divergence free

changeDictionary Utility to change dictionary entries, e.g. can be used to change
the patch type in the field and polyMesh/boundary files

dsmcInitialise Initialise a case for dsmcFoam by reading the initialisation
dictionary system/dsmcInitialise

engineSwirl Generates a swirling flow for engine calulations
faceAgglomerate (Currently no description)
foamUpgradeCyclics Tool to upgrade mesh and fields for split cyclics
foamUpgradeFvSolution Simple tool to upgrade the syntax of system/fvSolution::solvers
mapFields Maps volume fields from one mesh to another, reading and

interpolating all fields present in the time directory of both
cases. Parallel and non-parallel cases are handled without the
need to reconstruct them first

mdInitialise Initialises fields for a molecular dynamics (MD) simulation
setFields Set values on a selected set of cells/patchfaces through a dic-

tionary
viewFactorGen (Description not found)
wallFunctionTable Generates a table suitable for use by tabulated wall functions

Mesh generation
blockMesh A multi-block mesh generator
extrudeMesh Extrude mesh from existing patch (by default outwards facing

normals; optional flips faces) or from patch read from file.
extrude2DMesh Takes 2D mesh (all faces 2 points only, no front and back

faces) and creates a 3D mesh by extruding with specified
thickness

extrudeToRegionMesh Extrude faceZones into separate mesh (as a different region),
e.g. for creating liquid film regions

snappyHexMesh Automatic split hex mesher. Refines and snaps to surface

Mesh conversion
ansysToFoam Converts an ANSYS input mesh file, exported from I-DEAS,

to OpenFOAM format
cfx4ToFoam Converts a CFX 4 mesh to OpenFOAM format
datToFoam Reads in a datToFoam mesh file and outputs a points file.

Used in conjunction with blockMesh
fluent3DMeshToFoam Converts a Fluent mesh to OpenFOAM format
fluentMeshToFoam Converts a Fluent mesh to OpenFOAM format including mul-

tiple region and region boundary handling
Continued on next page

Open∇FOAM-2.0.0

U-94 Applications and libraries

Continued from previous page

foamMeshToFluent Writes out the OpenFOAM mesh in Fluent mesh format
foamToStarMesh Reads an OpenFOAM mesh and writes a PROSTAR (v4)

bnd/cel/vrt format
foamToSurface Reads an OpenFOAM mesh and writes the boundaries in a

surface format
gambitToFoam Converts a GAMBIT mesh to OpenFOAM format
gmshToFoam Reads .msh file as written by Gmsh
ideasUnvToFoam I-Deas unv format mesh conversion
kivaToFoam Converts a KIVA grid to OpenFOAM format
mshToFoam Converts .msh file generated by the Adventure system
netgenNeutralToFoam Converts neutral file format as written by Netgen v4.4
plot3dToFoam Plot3d mesh (ascii/formatted format) converter
sammToFoam Converts a STAR-CD (v3) SAMMmesh to OpenFOAM format
star3ToFoam Converts a STAR-CD (v3) PROSTAR mesh into OpenFOAM

format
star4ToFoam Converts a STAR-CD (v4) PROSTAR mesh into OpenFOAM

format
tetgenToFoam Converts .ele and .node and .face files, written by tetgen
writeMeshObj For mesh debugging: writes mesh as three separate OBJ files

which can be viewed with e.g. javaview

Mesh manipulation
attachMesh Attach topologically detached mesh using prescribed mesh

modifiers
autoPatch Divides external faces into patches based on (user supplied)

feature angle
checkMesh Checks validity of a mesh
createBaffles Makes internal faces into boundary faces. Does not duplicate

points, unlike mergeOrSplitBaffles
createPatch Utility to create patches out of selected boundary faces. Faces

come either from existing patches or from a faceSet
deformedGeom Deforms a polyMesh using a displacement field U and a scaling

factor supplied as an argument
flattenMesh Flattens the front and back planes of a 2D cartesian mesh
insideCells Picks up cells with cell centre ’inside’ of surface. Requires

surface to be closed and singly connected
mergeMeshes Merge two meshes
mergeOrSplitBaffles Detects faces that share points (baffles). Either merge them

or duplicate the points
mirrorMesh Mirrors a mesh around a given plane
moveDynamicMesh Mesh motion and topological mesh changes utility
moveEngineMesh Solver for moving meshes for engine calculations
moveMesh Solver for moving meshes
objToVTK Read obj line (not surface!) file and convert into vtk
polyDualMesh Calculate the dual of a polyMesh. Adheres to all the feature

and patch edges
Continued on next page

Open∇FOAM-2.0.0

3.6 Standard utilities U-95

Continued from previous page

refineMesh Utility to refine cells in multiple directions
renumberMesh Renumbers the cell list in order to reduce the bandwidth,

reading and renumbering all fields from all the time directories
rotateMesh Rotates the mesh and fields from the direcion n1 to the direc-

tion n2

setSet Manipulate a cell/face/point/ set or zone interactively
setsToZones Add pointZones/faceZones/cellZones to the mesh from similar

named pointSets/faceSets/cellSets
singleCellMesh Removes all but one cells of the mesh. Used to generate mesh

and fields that can be used for boundary-only data. Might
easily result in illegal mesh though so only look at boundaries
in paraview

splitMesh Splits mesh by making internal faces external. Uses attachDe-
tach

splitMeshRegions Splits mesh into multiple regions
stitchMesh ’Stitches’ a mesh
subsetMesh Selects a section of mesh based on a cellSet
topoSet Operates on cellSets/faceSets/pointSets through a dictionary
transformPoints Transforms the mesh points in the polyMesh directory accord-

ing to the translate, rotate and scale options
zipUpMesh Reads in a mesh with hanging vertices and zips up the cells

to guarantee that all polyhedral cells of valid shape are closed

Other mesh tools
autoRefineMesh Utility to refine cells near to a surface
collapseEdges Collapse short edges and combines edges that are in line
combinePatchFaces Checks for multiple patch faces on same cell and combines

them. These result from e.g. refined neighbouring cells get-
ting removed, leaving 4 exposed faces with same owner

modifyMesh Manipulates mesh elements
PDRMesh Mesh and field preparation utility for PDR type simulations
refineHexMesh Refines a hex mesh by 2x2x2 cell splitting
refinementLevel Tries to figure out what the refinement level is on refined

cartesian meshes. Run before snapping
refineWallLayer Utility to refine cells next to patches
removeFaces Utility to remove faces (combines cells on both sides)
selectCells Select cells in relation to surface
splitCells Utility to split cells with flat faces

Post-processing graphics
ensightFoamReader EnSight library module to read OpenFOAM data directly

without translation
fieldview9Reader Reader module for Fieldview 9 to read OpenFOAM mesh and

data

Continued on next page

Open∇FOAM-2.0.0

U-96 Applications and libraries

Continued from previous page

Post-processing data converters
foamDataToFluent Translates OpenFOAM data to Fluent format
foamToEnsight Translates OpenFOAM data to EnSight format
foamToEnsightParts Translates OpenFOAM data to Ensight format. An Ensight

part is created for each cellZone and patch
foamToFieldview9 Write out the OpenFOAM mesh in Version 3.0 Fieldview-UNS

format (binary)
foamToGMV Translates foam output to GMV readable files
foamToTecplot360 Tecplot binary file format writer
foamToVTK Legacy VTK file format writer
smapToFoam Translates a STAR-CD SMAP data file into OpenFOAM field

format

Post-processing velocity fields
Co Configurable graph drawing program
enstrophy Calculates and writes the enstrophy of the velocity field U

flowType Calculates and writes the flowType of velocity field U

Lambda2 Calculates and writes the second largest eigenvalue of the sum
of the square of the symmetrical and anti-symmetrical parts
of the velocity gradient tensor

Mach Calculates and optionally writes the local Mach number from
the velocity field U at each time

Pe Calculates and writes the Pe number as a surfaceScalar-

Field obtained from field phi

Q Calculates and writes the second invariant of the velocity gra-
dient tensor

streamFunction Calculates and writes the stream function of velocity field U

at each time

uprime Calculates and writes the scalar field of uprime (
√

2k/3)
vorticity Calculates and writes the vorticity of velocity field U

Post-processing stress fields
stressComponents Calculates and writes the scalar fields of the six components

of the stress tensor sigma for each time

Post-processing scalar fields
pPrime2 Calculates and writes the scalar field of pPrime2 ([p− p]2) at

each time

Post-processing at walls
wallGradU Calculates and writes the gradient of U at the wall
wallHeatFlux Calculates and writes the heat flux for all patches as the

boundary field of a volScalarField and also prints the inte-
grated flux for all wall patches

wallShearStress Calculates and writes the wall shear stress, for the specified
times

Continued on next page

Open∇FOAM-2.0.0

3.6 Standard utilities U-97

Continued from previous page

yPlusLES Calculates and reports yPlus for all wall patches, for the spec-
ified times

yPlusRAS Calculates and reports yPlus for all wall patches, for the spec-
ified times when using RAS turbulence models

Post-processing turbulence
createTurbulenceFields Creates a full set of turbulence fields
R Calculates and writes the Reynolds stress R for the current

time step

Post-processing patch data
patchAverage Calculates the average of the specified field over the specified

patch
patchIntegrate Calculates the integral of the specified field over the specified

patch

Post-processing Lagrangian simulation
particleTracks Generates a VTK file of particle tracks for cases that were

computed using a tracked-parcel-type cloud
steadyParticleTracks Generates a VTK file of particle tracks for cases that were

computed using a steady-state cloud NOTE: case must be
re-constructed (if running in parallel) before use

Sampling post-processing
probeLocations Probe locations
sample Sample field data with a choice of interpolation schemes, sam-

pling options and write formats

Miscellaneous post-processing
dsmcFieldsCalc Calculate intensive fields (U and T) from averaged extensive

fields from a DSMC calculation
engineCompRatio Calculate the geometric compression ratio. Note that if you

have valves and/or extra volumes it will not work, since it
calculates the volume at BDC and TCD

execFlowFunctionObjectsExecute the set of functionObjects specified in the selected
dictionary (which defaults to system/controlDict) for the se-
lected set of times. Alternative dictionaries should be placed
in the system/ folder

foamCalc Generic utility for simple field calculations at specified times
foamListTimes List times using timeSelector
pdfPlot Generates a graph of a probability distribution function
postChannel Post-processes data from channel flow calculations
ptot For each time: calculate the total pressure
wdot Calculates and writes wdot for each time
writeCellCentres Write the three components of the cell centres as volScalar-

Fields so they can be used in postprocessing in thresholding
Continued on next page

Open∇FOAM-2.0.0

U-98 Applications and libraries

Continued from previous page

Surface mesh (e.g. STL) tools
surfaceAdd Add two surfaces. Does geometric merge on points. Does not

check for overlapping/intersecting triangles
surfaceAutoPatch Patches surface according to feature angle. Like autoPatch
surfaceCheck (Currently no description)
surfaceClean - removes baffles - collapses small edges, removing triangles.

- converts sliver triangles into split edges by projecting point
onto base of triangle

surfaceCoarsen Surface coarsening using ’bunnylod’:
surfaceConvert Converts from one surface mesh format to another
surfaceFeatureConvert Convert between edgeMesh formats
surfaceFeatureExtract Extracts and writes surface features to file
surfaceFind Finds nearest face and vertex
surfaceInertia Calculates the inertia tensor and principal axes and moments

of a command line specified triSurface. Inertia can either be
of the solid body or of a thin shell

surfaceMeshConvert Convert between surface formats with optional scaling or
transformations (rotate/translate) on a coordinateSystem

surfaceMeshConvert-
Testing

Converts from one surface mesh format to another, but pri-
marily used for testing functionality

surfaceMeshExport Export from surfMesh to various third-party surface formats
with optional scaling or transformations (rotate/translate) on
a coordinateSystem

surfaceMeshImport Import from various third-party surface formats into surfMesh
with optional scaling or transformations (rotate/translate) on
a coordinateSystem

surfaceMeshInfo Miscellaneous information about surface meshes
surfaceMeshTriangulate Extracts triSurface from a polyMesh. Triangulates all bound-

ary faces. Region numbers on triangles are the patch numbers
of the polyMesh. Optionally only triangulates named patches

surfaceOrient Set normal consistent with respect to a user provided ’outside’
point. If -inside the point is considered inside

surfacePointMerge Merges points on surface if they are within absolute distance.
Since absolute distance use with care!

surfaceRedistributePar (Re)distribution of triSurface. Either takes an undecomposed
surface or an already decomposed surface and redistribute it
so each processor has all triangles that overlap its mesh

surfaceRefineRedGreen Refine by splitting all three edges of triangle (’red’ refine-
ment). Neighbouring triangles (which are not marked for re-
finement get split in half (’green’) refinement. (R. Verfuerth,
”A review of a posteriori error estimation and adaptive mesh
refinement techniques”, Wiley-Teubner, 1996)

surfaceSmooth Example of a simple laplacian smoother
surfaceSplitByPatch Writes regions of triSurface to separate files

Continued on next page

Open∇FOAM-2.0.0

3.6 Standard utilities U-99

Continued from previous page

surfaceSplitNonMani-
folds

Takes multiply connected surface and tries to split surface at
multiply connected edges by duplicating points. Introduces
concept of - borderEdge. Edge with 4 faces connected to it.
- borderPoint. Point connected to exactly 2 borderEdges. -
borderLine. Connected list of borderEdges

surfaceSubset A surface analysis tool which sub-sets the triSurface to choose
only a part of interest. Based on subsetMesh

surfaceToPatch Reads surface and applies surface regioning to a mesh. Uses
boundaryMesh to do the hard work

surfaceTransformPoints Transform (scale/rotate) a surface. Like transformPoints but
for surfaces

Parallel processing
decomposePar Automatically decomposes a mesh and fields of a case for

parallel execution of OpenFOAM
reconstructPar Reconstructs a mesh and fields of a case that is decomposed

for parallel execution of OpenFOAM
reconstructParMesh Reconstructs a mesh using geometric information only
redistributeMeshPar Redistributes existing decomposed mesh and fields according

to the current settings in the decomposeParDict file

Thermophysical-related utilities
adiabaticFlameT Calculates the adiabatic flame temperature for a given fuel

over a range of unburnt temperatures and equivalence ratios
chemkinToFoam Converts CHEMKIN 3 thermodynamics and reaction data files

into OpenFOAM format
equilibriumCO Calculates the equilibrium level of carbon monoxide
equilibriumFlameT Calculates the equilibrium flame temperature for a given fuel

and pressure for a range of unburnt gas temperatures and
equivalence ratios; the effects of dissociation on O2, H2O and
CO2 are included

mixtureAdiabaticFlameT Calculates the adiabatic flame temperature for a given mix-
ture at a given temperature

Miscellaneous utilities
expandDictionary Read the dictionary provided as an argument, expand the

macros etc. and write the resulting dictionary to standard
output

foamDebugSwitches Write out all library debug switches
foamFormatConvert Converts all IOobjects associated with a case into the format

specified in the controlDict
foamInfoExec Interrogates a case and prints information to stdout
patchSummary Writes fields and boundary condition info for each patch at

each requested time instance

Continued on next page

Open∇FOAM-2.0.0

U-100 Applications and libraries

Continued from previous page

Table 3.6: Standard library utilities.

3.7 Standard libraries

The libraries with the OpenFOAM distribution are in the $FOAM LIB/$WM OPTIONS
directory, reached quickly by typing lib at the command line. Again, the names are prefixed
by lib and reasonably descriptive, e.g. incompressibleTransportModels contains the library of
incompressible transport models. For ease of presentation, the libraries are separated into
two types:

General libraries those that provide general classes and associated functions listed in
Table 3.7;

Model libraries those that specify models used in computational continuum mechanics,
listed in Table 3.8, Table 3.9 and Table 3.10.

Library of basic OpenFOAM tools — OpenFOAM
algorithms Algorithms
containers Container classes
db Database classes
dimensionedTypes dimensioned<Type> class and derivatives
dimensionSet dimensionSet class
fields Field classes
global Global settings
graph graph class
interpolations Interpolation schemes
matrices Matrix classes
memory Memory management tools
meshes Mesh classes
primitives Primitive classes

Finite volume method library — finiteVolume
cfdTools CFD tools
fields Volume, surface and patch field classes; includes boundary

conditions
finiteVolume Finite volume discretisation
fvMatrices Matrices for finite volume solution
fvMesh Meshes for finite volume discretisation
interpolation Field interpolation and mapping
surfaceMesh Mesh surface data for finite volume discretisation
volMesh Mesh volume (cell) data for finite volume discretisation

Post-processing libraries
Continued on next page

Open∇FOAM-2.0.0

3.7 Standard libraries U-101

Continued from previous page

fieldFunctionObjects Field function objects including field averaging, min/max, etc.
foamCalcFunctions Functions for the foamCalc utility
forces Tools for post-processing force/lift/drag data with function

objects
jobControl Tools for controlling job running with a function object
postCalc For using functionality of a function object as a post-

processing activity
sampling Tools for sampling field data at prescribed locations in a do-

main
systemCall General function object for making system calls while running

a case
utilityFunctionObjects Utility function objects

Solution and mesh manipulation libraries
autoMesh Library of functionality for the snappyHexMesh utility
blockMesh Library of functionality for the blockMesh utility
dynamicMesh For solving systems with moving meshes
dynamicFvMesh Library for a finite volume mesh that can move and undergo

topological changes
edgeMesh For handling edge-based mesh descriptions
fvMotionSolvers Finite volume mesh motion solvers
ODE Solvers for ordinary differential equations
meshTools Tools for handling a OpenFOAM mesh
surfMesh Library for handling surface meshes of different formats
triSurface For handling standard triangulated surface-based mesh de-

scriptions
topoChangerFvMesh Topological changes functionality (largely redundant)

Lagrangian particle tracking libraries
coalCombustion Coal dust combustion modelling
dieselSpray Diesel spray and injection modelling
distributionModels Particle distribution function modelling
dsmc Direct simulation Monte Carlo method modelling
lagrangian Basic Lagrangian, or particle-tracking, solution scheme
lagrangianIntermediate Particle-tracking kinematics, thermodynamics, multispecies

reactions, particle forces, etc.
potential Intermolecular potentials for molecular dynamics
molecule Molecule classes for molecular dynamics
molecularMeasurements For making measurements in molecular dynamics
solidParticle Solid particle implementation

Miscellaneous libraries
conversion Tools for mesh and data conversions
decompositionMethods Tools for domain decomposition
engine Tools for engine calculations

Continued on next page

Open∇FOAM-2.0.0

U-102 Applications and libraries

Continued from previous page

fileFormats Core routines for reading/writing data in some third-party
formats

genericFvPatchField A generic patch field
MGridGenGAMG-
Agglomeration

Library for cell agglomeration using the MGridGen algorithm

pairPatchAgglom-
eration

Primitive pair patch agglomeration method

OSspecific Operating system specific functions
randomProcesses Tools for analysing and generating random processes

Parallel libraries
distributed Tools for searching and IO on distributed surfaces
reconstruct Mesh/field reconstruction library
scotchDecomp Scotch domain decomposition library
ptsotchDecomp PTScotch domain decomposition library

Table 3.7: Shared object libraries for general use.

Basic thermophysical models — basicThermophysicalModels
hPsiThermo General thermophysical model calculation based on en-

thalpy h and compressibility ψ
hsPsiThermo General thermophysical model calculation based on sensi-

ble enthalpy hs and compressibility ψ
ePsiThermo General thermophysical model calculation based on inter-

nal energy e and compressibility ψ
hRhoThermo General thermophysical model calculation based on en-

thalpy h
hRhoThermo General thermophysical model calculation based on sensi-

ble enthalpy hs

pureMixture General thermophysical model calculation for passive gas
mixtures

Reaction models — reactionThermophysicalModels
hPsiMixtureThermo Calculates enthalpy for combustion mixture based on en-

thalpy h and ψ
hsPsiMixtureThermo Calculates enthalpy for combustion mixture based on sen-

sible enthalpy hs and ψ
hRhoMixtureThermo Calculates enthalpy for combustion mixture based on en-

thalpy h and ρ
hsRhoMixtureThermo Calculates enthalpy for combustion mixture based on sen-

sible enthalpy hs and ρ
hhuMixtureThermo Calculates enthalpy for unburnt gas and combustion mix-

ture
Continued on next page

Open∇FOAM-2.0.0

3.7 Standard libraries U-103

Continued from previous page

homogeneousMixture Combustion mixture based on normalised fuel mass frac-
tion b

inhomogeneousMixture Combustion mixture based on b and total fuel mass fraction
ft

veryInhomogeneousMixture Combustion mixture based on b, ft and unburnt fuel mass
fraction fu

dieselMixture Combustion mixture based on ft and fu
basicMultiComponent-
Mixture

Basic mixture based on multiple components

multiComponentMixture Derived mixture based on multiple components
reactingMixture Combustion mixture using thermodynamics and reaction

schemes
egrMixture Exhaust gas recirculation mixture

Radiation models — radiationModels
P1 P1 model
fvDOM Finite volume discrete ordinate method
viewFactor View factor radiation model

Laminar flame speed models — laminarFlameSpeedModels
constLaminarFlameSpeed Constant laminar flame speed
GuldersLaminarFlameSpeed Gulder’s laminar flame speed model
GuldersEGRLaminar-
FlameSpeed

Gulder’s laminar flame speed model with exhaust gas re-
circulation modelling

Barotropic compressibility models — barotropicCompressibilityModels
linear Linear compressibility model
Chung Chung compressibility model
Wallis Wallis compressibility model

Thermophysical properties of gaseous species — specie
icoPolynomial Incompressible polynomial equation of state, e.g. for liquids
perfectGas Perfect gas equation of state
eConstThermo Constant specific heat cp model with evaluation of internal

energy e and entropy s
hConstThermo Constant specific heat cp model with evaluation of enthalpy

h and entropy s
hPolynomialThermo cp evaluated by a function with coefficients from polynomi-

als, from which h, s are evaluated
janafThermo cp evaluated by a function with coefficients from JANAF

thermodynamic tables, from which h, s are evaluated
specieThermo Thermophysical properties of species, derived from cp, h

and/or s
constTransport Constant transport properties

Continued on next page

Open∇FOAM-2.0.0

U-104 Applications and libraries

Continued from previous page

polynomialTransport Polynomial based temperature-dependent transport prop-
erties

sutherlandTransport Sutherland’s formula for temperature-dependent transport
properties

Functions/tables of thermophysical properties — thermophysicalFunctions
NSRDSfunctions National Standard Reference Data System (NSRDS) -

American Institute of Chemical Engineers (AICHE) data
compilation tables

APIfunctions American Petroleum Institute (API) function for vapour
mass diffusivity

Chemistry model — chemistryModel
chemistryModel Chemical reaction model
chemistrySolver Chemical reaction solver

Other libraries
liquidProperties Thermophysical properties of liquids
liquidMixtureProperties Thermophysical properties of liquid mixtures
basicSolidThermo Thermophysical models of solids
solid Thermodynamics of solid species
SLGThermo Thermodynamic package for solids, liquids and gases
solidProperties Thermophysical properties of solids
solidMixtureProperties Thermophysical properties of solid mixtures
thermalPorousZone Porous zone definition based on cell zones that includes

terms for energy equations

Table 3.8: Libraries of thermophysical models.

RAS turbulence models for incompressible fluids — incompressibleRASModels
laminar Dummy turbulence model for laminar flow
kEpsilon Standard high-Re k − ε model
kOmega Standard high-Re k − ω model
kOmegaSST k − ω-SST model
RNGkEpsilon RNG k − ε model
NonlinearKEShih Non-linear Shih k − ε model
LienCubicKE Lien cubic k − ε model
qZeta q − ζ model
LaunderSharmaKE Launder-Sharma low-Re k − ε model
LamBremhorstKE Lam-Bremhorst low-Re k − ε model
LienCubicKELowRe Lien cubic low-Re k − ε model
LienLeschzinerLowRe Lien-Leschziner low-Re k − ε model
LRR Launder-Reece-Rodi RSTM
LaunderGibsonRSTM Launder-Gibson RSTM with wall-reflection terms
realizableKE Realizable k − ε model

Continued on next page

Open∇FOAM-2.0.0

3.7 Standard libraries U-105

Continued from previous page

SpalartAllmaras Spalart-Allmaras 1-eqn mixing-length model

RAS turbulence models for compressible fluids — compressibleRASModels
laminar Dummy turbulence model for laminar flow
kEpsilon Standard k − ε model
kOmegaSST k − ω − SST model
RNGkEpsilon RNG k − ε model
LaunderSharmaKE Launder-Sharma low-Re k − ε model
LRR Launder-Reece-Rodi RSTM
LaunderGibsonRSTM Launder-Gibson RSTM
realizableKE Realizable k − ε model
SpalartAllmaras Spalart-Allmaras 1-eqn mixing-length model

Large-eddy simulation (LES) filters — LESfilters
laplaceFilter Laplace filters
simpleFilter Simple filter
anisotropicFilter Anisotropic filter

Large-eddy simulation deltas — LESdeltas
PrandtlDelta Prandtl delta
cubeRootVolDelta Cube root of cell volume delta
maxDeltaxyz Maximum of x, y and z; for structured hex cells only
smoothDelta Smoothing of delta

Incompressible LES turbulence models — incompressibleLESModels
Smagorinsky Smagorinsky model
Smagorinsky2 Smagorinsky model with 3-D filter
dynSmagorinsky Dynamic Smagorinsky
homogenousDynSmag-
orinsky

Homogeneous dynamic Smagorinsky model

dynLagrangian Lagrangian two equation eddy-viscosity model
scaleSimilarity Scale similarity model
mixedSmagorinsky Mixed Smagorinsky/scale similarity model
dynMixedSmagorinsky Dynamic mixed Smagorinsky/scale similarity model
kOmegaSSTSAS k − ω-SST scale adaptive simulation (SAS) model
oneEqEddy k-equation eddy-viscosity model
dynOneEqEddy Dynamic k-equation eddy-viscosity model
locDynOneEqEddy Localised dynamic k-equation eddy-viscosity model
spectEddyVisc Spectral eddy viscosity model
LRDDiffStress LRR differential stress model
DeardorffDiffStress Deardorff differential stress model
SpalartAllmaras Spalart-Allmaras model
SpalartAllmarasDDES Spalart-Allmaras delayed detached eddy simulation

(DDES) model
SpalartAllmarasIDDES Spalart-Allmaras improved DDES (IDDES) model

Continued on next page

Open∇FOAM-2.0.0

U-106 Applications and libraries

Continued from previous page

Compressible LES turbulence models — compressibleLESModels
Smagorinsky Smagorinsky model
oneEqEddy k-equation eddy-viscosity model
dynOneEqEddy Dynamic k-equation eddy-viscosity model
lowReOneEqEddy Low-Re k-equation eddy-viscosity model
DeardorffDiffStress Deardorff differential stress model
SpalartAllmaras Spalart-Allmaras 1-eqn mixing-length model

Table 3.9: Libraries of RAS and LES turbulence models.

Transport models for incompressible fluids — incompressibleTransportModels
Newtonian Linear viscous fluid model
CrossPowerLaw Cross Power law nonlinear viscous model
BirdCarreau Bird-Carreau nonlinear viscous model
HerschelBulkley Herschel-Bulkley nonlinear viscous model
powerLaw Power-law nonlinear viscous model
interfaceProperties Models for the interface, e.g. contact angle, in multiphase

simulations

Miscellaneous transport modelling libraries
interfaceProperties Calculation of interface properties
twoPhaseInterfacePropertiesTwo phase interface properties models, including boundary

conditions
surfaceFilmModels Surface film models

Table 3.10: Shared object libraries of transport models.

Open∇FOAM-2.0.0

Chapter 4

OpenFOAM cases

This chapter deals with the file structure and organisation of OpenFOAM cases. Nor-
mally, a user would assign a name to a case, e.g. the tutorial case of flow in a cavity
is simply named cavity. This name becomes the name of a directory in which all the
case files and subdirectories are stored. The case directories themselves can be located
anywhere but we recommend they are within a run subdirectory of the user’s project
directory, i.e.$HOME/OpenFOAM/${USER}-2.0.0 as described at the beginning of chap-
ter 2. One advantage of this is that the $FOAM RUN environment variable is set to
$HOME/OpenFOAM/${USER}-2.0.0/run by default; the user can quickly move to that di-
rectory by executing a preset alias, run, at the command line.

The tutorial cases that accompany the OpenFOAM distribution provide useful exam-
ples of the case directory structures. The tutorials are located in the $FOAM TUTORIALS
directory, reached quickly by executing the tut alias at the command line. Users can view
tutorial examples at their leisure while reading this chapter.

4.1 File structure of OpenFOAM cases

The basic directory structure for a OpenFOAM case, that contains the minimum set of files
required to run an application, is shown in Figure 4.1 and described as follows:

A constant directory that contains a full description of the case mesh in a subdirec-
tory polyMesh and files specifying physical properties for the application concerned,
e.g.transportProperties.

A system directory for setting parameters associated with the solution procedure itself.
It contains at least the following 3 files: controlDict where run control parameters are
set including start/end time, time step and parameters for data output; fvSchemes
where discretisation schemes used in the solution may be selected at run-time; and,
fvSolution where the equation solvers, tolerances and other algorithm controls are set
for the run.

The ‘time’ directories containing individual files of data for particular fields. The data
can be: either, initial values and boundary conditions that the user must specify to de-
fine the problem; or, results written to file by OpenFOAM. Note that the OpenFOAM
fields must always be initialised, even when the solution does not strictly require it, as
in steady-state problems. The name of each time directory is based on the simulated

U-108 OpenFOAM cases

<case>

system

controlDict
fvSchemes

polyMesh

points
cells
faces

...Properties

boundary

constant

time directories

fvSolution

see section 4.3
see section 4.4
see section 4.5

see section 5.1.2

see section 4.2.8

see chapter 7

Figure 4.1: Case directory structure

time at which the data is written and is described fully in section 4.3. It is sufficient to
say now that since we usually start our simulations at time t = 0, the initial conditions
are usually stored in a directory named 0 or 0.000000e+00, depending on the name
format specified. For example, in the cavity tutorial, the velocity field U and pressure
field p are initialised from files 0/U and 0/p respectively.

4.2 Basic input/output file format

OpenFOAM needs to read a range of data structures such as strings, scalars, vectors, tensors,
lists and fields. The input/output (I/O) format of files is designed to be extremely flexible
to enable the user to modify the I/O in OpenFOAM applications as easily as possible.
The I/O follows a simple set of rules that make the files extremely easy to understand, in
contrast to many software packages whose file format may not only be difficult to understand
intuitively but also not be published anywhere. The description of the OpenFOAM file
format is described in the following sections.

4.2.1 General syntax rules

The format follows the following some general principles of C++ source code.

• Files have free form, with no particular meaning assigned to any column and no need
to indicate continuation across lines.

• Lines have no particular meaning except to a // comment delimiter which makes
OpenFOAM ignore any text that follows it until the end of line.

• A comment over multiple lines is done by enclosing the text between /* and */ de-
limiters.

Open∇FOAM-2.0.0

4.2 Basic input/output file format U-109

4.2.2 Dictionaries

OpenFOAM uses dictionaries as the most common means of specifying data. A dictionary
is an entity that contains as set data entries that can be retrieved by the I/O by means of
keywords. The keyword entries follow the general format

<keyword> <dataEntry1> ... <dataEntryN>;

Most entries are single data entries of the form:

<keyword> <dataEntry>;

Most OpenFOAM data files are themselves dictionaries containing a set of keyword entries.
Dictionaries provide the means for organising entries into logical categories and can be
specified hierarchically so that any dictionary can itself contain one or more dictionary
entries. The format for a dictionary is to specify the dictionary name followed the the
entries enclosed in curly braces {} as follows

<dictionaryName>

{
... keyword entries ...

}

4.2.3 The data file header

All data files that are read and written by OpenFOAM begin with a dictionary named
FoamFile containing a standard set of keyword entries, listed in Table 4.1. The table

Keyword Description Entry
version I/O format version 2.0

format Data format ascii / binary

location Path to the file, in "..." (optional)
class OpenFOAM class constructed from the

data file concerned
typically dictionary or a
field, e.g.volVectorField

object Filename e.g.controlDict

Table 4.1: Header keywords entries for data files.

provides brief descriptions of each entry, which is probably sufficient for most entries with
the notable exception of class. The class entry is the name of the C++ class in the
OpenFOAM library that will be constructed from the data in the file. Without knowledge
of the underlying code which calls the file to be read, and knowledge of the OpenFOAM
classes, the user will probably be unable to surmise the class entry correctly. However,
most data files with simple keyword entries are read into an internal dictionary class and
therefore the class entry is dictionary in those cases.

The following example shows the use of keywords to provide data for a case using the
types of entry described so far. The extract, from an fvSolution dictionary file, contains
2 dictionaries, solvers and PISO. The solvers dictionary contains multiple data entries for

Open∇FOAM-2.0.0

U-110 OpenFOAM cases

solver and tolerances for each of the pressure and velocity equations, represented by the p

and U keywords respectively; the PISO dictionary contains algorithm controls.

17

18 solvers
19 {
20 p
21 {
22 solver PCG;
23 preconditioner DIC;
24 tolerance 1e-06;
25 relTol 0;
26 }
27

28 U
29 {
30 solver PBiCG;
31 preconditioner DILU;
32 tolerance 1e-05;
33 relTol 0;
34 }
35 }
36

37 PISO
38 {
39 nCorrectors 2;
40 nNonOrthogonalCorrectors 0;
41 pRefCell 0;
42 pRefValue 0;
43 }
44

45

46 // *** //

4.2.4 Lists

OpenFOAM applications contain lists, e.g. a list of vertex coordinates for a mesh description.
Lists are commonly found in I/O and have a format of their own in which the entries are
contained within round braces (). There is also a choice of format preceeding the round
braces:

simple the keyword is followed immediately by round braces

<listName>

(

... entries ...

);

numbered the keyword is followed by the number of elements <n> in the list

<listName>

<n>

(

... entries ...

);

token identifier the keyword is followed by a class name identifier Label<Type> where
<Type> states what the list contains, e.g. for a list of scalar elements is

<listName>

List<scalar>

Open∇FOAM-2.0.0

4.2 Basic input/output file format U-111

<n> // optional

(

... entries ...

);

Note that <scalar> in List<scalar> is not a generic name but the actual text that should
be entered.

The simple format is a convenient way of writing a list. The other formats allow the
code to read the data faster since the size of the list can be allocated to memory in advance
of reading the data. The simple format is therefore preferred for short lists, where read time
is minimal, and the other formats are preferred for long lists.

4.2.5 Scalars, vectors and tensors

A scalar is a single number represented as such in a data file. A vector is a VectorSpace of
rank 1 and dimension 3, and since the number of elements is always fixed to 3, the simple
List format is used. Therefore a vector (1.0, 1.1, 1.2) is written:

(1.0 1.1 1.2)

In OpenFOAM, a tensor is a VectorSpace of rank 2 and dimension 3 and therefore the data
entries are always fixed to 9 real numbers. Therefore the identity tensor can be written:

(

1 0 0

0 1 0

0 0 1

)

This example demonstrates the way in which OpenFOAM ignores the line return is so that
the entry can be written over multiple lines. It is treated no differently to listing the numbers
on a single line:

(1 0 0 0 1 0 0 0 1)

4.2.6 Dimensional units

In continuum mechanics, properties are represented in some chosen units, e.g. mass in
kilograms (kg), volume in cubic metres (m3), pressure in Pascals (kgm−1 s−2). Algebraic
operations must be performed on these properties using consistent units of measurement; in
particular, addition, subtraction and equality are only physically meaningful for properties
of the same dimensional units. As a safeguard against implementing a meaningless opera-
tion, OpenFOAM attaches dimensions to field data and physical properties and performs
dimension checking on any tensor operation.

The I/O format for a dimensionSet is 7 scalars delimited by square brackets, e.g.

[0 2 -1 0 0 0 0]

Open∇FOAM-2.0.0

U-112 OpenFOAM cases

No. Property SI unit USCS unit
1 Mass kilogram (kg) pound-mass (lbm)
2 Length metre (m) foot (ft)
3 Time — — — — second (s) — — — —
4 Temperature Kelvin (K) degree Rankine (◦R)
5 Quantity kilogram-mole (kgmol) pound-mole (lbmol)
6 Current — — — — ampere (A) — — — —
7 Luminous intensity — — — — candela (cd) — — — —

Table 4.2: Base units for SI and USCS

where each of the values corresponds to the power of each of the base units of measurement
listed in Table 4.2. The table gives the base units for the Système International (SI) and the
United States Customary System (USCS) but OpenFOAM can be used with any system of
units. All that is required is that the input data is correct for the chosen set of units. It is par-
ticularly important to recognise that OpenFOAM requires some dimensioned physical con-
stants, e.g. the Universal Gas Constant R, for certain calculations, e.g. thermophysical mod-
elling. These dimensioned constants are specified in a DimensionedConstant sub-dictionary of
main controlDict file of the OpenFOAM installation ($WM PROJECT DIR/etc/controlDict).
By default these constants are set in SI units. Those wishing to use the USCS or any other
system of units should modify these constants to their chosen set of units accordingly.

4.2.7 Dimensioned types

Physical properties are typically specified with their associated dimensions. These entries
have the format that the following example of a dimensionedScalar demonstrates:

nu nu [0 2 -1 0 0 0 0] 1;

The first nu is the keyword; the second nu is the word name stored in class word, usually
chosen to be the same as the keyword; the next entry is the dimensionSet and the final entry
is the scalar value.

4.2.8 Fields

Much of the I/O data in OpenFOAM are tensor fields, e.g. velocity, pressure data, that
are read from and written into the time directories. OpenFOAM writes field data using
keyword entries as described in Table 4.3.

Keyword Description Example
dimensions Dimensions of field [1 1 -2 0 0 0 0]

internalField Value of internal field uniform (1 0 0)

boundaryField Boundary field see file listing in section 4.2.8

Table 4.3: Main keywords used in field dictionaries.

The data begins with an entry for its dimensions. Following that, is the internalField,
described in one of the following ways.

Open∇FOAM-2.0.0

4.2 Basic input/output file format U-113

Uniform field a single value is assigned to all elements within the field, taking the form:

internalField uniform <entry>;

Nonuniform field each field element is assigned a unique value from a list, taking the
following form where the token identifier form of list is recommended:

internalField nonuniform <List>;

The boundaryField is a dictionary containing a set of entries whose names correspond
to each of the names of the boundary patches listed in the boundary file in the polyMesh
directory. Each patch entry is itself a dictionary containing a list of keyword entries. The
compulsory entry, type, describes the patch field condition specified for the field. The
remaining entries correspond to the type of patch field condition selected and can typically
include field data specifying initial conditions on patch faces. A selection of patch field
conditions available in OpenFOAM are listed in Table 5.3 and Table 5.4 with a description
and the data that must be specified with it. Example field dictionary entries for velocity U

are shown below:

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 movingWall
24 {
25 type fixedValue;
26 value uniform (1 0 0);
27 }
28

29 fixedWalls
30 {
31 type fixedValue;
32 value uniform (0 0 0);
33 }
34

35 frontAndBack
36 {
37 type empty;
38 }
39 }
40

41 // *** //

4.2.9 Directives and macro substitutions

There is additional file syntax that offers great flexibility for the setting up of OpenFOAM
case files, namely directives and macro substitutions. Directives are commands that can be
contained within case files that begin with the hash (#) symbol. Macro substitutions begin
with the dollar ($) symbol.

At present there are 4 directive commands available in OpenFOAM:

#include "<fileName>" (or #includeIfPresent "<fileName>" reads the file of name
<fileName>;

#inputMode has two options: merge, which merges keyword entries in successive dictio-
naries, so that a keyword entry specified in one place will be overridden by a later
specification of the same keyword entry; overwrite, which overwrites the contents of
an entire dictionary; generally, use merge;

Open∇FOAM-2.0.0

U-114 OpenFOAM cases

#remove <keywordEntry> removes any included keyword entry; can take a word or regular
expression;

#codeStream followed by verbatim C++ code, compiles, loads and executes the code on-
the-fly to generate the entry.

4.2.10 The #include and #inputMode directives

For example, let us say a user wishes to set an initial value of pressure once to be used
as the internal field and initial value at a boundary. We could create a file, e.g. named
initialConditions, which contains the following entries:

pressure 1e+05;

#inputMode merge

In order to use this pressure for both the internal and initial boundary fields, the user
would simply include the following macro substitutions in the pressure field file p:

#include "initialConditions"

internalField uniform $pressure;

boundaryField

{
patch1

{
type fixedValue;

value $internalField;

}
}

This is a fairly trivial example that simply demonstrates how this functionality works.
However, the functionality can be used in many, more powerful ways particularly as a means
of generalising case data to suit the user’s needs. For example, if a user has a set of cases
that require the same RAS turbulence model settings, a single file can be created with those
settings which is simply included in the RASProperties file of each case. Macro substitutions
can extend well beyond a singe value so that, for example, sets of boundary conditions can
be predefined and called by a single macro. The extent to which such functionality can be
used is almost endless.

4.2.11 The #codeStream directive

The #codeStream directive takes C++ code which is compiled and executed to deliver the
dictionary entry. The code and compilation instructions are specified through the following
keywords.

• code: specifies the code, called with arguments OStream& os and const dictionary&

dict which the user can use in the code, e.g. to lookup keyword entries from within
the current case dictionary (file).

Open∇FOAM-2.0.0

4.3 Time and data input/output control U-115

• codeInclude (optional): specifies additional C++ #include statements to include
OpenFOAM files.

• codeOptions (optional): specifies any extra compilation flags to be added to EXE INC

in Make/options.

• codeLibs (optional): specifies any extra compilation flags to be added to LIB LIBS in
Make/options.

Code, like any string, can be written across multiple lines by enclosing it within hash-bracket
delimiters, i.e. #{...#}. Anything in between these two delimiters becomes a string with
all newlines, quotes, etc. preserved.

An example of #codeStream is given below. The code in the controlDict file looks up
dictionary entries and does a simple calculation for the write interval:

startTime 0;
endTime 100;
...
writeInterval #codeStream
{

code
#{

scalar start = readScalar(dict.lookup("startTime"));
scalar end = readScalar(dict.lookup("endTime"));
label nDumps = 5;
os << ((end - start)/nDumps);

#};
};

4.3 Time and data input/output control

The OpenFOAM solvers begin all runs by setting up a database. The database controls
I/O and, since output of data is usually requested at intervals of time during the run, time
is an inextricable part of the database. The controlDict dictionary sets input parameters
essential for the creation of the database. The keyword entries in controlDict are listed in
Table 4.4. Only the time control and writeInterval entries are truly compulsory, with the
database taking default values indicated by † in Table 4.4 for any of the optional entries
that are omitted.

Time control
startFrom Controls the start time of the simulation.
- firstTime Earliest time step from the set of time directories.
- startTime Time specified by the startTime keyword entry.
- latestTime Most recent time step from the set of time directories.

startTime Start time for the simulation with startFrom startTime;

stopAt Controls the end time of the simulation.
- endTime Time specified by the endTime keyword entry.
- writeNow Stops simulation on completion of current time step and writes

data.
Continued on next page

Open∇FOAM-2.0.0

U-116 OpenFOAM cases

Continued from previous page

- noWriteNow Stops simulation on completion of current time step and does not
write out data.

- nextWrite Stops simulation on completion of next scheduled write time, spec-
ified by writeControl.

endTime End time for the simulation when stopAt endTime; is specified.

deltaT Time step of the simulation.

Data writing
writeControl Controls the timing of write output to file.
- timeStep† Writes data every writeInterval time steps.
- runTime Writes data every writeInterval seconds of simulated time.
- adjustableRunTime Writes data every writeInterval seconds of simulated time,

adjusting the time steps to coincide with the writeInterval if
necessary — used in cases with automatic time step adjustment.

- cpuTime Writes data every writeInterval seconds of CPU time.
- clockTime Writes data out every writeInterval seconds of real time.

writeInterval Scalar used in conjunction with writeControl described above.

purgeWrite Integer representing a limit on the number of time directories that
are stored by overwriting time directories on a cyclic basis. Exam-
ple of t0 = 5s, ∆t = 1s and purgeWrite 2;: data written into 2
directories, 6 and 7, before returning to write the data at 8 s in 6,
data at 9 s into 7, etc.
To disable the time directory limit, specify purgeWrite 0;†
For steady-state solutions, results from previous iterations can be
continuously overwritten by specifying purgeWrite 1;

writeFormat Specifies the format of the data files.
- ascii† ASCII format, written to writePrecision significant figures.
- binary Binary format.

writePrecision Integer used in conjunction with writeFormat described above, 6†
by default

writeCompression Specifies the compression of the data files.
- uncompressed No compression.†
- compressed gzip compression.

timeFormat Choice of format of the naming of the time directories.
- fixed ±m.dddddd where the number of ds is set by timePrecision.
- scientific ±m.dddddde±xx where the number of ds is set by timePrecision.
- general† Specifies scientific format if the exponent is less than -4 or

greater than or equal to that specified by timePrecision.

Continued on next page

Open∇FOAM-2.0.0

4.3 Time and data input/output control U-117

Continued from previous page

timePrecision Integer used in conjunction with timeFormat described above, 6†
by default

graphFormat Format for graph data written by an application.
- raw† Raw ASCII format in columns.
- gnuplot Data in gnuplot format.
- xmgr Data in Grace/xmgr format.
- jplot Data in jPlot format.

Data reading
runTimeModifiable yes†/no switch for whether dictionaries, e.g.controlDict, are re-

read by OpenFOAM at the beginning of each time step.

Run-time loadable functionality
libs List of additional libraries (on $LD LIBRARY PATH) to be loaded

at run-time, e.g.("libUser1.so" "libUser2.so")

functions List of functions, e.g. probes to be loaded at run-time; see examples
in $FOAM TUTORIALS

† denotes default entry if associated keyword is omitted.

Table 4.4: Keyword entries in the controlDict dictionary.

Example entries from a controlDict dictionary are given below:

17

18 application icoFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.5;
27

28 deltaT 0.005;
29

30 writeControl timeStep;
31

32 writeInterval 20;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48

49 // *** //

Open∇FOAM-2.0.0

U-118 OpenFOAM cases

4.4 Numerical schemes

The fvSchemes dictionary in the system directory sets the numerical schemes for terms, such
as derivatives in equations, that appear in applications being run. This section describes
how to specify the schemes in the fvSchemes dictionary.

The terms that must typically be assigned a numerical scheme in fvSchemes range from
derivatives, e.g. gradient ∇, and interpolations of values from one set of points to another.
The aim in OpenFOAM is to offer an unrestricted choice to the user. For example, while
linear interpolation is effective in many cases, OpenFOAM offers complete freedom to choose
from a wide selection of interpolation schemes for all interpolation terms.

The derivative terms further exemplify this freedom of choice. The user first has a choice
of discretisation practice where standard Gaussian finite volume integration is the common
choice. Gaussian integration is based on summing values on cell faces, which must be
interpolated from cell centres. The user again has a completely free choice of interpolation
scheme, with certain schemes being specifically designed for particular derivative terms,
especially the convection divergence ∇ • terms.

The set of terms, for which numerical schemes must be specified, are subdivided within
the fvSchemes dictionary into the categories listed in Table 4.5. Each keyword in Table 4.5
is the name of a sub-dictionary which contains terms of a particular type, e.g.gradSchemes
contains all the gradient derivative terms such as grad(p) (which represents ∇p). Further
examples can be seen in the extract from an fvSchemes dictionary below:

Keyword Category of mathematical terms
interpolationSchemes Point-to-point interpolations of values
snGradSchemes Component of gradient normal to a cell face
gradSchemes Gradient ∇
divSchemes Divergence ∇ •

laplacianSchemes Laplacian ∇2

timeScheme First and second time derivatives ∂/∂t, ∂2/∂2t
fluxRequired Fields which require the generation of a flux

Table 4.5: Main keywords used in fvSchemes.

17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 grad(p) Gauss linear;
27 }
28

29 divSchemes
30 {
31 default none;
32 div(phi,U) Gauss linear;
33 }
34

35 laplacianSchemes
36 {
37 default none;
38 laplacian(nu,U) Gauss linear corrected;
39 laplacian((1|A(U)),p) Gauss linear corrected;

Open∇FOAM-2.0.0

4.4 Numerical schemes U-119

40 }
41

42 interpolationSchemes
43 {
44 default linear;
45 interpolate(HbyA) linear;
46 }
47

48 snGradSchemes
49 {
50 default corrected;
51 }
52

53 fluxRequired
54 {
55 default no;
56 p ;
57 }
58

59

60 // *** //

The example shows that the fvSchemes dictionary contains the following:

• 6 . . . Schemes subdictionaries containing keyword entries for each term specified within
including: a default entry; other entries whose names correspond to a word identifier
for the particular term specified, e.g.grad(p) for ∇p

• a fluxRequired sub-dictionary containing fields for which the flux is generated in the
application, e.g.p in the example.

If a default scheme is specified in a particular . . . Schemes sub-dictionary, it is assigned to
all of the terms to which the sub-dictionary refers, e.g. specifying a default in gradSchemes
sets the scheme for all gradient terms in the application, e.g. ∇p, ∇U. When a default

is specified, it is not necessary to specify each specific term itself in that sub-dictionary,
i.e. the entries for grad(p), grad(U) in this example. However, if any of these terms are
included, the specified scheme overrides the default scheme for that term.

Alternatively the user may insist on no default scheme by the none entry. In this
instance the user is obliged to specify all terms in that sub-dictionary individually. Setting
default to none may appear superfluous since default can be overridden. However, spec-
ifying none forces the user to specify all terms individually which can be useful to remind
the user which terms are actually present in the application.

The following sections describe the choice of schemes for each of the categories of terms
in Table 4.5.

4.4.1 Interpolation schemes

The interpolationSchemes sub-dictionary contains terms that are interpolations of values typ-
ically from cell centres to face centres. A selection of interpolation schemes in OpenFOAM
are listed in Table 4.6, being divided into 4 categories: 1 category of general schemes; and,
3 categories of schemes used primarily in conjunction with Gaussian discretisation of con-
vection (divergence) terms in fluid flow, described in section 4.4.5. It is highly unlikely that
the user would adopt any of the convection-specific schemes for general field interpolations
in the interpolationSchemes sub-dictionary, but, as valid interpolation schemes, they are de-
scribed here rather than in section 4.4.5. Note that additional schemes such as UMIST are
available in OpenFOAM but only those schemes that are generally recommended are listed
in Table 4.6.

Open∇FOAM-2.0.0

U-120 OpenFOAM cases

A general scheme is simply specified by quoting the keyword and entry, e.g. a linear

scheme is specified as default by:

default linear;

The convection-specific schemes calculate the interpolation based on the flux of the flow
velocity. The specification of these schemes requires the name of the flux field on which the
interpolation is based; in most OpenFOAM applications this is phi, the name commonly
adopted for the surfaceScalarField velocity flux φ. The 3 categories of convection-specific
schemes are referred to in this text as: general convection; normalised variable (NV); and,
total variation diminishing (TVD). With the exception of the blended scheme, the general
convection and TVD schemes are specified by the scheme and flux, e.g. an upwind scheme
based on a flux phi is specified as default by:

default upwind phi;

Some TVD/NVD schemes require a coefficient ψ, 0 ≤ ψ ≤ 1 where ψ = 1 corresponds to
TVD conformance, usually giving best convergence and ψ = 0 corresponds to best accuracy.
Running with ψ = 1 is generally recommended. A limitedLinear scheme based on a flux
phi with ψ = 1.0 is specified as default by:

default limitedLinear 1.0 phi;

4.4.1.1 Schemes for strictly bounded scalar fields

There are enhanced versions of some of the limited schemes for scalars that need to be strictly
bounded. To bound between user-specified limits, the scheme name should be preprended
by the word limited and followed by the lower and upper limits respectively. For example,
to bound the vanLeer scheme strictly between -2 and 3, the user would specify:

default limitedVanLeer -2.0 3.0;

There are specialised versions of these schemes for scalar fields that are commonly bounded
between 0 and 1. These are selected by adding 01 to the name of the scheme. For example,
to bound the vanLeer scheme strictly between 0 and 1, the user would specify:

default vanLeer01;

Strictly bounded versions are available for the following schemes: limitedLinear, vanLeer,
Gamma, limitedCubic, MUSCL and SuperBee.

4.4.1.2 Schemes for vector fields

There are improved versions of some of the limited schemes for vector fields in which the lim-
ited is formulated to take into account the direction of the field. These schemes are selected
by adding V to the name of the general scheme, e.g.limitedLinearV for limitedLinear.
‘V’ versions are available for the following schemes: limitedLinearV, vanLeerV, GammaV,
limitedCubicV and SFCDV.

Open∇FOAM-2.0.0

4.4 Numerical schemes U-121

Centred schemes
linear Linear interpolation (central differencing)
cubicCorrection Cubic scheme
midPoint Linear interpolation with symmetric weighting

Upwinded convection schemes
upwind Upwind differencing
linearUpwind Linear upwind differencing
skewLinear Linear with skewness correction
filteredLinear2 Linear with filtering for high-frequency ringing

TVD schemes
limitedLinear limited linear differencing
vanLeer van Leer limiter
MUSCL MUSCL limiter
limitedCubic Cubic limiter

NVD schemes
SFCD Self-filtered central differencing
Gamma ψ Gamma differencing

Table 4.6: Interpolation schemes.

4.4.2 Surface normal gradient schemes

The snGradSchemes sub-dictionary contains surface normal gradient terms. A surface normal
gradient is evaluated at a cell face; it is the component, normal to the face, of the gradient
of values at the centres of the 2 cells that the face connects. A surface normal gradient
may be specified in its own right and is also required to evaluate a Laplacian term using
Gaussian integration.

The available schemes are listed in Table 4.7 and are specified by simply quoting the
keyword and entry, with the exception of limited which requires a coefficient ψ, 0 ≤ ψ ≤ 1
where

ψ =



















0 corresponds to uncorrected,

0.333 non-orthogonal correction ≤ 0.5× orthogonal part,

0.5 non-orthogonal correction ≤ orthogonal part,

1 corresponds to corrected.

(4.1)

A limited scheme with ψ = 0.5 is therefore specified as default by:

default limited 0.5;

Open∇FOAM-2.0.0

U-122 OpenFOAM cases

Scheme Description
corrected Explicit non-orthogonal correction
uncorrected No non-orthogonal correction
limited ψ Limited non-orthogonal correction
bounded Bounded correction for positive scalars
fourth Fourth order

Table 4.7: Surface normal gradient schemes.

4.4.3 Gradient schemes

The gradSchemes sub-dictionary contains gradient terms. The discretisation scheme for each
term can be selected from those listed in Table 4.8.

Discretisation scheme Description
Gauss <interpolationScheme> Second order, Gaussian integration
leastSquares Second order, least squares
fourth Fourth order, least squares
cellLimited <gradScheme> Cell limited version of one of the above schemes
faceLimited <gradScheme> Face limited version of one of the above schemes

Table 4.8: Discretisation schemes available in gradSchemes.

The discretisation scheme is sufficient to specify the scheme completely in the cases of
leastSquares and fourth, e.g.

grad(p) leastSquares;

The Gauss keyword specifies the standard finite volume discretisation of Gaussian inte-
gration which requires the interpolation of values from cell centres to face centres. Therefore,
the Gauss entry must be followed by the choice of interpolation scheme from Table 4.6. It
would be extremely unusual to select anything other than general interpolation schemes and
in most cases the linear scheme is an effective choice, e.g.

grad(p) Gauss linear;

Limited versions of any of the 3 base gradient schemes — Gauss, leastSquares and fourth

— can be selected by preceding the discretisation scheme by cellLimited (or faceLimited),
e.g. a cell limited Gauss scheme

grad(p) cellLimited Gauss linear 1;

4.4.4 Laplacian schemes

The laplacianSchemes sub-dictionary contains Laplacian terms. Let us discuss the syntax of
the entry in reference to a typical Laplacian term found in fluid dynamics, ∇ • (ν∇U), given
the word identifier laplacian(nu,U). The Gauss scheme is the only choice of discretisation

Open∇FOAM-2.0.0

4.4 Numerical schemes U-123

and requires a selection of both an interpolation scheme for the diffusion coefficient, i.e. ν
in our example, and a surface normal gradient scheme, i.e. ∇U. To summarise, the entries
required are:

Gauss <interpolationScheme> <snGradScheme>

The interpolation scheme is selected from Table 4.6, the typical choices being from the
general schemes and, in most cases, linear. The surface normal gradient scheme is se-
lected from Table 4.7; the choice of scheme determines numerical behaviour as described in
Table 4.9. A typical entry for our example Laplacian term would be:

laplacian(nu,U) Gauss linear corrected;

Scheme Numerical behaviour
corrected Unbounded, second order, conservative
uncorrected Bounded, first order, non-conservative
limited ψ Blend of corrected and uncorrected

bounded First order for bounded scalars
fourth Unbounded, fourth order, conservative

Table 4.9: Behaviour of surface normal schemes used in laplacianSchemes.

4.4.5 Divergence schemes

The divSchemes sub-dictionary contains divergence terms. Let us discuss the syntax of the
entry in reference to a typical convection term found in fluid dynamics ∇ • (ρUU), which in
OpenFOAM applications is commonly given the identifier div(phi,U), where phi refers to
the flux φ = ρU.

The Gauss scheme is only choice of discretisation and requires a selection of the inter-
polation scheme for the dependent field, i.e. U in our example. To summarise, the entries
required are:

Gauss <interpolationScheme>

The interpolation scheme is selected from the full range of schemes in Table 4.6, both general
and convection-specific. The choice critically determines numerical behaviour as described
in Table 4.10. The syntax here for specifying convection-specific interpolation schemes does
not include the flux as it is already known for the particular term, i.e. for div(phi,U),
we know the flux is phi so specifying it in the interpolation scheme would only invite an
inconsistency. Specification of upwind interpolation in our example would therefore be:

div(phi,U) Gauss upwind;

Open∇FOAM-2.0.0

U-124 OpenFOAM cases

Scheme Numerical behaviour
linear Second order, unbounded
skewLinear Second order, (more) unbounded, skewness correction
cubicCorrected Fourth order, unbounded
upwind First order, bounded
linearUpwind First/second order, bounded
QUICK First/second order, bounded
TVD schemes First/second order, bounded
SFCD Second order, bounded
NVD schemes First/second order, bounded

Table 4.10: Behaviour of interpolation schemes used in divSchemes.

4.4.6 Time schemes

The first time derivative (∂/∂t) terms are specified in the ddtSchemes sub-dictionary. The
discretisation scheme for each term can be selected from those listed in Table 4.11.

There is an off-centering coefficient ψ with the CrankNicholson scheme that blends it
with the Euler scheme. A coefficient of ψ = 1 corresponds to pure CrankNicholson and
and ψ = 0 corresponds to pure Euler. The blending coefficient can help to improve stability
in cases where pure CrankNicholson are unstable.

Scheme Description
Euler First order, bounded, implicit
localEuler Local-time step, first order, bounded, implicit
CrankNicholson ψ Second order, bounded, implicit
backward Second order, implicit
steadyState Does not solve for time derivatives

Table 4.11: Discretisation schemes available in ddtSchemes.

When specifying a time scheme it must be noted that an application designed for tran-
sient problems will not necessarily run as steady-state and visa versa. For example the
solution will not converge if steadyState is specified when running icoFoam, the transient,
laminar incompressible flow code; rather, simpleFoam should be used for steady-state, in-
compressible flow.

Any second time derivative (∂2/∂t2) terms are specified in the d2dt2Schemes sub-dictionary.
Only the Euler scheme is available for d2dt2Schemes.

4.4.7 Flux calculation

The fluxRequired sub-dictionary lists the fields for which the flux is generated in the appli-
cation. For example, in many fluid dynamics applications the flux is generated after solving
a pressure equation, in which case the fluxRequired sub-dictionary would simply be entered
as follows, p being the word identifier for pressure:

fluxRequired

{

Open∇FOAM-2.0.0

4.5 Solution and algorithm control U-125

p;

}

4.5 Solution and algorithm control

The equation solvers, tolerances and algorithms are controlled from the fvSolution dictionary
in the system directory. Below is an example set of entries from the fvSolution dictionary
required for the icoFoam solver.

17

18 solvers
19 {
20 p
21 {
22 solver PCG;
23 preconditioner DIC;
24 tolerance 1e-06;
25 relTol 0;
26 }
27

28 U
29 {
30 solver PBiCG;
31 preconditioner DILU;
32 tolerance 1e-05;
33 relTol 0;
34 }
35 }
36

37 PISO
38 {
39 nCorrectors 2;
40 nNonOrthogonalCorrectors 0;
41 pRefCell 0;
42 pRefValue 0;
43 }
44

45

46 // *** //

fvSolution contains a set of subdictionaries that are specific to the solver being run. However,
there is a small set of standard subdictionaries that cover most of those used by the standard
solvers. These subdictionaries include solvers, relaxationFactors, PISO and SIMPLE which are
described in the remainder of this section.

4.5.1 Linear solver control

The first sub-dictionary in our example, and one that appears in all solver applications,
is solvers. It specifies each linear-solver that is used for each discretised equation; it is
emphasised that the term linear-solver refers to the method of number-crunching to solve the
set of linear equations, as opposed to application solver which describes the set of equations
and algorithms to solve a particular problem. The term ‘linear-solver’ is abbreviated to
‘solver’ in much of the following discussion; we hope the context of the term avoids any
ambiguity.

The syntax for each entry within solvers uses a keyword that is the word relating to the
variable being solved in the particular equation. For example, icoFoam solves equations
for velocity U and pressure p, hence the entries for U and p. The keyword is followed
by a dictionary containing the type of solver and the parameters that the solver uses.
The solver is selected through the solver keyword from the choice in OpenFOAM, listed

Open∇FOAM-2.0.0

U-126 OpenFOAM cases

in Table 4.12. The parameters, including tolerance, relTol, preconditioner, etc. are
described in following sections.

Solver Keyword
Preconditioned (bi-)conjugate gradient PCG/PBiCG†
Solver using a smoother smoothSolver

Generalised geometric-algebraic multi-grid GAMG

Diagonal solver for explicit systems diagonal

†PCG for symmetric matrices, PBiCG for asymmetric

Table 4.12: Linear solvers.

The solvers distinguish between symmetric matrices and asymmetric matrices. The
symmetry of the matrix depends on the structure of the equation being solved and, while
the user may be able to determine this, it is not essential since OpenFOAM will produce an
error message to advise the user if an inappropriate solver has been selected, e.g.

--> FOAM FATAL IO ERROR : Unknown asymmetric matrix solver PCG

Valid asymmetric matrix solvers are :

3

(

PBiCG

smoothSolver

GAMG

)

4.5.1.1 Solution tolerances

The sparse matrix solvers are iterative, i.e. they are based on reducing the equation residual
over a succession of solutions. The residual is ostensibly a measure of the error in the
solution so that the smaller it is, the more accurate the solution. More precisely, the
residual is evaluated by substituting the current solution into the equation and taking the
magnitude of the difference between the left and right hand sides; it is also normalised in
to make it independent of the scale of problem being analysed.

Before solving an equation for a particular field, the initial residual is evaluated based
on the current values of the field. After each solver iteration the residual is re-evaluated.
The solver stops if either of the following conditions are reached:

• the residual falls below the solver tolerance, tolerance;

• the ratio of current to initial residuals falls below the solver relative tolerance, relTol;

• the number of iterations exceeds a maximum number of iterations , maxIter;

The solver tolerance should represents the level at which the residual is small enough
that the solution can be deemed sufficiently accurate. The solver relative tolerance limits the
relative improvement from initial to final solution. In transient simulations, it is usual to set
the solver relative tolerance to 0 to force the solution to converge to the solver tolerance in
each time step. The tolerances, tolerance and relTol must be specified in the dictionaries
for all solvers; maxIter is optional.

Open∇FOAM-2.0.0

4.5 Solution and algorithm control U-127

4.5.1.2 Preconditioned conjugate gradient solvers

There are a range of options for preconditioning of matrices in the conjugate gradient solvers,
represented by the preconditioner keyword in the solver dictionary. The preconditioners
are listed in Table 4.13.

Preconditioner Keyword
Diagonal incomplete-Cholesky (symmetric) DIC

Faster diagonal incomplete-Cholesky (DIC with caching) FDIC

Diagonal incomplete-LU (asymmetric) DILU

Diagonal diagonal

Geometric-algebraic multi-grid GAMG

No preconditioning none

Table 4.13: Preconditioner options.

4.5.1.3 Smooth solvers

The solvers that use a smoother require the smoother to be specified. The smoother options
are listed in Table 4.14. Generally GaussSeidel is the most reliable option, but for bad
matrices DIC can offer better convergence. In some cases, additional post-smoothing using
GaussSeidel is further beneficial, i.e. the method denoted as DICGaussSeidel

Smoother Keyword
Gauss-Seidel GaussSeidel

Diagonal incomplete-Cholesky (symmetric) DIC

Diagonal incomplete-Cholesky with Gauss-Seidel (symmetric) DICGaussSeidel

Table 4.14: Smoother options.

The user must also pecify the number of sweeps, by the nSweeps keyword, before the
residual is recalculated, following the tolerance parameters.

4.5.1.4 Geometric-algebraic multi-grid solvers

The generalised method of geometric-algebraic multi-grid (GAMG) uses the principle of:
generating a quick solution on a mesh with a small number of cells; mapping this solution
onto a finer mesh; using it as an initial guess to obtain an accurate solution on the fine
mesh. GAMG is faster than standard methods when the increase in speed by solving first
on coarser meshes outweighs the additional costs of mesh refinement and mapping of field
data. In practice, GAMG starts with the mesh specified by the user and coarsens/refines
the mesh in stages. The user is only required to specify an approximate mesh size at the
most coarse level in terms of the number of cells nCoarsestCells.

The agglomeration of cells is performed by the algorithm specified by the agglomerator
keyword. Presently we recommend the faceAreaPair method. It is worth noting there is
an MGridGen option that requires an additional entry specifying the shared object library
for MGridGen:

Open∇FOAM-2.0.0

U-128 OpenFOAM cases

geometricGamgAgglomerationLibs ("libMGridGenGamgAgglomeration.so");

In the experience of OpenCFD, the MGridGen method offers no obvious benefit over the
faceAreaPair method. For all methods, agglomeration can be optionally cached by the
cacheAgglomeration switch.

Smoothing is specified by the smoother as described in section 4.5.1.3. The number
of sweeps used by the smoother at different levels of mesh density are specified by the
nPreSweeps, nPostSweeps and nFinestSweeps keywords. The nPreSweeps entry is used
as the algorithm is coarsening the mesh, nPostSweeps is used as the algorithm is refining,
and nFinestSweeps is used when the solution is at its finest level.

The mergeLevels keyword controls the speed at which coarsening or refinement levels
is performed. It is often best to do so only at one level at a time, i.e. set mergeLevels

1. In some cases, particularly for simple meshes, the solution can be safely speeded up by
coarsening/refining two levels at a time, i.e. setting mergeLevels 2.

4.5.2 Solution under-relaxation

A second sub-dictionary of fvSolution that is often used in OpenFOAM is relaxationFactors
which controls under-relaxation, a technique used for improving stability of a computa-
tion, particularly in solving steady-state problems. Under-relaxation works by limiting the
amount which a variable changes from one iteration to the next, either by modifying the
solution matrix and source prior to solving for a field or by modifying the field directly. An
under-relaxation factor α, 0 < α ≤ 1 specifies the amount of under-relaxation, ranging from
none at all for α = 1 and increasing in strength as α → 0. The limiting case where α = 0
represents a solution which does not change at all with successive iterations. An optimum
choice of α is one that is small enough to ensure stable computation but large enough to
move the iterative process forward quickly; values of α as high as 0.9 can ensure stability
in some cases and anything much below, say, 0.2 are prohibitively restrictive in slowing the
iterative process.

The user can specify the relaxation factor for a particular field by specifying first the
word associated with the field, then the factor. The user can view the relaxation factors
used in a tutorial example of simpleFoam for incompressible, laminar, steady-state flows.

17

18 solvers
19 {
20 p
21 {
22 solver PCG;
23 preconditioner DIC;
24 tolerance 1e-06;
25 relTol 0.01;
26 }
27

28 U
29 {
30 solver PBiCG;
31 preconditioner DILU;
32 tolerance 1e-05;
33 relTol 0.1;
34 }
35

36 k
37 {
38 solver PBiCG;
39 preconditioner DILU;
40 tolerance 1e-05;

Open∇FOAM-2.0.0

http://www-users.cs.umn.edu/~moulitsa/software.html

4.5 Solution and algorithm control U-129

41 relTol 0.1;
42 }
43

44 epsilon
45 {
46 solver PBiCG;
47 preconditioner DILU;
48 tolerance 1e-05;
49 relTol 0.1;
50 }
51

52 R
53 {
54 solver PBiCG;
55 preconditioner DILU;
56 tolerance 1e-05;
57 relTol 0.1;
58 }
59

60 nuTilda
61 {
62 solver PBiCG;
63 preconditioner DILU;
64 tolerance 1e-05;
65 relTol 0.1;
66 }
67 }
68

69 SIMPLE
70 {
71 nNonOrthogonalCorrectors 0;
72

73 residualControl
74 {
75 p 1e-2;
76 U 1e-3;
77 "(k|epsilon|omega)" 1e-3;
78 }
79 }
80

81 relaxationFactors
82 {
83 p 0.3;
84 U 0.7;
85 k 0.7;
86 epsilon 0.7;
87 R 0.7;
88 nuTilda 0.7;
89 }
90

91

92 // *** //

4.5.3 PISO and SIMPLE algorithms

Most fluid dynamics solver applications in OpenFOAM use the pressure-implicit split-
operator (PISO) or semi-implicit method for pressure-linked equations (SIMPLE) algo-
rithms. These algorithms are iterative procedures for solving equations for velocity and
pressure, PISO being used for transient problems and SIMPLE for steady-state.

Both algorithms are based on evaluating some initial solutions and then correcting them.
SIMPLE only makes 1 correction whereas PISO requires more than 1, but typically not more
than 4. The user must therefore specify the number of correctors in the PISO dictionary by
the nCorrectors keyword as shown in the example on page U-125.

An additional correction to account for mesh non-orthogonality is available in both
SIMPLE and PISO in the standard OpenFOAM solver applications. A mesh is orthogonal
if, for each face within it, the face normal is parallel to the vector between the centres of the
cells that the face connects, e.g. a mesh of hexahedral cells whose faces are aligned with a
Cartesian coordinate system. The number of non-orthogonal correctors is specified by the
nNonOrthogonalCorrectors keyword as shown in the examples above and on page U-125.

Open∇FOAM-2.0.0

U-130 OpenFOAM cases

The number of non-orthogonal correctors should correspond to the mesh for the case being
solved, i.e. 0 for an orthogonal mesh and increasing with the degree of non-orthogonality
up to, say, 20 for the most non-orthogonal meshes.

4.5.3.1 Pressure referencing

In a closed incompressible system, pressure is relative: it is the pressure range that matters
not the absolute values. In these cases, the solver sets a reference level of pRefValue in cell
pRefCell where p is the name of the pressure solution variable. Where the pressure is p rgh,
the names are p rhgRefValue and p rhgRefCell respectively. These entries are generally
stored in the PISO/SIMPLE sub-dictionary and are used by those solvers that require them
when the case demands it. If ommitted, the solver will not run, but give a message to alert
the user to the problem.

4.5.4 Other parameters

The fvSolutions dictionaries in the majority of standard OpenFOAM solver applications
contain no other entries than those described so far in this section. However, in general the
fvSolution dictionary may contain any parameters to control the solvers, algorithms, or in
fact anything. For a given solver, the user can look at the source code to find the parameters
required. Ultimately, if any parameter or sub-dictionary is missing when an solver is run, it
will terminate, printing a detailed error message. The user can then add missing parameters
accordingly.

Open∇FOAM-2.0.0

Chapter 5

Mesh generation and conversion

This chapter describes all topics relating to the creation of meshes in OpenFOAM: section 5.1
gives an overview of the ways a mesh may be described in OpenFOAM; section 5.3 covers
the blockMesh utility for generating simple meshes of blocks of hexahedral cells; section 5.4
covers the snappyHexMesh utility for generating complex meshes of hexahedral and split-
hexahedral cells automatically from triangulated surface geometries; section 5.5 describes
the options available for conversion of a mesh that has been generated by a third-party
product into a format that OpenFOAM can read.

5.1 Mesh description

This section provides a specification of the way the OpenFOAM C++ classes handle a mesh.
The mesh is an integral part of the numerical solution and must satisfy certain criteria to
ensure a valid, and hence accurate, solution. During any run, OpenFOAM checks that
the mesh satisfies a fairly stringent set of validity constraints and will cease running if the
constraints are not satisfied. The consequence is that a user may experience some frustration
in ‘correcting’ a large mesh generated by third-party mesh generators before OpenFOAM
will run using it. This is unfortunate but we make no apology for OpenFOAM simply
adopting good practice to ensure the mesh is valid; otherwise, the solution is flawed before
the run has even begun.

By default OpenFOAM defines a mesh of arbitrary polyhedral cells in 3-D, bounded by
arbitrary polygonal faces, i.e. the cells can have an unlimited number of faces where, for
each face, there is no limit on the number of edges nor any restriction on its alignment. A
mesh with this general structure is known in OpenFOAM as a polyMesh. This type of mesh
offers great freedom in mesh generation and manipulation in particular when the geometry
of the domain is complex or changes over time. The price of absolute mesh generality is,
however, that it can be difficult to convert meshes generated using conventional tools. The
OpenFOAM library therefore provides cellShape tools to manage conventional mesh formats
based on sets of pre-defined cell shapes.

5.1.1 Mesh specification and validity constraints

Before describing the OpenFOAM mesh format, polyMesh, and the cellShape tools, we will
first set out the validity constraints used in OpenFOAM. The conditions that a mesh must
satisfy are:

U-132 Mesh generation and conversion

5.1.1.1 Points

A point is a location in 3-D space, defined by a vector in units of metres (m). The points are
compiled into a list and each point is referred to by a label, which represents its position in
the list, starting from zero. The point list cannot contain two different points at an exactly

identical position nor any point that is not part at least one face.

5.1.1.2 Faces

A face is an ordered list of points, where a point is referred to by its label. The ordering of
point labels in a face is such that each two neighbouring points are connected by an edge,
i.e. you follow points as you travel around the circumference of the face. Faces are compiled
into a list and each face is referred to by its label, representing its position in the list. The
direction of the face normal vector is defined by the right-hand rule, i.e. looking towards a
face, if the numbering of the points follows an anti-clockwise path, the normal vector points
towards you, as shown in Figure 5.1.

4

3

0

2

1

Sf

Figure 5.1: Face area vector from point numbering on the face

There are two types of face:

Internal faces Those faces that connect two cells (and it can never be more than two).
For each internal face, the ordering of the point labels is such that the face normal
points into the cell with the larger label, i.e. for cells 2 and 5, the normal points into
5;

Boundary faces Those belonging to one cell since they coincide with the boundary of the
domain. A boundary face is therefore addressed by one cell(only) and a boundary
patch. The ordering of the point labels is such that the face normal points outside of
the computational domain.

Faces are generally expected to be convex; at the very least the face centre needs to be
inside the face. Faces are allowed to be warped, i.e. not all points of the face need to be
coplanar.

Open∇FOAM-2.0.0

5.1 Mesh description U-133

5.1.1.3 Cells

A cell is a list of faces in arbitrary order. Cells must have the properties listed below.

Contiguous The cells must completely cover the computational domain and are must not
overlap one another.

Convex Every cell must be convex and its cell centre inside the cell.

Closed Every cell must be closed, both geometrically and topologically where:

• geometrical closedness requires that when all face area vectors are oriented to
point outwards of the cell, their sum should equal the zero vector to machine
accuracy;

• topological closedness requires that all the edges in a cell are used by exactly two
faces of the cell in question.

Orthogonality For all internal faces of the mesh, we define the centre-to-centre vector as
that connecting the centres of the 2 cells that it adjoins oriented from the the centre of
the cell with smaller label to the centre of the cell with larger label. The orthogonality
constraint requires that for each internal face, the angle between the face area vector,
oriented as described above, and the centre-to-centre vector must always be less than
90◦.

5.1.1.4 Boundary

A boundary is a list of patches, each of which is associated with a boundary condition. A
patch is a list of face labels which clearly must contain only boundary faces and no internal
faces. The boundary is required to be closed, i.e. the sum all boundary face area vectors
equates to zero to machine tolerance.

5.1.2 The polyMesh description

The constant directory contains a full description of the case polyMesh in a subdirectory
polyMesh. The polyMesh description is based around faces and, as already discussed, internal
cells connect 2 cells and boundary faces address a cell and a boundary patch. Each face
is therefore assigned an ‘owner’ cell and ‘neighbour’ cell so that the connectivity across a
given face can simply be described by the owner and neighbour cell labels. In the case of
boundaries, the connected cell is the owner and the neighbour is assigned the label ‘-1’.
With this in mind, the I/O specification consists of the following files:

points a list of vectors describing the cell vertices, where the first vector in the list represents
vertex 0, the second vector represents vertex 1, etc.;

faces a list of faces, each face being a list of indices to vertices in the points list, where
again, the first entry in the list represents face 0, etc.;

owner a list of owner cell labels, the index of entry relating directly to the index of the face,
so that the first entry in the list is the owner label for face 0, the second entry is the
owner label for face 1, etc;

Open∇FOAM-2.0.0

U-134 Mesh generation and conversion

neighbour a list of neighbour cell labels;

boundary a list of patches, containing a dictionary entry for each patch, declared using the
patch name, e.g.

movingWall

{
type patch;

nFaces 20;

startFace 760;

}

The startFace is the index into the face list of the first face in the patch, and nFaces

is the number of faces in the patch.

Note that if the user wishes to know how many cells are in their domain, there is a note

in the FoamFile header of the owner file that contains an entry for nCells.

5.1.3 The cellShape tools

We shall describe the alternative cellShape tools that may be used particularly when con-
verting some standard (simpler) mesh formats for the use with OpenFOAM library.

The vast majority of mesh generators and post-processing systems support only a fraction
of the possible polyhedral cell shapes in existence. They define a mesh in terms of a limited
set of 3D cell geometries, referred to as cell shapes. The OpenFOAM library contains
definitions of these standard shapes, to enable a conversion of such a mesh into the polyMesh
format described in the previous section.

The cellShape models supported by OpenFOAM are shown in Table 5.1. The shape is
defined by the ordering of point labels in accordance with the numbering scheme contained
in the shape model. The ordering schemes for points, faces and edges are shown in Table 5.1.
The numbering of the points must not be such that the shape becomes twisted or degenerate
into other geometries, i.e. the same point label cannot be used more that once is a single
shape. Moreover it is unnecessary to use duplicate points in OpenFOAM since the available
shapes in OpenFOAM cover the full set of degenerate hexahedra.

The cell description consists of two parts: the name of a cell model and the ordered list
of labels. Thus, using the following list of points

8

(

(0 0 0)

(1 0 0)

(1 1 0)

(0 1 0)

(0 0 0.5)

(1 0 0.5)

(1 1 0.5)

(0 1 0.5)

)

A hexahedral cell would be written as:

Open∇FOAM-2.0.0

5.2 Boundaries U-135

(hex 8(0 1 2 3 4 5 6 7))

Here the hexahedral cell shape is declared using the keyword hex. Other shapes are described
by the keywords listed in Table 5.1.

5.1.4 1- and 2-dimensional and axi-symmetric problems

OpenFOAM is designed as a code for 3-dimensional space and defines all meshes as such.
However, 1- and 2- dimensional and axi-symmetric problems can be simulated in Open-
FOAM by generating a mesh in 3 dimensions and applying special boundary conditions on
any patch in the plane(s) normal to the direction(s) of interest. More specifically, 1- and 2-
dimensional problems use the empty patch type and axi-symmetric problems use the wedge
type. The use of both are described in section 5.2.2 and the generation of wedge geometries
for axi-symmetric problems is discussed in section 5.3.3.

5.2 Boundaries

In this section we discuss the way in which boundaries are treated in OpenFOAM. The
subject of boundaries is a little involved because their role in modelling is not simply that
of a geometric entity but an integral part of the solution and numerics through boundary
conditions or inter-boundary ‘connections’. A discussion of boundaries sits uncomfortably
between a discussion on meshes, fields, discretisation, computational processing etc. Its
placement in this Chapter on meshes is a choice of convenience.

We first need to consider that, for the purpose of applying boundary conditions, a bound-
ary is generally broken up into a set of patches. One patch may include one or more enclosed
areas of the boundary surface which do not necessarily need to be physically connected.

There are three attributes associated with a patch that are described below in their
natural hierarchy and Figure 5.2 shows the names of different patch types introduced at
each level of the hierarchy. The hierarchy described below is very similar, but not identical,
to the class hierarchy used in the OpenFOAM library.

Base type The type of patch described purely in terms of geometry or a data ‘communi-
cation link’.

Primitive type The base numerical patch condition assigned to a field variable on the
patch.

Derived type A complex patch condition, derived from the primitive type, assigned to a
field variable on the patch.

5.2.1 Specification of patch types in OpenFOAM

The patch types are specified in the mesh and field files of a OpenFOAM case. More
precisely:

• the base type is specified under the type keyword for each patch in the boundary file,
located in the constant/polyMesh directory;

Open∇FOAM-2.0.0

U-136 Mesh generation and conversion

Derived type

fixedGradient
fixedValue

Primitive type

calculated

mixed
directionMixed

zeroGradient

symmetry
empty
wedge
cyclicBase type

processor

patch
wall

e.g. inletOutlet

Figure 5.2: Patch attributes

Open∇FOAM-2.0.0

5.2 Boundaries U-137

Cell type Keyword Vertex numbering Face numbering Edge numbering

Hexahedron hex

2

7

3

10

4

6

5

0 1
2

3

5

4
0

1

2

3

4
5

6
7

8 9
1011

Wedge wedge

2

10

3 4

56

0

1

2
35

4

0
1

2

3
5

6

7

8
9

10

4

Prism prism

2

10

3 4

5

0

1

3
4

2

0

1
2

3
4

5

6 7
8

Pyramid pyr

2

10

4

3
0

2
34

1

0
1

2

3

4 5
67

Tetrahedron tet 0 1

2

3

1
2

3

0

0

1

2
3

4

5

Tet-wedge tetWedge

2

10

3 4

0

1
3

2

0
1

2

3

4
5

6

Table 5.1: Vertex, face and edge numbering for cellShapes.

Open∇FOAM-2.0.0

U-138 Mesh generation and conversion

• the numerical patch type, be it a primitive or derived type, is specified under the type
keyword for each patch in a field file.

An example boundary file is shown below for a sonicFoam case, followed by a pressure
field file, p, for the same case:

17

18 6
19 (
20 inlet
21 {
22 type patch;
23 nFaces 50;
24 startFace 10325;
25 }
26 outlet
27 {
28 type patch;
29 nFaces 40;
30 startFace 10375;
31 }
32 bottom
33 {
34 type symmetryPlane;
35 nFaces 25;
36 startFace 10415;
37 }
38 top
39 {
40 type symmetryPlane;
41 nFaces 125;
42 startFace 10440;
43 }
44 obstacle
45 {
46 type patch;
47 nFaces 110;
48 startFace 10565;
49 }
50 defaultFaces
51 {
52 type empty;
53 nFaces 10500;
54 startFace 10675;
55 }
56)
57

58 // *** //

17 dimensions [1 -1 -2 0 0 0 0];
18

19 internalField uniform 1;
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value uniform 1;
27 }
28

29 outlet
30 {
31 type waveTransmissive;
32 field p;
33 phi phi;
34 rho rho;
35 psi psi;
36 gamma 1.4;
37 fieldInf 1;
38 lInf 3;
39 value uniform 1;
40 }
41

42 bottom
43 {
44 type symmetryPlane;
45 }
46

Open∇FOAM-2.0.0

5.2 Boundaries U-139

47 top
48 {
49 type symmetryPlane;
50 }
51

52 obstacle
53 {
54 type zeroGradient;
55 }
56

57 defaultFaces
58 {
59 type empty;
60 }
61 }
62

63 // *** //

The type in the boundary file is patch for all patches except those that patches that have
some geometrical constraint applied to them, i.e. the symmetryPlane and empty patches.
The p file includes primitive types applied to the inlet and bottom faces, and a more
complex derived type applied to the outlet. Comparison of the two files shows that the
base and numerical types are consistent where the base type is not a simple patch, i.e. for
the symmetryPlane and empty patches.

5.2.2 Base types

The base and geometric types are described below; the keywords used for specifying these
types in OpenFOAM are summarised in Table 5.2.

wedge aligned along

coordinate plane

<5◦ Axis of symmetry

wedge patch 1

wedge patch 2

Figure 5.3: Axi-symmetric geometry using the wedge patch type.

patch The basic patch type for a patch condition that contains no geometric or topological
information about the mesh (with the exception of wall), e.g. an inlet or an outlet.

wall There are instances where a patch that coincides with a wall needs to be identifiable
as such, particularly where specialist modelling is applied at wall boundaries. A good
example is wall turbulence modelling where a wall must be specified with a wall patch
type, so that the distance from the wall of the cell centres next to the wall are stored
as part of the patch.

Open∇FOAM-2.0.0

U-140 Mesh generation and conversion

Selection Key Description
patch generic patch
symmetryPlane plane of symmetry
empty front and back planes of a 2D geometry
wedge wedge front and back for an axi-symmetric geometry
cyclic cyclic plane
wall wall — used for wall functions in turbulent flows
processor inter-processor boundary

Table 5.2: Basic patch types.

symmetryPlane For a symmetry plane.

empty While OpenFOAM always generates geometries in 3 dimensions, it can be instructed
to solve in 2 (or 1) dimensions by specifying a special empty condition on each patch
whose plane is normal to the 3rd (and 2nd) dimension for which no solution is required.

wedge For 2 dimensional axi-symmetric cases, e.g. a cylinder, the geometry is specified as a
wedge of small angle (e.g. < 5◦) and 1 cell thick running along the plane of symmetry,
straddling one of the coordinate planes, as shown in Figure 5.3. The axi-symmetric
wedge planes must be specified as separate patches of wedge type. The details of
generating wedge-shaped geometries using blockMesh are described in section 5.3.3.

cyclic Enables two patches to be treated as if they are physically connected; used for repeated
geometries, e.g. heat exchanger tube bundles. One cyclic patch is linked to another
through a neighbourPatch keyword in the boundary file. Each pair of connecting faces
must have similar area to within a tolerance given by the matchTolerance keyword
in the boundary file. Faces do not need to be of the same orientation.

processor If a code is being run in parallel, on a number of processors, then the mesh must be
divided up so that each processor computes on roughly the same number of cells. The
boundaries between the different parts of the mesh are called processor boundaries.

5.2.3 Primitive types

The primitive types are listed in Table 5.3.

5.2.4 Derived types

There are numerous derived types of boundary conditions in OpenFOAM, too many to list
here. Instead a small selection is listed in Table 5.4. If the user wishes to obtain a list of
all available model, they should consult the OpenFOAM source code. Derived boundary
condition source code can be found at the following locations:

• in $FOAM SRC/finiteVolume/fields/fvPatchFields/derived

• within certain model libraries, that can be located by typing the following command
in a terminal window

find $FOAM SRC -name "*derivedFvPatch*"

Open∇FOAM-2.0.0

5.3 Mesh generation with the blockMesh utility U-141

Type Description of condition for patch field φ Data to specify
fixedValue Value of φ is specified value

fixedGradient Normal gradient of φ is specified gradient

zeroGradient Normal gradient of φ is zero —
calculated Boundary field φ derived from other fields —
mixed Mixed fixedValue/ fixedGradient condition depend-

ing on the value in valueFraction

refValue,
refGradient,
valueFraction,
value

directionMixed A mixed condition with tensorial valueFraction,
e.g. for different levels of mixing in normal and
tangential directions

refValue,
refGradient,
valueFraction,
value

Table 5.3: Primitive patch field types.

• within certain solvers, that can be located by typing the following command in a
terminal window

find $FOAM SOLVERS -name "*fvPatch*"

5.3 Mesh generation with the blockMesh utility

This section describes the mesh generation utility, blockMesh, supplied with OpenFOAM.
The blockMesh utility creates parametric meshes with grading and curved edges.

The mesh is generated from a dictionary file named blockMeshDict located in the con-
stant/polyMesh directory of a case. blockMesh reads this dictionary, generates the mesh and
writes out the mesh data to points and faces, cells and boundary files in the same directory.

The principle behind blockMesh is to decompose the domain geometry into a set of 1 or
more three dimensional, hexahedral blocks. Edges of the blocks can be straight lines, arcs
or splines. The mesh is ostensibly specified as a number of cells in each direction of the
block, sufficient information for blockMesh to generate the mesh data.

Each block of the geometry is defined by 8 vertices, one at each corner of a hexahedron.
The vertices are written in a list so that each vertex can be accessed using its label, remem-
bering that OpenFOAM always uses the C++ convention that the first element of the list
has label ‘0’. An example block is shown in Figure 5.4 with each vertex numbered according
to the list. The edge connecting vertices 1 and 5 is curved to remind the reader that curved
edges can be specified in blockMesh.

It is possible to generate blocks with less than 8 vertices by collapsing one or more pairs
of vertices on top of each other, as described in section 5.3.3.

Each block has a local coordinate system (x1, x2, x3) that must be right-handed. A right-
handed set of axes is defined such that to an observer looking down the Oz axis, with O
nearest them, the arc from a point on the Ox axis to a point on the Oy axis is in a clockwise
sense.

The local coordinate system is defined by the order in which the vertices are presented
in the block definition according to:

Open∇FOAM-2.0.0

U
-1
4
2

M
es
h
ge
n
er
at
io
n
an

d
co
n
ve
rs
io
n

Types derived from fixedValue Data to specify
movingWallVelocity Replaces the normal of the patch value so the flux across the patch is

zero
value

pressureInletVelocity When p is known at inlet, U is evaluated from the flux, normal to the
patch

value

pressureDirectedInletVelocityWhen p is known at inlet, U is calculated from the flux in the
inletDirection

value,
inletDirection

surfaceNormalFixedValue Specifies a vector boundary condition, normal to the patch, by its mag-
nitude; +ve for vectors pointing out of the domain

value

totalPressure Total pressure p0 = p + 1

2
ρ|U|2 is fixed; when U changes, p is adjusted

accordingly
p0

turbulentInlet Calculates a fluctuating variable based on a scale of a mean value referenceField,
fluctuationScale

Types derived from fixedGradient/zeroGradient
fluxCorrectedVelocity Calculates normal component of U at inlet from flux value

wallBuoyantPressure Sets fixedGradient pressure based on the atmospheric pressure gradient —

Types derived from mixed
inletOutlet Switches U and p between fixedValue and zeroGradient depending on di-

rection of U
inletValue, value

outletInlet Switches U and p between fixedValue and zeroGradient depending on di-
rection of U

outletValue,
value

pressureInletOutletVelocity Combination of pressureInletVelocity and inletOutlet value

pressureDirected-
InletOutletVelocity

Combination of pressureDirectedInletVelocity and inletOutlet value,
inletDirection

pressureTransmissive Transmits supersonic pressure waves to surrounding pressure p∞ pInf

supersonicFreeStream Transmits oblique shocks to surroundings at p∞, T∞, U∞ pInf, TInf, UInf

Other types
slip zeroGradient if φ is a scalar; if φ is a vector, normal component is fixed-

Value zero, tangential components are zeroGradient
—

partialSlip Mixed zeroGradient/ slip condition depending on the valueFraction; =
0 for slip

valueFraction

Note: p is pressure, U is velocity

Table 5.4: Derived patch field types.

O
pe

n∇
F

O
A

M
-2
.0
.0

5.3 Mesh generation with the blockMesh utility U-143

• the axis origin is the first entry in the block definition, vertex 0 in our example;

• the x1 direction is described by moving from vertex 0 to vertex 1;

• the x2 direction is described by moving from vertex 1 to vertex 2;

• vertices 0, 1, 2, 3 define the plane x3 = 0;

• vertex 4 is found by moving from vertex 0 in the x3 direction;

• vertices 5,6 and 7 are similarly found by moving in the x3 direction from vertices 1,2
and 3 respectively.

3

9

1

2

x2

x3

x10

3

4

5

7 6

0

2

1

4 5

6
7

10

8

11

Figure 5.4: A single block

Keyword Description Example/selection
convertToMeters Scaling factor for the vertex

coordinates
0.001 scales to mm

vertices List of vertex coordinates (0 0 0)

edges Used to describe arc or
spline edges

arc 1 4 (0.939 0.342 -0.5)

block Ordered list of vertex labels
and mesh size

hex (0 1 2 3 4 5 6 7)

(10 10 1)

simpleGrading (1.0 1.0 1.0)

patches List of patches symmetryPlane base

((0 1 2 3))

mergePatchPairs List of patches to be merged see section 5.3.2

Table 5.5: Keywords used in blockMeshDict.

Open∇FOAM-2.0.0

U-144 Mesh generation and conversion

5.3.1 Writing a blockMeshDict file

The blockMeshDict file is a dictionary using keywords described in Table 5.5. The convertToMeters
keyword specifies a scaling factor by which all vertex coordinates in the mesh description
are multiplied. For example,

convertToMeters 0.001;

means that all coordinates are multiplied by 0.001, i.e. the values quoted in the blockMesh-
Dict file are in mm.

5.3.1.1 The vertices

The vertices of the blocks of the mesh are given next as a standard list named vertices,
e.g. for our example block in Figure 5.4, the vertices are:

vertices

(

(0 0 0) // vertex number 0

(1 0 0.1) // vertex number 1

(1.1 1 0.1) // vertex number 2

(0 1 0.1) // vertex number 3

(-0.1 -0.1 1) // vertex number 4

(1.3 0 1.2) // vertex number 5

(1.4 1.1 1.3) // vertex number 6

(0 1 1.1) // vertex number 7

);

5.3.1.2 The edges

Each edge joining 2 vertex points is assumed to be straight by default. However any edge
may be specified to be curved by entries in a list named edges. The list is optional; if the
geometry contains no curved edges, it may be omitted.

Each entry for a curved edge begins with a keyword specifying the type of curve from
those listed in Table 5.6.

Keyword selection Description Additional entries
arc Circular arc Single interpolation point
simpleSpline Spline curve List of interpolation points
polyLine Set of lines List of interpolation points
polySpline Set of splines List of interpolation points
line Straight line —

Table 5.6: Edge types available in the blockMeshDict dictionary.

The keyword is then followed by the labels of the 2 vertices that the edge connects.
Following that, interpolation points must be specified through which the edge passes. For
a arc, a single interpolation point is required, which the circular arc will intersect. For

Open∇FOAM-2.0.0

5.3 Mesh generation with the blockMesh utility U-145

simpleSpline, polyLine and polySpline, a list of interpolation points is required. The
line edge is directly equivalent to the option executed by default, and requires no inter-
polation points. Note that there is no need to use the line edge but it is included for
completeness. For our example block in Figure 5.4 we specify an arc edge connecting
vertices 1 and 5 as follows through the interpolation point (1.1, 0.0, 0.5):

edges

(

arc 1 5 (1.1 0.0 0.5)

);

5.3.1.3 The blocks

The block definitions are contained in a list named blocks. Each block definition is a
compound entry consisting of a list of vertex labels whose order is described in section 5.3,
a vector giving the number of cells required in each direction, the type and list of cell
expansion ratio in each direction.

Then the blocks are defined as follows:

blocks

(

hex (0 1 2 3 4 5 6 7) // vertex numbers

(10 10 10) // numbers of cells in each direction

simpleGrading (1 2 3) // cell expansion ratios

);

The definition of each block is as follows:

Vertex numbering The first entry is the is the shape identifier of the block, as defined
in the .OpenFOAM-2.0.0/cellModels file. The shape is always hex since the blocks
are always hexahedra. There follows a list of vertex numbers, ordered in the manner
described on page U-143.

Number of cells The second entry gives the number of cells in each of the x1 x2 and x3

directions for that block.

Cell expansion ratios The third entry gives the cell expansion ratios for each direction in
the block. The expansion ratio enables the mesh to be graded, or refined, in specified
directions. The ratio is that of the width of the end cell δe along one edge of a block
to the width of the start cell δs along that edge, as shown in Figure 5.5. Each of
the following keywords specify one of two types of grading specification available in
blockMesh.

simpleGrading The simple description specifies uniform expansions in the local x1,
x2 and x3 directions respectively with only 3 expansion ratios, e.g.

simpleGrading (1 2 3)

edgeGrading The full cell expansion description gives a ratio for each edge of the
block, numbered according to the scheme shown in Figure 5.4 with the arrows
representing the direction ‘from first cell. . . to last cell’ e.g. something like

Open∇FOAM-2.0.0

U-146 Mesh generation and conversion

edgeGrading (1 1 1 1 2 2 2 2 3 3 3 3)

This means the ratio of cell widths along edges 0-3 is 1, along edges 4-7 is 2 and
along 8-11 is 3 and is directly equivalent to the simpleGrading example given
above.

δs
Expansion ratio =

δe
δs δe

Expansion direction

Figure 5.5: Mesh grading along a block edge

5.3.1.4 The boundary

The boundary of the mesh is given in a list named boundary. The boundary is broken into
patches (regions), where each patch in the list has its name as the keyword, which is the
choice of the user, although we recommend something that conveniently identifies the patch,
e.g.inlet; the name is used as an identifier for setting boundary conditions in the field data
files. The patch information is then contained in sub-dictionary with:

• type: the patch type, either a generic patch on which some boundary conditions are
applied or a particular geometric condition, as listed in Table 5.2 and described in
section 5.2.2;

• faces: a list of block faces that make up the patch and whose name is the choice
of the the user, although we recommend something that conveniently identifies the
patch, e.g.inlet; the name is used as an identifier for setting boundary conditions in
the field data files.

blockMesh collects faces from any boundary patch that is omitted from the boundary

list and assigns them to a default patch named defaultFaces of type empty. This means
that for a 2 dimensional geometry, the user has the option to omit block faces lying in the
2D plane, knowing that they will be collected into an empty patch as required.

Returning to the example block in Figure 5.4, if it has an inlet on the left face, an output
on the right face and the four other faces are walls then the patches could be defined as
follows:

boundary // keyword

(

inlet // patch name

type patch; // patch type for patch 0

faces

(

(0 4 7 3); // block face in this patch

);

// end of 0th patch definition

Open∇FOAM-2.0.0

5.3 Mesh generation with the blockMesh utility U-147

outlet // patch name

type patch; // patch type for patch 1

faces

(

(1 2 6 5)

);

walls

type wall;

faces

(

(0 1 5 4)

(0 3 2 1)

(3 7 6 2)

(4 5 6 7)

);

);

Each block face is defined by a list of 4 vertex numbers. The order in which the vertices are
given must be such that, looking from inside the block and starting with any vertex, the
face must be traversed in a clockwise direction to define the other vertices.

When specifying a cyclic patch in blockMesh, the user must specify the name of the
related cyclic patch through the neighbourPatch keyword. For example, a pair of cyclic
patches might be specified as follows:

left

type cyclic;

neighbourPatch right;

faces ((0 4 7 3));

right

type cyclic;

neighbourPatch left;

faces ((1 5 6 2));

5.3.2 Multiple blocks

A mesh can be created using more than 1 block. In such circumstances, the mesh is created
as has been described in the preceeding text; the only additional issue is the connection
between blocks, in which there are two distinct possibilities:

Open∇FOAM-2.0.0

U-148 Mesh generation and conversion

face matching the set of faces that comprise a patch from one block are formed from the

same set of vertices as a set of faces patch that comprise a patch from another block;

face merging a group of faces from a patch from one block are connected to another
group of faces from a patch from another block, to create a new set of internal faces
connecting the two blocks.

To connect two blocks with face matching, the two patches that form the connection
should simply be ignored from the patches list. blockMesh then identifies that the faces
do not form an external boundary and combines each collocated pair into a single internal
faces that connects cells from the two blocks.

The alternative, face merging, requires that the block patches to be merged are first
defined in the patches list. Each pair of patches whose faces are to be merged must then
be included in an optional list named mergePatchPairs. The format of mergePatchPairs
is:

mergePatchPairs

(

(<masterPatch> <slavePatch>) // merge patch pair 0

(<masterPatch> <slavePatch>) // merge patch pair 1

...

)

The pairs of patches are interpreted such that the first patch becomes the master and the
second becomes the slave. The rules for merging are as follows:

• the faces of the master patch remain as originally defined, with all vertices in their
original location;

• the faces of the slave patch are projected onto the master patch where there is some
separation between slave and master patch;

• the location of any vertex of a slave face might be adjusted by blockMesh to eliminate
any face edge that is shorter than a minimum tolerance;

• if patches overlap as shown in Figure 5.6, each face that does not merge remains as
an external face of the original patch, on which boundary conditions must then be
applied;

• if all the faces of a patch are merged, then the patch itself will contain no faces and is
removed.

The consequence is that the original geometry of the slave patch will not necessarily be
completely preserved during merging. Therefore in a case, say, where a cylindrical block
is being connected to a larger block, it would be wise to the assign the master patch to
the cylinder, so that its cylindrical shape is correctly preserved. There are some additional
recommendations to ensure successful merge procedures:

• in 2 dimensional geometries, the size of the cells in the third dimension, i.e. out of the
2D plane, should be similar to the width/height of cells in the 2D plane;

Open∇FOAM-2.0.0

5.3 Mesh generation with the blockMesh utility U-149

patch 1

patch 2

region of internal connecting faces

region of external boundary faces

Figure 5.6: Merging overlapping patches

• it is inadvisable to merge a patch twice, i.e. include it twice in mergePatchPairs;

• where a patch to be merged shares a common edge with another patch to be merged,
both should be declared as a master patch.

5.3.3 Creating blocks with fewer than 8 vertices

It is possible to collapse one or more pair(s) of vertices onto each other in order to create
a block with fewer than 8 vertices. The most common example of collapsing vertices is
when creating a 6-sided wedge shaped block for 2-dimensional axi-symmetric cases that use
the wedge patch type described in section 5.2.2. The process is best illustrated by using a
simplified version of our example block shown in Figure 5.7. Let us say we wished to create
a wedge shaped block by collapsing vertex 7 onto 4 and 6 onto 5. This is simply done by
exchanging the vertex number 7 by 4 and 6 by 5 respectively so that the block numbering
would become:

hex (0 1 2 3 4 5 5 4)

The same applies to the patches with the main consideration that the block face contain-
ing the collapsed vertices, previously (4 5 6 7) now becomes (4 5 5 4). This is a block
face of zero area which creates a patch with no faces in the polyMesh, as the user can see in
a boundary file for such a case. The patch should be specified as empty in the blockMeshDict
and the boundary condition for any fields should consequently be empty also.

5.3.4 Running blockMesh

As described in section 3.3, the following can be executed at the command line to run
blockMesh for a case in the <case> directory:

blockMesh -case <case>

Open∇FOAM-2.0.0

U-150 Mesh generation and conversion

0

3

4

7 6

5

1

2

Figure 5.7: Creating a wedge shaped block with 6 vertices

The blockMeshDict file must exist in subdirectory constant/polyMesh.

5.4 Mesh generation with the snappyHexMesh utility

This section describes the mesh generation utility, snappyHexMesh, supplied with Open-
FOAM. The snappyHexMesh utility generates 3-dimensional meshes containing hexahedra
(hex) and split-hexahedra (split-hex) automatically from triangulated surface geometries in
Stereolithography (STL) format. The mesh approximately conforms to the surface by itera-
tively refining a starting mesh and morphing the resulting split-hex mesh to the surface. An
optional phase will shrink back the resulting mesh and insert cell layers. The specification of
mesh refinement level is very flexible and the surface handling is robust with a pre-specified
final mesh quality. It runs in parallel with a load balancing step every iteration.

STL surface

Figure 5.8: Schematic 2D meshing problem for snappyHexMesh

Open∇FOAM-2.0.0

5.4 Mesh generation with the snappyHexMesh utility U-151

5.4.1 The mesh generation process of snappyHexMesh

The process of generating a mesh using snappyHexMesh will be described using the schematic
in Figure 5.8. The objective is to mesh a rectangular shaped region (shaded grey in the
figure) surrounding an object described by and STL surface, e.g. typical for an external
aerodynamics simulation. Note that the schematic is 2-dimensional to make it easier to
understand, even though the snappyHexMesh is a 3D meshing tool.

In order to run snappyHexMesh, the user requires the following:

• surface data files in STL format, either binary or ASCII, located in a triSurface sub-
directory of the case directory;

• a background hex mesh which defines the extent of the computational domain and a
base level mesh density; typically generated using blockMesh, discussed in section 5.4.2.

• a snappyHexMeshDict dictionary, with appropriate entries, located in the system sub-
directory of the case.

The snappyHexMeshDict dictionary includes: switches at the top level that control the
various stages of the meshing process; and, individual sub-directories for each process. The
entries are listed in Table 5.7.

Keyword Description Example
castellatedMesh Create the castellated mesh? true

snap Do the surface snapping stage? true

doLayers Add surface layers? true

mergeTolerance Merge tolerance as fraction of bounding box
of initial mesh

1e-06

debug Controls writing of intermediate meshes and
screen printing
— Write final mesh only 0

— Write intermediate meshes 1

— Write volScalarField with cellLevel for
post-processing

2

— Write current intersections as .obj files 4

geometry Sub-dictionary of all surface geometry used
castellatedMeshControls Sub-dictionary of controls for castellated mesh
snapControls Sub-dictionary of controls for surface snapping
addLayersControls Sub-dictionary of controls for layer addition
meshQualityControls Sub-dictionary of controls for mesh quality

Table 5.7: Keywords at the top level of snappyHexMeshDict.

All the geometry used by snappyHexMesh is specified in a geometry sub-dictionary in the
snappyHexMeshDict dictionary. The geometry can be specified through an STL surface or
bounding geometry entities in OpenFOAM. An example is given below:

geometry
{

sphere.stl // STL filename
{

Open∇FOAM-2.0.0

U-152 Mesh generation and conversion

type triSurfaceMesh;
regions
{

secondSolid // Named region in the STL file
{

name mySecondPatch; // User-defined patch name
} // otherwise given sphere.stl_secondSolid

}
}

box1x1x1 // User defined region name
{

type searchableBox; // region defined by bounding box
min (1.5 1 -0.5);
max (3.5 2 0.5);

}

sphere2 // User defined region name
{

type searchableSphere; // region defined by bounding sphere
centre (1.5 1.5 1.5);
radius 1.03;

}
};

5.4.2 Creating the background hex mesh

Before snappyHexMesh is executed the user must create a background mesh of hexahedral
cells that fills the entire region within by the external boundary as shown in Figure 5.9.
This can be done simply using blockMesh. The following criteria must be observed when

Figure 5.9: Initial mesh generation in snappyHexMesh meshing process

creating the background mesh:

• the mesh must consist purely of hexes;

• the cell aspect ratio should be approximately 1, at least near surfaces at which the
subsequent snapping procedure is applied, otherwise the convergence of the snapping
procedure is slow, possibly to the point of failure;

• there must be at least one intersection of a cell edge with the STL surface, i.e. a mesh
of one cell will not work.

Open∇FOAM-2.0.0

5.4 Mesh generation with the snappyHexMesh utility U-153

Figure 5.10: Cell splitting by feature edge in snappyHexMesh meshing process

5.4.3 Cell splitting at feature edges and surfaces

Cell splitting is performed according to the specification supplied by the user in the castellat-
edMeshControls sub-dictionary in the snappyHexMeshDict. The entries for castellatedMesh-
Controls are presented in Table 5.8.

Keyword Description Example
locationInMesh Location vector inside the region to be meshed (5 0 0)

N.B. vector must not coincide with a cell face
either before or during refinement

maxLocalCells Max number of cells per processor during re-
finement

1e+06

maxGlobalCells Overall cell limit during refinement (i.e. before
removal)

2e+06

minRefinementCells If ≥ number of cells to be refined, surface re-
finement stops

0

nCellsBetweenLevels Number of buffer layers of cells between dif-
ferent levels of refinement

1

resolveFeatureAngle Applies maximum level of refinement to cells
that can see intersections whose angle exceeds
this

30

features List of features for refinement
refinementSurfaces Dictionary of surfaces for refinement
refinementRegions Dictionary of regions for refinement

Table 5.8: Keywords in the castellatedMeshControls sub-dictionary of snappyHexMeshDict.

The splitting process begins with cells being selected according to specified edge features
first within the domain as illustrated in Figure 5.10. The features list in the castellat-
edMeshControls sub-dictionary permits dictionary entries containing a name of an edgeMesh
file and the level of refinement, e.g.:

features
(

Open∇FOAM-2.0.0

U-154 Mesh generation and conversion

{
file "features.eMesh"; // file containing edge mesh
level 2; // level of refinement

}
);

The edgeMesh containing the features can be extracted from the STL geometry file using
surfaceFeatureExtract, e.g.

surfaceFeatureExtract -includedAngle 150 surface.stl features

Following feature refinement, cells are selected for splitting in the locality of specified sur-
faces as illustrated in Figure 5.11. The refinementSurfaces dictionary in castellatedMesh-
Controls requires dictionary entries for each STL surface and a default level specification of
the minimum and maximum refinement in the form (<min> <max>). The minimum level
is applied generally across the surface; the maximum level is applied to cells that can see
intersections that form an angle in excess of that specified by resolveFeatureAngle.

The refinement can optionally be overridden on one or more specific region of an STL
surface. The region entries are collected in a regions sub-dictionary. The keyword for each
region entry is the name of the region itself and the refinement level is contained within a
further sub-dictionary. An example is given below:

refinementSurfaces
{

sphere.stl
{

level (2 2); // default (min max) refinement for whole surface
regions
{

secondSolid
{

level (3 3); // optional refinement for secondSolid region
}

}
}

}

5.4.4 Cell removal

Once the feature and surface splitting is complete a process of cell removal begins. Cell
removal requires one or more regions enclosed entirely by a bounding surface within the

Figure 5.11: Cell splitting by surface in snappyHexMesh meshing process

Open∇FOAM-2.0.0

5.4 Mesh generation with the snappyHexMesh utility U-155

domain. The region in which cells are retained are simply identified by a location vector
within that region, specified by the locationInMesh keyword in castellatedMeshControls.
Cells are retained if, approximately speaking, 50% or more of their volume lies within the
region. The remaining cells are removed accordingly as illustrated in Figure 5.12.

Figure 5.12: Cell removal in snappyHexMesh meshing process

5.4.5 Cell splitting in specified regions

Those cells that lie within one or more specified volume regions can be further split as
illustrated in Figure 5.13 by a rectangular region shown by dark shading. The refinement-
Regions sub-dictionary in castellatedMeshControls contains entries for refinement of the
volume regions specified in the geometry sub-dictionary. A refinement mode is applied to
each region which can be:

• inside refines inside the volume region;

• outside refines outside the volume region

• distance refines according to distance to the surface; and can accommodate different
levels at multiple distances with the levels keyword.

For the refinementRegions, the refinement level is specified by the levels list of entries
with the format(<distance> <level>). In the case of inside and outside refinement,
the <distance> is not required so is ignored (but it must be specified). Examples are shown
below:

refinementRegions
{

box1x1x1
{

mode inside;
levels ((1.0 4)); // refinement level 4 (1.0 entry ignored)

}

sphere.stl
{ // refinement level 5 within 1.0 m

mode distance; // refinement level 3 within 2.0 m
levels ((1.0 5) (2.0 3)); // levels must be ordered nearest first

}
}

Open∇FOAM-2.0.0

U-156 Mesh generation and conversion

5.4.6 Snapping to surfaces

The next stage of the meshing process involves moving cell vertex points onto surface ge-
ometry to remove the jagged castellated surface from the mesh. The process is:

1. displace the vertices in the castellated boundary onto the STL surface;

2. solve for relaxation of the internal mesh with the latest displaced boundary vertices;

3. find the vertices that cause mesh quality parameters to be violated;

4. reduce the displacement of those vertices from their initial value (at 1) and repeat
from 2 until mesh quality is satisfied.

The method uses the settings in the snapControls sub-dictionary in snappyHexMeshDict,
listed in Table 5.9. An example is illustrated in the schematic in Figure 5.14 (albeit with

Keyword Description Example
nSmoothPatch Number of patch smoothing iterations before

finding correspondence to surface
3

tolerance Ratio of distance for points to be attracted
by surface feature point or edge, to local
maximum edge length

4.0

nSolveIter Number of mesh displacement relaxation it-
erations

30

nRelaxIter Maximum number of snapping relaxation it-
erations

5

Table 5.9: Keywords in the snapControls dictionary of snappyHexMeshDict.

mesh motion that looks slightly unrealistic).

5.4.7 Mesh layers

The mesh output from the snapping stage may be suitable for the purpose, although it
can produce some irregular cells along boundary surfaces. There is an optional stage of
the meshing process which introduces additional layers of hexahedral cells aligned to the
boundary surface as illustrated by the dark shaded cells in Figure 5.15.

The process of mesh layer addition involves shrinking the existing mesh from the bound-
ary and inserting layers of cells, broadly as follows:

1. the mesh is projected back from the surface by a specified thickness in the direction
normal to the surface;

2. solve for relaxation of the internal mesh with the latest projected boundary vertices;

3. check if validation criteria are satisfied otherwise reduce the projected thickness and
return to 2; if validation cannot be satisfied for any thickness, do not insert layers;

4. if the validation criteria can be satisfied, insert mesh layers;

5. the mesh is checked again; if the checks fail, layers are removed and we return to 2.

Open∇FOAM-2.0.0

5.4 Mesh generation with the snappyHexMesh utility U-157

Figure 5.13: Cell splitting by region in snappyHexMesh meshing process

Figure 5.14: Surface snapping in snappyHexMesh meshing process

Figure 5.15: Layer addition in snappyHexMesh meshing process

Open∇FOAM-2.0.0

U-158 Mesh generation and conversion

The layer addition procedure uses the settings in the addLayersControls sub-dictionary
in snappyHexMeshDict; entries are listed in Table 5.10. The layers sub-dictionary contains

Keyword Description Example
layers Dictionary of layers
relativeSizes Are layer thicknesses relative to undistorted cell

size outside layer or absolute?
true/false

expansionRatio Expansion factor for layer mesh 1.0

finalLayerRatio Thickness of layer furthest from the wall, ei-
ther relative or absolute according to the
relativeSizes entry

0.3

minThickness Minimum thickness of cell layer, either relative
or absolute (as above)

0.25

nGrow Number of layers of connected faces that are not
grown if points get not extruded; helps conver-
gence of layer addition close to features

1

featureAngle Angle above which surface is not extruded 60

nRelaxIter Maximum number of snapping relaxation itera-
tions

5

nSmoothSurfaceNormals Number of smoothing iterations of surface nor-
mals

1

nSmoothNormals Number of smoothing iterations of interior mesh
movement direction

3

nSmoothThickness Smooth layer thickness over surface patches 10

maxFaceThicknessRatio Stop layer growth on highly warped cells 0.5

maxThicknessTo-

MedialRatio

Reduce layer growth where ratio thickness to me-
dial distance is large

0.3

minMedianAxisAngle Angle used to pick up medial axis points 130

nBufferCellsNoExtrude Create buffer region for new layer terminations 0

nLayerIter Overall max number of layer addition iterations 50

nRelaxedIter Max number of iterations after which the
controls in the relaxed sub dictionary of
meshQuality are used

20

Table 5.10: Keywords in the addLayersControls sub-dictionary of snappyHexMeshDict.

entries for each patch on which the layers are to be applied and the number of surface
layers required. The patch name is used because the layers addition relates to the existing
mesh, not the surface geometry; hence applied to a patch, not a surface region. An example
layers entry is as follows:
layers
{

sphere.stl_firstSolid
{

nSurfaceLayers 1;
}
maxY
{

nSurfaceLayers 1;
}

}

Open∇FOAM-2.0.0

5.5 Mesh conversion U-159

Keyword Description Example
maxNonOrtho Maximum non-orthogonality allowed; 180 dis-

ables
65

maxBoundarySkewness Max boundary face skewness allowed; <0 dis-
ables

20

maxInternalSkewness Max internal face skewness allowed; <0 disables 4

maxConcave Max concaveness allowed; 180 disables 80

minFlatness Ratio of minimum projected area to actual area;
-1 disables

0.5

minVol Minimum pyramid volume; large negative num-
ber, e.g.-1e30 disables

1e-13

minArea Minimum face area; <0 disables -1

minTwist Minimum face twist; <-1 disables 0.05

minDeterminant Minimum normalised cell determinant; 1 = hex;
≤ 0 illegal cell

0.001

minFaceWeight 0→0.5 0.05

minVolRatio 0→1.0 0.01

minTriangleTwist >0 for Fluent compatability -1

nSmoothScale Number of error distribution iterations 4

errorReduction Amount to scale back displacement at error
points

0.75

relaxed Sub-dictionary that can include modified values
for the above keyword entries to be used when
nRelaxedIter is exceeded in the layer addition
process

relaxed

{
...

}

Table 5.11: Keywords in the meshQualityControls sub-dictionary of snappyHexMeshDict.

5.4.8 Mesh quality controls

The mesh quality is controlled by the entries in the meshQualityControls sub-dictionary in
snappyHexMeshDict; entries are listed in Table 5.11.

5.5 Mesh conversion

The user can generate meshes using other packages and convert them into the format that
OpenFOAM uses. There are numerous mesh conversion utilities listed in Table 3.6. Some of
the more popular mesh converters are listed below and their use is presented in this section.

fluentMeshToFoam reads a Fluent.msh mesh file, working for both 2-D and 3-D cases;

starToFoam reads STAR-CD/PROSTAR mesh files.

gambitToFoam reads a GAMBIT.neu neutral file;

ideasToFoam reads an I-DEAS mesh written in ANSYS.ans format;

cfx4ToFoam reads a CFX mesh written in .geo format;

Open∇FOAM-2.0.0

U-160 Mesh generation and conversion

5.5.1 fluentMeshToFoam

Fluent writes mesh data to a single file with a .msh extension. The file must be writ-
ten in ASCII format, which is not the default option in Fluent. It is possible to convert
single-stream Fluent meshes, including the 2 dimensional geometries. In OpenFOAM, 2
dimensional geometries are currently treated by defining a mesh in 3 dimensions, where
the front and back plane are defined as the empty boundary patch type. When reading
a 2 dimensional Fluent mesh, the converter automatically extrudes the mesh in the third
direction and adds the empty patch, naming it frontAndBackPlanes.

The following features should also be observed.

• The OpenFOAM converter will attempt to capture the Fluent boundary condition
definition as much as possible; however, since there is no clear, direct correspondence
between the OpenFOAM and Fluent boundary conditions, the user should check the
boundary conditions before running a case.

• Creation of axi-symmetric meshes from a 2 dimensional mesh is currently not sup-
ported but can be implemented on request.

• Multiple material meshes are not permitted. If multiple fluid materials exist, they
will be converted into a single OpenFOAM mesh; if a solid region is detected, the
converter will attempt to filter it out.

• Fluent allows the user to define a patch which is internal to the mesh, i.e. consists of
the faces with cells on both sides. Such patches are not allowed in OpenFOAM and
the converter will attempt to filter them out.

• There is currently no support for embedded interfaces and refinement trees.

The procedure of converting a Fluent.msh file is first to create a new OpenFOAM case
by creating the necessary directories/files: the case directory containing a controlDict file in
a system subdirectory. Then at a command prompt the user should execute:

fluentMeshToFoam <meshFile>

where <meshFile> is the name of the .msh file, including the full or relative path.

5.5.2 starToFoam

This section describes how to convert a mesh generated on the STAR-CD code into a form
that can be read by OpenFOAM mesh classes. The mesh can be generated by any of the
packages supplied with STAR-CD, i.e.PROSTAR, SAMM, ProAM and their derivatives. The
converter accepts any single-stream mesh including integral and arbitrary couple matching
and all cell types are supported. The features that the converter does not support are:

• multi-stream mesh specification;

• baffles, i.e. zero-thickness walls inserted into the domain;

• partial boundaries, where an uncovered part of a couple match is considered to be a
boundary face;

Open∇FOAM-2.0.0

5.5 Mesh conversion U-161

• sliding interfaces.

For multi-stream meshes, mesh conversion can be achieved by writing each individual stream
as a separate mesh and reassemble them in OpenFOAM.

OpenFOAM adopts a policy of only accepting input meshes that conform to the fairly
stringent validity criteria specified in section 5.1. It will simply not run using invalid meshes
and cannot convert a mesh that is itself invalid. The following sections describe steps that
must be taken when generating a mesh using a mesh generating package supplied with
STAR-CD to ensure that it can be converted to OpenFOAM format. To avoid repetition
in the remainder of the section, the mesh generation tools supplied with STAR-CD will be
referred to by the collective name STAR-CD.

5.5.2.1 General advice on conversion

We strongly recommend that the user run the STAR-CD mesh checking tools before attempt-
ing a starToFoam conversion and, after conversion, the checkMesh utility should be run on
the newly converted mesh. Alternatively, starToFoam may itself issue warnings containing
PROSTAR commands that will enable the user to take a closer look at cells with problems.
Problematic cells and matches should be checked and fixed before attempting to use the
mesh with OpenFOAM. Remember that an invalid mesh will not run with OpenFOAM, but
it may run in another environment that does not impose the validity criteria.

Some problems of tolerance matching can be overcome by the use of a matching tolerance
in the converter. However, there is a limit to its effectiveness and an apparent need to
increase the matching tolerance from its default level indicates that the original mesh suffers
from inaccuracies.

5.5.2.2 Eliminating extraneous data

When mesh generation in is completed, remove any extraneous vertices and compress the
cells boundary and vertex numbering, assuming that fluid cells have been created and all
other cells are discarded. This is done with the following PROSTAR commands:

CSET NEWS FLUID

CSET INVE

The CSET should be empty. If this is not the case, examine the cells in CSET and adjust
the model. If the cells are genuinely not desired, they can be removed using the PROSTAR
command:

CDEL CSET

Similarly, vertices will need to be discarded as well:

CSET NEWS FLUID

VSET NEWS CSET

VSET INVE

Before discarding these unwanted vertices, the unwanted boundary faces have to be collected
before purging:

Open∇FOAM-2.0.0

U-162 Mesh generation and conversion

CSET NEWS FLUID

VSET NEWS CSET

BSET NEWS VSET ALL

BSET INVE

If the BSET is not empty, the unwanted boundary faces can be deleted using:

BDEL BSET

At this time, the model should contain only the fluid cells and the supporting vertices,
as well as the defined boundary faces. All boundary faces should be fully supported by the
vertices of the cells, if this is not the case, carry on cleaning the geometry until everything
is clean.

5.5.2.3 Removing default boundary conditions

By default, STAR-CD assigns wall boundaries to any boundary faces not explicitly associated
with a boundary region. The remaining boundary faces are collected into a default bound-
ary region, with the assigned boundary type 0. OpenFOAM deliberately does not have
a concept of a default boundary condition for undefined boundary faces since it invites
human error, e.g. there is no means of checking that we meant to give all the unassociated
faces the default condition.

Therefore all boundaries for each OpenFOAM mesh must be specified for a mesh to
be successfully converted. The default boundary needs to be transformed into a real one
using the procedure described below:

1. Plot the geometry with Wire Surface option.

2. Define an extra boundary region with the same parameters as the default region 0
and add all visible faces into the new region, say 10, by selecting a zone option in the
boundary tool and drawing a polygon around the entire screen draw of the model.
This can be done by issuing the following commands in PROSTAR:

RDEF 10 WALL

BZON 10 ALL

3. We shall remove all previously defined boundary types from the set. Go through the
boundary regions:

BSET NEWS REGI 1

BSET NEWS REGI 2

... 3, 4, ...

Collect the vertices associated with the boundary set and then the boundary faces
associated with the vertices (there will be twice as many of them as in the original
set).

Open∇FOAM-2.0.0

5.5 Mesh conversion U-163

BSET NEWS REGI 1

VSET NEWS BSET

BSET NEWS VSET ALL

BSET DELE REGI 1

REPL

This should give the faces of boundary Region 10 which have been defined on top of
boundary Region 1. Delete them with BDEL BSET. Repeat these for all regions.

5.5.2.4 Renumbering the model

Renumber and check the model using the commands:

CSET NEW FLUID

CCOM CSET

VSET NEWS CSET

VSET INVE (Should be empty!)

VSET INVE

VCOM VSET

BSET NEWS VSET ALL

BSET INVE (Should be empty also!)

BSET INVE

BCOM BSET

CHECK ALL

GEOM

Internal PROSTAR checking is performed by the last two commands, which may reveal
some other unforeseeable error(s). Also, take note of the scaling factor because PROSTAR
only applies the factor for STAR-CD and not the geometry. If the factor is not 1, use the
scalePoints utility in OpenFOAM.

5.5.2.5 Writing out the mesh data

Once the mesh is completed, place all the integral matches of the model into the couple
type 1. All other types will be used to indicate arbitrary matches.

CPSET NEWS TYPE INTEGRAL

CPMOD CPSET 1

The components of the computational grid must then be written to their own files. This is
done using PROSTAR for boundaries by issuing the command

BWRITE

by default, this writes to a .23 file (versions prior to 3.0) or a .bnd file (versions 3.0 and
higher). For cells, the command

Open∇FOAM-2.0.0

U-164 Mesh generation and conversion

CWRITE

outputs the cells to a .14 or .cel file and for vertices, the command

VWRITE

outputs to file a .15 or .vrt file. The current default setting writes the files in ASCII format.
If couples are present, an additional couple file with the extension .cpl needs to be written
out by typing:

CPWRITE

After outputting to the three files, exit PROSTAR or close the files. Look through the
panels and take note of all STAR-CD sub-models, material and fluid properties used – the
material properties and mathematical model will need to be set up by creating and editing
OpenFOAM dictionary files.

The procedure of converting the PROSTAR files is first to create a new OpenFOAM
case by creating the necessary directories. The PROSTAR files must be stored within the
same directory and the user must change the file extensions: from .23, .14 and .15 (below
STAR-CD version 3.0), or .pcs, .cls and .vtx (STAR-CD version 3.0 and above); to .bnd, .cel
and .vrt respectively.

5.5.2.6 Problems with the .vrt file

The .vrt file is written in columns of data of specified width, rather than free format. A
typical line of data might be as follows, giving a vertex number followed by the coordinates:

19422 -0.105988957 -0.413711881E-02 0.000000000E+00

If the ordinates are written in scientific notation and are negative, there may be no space
between values, e.g.:

19423 -0.953953117E-01-0.338810333E-02 0.000000000E+00

The starToFoam converter reads the data using spaces to delimit the ordinate values and
will therefore object when reading the previous example. Therefore, OpenFOAM includes a
simple script, foamCorrectVrt to insert a space between values where necessary, i.e. it would
convert the previous example to:

19423 -0.953953117E-01 -0.338810333E-02 0.000000000E+00

The foamCorrectVrt script should therefore be executed if necessary before running the
starToFoam converter, by typing:

foamCorrectVrt <file>.vrt

Open∇FOAM-2.0.0

5.5 Mesh conversion U-165

5.5.2.7 Converting the mesh to OpenFOAM format

The translator utility starToFoam can now be run to create the boundaries, cells and points
files necessary for a OpenFOAM run:

starToFoam <meshFilePrefix>

where <meshFilePrefix> is the name of the the prefix of the mesh files, including the full
or relative path. After the utility has finished running, OpenFOAM boundary types should
be specified by editing the boundary file by hand.

5.5.3 gambitToFoam

GAMBIT writes mesh data to a single file with a .neu extension. The procedure of converting
a GAMBIT.neu file is first to create a new OpenFOAM case, then at a command prompt,
the user should execute:

gambitToFoam <meshFile>

where <meshFile> is the name of the .neu file, including the full or relative path.
The GAMBIT file format does not provide information about type of the boundary patch,

e.g. wall, symmetry plane, cyclic. Therefore all the patches have been created as type patch.
Please reset after mesh conversion as necessary.

5.5.4 ideasToFoam

OpenFOAM can convert a mesh generated by I-DEAS but written out in ANSYS format as
a .ans file. The procedure of converting the .ans file is first to create a new OpenFOAM
case, then at a command prompt, the user should execute:

ideasToFoam <meshFile>

where <meshFile> is the name of the .ans file, including the full or relative path.

5.5.5 cfx4ToFoam

CFX writes mesh data to a single file with a .geo extension. The mesh format in CFX is
block-structured, i.e. the mesh is specified as a set of blocks with glueing information and
the vertex locations. OpenFOAM will convert the mesh and capture the CFX boundary
condition as best as possible. The 3 dimensional ‘patch’ definition in CFX, containing
information about the porous, solid regions etc. is ignored with all regions being converted
into a single OpenFOAM mesh. CFX supports the concept of a ‘default’ patch, where each
external face without a defined boundary condition is treated as a wall. These faces are
collected by the converter and put into a defaultFaces patch in the OpenFOAM mesh and
given the type wall; of course, the patch type can be subsequently changed.

Like, OpenFOAM 2 dimensional geometries in CFX are created as 3 dimensional meshes
of 1 cell thickness [**]. If a user wishes to run a 2 dimensional case on a mesh created by
CFX, the boundary condition on the front and back planes should be set to empty; the user

Open∇FOAM-2.0.0

U-166 Mesh generation and conversion

should ensure that the boundary conditions on all other faces in the plane of the calculation
are set correctly. Currently there is no facility for creating an axi-symmetric geometry from
a 2 dimensional CFX mesh.

The procedure of converting a CFX.geo file is first to create a new OpenFOAM case,
then at a command prompt, the user should execute:

cfx4ToFoam <meshFile>

where <meshFile> is the name of the .geo file, including the full or relative path.

5.6 Mapping fields between different geometries

The mapFields utility maps one or more fields relating to a given geometry onto the corre-
sponding fields for another geometry. It is completely generalised in so much as there does
not need to be any similarity between the geometries to which the fields relate. However, for
cases where the geometries are consistent, mapFields can be executed with a special option
that simplifies the mapping process.

For our discussion of mapFields we need to define a few terms. First, we say that the
data is mapped from the source to the target. The fields are deemed consistent if the
geometry and boundary types, or conditions, of both source and target fields are identical.
The field data that mapFields maps are those fields within the time directory specified by
startFrom/startTime in the controlDict of the target case. The data is read from the
equivalent time directory of the source case and mapped onto the equivalent time directory
of the target case.

5.6.1 Mapping consistent fields

A mapping of consistent fields is simply performed by executing mapFields on the (target)
case using the -consistent command line option as follows:

mapFields <source dir> -consistent

5.6.2 Mapping inconsistent fields

When the fields are not consistent, as shown in Figure 5.16, mapFields requires a mapFields-
Dict dictionary in the system directory of the target case. The following rules apply to the
mapping:

• the field data is mapped from source to target wherever possible, i.e. in our example
all the field data within the target geometry is mapped from the source, except those
in the shaded region which remain unaltered;

• the patch field data is left unaltered unless specified otherwise in the mapFieldsDict
dictionary.

The mapFieldsDict dictionary contain two lists that specify mapping of patch data. The first
list is patchMap that specifies mapping of data between pairs of source and target patches
that are geometrically coincident, as shown in Figure 5.16. The list contains each pair of

Open∇FOAM-2.0.0

5.6 Mapping fields between different geometries U-167

names of source and target patch. The second list is cuttingPatches that contains names
of target patches whose values are to be mapped from the source internal field through which
the target patch cuts. In the situation where the target patch only cuts through part of the
source internal field, e.g. bottom left target patch in our example, those values within the
internal field are mapped and those outside remain unchanged. An example mapFieldsDict

Internal target patches:
can be mapped using cuttingPatches

Target field geometry
Source field geometry

can be mapped using patchMap

Coincident patches:

Figure 5.16: Mapping inconsistent fields

dictionary is shown below:

17

18 patchMap (lid movingWall);
19

20 cuttingPatches (fixedWalls);
21

22

23 // *** //

mapFields <source dir>

5.6.3 Mapping parallel cases

If either or both of the source and target cases are decomposed for running in parallel,
additional options must be supplied when executing mapFields:

-parallelSource if the source case is decomposed for parallel running;

-parallelTarget if the target case is decomposed for parallel running.

Open∇FOAM-2.0.0

U-168 Mesh generation and conversion

Open∇FOAM-2.0.0

Chapter 6

Post-processing

This chapter describes options for post-processing with OpenFOAM. OpenFOAM is supplied
with a post-processing utility paraFoam that uses ParaView, an open source visualisation
application described in section 6.1.

Other methods of post-processing using third party products are offered, including En-
Sight, Fieldview and the post-processing supplied with Fluent.

6.1 paraFoam

The main post-processing tool provided with OpenFOAM is the a reader module to run
with ParaView, an open-source, visualization application. The module is compiled into
2 libraries, PV3FoamReader and vtkPV3Foam using version 3.10.1 of ParaView supplied
with the OpenFOAM release (PVFoamReader and vtkFoam in ParaView version 2.x). It
is recommended that this version of ParaView is used, although it is possible that the
latest binary release of the software will run adequately. Further details about ParaView
can be found at http://www.paraview.org and further documentation is available at
http://www.kitware.com/products/paraviewguide.html.

ParaView uses the Visualisation Toolkit (VTK) as its data processing and rendering
engine and can therefore read any data in VTK format. OpenFOAM includes the foam-
ToVTK utility to convert data from its native format to VTK format, which means that any
VTK-based graphics tools can be used to post-process OpenFOAM cases. This provides
an alternative means for using ParaView with OpenFOAM. For users who wish to experi-
ment with advanced, parallel visualisation, there is also the free VisIt software, available at
http://www.llnl.gov/visit.

In summary, we recommend the reader module for ParaView as the primary post-processing
tool for OpenFOAM. Alternatively OpenFOAM data can be converted into VTK format to
be read by ParaView or any other VTK -based graphics tools.

6.1.1 Overview of paraFoam

paraFoam is strictly a script that launches ParaView using the reader module supplied with
OpenFOAM. It is executed like any of the OpenFOAM utilities either by the single command
from within the case directory or with the -case option with the case path as an argument,
e.g.:

paraFoam -case <caseDir>

http://www.paraview.org
http://www.kitware.com/products/paraviewguide.html
http://www.llnl.gov/visit

U-170 Post-processing

Figure 6.1: The paraFoam window

ParaView is launched and opens the window shown in Figure 6.1. The case is controlled
from the left panel, which contains the following:

Pipeline Browser lists the modules opened in ParaView, where the selected modules are high-
lighted in blue and the graphics for the given module can be enabled/disabled by
clicking the eye button alongside;

Properties panel contains the input selections for the case, such as times, regions and fields;

Display panel controls the visual representation of the selected module, e.g. colours;

Information panel gives case statistics such as mesh geometry and size.

ParaView operates a tree-based structure in which data can be filtered from the top-level
case module to create sets of sub-modules. For example, a contour plot of, say, pressure
could be a sub-module of the case module which contains all the pressure data. The strength
of ParaView is that the user can create a number of sub-modules and display whichever ones
they feel to create the desired image or animation. For example, they may add some solid
geometry, mesh and velocity vectors, to a contour plot of pressure, switching any of the
items on and off as necessary.

The general operation of the system is based on the user making a selection and then
clicking the green Apply button in the Properties panel. The additional buttons are: the
Reset button which used to reset the GUI if necessary; and, the Delete button that will
delete the active module.

Open∇FOAM-2.0.0

6.1 paraFoam U-171

6.1.2 The Properties panel

The Properties panel for the case module contains the settings for time step, regions and
fields. The controls are described in Figure 6.2. It is particularly worth noting that in the

The user can select internalMesh

region and/or individual patches

read into the case module

The user can select the fields

Figure 6.2: The Properties panel for the case module

current reader module, data in all time directories are loaded into ParaView (in the reader
module for ParaView 2.x, a set of check boxes controlled the time that were displayed). In
the current reader module, the buttons in the Current Time Controls and VCR Controls

toolbars select the time data to be displayed, as shown is section 6.1.4.

As with any operation in paraFoam, the user must click Apply after making any changes
to any selections. The Apply button is highlighted in green to alert the user if changes have
been made but not accepted. This method of operation has the advantage of allowing the
user to make a number of selections before accepting them, which is particularly useful in
large cases where data processing is best kept to a minimum.

There are occasions when the case data changes on file and ParaView needs to load the
changes, e.g. when field data is written into new time directories. To load the changes, the
user should check the Update GUI button at the top of the Properties panel and then apply
the changes.

6.1.3 The Display panel

The Display panel contains the settings for visualising the data for a given case module. The
following points are particularly important:

Open∇FOAM-2.0.0

U-172 Post-processing

Outline, surface, wireframe or points

Data interpolation method

Change image opacity

e.g. to make transluscent

View case data

Colour geometry/entity by...
Set colour map range/appearance

Geometry manipulation tools

Figure 6.3: The Display panel

• the data range may not be automatically updated to the max/min limits of a field, so
the user should take care to select Rescale to Data Range at appropriate intervals, in
particular after loading the initial case module;

• clicking the Edit Color Map button, brings up a window in which there are two panels:

1. The Color Scale panel in which the colours within the scale can be chosen. The
standard blue to red colour scale for CFD can be selected by clicking Choose
Preset and selecting Blue to Red Rainbox HSV.

2. The Color Legend panel has a toggle switch for a colour bar legend and contains

Open∇FOAM-2.0.0

6.1 paraFoam U-173

settings for the layout of the legend, e.g. font.

• the underlying mesh can be represented by selecting Wireframe in the Representat-
ion menu of the Style panel;

• the geometry, e.g. a mesh (if Wireframe is selected), can be visualised as a single
colour by selecting Solid Color from the Color By menu and specifying the colour
in the Set Ambient Color window;

• the image can be made translucent by editing the value in the Opacity text box (1 =
solid, 0 = invisible) in the Style panel.

6.1.4 The button toolbars

ParaView duplicates functionality from pull-down menus at the top of the main window
and the major panels, within the toolbars below the main pull-down menus. The displayed
toolbars can be selected from Toolbars in the main View menu. The default layout with
all toolbars is shown in Figure 6.4 with each toolbar labelled. The function of many of the
buttons is clear from their icon and, with tooltips enabled in the Help menu, the user is
given a concise description of the function of any button.

Selection Controls VCR Controls

Common Filters Camera Controls

Centre Axes Controls

Undo/Redo ControlsMain controls Current Time Controls

Active Variable Controls | Representation

Figure 6.4: Toolbars in ParaView

6.1.5 Manipulating the view

This section describes operations for setting and manipulating the view of objects in paraFoam.

6.1.5.1 View settings

The View Settings are selected from the Edit menu, which opens a View Settings (Render
View) window with a table of 3 items: General, Lights and Annotation. The General panel
includes the following items which are often worth setting at startup:

• the background colour, where white is often a preferred choice for printed material, is
set by choosing background from the down-arrow button next to Choose Color button,
then selecting the color by clicking on the Choose Color button;

• Use parallel projection which is the usual choice for CFD, especially for 2D cases.

Open∇FOAM-2.0.0

U-174 Post-processing

The Lights panel contains detailed lighting controls within the Light Kit panel. A separate
Headlight panel controls the direct lighting of the image. Checking the Headlight button with
white light colour of strength 1 seems to help produce images with strong bright colours,
e.g. with an isosurface.

The Annotation panel includes options for including annotations in the image. The
Orientation Axes feature controls an axes icon in the image window, e.g. to set the colour of
the axes labels x, y and z.

6.1.5.2 General settings

The general Settings are selected from the Edit menu, which opens a general Options
window with General, Colors, Animations, Charts and Render View menu items.

The General panel controls some default behaviour of ParaView. In particular, there is an
Auto Accept button that enables ParaView to accept changes automatically without clicking
the green Apply button in the Properties window. For larger cases, this option is generally
not recommended: the user does not generally want the image to be re-rendered between
each of a number of changes he/she selects, but be able to apply a number of changes to be
re-rendered in their entirety once.

The Render View panel contains 3 sub-items: General, Camera and Server. The General
panel includes the level of detail (LOD) which controls the rendering of the image while it
is being manipulated, e.g. translated, resized, rotated; lowering the levels set by the sliders,
allows cases with large numbers of cells to be re-rendered quickly during manipulation.

The Camera panel includes control settings for 3D and 2D movements. This presents the
user with a map of rotation, translate and zoom controls using the mouse in combination
with Shift- and Control-keys. The map can be edited to suit by the user.

6.1.6 Contour plots

A contour plot is created by selecting Contour from the Filter menu at the top menu
bar. The filter acts on a given module so that, if the module is the 3D case module itself,
the contours will be a set of 2D surfaces that represent a constant value, i.e. isosurfaces.
The Properties panel for contours contains an Isosurfaces list that the user can edit, most
conveniently by the New Range window. The chosen scalar field is selected from a pull down
menu.

6.1.6.1 Introducing a cutting plane

Very often a user will wish to create a contour plot across a plane rather than producing
isosurfaces. To do so, the user must first use the Slice filter to create the cutting plane,
on which the contours can be plotted. The Slice filter allows the user to specify a cutting
Plane, Box or Sphere in the Slice Type menu by a center and normal/radius respectively.
The user can manipulate the cutting plane like any other using the mouse.

The user can then run the Contour filter on the cut plane to generate contour lines.

6.1.7 Vector plots

Vector plots are created using the Glyph filter. The filter reads the field selected in Vectors

and offers a range of Glyph Types for which the Arrow provides a clear vector plot images.

Open∇FOAM-2.0.0

6.1 paraFoam U-175

Each glyph has a selection of graphical controls in a panel which the user can manipulate
to best effect.

The remainder of the Properties panel contains mainly the Scale Mode menu for the
glyphs. The most common options are Scale Mode are: Vector, where the glyph length is
proportional to the vector magnitude; and, Off where each glyph is the same length. The
Set Scale Factor parameter controls the base length of the glyphs.

6.1.7.1 Plotting at cell centres

Vectors are by default plotted on cell vertices but, very often, we wish to plot data at cell
centres. This is done by first applying the Cell Centers filter to the case module, and then
applying the Glyph filter to the resulting cell centre data.

6.1.8 Streamlines

Streamlines are created by first creating tracer lines using the Stream Tracer filter. The
tracer Seed panel specifies a distribution of tracer points over a Line Source or Point

Cloud. The user can view the tracer source, e.g. the line, but it is displayed in white, so
they may need to change the background colour in order to see it.

The distance the tracer travels and the length of steps the tracer takes are specified in
the text boxes in the main Stream Tracer panel. The process of achieving desired tracer lines
is largely one of trial and error in which the tracer lines obviously appear smoother as the
step length is reduced but with the penalty of a longer calculation time.

Once the tracer lines have been created, the Tubes filter can be applied to the Tracer

module to produce high quality images. The tubes follow each tracer line and are not
strictly cylindrical but have a fixed number of sides and given radius. When the number of
sides is set above, say, 10, the tubes do however appear cylindrical, but again this adds a
computational cost.

6.1.9 Image output

The simplest way to output an image to file from ParaView is to select Save Screenshot

from the File menu. On selection, a window appears in which the user can select the
resolution for the image to save. There is a button that, when clicked, locks the aspect
ratio, so if the user changes the resolution in one direction, the resolution is adjusted in the
other direction automatically. After selecting the pixel resolution, the image can be saved.
To achieve high quality output, the user might try setting the pixel resolution to 1000 or
more in the x-direction so that when the image is scaled to a typical size of a figure in an
A4 or US letter document, perhaps in a PDF document, the resolution is sharp.

6.1.10 Animation output

To create an animation, the user should first select Save Animation from the File menu.
A dialogue window appears in which the user can specify a number of things including the
image resolution. The user should specify the resolution as required. The other noteworthy
setting is number of frames per timestep. While this would intuitively be set to 1, it can
be set to a larger number in order to introduce more frames into the animation artificially.

Open∇FOAM-2.0.0

U-176 Post-processing

This technique can be particularly useful to produce a slower animation because some movie
players have limited speed control, particularly over mpeg movies.

On clicking the Save Animation button, another window appears in which the user spec-
ifies a file name root and file format for a set of images. On clicking OK, the set of files will
be saved according to the naming convention “<fileRoot> <imageNo>.<fileExt>”, e.g.
the third image of a series with the file root “animation”, saved in jpg format would be
named “animation 0002.jpg” (<imageNo> starts at 0000).

Once the set of images are saved the user can convert them into a movie using their
software of choice. The convert utility in the ImageMagick package can do this from the
command line, e.g. by

convert animation*jpg movie.mpg

When creating an mpg movie it can be worth increasing the default quality setting, e.g. with
-quality 90%, to reduce the graininess that can occur with the default setting.

6.2 Post-processing with Fluent

It is possible to use Fluent as a post-processor for the cases run in OpenFOAM. Two con-
verters are supplied for the purpose: foamMeshToFluent which converts the OpenFOAM
mesh into Fluent format and writes it out as a .msh file; and, foamDataToFluent converts the
OpenFOAM results data into a .dat file readable by Fluent. foamMeshToFluent is executed
in the usual manner. The resulting mesh is written out in a fluentInterface subdirectory of
the case directory, i.e.<caseName>/fluentInterface/<caseName>.msh

foamDataToFluent converts the OpenFOAM data results into the Fluent format. The con-
version is controlled by two files. First, the controlDict dictionary specifies startTime, giving
the set of results to be converted. If you want to convert the latest result, startFrom can
be set to latestTime. The second file which specifies the translation is the foamDataToFlu-
entDict dictionary, located in the constant directory. An example foamDataToFluentDict
dictionary is given below:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 2.0.0 |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object foamDataToFluentDict;
15 }
16 // * //
17

18 p 1;
19

20 U 2;
21

22 T 3;
23

24 h 4;
25

26 k 5;
27

Open∇FOAM-2.0.0

6.3 Post-processing with Fieldview U-177

28 epsilon 6;
29

30 gamma 150;
31

32

33 // *** //

The dictionary contains entries of the form

<fieldName> <fluentUnitNumber>

The <fluentUnitNumber> is a label used by the Fluent post-processor that only recognises a
fixed set of fields. The basic set of <fluentUnitNumber> numbers are quoted in Table 6.1.
The dictionary must contain all the entries the user requires to post-process, e.g. in our

Fluent name Unit number Common OpenFOAM name
PRESSURE 1 p

MOMENTUM 2 U

TEMPERATURE 3 T

ENTHALPY 4 h

TKE 5 k

TED 6 epsilon

SPECIES 7 —
G 8 —
XF RF DATA VOF 150 gamma

TOTAL PRESSURE 192 —
TOTAL TEMPERATURE 193 —

Table 6.1: Fluent unit numbers for post-processing.

example we have entries for pressure p and velocity U. The list of default entries described
in Table 6.1. The user can run foamDataToFluent like any utility.

To view the results using Fluent, go to the fluentInterface subdirectory of the case direc-
tory and start a 3 dimensional version of Fluent with

fluent 3d

The mesh and data files can be loaded in and the results visualised. The mesh is read by
selecting Read Case from the File menu. Support items should be selected to read certain
data types, e.g. to read turbulence data for k and epsilon, the user would select k-epsilon
from the Define->Models->Viscous menu. The data can then be read by selecting Read

Data from the File menu.
A note of caution: users MUST NOT try to use an original Fluent mesh file that has been

converted to OpenFOAM format in conjunction with the OpenFOAM solution that has been
converted to Fluent format since the alignment of zone numbering cannot be guaranteed.

6.3 Post-processing with Fieldview

OpenFOAM offers the capability for post-processing OpenFOAM cases with Fieldview. The
method involves running a post-processing utility foamToFieldview to convert case data from

Open∇FOAM-2.0.0

U-178 Post-processing

OpenFOAM to Fieldview.uns file format. For a given case, foamToFieldview is executed like
any normal application. foamToFieldview creates a directory named Fieldview in the case
directory, deleting any existing Fieldview directory in the process. By default the converter
reads the data in all time directories and writes into a set of files of the form <case> nn.uns,
where nn is an incremental counter starting from 1 for the first time directory, 2 for the
second and so on. The user may specify the conversion of a single time directory with the
option -time <time>, where <time> is a time in general, scientific or fixed format.

Fieldview provides certain functions that require information about boundary conditions,
e.g. drawing streamlines that uses information about wall boundaries. The converter tries,
wherever possible, to include this information in the converted files by default. The user
can disable the inclusion of this information by using the -noWall option in the execution
command.

The data files for Fieldview have the .uns extension as mentioned already. If the original
OpenFOAM case includes a dot ‘.’, Fieldview may have problems interpreting a set of data
files as a single case with multiple time steps.

6.4 Post-processing with EnSight

OpenFOAM offers the capability for post-processing OpenFOAM cases with EnSight, with
a choice of 2 options:

• converting the OpenFOAM data to EnSight format with the foamToEnsight utility;

• reading the OpenFOAM data directly into EnSight using the ensight74FoamExec mod-
ule.

6.4.1 Converting data to EnSight format

The foamToEnsight utility converts data from OpenFOAM to EnSight file format. For a
given case, foamToEnsight is executed like any normal application. foamToEnsight creates a
directory named Ensight in the case directory, deleting any existing Ensight directory in the

process. The converter reads the data in all time directories and writes into a case file and
a set of data files. The case file is named EnSight Case and contains details of the data file
names. Each data file has a name of the form EnSight nn.ext, where nn is an incremental
counter starting from 1 for the first time directory, 2 for the second and so on and ext is
a file extension of the name of the field that the data refers to, as described in the case
file, e.g.T for temperature, mesh for the mesh. Once converted, the data can be read into
EnSight by the normal means:

1. from the EnSight GUI, the user should select Data (Reader) from the File menu;

2. the appropriate EnSight Case file should be highlighted in the Files box;

3. the Format selector should be set to Case, the EnSight default setting;

4. the user should click (Set) Case and Okay.

Open∇FOAM-2.0.0

6.4 Post-processing with EnSight U-179

6.4.2 The ensight74FoamExec reader module

EnSight provides the capability of using a user-defined module to read data from a format
other than the standard EnSight format. OpenFOAM includes its own reader module en-
sight74FoamExec that is compiled into a library named libuserd-foam. It is this library that
EnSight needs to use which means that it must be able to locate it on the filing system as
described in the following section.

6.4.2.1 Configuration of EnSight for the reader module

In order to run the EnSight reader, it is necessary to set some environment variables correctly.
The settings are made in the bashrc (or cshrc) file in the $WM PROJECT DIR/etc/apps/-
ensightFoam directory. The environment variables associated with EnSight are prefixed by
$CEI or $ENSIGHT7 and listed in Table 6.2. With a standard user setup, only $CEI HOME
may need to be set manually, to the path of the EnSight installation.

Environment variable Description and options
$CEI HOME Path where EnSight is installed, eg /usr/local/ensight, added

to the system path by default
$CEI ARCH Machine architecture, from a choice of names cor-

responding to the machine directory names in
$CEI HOME/ensight74/machines; default settings include
linux 2.4 and sgi 6.5 n32

$ENSIGHT7 READER Path that EnSight searches for the user defined libuserd-foam
reader library, set by default to $FOAM LIBBIN

$ENSIGHT7 INPUT Set by default to dummy

Table 6.2: Environment variable settings for EnSight.

6.4.2.2 Using the reader module

The principal difficulty in using the EnSight reader lies in the fact that EnSight expects that
a case to be defined by the contents of a particular file, rather than a directory as it is
in OpenFOAM. Therefore in following the instructions for the using the reader below, the
user should pay particular attention to the details of case selection, since EnSight does not
permit selection of a directory name.

1. from the EnSight GUI, the user should select Data (Reader) from the File menu;

2. The user should now be able to select the OpenFOAM from the Format menu; if not,
there is a problem with the configuration described above.

3. The user should find their case directory from the File Selection window, highlight one
of top 2 entries in the Directories box ending in /. or /.. and click (Set) Geometry.

4. The path field should now contain an entry for the case. The (Set) Geometry text box
should contain a ‘/’.

5. The user may now click Okay and EnSight will begin reading the data.

Open∇FOAM-2.0.0

U-180 Post-processing

6. When the data is read, a new Data Part Loader window will appear, asking which
part(s) are to be read. The user should select Load all.

7. When the mesh is displayed in the EnSight window the user should close the Data Part
Loader window, since some features of EnSight will not work with this window open.

6.5 Sampling data

OpenFOAM provides the sample utility to sample field data, either through a 1D line for
plotting on graphs or a 2D plane for displaying as isosurface images. The sampling locations
are specified for a case through a sampleDict dictionary in the case system directory. The
data can be written in a range of formats including well-known graphing packages such as
Grace/xmgr, gnuplot and jPlot.

The sampleDict dictionary can be generated by copying an example sampleDict from the
sample source code directory at $FOAM UTILITIES/postProcessing/sampling/sample. The
plateHole tutorial case in the $FOAM TUTORIALS/solidDisplacementFoam directory also con-
tains an example for 1D line sampling:

17

18 interpolationScheme cellPoint;
19

20 setFormat raw;
21

22 sets
23 (
24 leftPatch
25 {
26 type uniform;
27 axis y;
28 start (0 0.5 0.25);
29 end (0 2 0.25);
30 nPoints 100;
31 }
32);
33

34 fields (sigmaxx);
35

36

37 // *** //

The dictionary contains the following entries:

interpolationScheme the scheme of data interpolation;

sets the locations within the domain that the fields are line-sampled (1D).

surfaces the locations within the domain that the fields are surface-sampled (2D).

setFormat the format of line data output;

surfaceFormat the format of surface data output;

fields the fields to be sampled;

The interpolationScheme includes cellPoint and cellPointFace options in which each
polyhedral cell is decomposed into tetrahedra and the sample values are interpolated from
values at the tetrahedra vertices. With cellPoint, the tetrahedra vertices include the
polyhedron cell centre and 3 face vertices. The vertex coincident with the cell centre inherits
the cell centre field value and the other vertices take values interpolated from cell centres.

Open∇FOAM-2.0.0

6.5 Sampling data U-181

Keyword Options Description
interpolation-

Scheme

cell

cellPoint

cellPointFace

Cell-centre value assumed constant over cell
Linear weighted interpolation using cell values
Mixed linear weighted / cell-face interpolation

setFormat raw

gnuplot

xmgr

jplot

Raw ASCII data in columns
Data in gnuplot format
Data in Grace/xmgr format
Data in jPlot format

surfaceFormat null

foamFile

dx

vtk

raw

stl

Suppresses output
points, faces, values file
DX scalar or vector format
VTK ASCII format
xyz values for use with e.g.gnuplotsplot
ASCII STL; just surface, no values

fields List of fields to be sampled, e.g. for velocity U:
U Writes all components of U

sets List of 1D sets subdictionaries — see Table 6.4
surfaces List of 2D surfaces subdictionaries — see Table 6.5 and Table 6.6

Table 6.3: keyword entries for sampleDict.

With cellPointFace, one of the tetrahedra vertices is also coincident with a face centre,
which inherits field values by conventional interpolation schemes using values at the centres
of cells that the face intersects.

The setFormat entry for line sampling includes a raw data format and formats for
gnuplot, Grace/xmgr and jPlot graph drawing packages. The data are written into a sets
directory within the case directory. The directory is split into a set of time directories and
the data files are contained therein. Each data file is given a name containing the field name,
the sample set name, and an extension relating to the output format, including .xy for raw
data, .agr for Grace/xmgr and .dat for jPlot. The gnuplot format has the data in raw form
with an additional commands file, with .gplt extension, for generating the graph. Note that

any existing sets directory is deleted when sample is run.

The surfaceFormat entry for surface sampling includes a raw data format and formats
for gnuplot, Grace/xmgr and jPlot graph drawing packages. The data are written into a
surfaces directory within the case directory. The directory is split into time directories and
files are written much as with line sampling.

The fields list contains the fields that the user wishes to sample. The sample utility
can parse the following restricted set of functions to enable the user to manipulate vector
and tensor fields, e.g. for U:

U.component(n) writes the nth component of the vector/tensor, n = 0, 1 . . .;

mag(U) writes the magnitude of the vector/tensor.

The sets list contains sub-dictionaries of locations where the data is to be sampled.
The sub-dictionary is named according to the name of the set and contains a set of entries,

Open∇FOAM-2.0.0

U-182 Post-processing

also listed in Table 6.4, that describes the locations where the data is to be sampled. For
example, a uniform sampling provides a uniform distribution of nPoints sample locations
along a line specified by a start and end point. All sample sets are also given: a type; and,
means of specifying the length ordinate on a graph by the axis keyword.

Required entries

Sampling type Sample locations n
a
m
e

a
x
i
s

s
t
a
r
t

e
n
d

n
P
o
i
n
t
s

p
o
i
n
t
s

uniform Uniformly distributed points on a line • • • • •
face Intersection of specified line and cell faces • • • •
midPoint Midpoint between line-face intersections • • • •
midPointAndFace Combination of midPoint and face • • • •
curve Specified points, tracked along a curve • • •
cloud Specified points • • •

Entries Description Options
type Sampling type see list above
axis Output of sample location x x ordinate

y y ordinate
z z ordinate
xyz xyz coordinates
distance distance from point 0

start Start point of sample line e.g.(0.0 0.0 0.0)

end End point of sample line e.g.(0.0 2.0 0.0)

nPoints Number of sampling points e.g.200

points List of sampling points

Table 6.4: Entries within sets sub-dictionaries.

The surfaces list contains sub-dictionaries of locations where the data is to be sampled.
The sub-dictionary is named according to the name of the surface and contains a set of
entries beginning with the type: either a plane, defined by point and normal direction,
with additional sub-dictionary entries a specified in Table 6.5; or, a patch, coinciding with
an existing boundary patch, with additional sub-dictionary entries a specified in Table 6.6.

Keyword Description Options
basePoint Point on plane e.g.(0 0 0)

normalVector Normal vector to plane e.g.(1 0 0)

interpolate Interpolate data? true/false
triangulate Triangulate surface? (optional) true/false

Table 6.5: Entries for a plane in surfaces sub-dictionaries.

Open∇FOAM-2.0.0

6.6 Monitoring and managing jobs U-183

Keyword Description Options
patchName Name of patch e.g.movingWall

interpolate Interpolate data? true/false
triangulate Triangulate surface? (optional) true/false

Table 6.6: Entries for a patch in surfaces sub-dictionaries.

6.6 Monitoring and managing jobs

This section is concerned primarily with successful running of OpenFOAM jobs and extends
on the basic execution of solvers described in section 3.3. When a solver is executed, it
reports the status of equation solution to standard output, i.e. the screen, if the level

debug switch is set to 1 or 2 (default) in DebugSwitches in the $WM PROJECT DIR/etc/-
controlDict file. An example from the beginning of the solution of the cavity tutorial is shown
below where it can be seen that, for each equation that is solved, a report line is written
with the solver name, the variable that is solved, its initial and final residuals and number
of iterations.

Starting time loop

Time = 0.005

Max Courant Number = 0

BICCG: Solving for Ux, Initial residual = 1, Final residual = 2.96338e-06, No Iterations 8

ICCG: Solving for p, Initial residual = 1, Final residual = 4.9336e-07, No Iterations 35

time step continuity errors : sum local = 3.29376e-09, global = -6.41065e-20, cumulative = -6.41065e-20

ICCG: Solving for p, Initial residual = 0.47484, Final residual = 5.41068e-07, No Iterations 34

time step continuity errors : sum local = 6.60947e-09, global = -6.22619e-19, cumulative = -6.86725e-19

ExecutionTime = 0.14 s

Time = 0.01

Max Courant Number = 0.585722

BICCG: Solving for Ux, Initial residual = 0.148584, Final residual = 7.15711e-06, No Iterations 6

BICCG: Solving for Uy, Initial residual = 0.256618, Final residual = 8.94127e-06, No Iterations 6

ICCG: Solving for p, Initial residual = 0.37146, Final residual = 6.67464e-07, No Iterations 33

time step continuity errors : sum local = 6.34431e-09, global = 1.20603e-19, cumulative = -5.66122e-19

ICCG: Solving for p, Initial residual = 0.271556, Final residual = 3.69316e-07, No Iterations 33

time step continuity errors : sum local = 3.96176e-09, global = 6.9814e-20, cumulative = -4.96308e-19

ExecutionTime = 0.16 s

Time = 0.015

Max Courant Number = 0.758267

BICCG: Solving for Ux, Initial residual = 0.0448679, Final residual = 2.42301e-06, No Iterations 6

BICCG: Solving for Uy, Initial residual = 0.0782042, Final residual = 1.47009e-06, No Iterations 7

ICCG: Solving for p, Initial residual = 0.107474, Final residual = 4.8362e-07, No Iterations 32

time step continuity errors : sum local = 3.99028e-09, global = -5.69762e-19, cumulative = -1.06607e-18

ICCG: Solving for p, Initial residual = 0.0806771, Final residual = 9.47171e-07, No Iterations 31

time step continuity errors : sum local = 7.92176e-09, global = 1.07533e-19, cumulative = -9.58537e-19

ExecutionTime = 0.19 s

6.6.1 The foamJob script for running jobs

The user may be happy to monitor the residuals, iterations, Courant number etc. as report
data passes across the screen. Alternatively, the user can redirect the report to a log file

Open∇FOAM-2.0.0

U-184 Post-processing

which will improve the speed of the computation. The foamJob script provides useful options
for this purpose with the following executing the specified <solver> as a background process
and redirecting the output to a file named log:

foamJob <solver>

For further options the user should execute foamJob -help. The user may monitor the log
file whenever they wish, using the UNIXtail command, typically with the -f ‘follow’ option
which appends the new data as the log file grows:

tail -f log

6.6.2 The foamLog script for monitoring jobs

There are limitations to monitoring a job by reading the log file, in particular it is difficult
to extract trends over a long period of time. The foamLog script is therefore provided to
extract data of residuals, iterations, Courant number etc. from a log file and present it in a
set of files that can be plotted graphically. The script is executed by:

foamLog <logFile>

The files are stored in a subdirectory of the case directory named logs. Each file has the
name <var> <subIter> where <var> is the name of the variable specified in the log file and
<subIter> is the iteration number within the time step. Those variables that are solved for,
the initial residual takes the variable name <var> and final residual takes <var>FinalRes.
By default, the files are presented in two-column format of time and the extracted values.

For example, in the cavity tutorial we may wish to observe the initial residual of the Ux
equation to see whether the solution is converging to a steady-state. In that case, we would
plot the data from the logs/Ux 0 file as shown in Figure 6.5. It can be seen here that the
residual falls monotonically until it reaches the convergence tolerance of 10−5.

foamLog generates files for everything it feasibly can from the log file. In the cavity
tutorial example, this includes:

• the Courant number, Courant 0;

• Ux equation initial and final residuals, Ux 0 and UxFinalRes 0, and iterations, UxIters 0

(and equivalent Uy data);

• cumulative, global and local continuity errors after each of the 2 p equations, contCumulative 0,
contGlobal 0, contLocal 0 and contCumulative 1, contGlobal 1, contLocal 1;

• residuals and iterations from the the 2 p equations p 0, pFinalRes 0, pIters 0 and
p 1, pFinalRes 1, pIters 1;

• and execution time, executionTime.

Open∇FOAM-2.0.0

6.6 Monitoring and managing jobs U-185

Time [s]

U
x
0

0.180.160.140.120.100.080.060.040.020.00

1e+00

1e-01

1e-02

1e-03

1e-04

1e-05

Figure 6.5: Initial residual of Ux in the cavity tutorial

Open∇FOAM-2.0.0

U-186 Post-processing

Open∇FOAM-2.0.0

Chapter 7

Models and physical properties

OpenFOAM includes a large range of solvers each designed for a specific class of problem.
The equations and algorithms differ from one solver to another so that the selection of a
solver involves the user making some initial choices on the modelling for their particular case.
The choice of solver typically involves scanning through their descriptions in Table 3.5 to find
the one suitable for the case. It ultimately determines many of the parameters and physical
properties required to define the case but leaves the user with some modelling options that
can be specified at runtime through the entries in dictionary files in the constant directory of
a case. This chapter deals with many of the more common models and associated properties
that may be specified at runtime.

7.1 Thermophysical models

Thermophysical models are concerned with the energy, heat and physical properties.
The thermophysicalProperties dictionary is read by any solver that uses the thermophys-

ical model library. A thermophysical model is constructed in OpenFOAM as a pressure-
temperature p−T system from which other properties are computed. There is one compul-
sory dictionary entry called thermoType which specifies the complete thermophysical model
that is used in the simulation. The thermophysical modelling starts with a layer that defines
the basic equation of state and then adds more layers of modelling that derive properties
from the previous layer(s). The naming of the thermoType reflects these multiple layers of
modelling as listed in Table 7.1.

Equation of State — equationOfState
icoPolynomial Incompressible polynomial equation of state, e.g. for liquids
perfectGas Perfect gas equation of state

Basic thermophysical properties — thermo
eConstThermo Constant specific heat cp model with evaluation of internal

energy e and entropy s
hConstThermo Constant specific heat cp model with evaluation of enthalpy

h and entropy s
hPolynomialThermo cp evaluated by a function with coefficients from polynomi-

als, from which h, s are evaluated
Continued on next page

U-188 Models and physical properties

Continued from previous page

janafThermo cp evaluated by a function with coefficients from JANAF
thermodynamic tables, from which h, s are evaluated

Derived thermophysical properties — specieThermo
specieThermo Thermophysical properties of species, derived from cp, h

and/or s

Transport properties — transport
constTransport Constant transport properties
polynomialTransport Polynomial based temperature-dependent transport prop-

erties
sutherlandTransport Sutherland’s formula for temperature-dependent transport

properties

Mixture properties — mixture
pureMixture General thermophysical model calculation for passive gas

mixtures
homogeneousMixture Combustion mixture based on normalised fuel mass frac-

tion b
inhomogeneousMixture Combustion mixture based on b and total fuel mass fraction

ft
veryInhomogeneousMixture Combustion mixture based on b, ft and unburnt fuel mass

fraction fu
dieselMixture Combustion mixture based on ft and fu
basicMultiComponent-
Mixture

Basic mixture based on multiple components

multiComponentMixture Derived mixture based on multiple components
reactingMixture Combustion mixture using thermodynamics and reaction

schemes
egrMixture Exhaust gas recirculation mixture

Thermophysical model — thermoModel
hPsiThermo General thermophysical model calculation based on en-

thalpy h and compressibility ψ
hsPsiThermo General thermophysical model calculation based on sensi-

ble enthalpy hs and compressibility ψ
ePsiThermo General thermophysical model calculation based on inter-

nal energy e and compressibility ψ
hRhoThermo General thermophysical model calculation based on en-

thalpy h
hRhoThermo General thermophysical model calculation based on sensi-

ble enthalpy hs

hPsiMixtureThermo Calculates enthalpy for combustion mixture based on en-
thalpy h and ψ

hsPsiMixtureThermo Calculates enthalpy for combustion mixture based on sen-
sible enthalpy hs and ψ

Continued on next page

Open∇FOAM-2.0.0

7.1 Thermophysical models U-189

Continued from previous page

hRhoMixtureThermo Calculates enthalpy for combustion mixture based on en-
thalpy h and ρ

hsRhoMixtureThermo Calculates enthalpy for combustion mixture based on sen-
sible enthalpy hs and ρ

hhuMixtureThermo Calculates enthalpy for unburnt gas and combustion mix-
ture

Table 7.1: Layers of thermophysical modelling.

The thermoType entry typically takes the form:

thermoModel<mixture<transport<specieThermo<thermo<equationOfState>>>>>

so that the following is an example entry for thermoType:

hThermo<pureMixture<constTransport<specieThermo<hConstThermo<perfectGas>>>>>

7.1.1 Thermophysical property data

The basic thermophysical properties are specified for each species from input data. Data
entries must contain the name of the specie as the keyword, e.g. O2, H2O, mixture, followed
by sub-dictionaries of coefficients, including:

specie containing i.e. number of moles, nMoles, of the specie, and molecular weight,
molWeight in units of g/mol;

thermodynamics containing coefficients for the chosen thermodynamic model (see below);

transport containing coefficients for the chosen tranpsort model (see below).

The thermodynamic coefficients are ostensibly concerned with evaluating the specific
heat cp from which other properties are derived. The current thermo models are described
as follows:

hConstThermo assumes a constant cp and a heat of fusion Hf which is simply specified by
a two values cp Hf , given by keywords Cp and Hf.

eConstThermo assumes a constant cv and a heat of fusion Hf which is simply specified by
a two values cv Hf , given by keywords Cv and Hf.

janafThermo calculates cp as a function of temperature T from a set of coefficients taken
from JANAF tables of thermodynamics. The ordered list of coefficients is given in
Table 7.2. The function is valid between a lower and upper limit in temperature Tl

and Th respectively. Two sets of coefficients are specified, the first set for temperatures
above a common temperature Tc (and below Th, the second for temperatures below
Tc (and above Tl). The function relating cp to temperature is:

cp = R((((a4T + a3)T + a2)T + a1)T + a0) (7.1)

In addition, there are constants of integration, a5 and a6, both at high and low tem-
perature, used to evaluating h and s respectively.

Open∇FOAM-2.0.0

U-190 Models and physical properties

hPolynomialThermo calculates Cp as a function of temperature by a polynomial of any order.
The following case provides an example of its use: $FOAM TUTORIALS/lagrangian/-
porousExplicitSourceReactingParcelFoam/filter

Description Entry Keyword
Lower temperature limit Tl (K) Tlow

Upper temperature limit Th (K) Thigh

Common temperature Tc (K) Tcommon

High temperature coefficients a0 . . . a4 highCpCoeffs (a0 a1 a2 a3 a4...

High temperature enthalpy offset a5 a5...

High temperature entropy offset a6 a6)

Low temperature coefficients a0 . . . a4 lowCpCoeffs (a0 a1 a2 a3 a4...

Low temperature enthalpy offset a5 a5...

Low temperature entropy offset a6 a6)

Table 7.2: JANAF thermodynamics coefficients.

The transport coefficients are used to to evaluate dynamic viscosity µ, thermal conduc-
tivity κ and laminar thermal conductivity (for enthalpy equation) α. The current transport
models are described as follows:

constTransport assumes a constant µ and Prandtl number Pr = cpµ/κ which is simply
specified by a two keywords, mu and Pr, respectively.

sutherlandTransport calculates µ as a function of temperature T from a Sutherland coefficient
As and Sutherland temperature Ts, specified by keywords As and Ts; µ is calculated
according to:

µ =
As

√
T

1 + Ts/T
(7.2)

polynomialTransport calculates µ and κ as a function of temperature T from a polynomial
of any order.

The following is an example entry for a specie named fuel modelled using sutherlandTrans-
port and janafThermo:

fuel

{
specie

{
nMoles 1;

molWeight 16.0428;

}
thermodynamics

{
Tlow 200;

Thigh 6000;

Open∇FOAM-2.0.0

7.2 Turbulence models U-191

Tcommon 1000;

highCpCoeffs (1.63543 0.0100844 -3.36924e-06 5.34973e-10

-3.15528e-14 -10005.6 9.9937);

lowCpCoeffs (5.14988 -0.013671 4.91801e-05 -4.84744e-08

1.66694e-11 -10246.6 -4.64132);

}
transport

{
As 1.67212e-06;

Ts 170.672;

}
}

The following is an example entry for a specie named air modelled using constTransport
and hConstThermo:

air

{
specie

{
nMoles 1;

molWeight 28.96;

}
thermodynamics

{
Cp 1004.5;

Hf 2.544e+06;

}
transport

{
mu 1.8e-05;

Pr 0.7;

}
}

7.2 Turbulence models

The turbulenceProperties dictionary is read by any solver that includes turbulence mod-
elling. Within that file is the simulationType keyword that controls the type of turbulence
modelling to be used, either:

laminar uses no turbulence models;

RASModel uses Reynolds-averaged stress (RAS) modelling;

LESModel uses large-eddy simulation (LES) modelling.

Open∇FOAM-2.0.0

U-192 Models and physical properties

If RASModel is selected, the choice of RAS modelling is specified in a RASProperties file,
also in the constant directory. The RAS turbulence model is selected by the RASModel entry
from a long list of available models that are listed in Table 3.9. Similarly, if LESModel is
selected, the choice of LES modelling is specified in a LESProperties dictionary and the LES
turbulence model is selected by the LESModel entry.

The entries required in the RASProperties are listed in Table 7.3 and those for LESProp-
erties dictionaries are listed in Table 7.4.

RASModel Name of RAS turbulence model
turbulence Switch to turn turbulence modelling on/off
printCeoffs Switch to print model coeffs to terminal at simulation startup
<RASModel>Coeffs Optional dictionary of coefficients for the respective RASModel

Table 7.3: Keyword entries in the RASProperties dictionary.

LESModel Name of LES model
delta Name of delta δ model
<LESModel>Coeffs Dictionary of coefficients for the respective LESModel
<delta>Coeffs Dictionary of coefficients for each delta model

Table 7.4: Keyword entries in the LESProperties dictionary.

The incompressible and compressible RAS turbulence models, isochoric and anisochoric
LES models and delta models are all named and described in Table 3.9. Examples of their
use can be found in the $FOAM TUTORIALS.

7.2.1 Model coefficients

The coefficients for the RAS turbulence models are given default values in their respective
source code. If the user wishes to override these default values, then they can do so by adding
a sub-dictionary entry to the RASProperties file, whose keyword name is that of the model
with Coeffs appended, e.g. kEpsilonCoeffs for the kEpsilon model. If the printCoeffs
switch is on in the RASProperties file, an example of the relevant ...Coeffs dictionary is
printed to standard output when the model is created at the beginning of a run. The user
can simply copy this into the RASProperties file and edit the entries as required.

7.2.2 Wall functions

A range of wall function models is available in OpenFOAM that are applied as boundary
conditions on individual patches. This enables different wall function models to be applied
to different wall regions. The choice of wall function model is specified through: νt in the
0/nut file for incompressible RAS; µt in the 0/mut file for compressible RAS; νsgs in the
0/nuSgs file for incompressible LES; µsgs in the 0/muSgs file for incompressible LES. For
example, a 0/nut file:

17

18 dimensions [0 2 -1 0 0 0 0];
19

Open∇FOAM-2.0.0

7.2 Turbulence models U-193

20 internalField uniform 0;
21

22 boundaryField
23 {
24 movingWall
25 {
26 type nutkWallFunction;
27 value uniform 0;
28 }
29 fixedWalls
30 {
31 type nutkWallFunction;
32 value uniform 0;
33 }
34 frontAndBack
35 {
36 type empty;
37 }
38 }
39

40

41 // *** //

There are a number of wall function models available in the release, e.g. nutWallFunc-
tion, nutRoughWallFunction, nutSpalartAllmarasStandardRoughWallFunction, nut-

SpalartAllmarasStandardWallFunction and nutSpalartAllmarasWallFunction. The
user can consult the relevant directories for a full list of wall function models:

find $FOAM SRC/turbulenceModels -name wallFunctions

Within each wall function boundary condition the user can over-ride default settings for E,
κ and Cµ through optional E, kappa and Cmu keyword entries.

Having selected the particular wall functions on various patches in the nut/mut file,
the user should select epsilonWallFunction on corresponding patches in the epsilon field and
kqRwallFunction on corresponding patches in the turbulent fields k, q and R.

Open∇FOAM-2.0.0

U-194 Models and physical properties

Open∇FOAM-2.0.0

Index U-195

Index

Symbols Numbers A B C D E F G H I J K L M N O P Q R S T U V W X Z

Symbols
*

tensor member function, P-25

+

tensor member function, P-25

-

tensor member function, P-25

/

tensor member function, P-25

/*...*/

C++ syntax, U-81

//

C++ syntax, U-81

OpenFOAM file syntax, U-108

include

C++ syntax, U-74, U-81

&

tensor member function, P-25

&&

tensor member function, P-25

^

tensor member function, P-25

<LESModel>Coeffs keyword, U-192

<RASModel>Coeffs keyword, U-192

<delta>Coeffs keyword, U-192

0.000000e+00 directory, U-108

1-dimensional mesh, U-135

1D mesh, U-135

2-dimensional mesh, U-135

2D mesh, U-135

Numbers
0 directory, U-108

A
access functions, P-23

addLayersControls keyword, U-151

adiabaticFlameT utility, U-99

adjointShapeOptimizationFoam solver, U-88

adjustableRunTime

keyword entry, U-64, U-116

adjustTimeStep keyword, U-63

agglomerator keyword, U-127

algorithms tools, U-100

alphaContactAngle

boundary condition, U-61

analytical solution, P-45

Animations window panel, U-174

anisotropicFilter model, U-105

Annotation window panel, U-27, U-174

ansysToFoam utility, U-93

APIfunctions model, U-104

applications, U-71

Apply button, U-170, U-174

applyBoundaryLayer utility, U-93

applyWallFunctionBoundaryConditions utility,
U-93

arbitrarily unstructured, P-31

arc

keyword entry, U-144

arc keyword, U-143

As keyword, U-190

ascii

keyword entry, U-116

attachMesh utility, U-94

Auto Accept button, U-174

autoMesh

library, U-101

autoPatch utility, U-94

autoRefineMesh utility, U-95

axes

right-handed, U-141

right-handed rectangular Cartesian, P-15,
U-20

axi-symmetric cases, U-140, U-149

axi-symmetric mesh, U-135

Open∇FOAM-2.0.0

U-196 Index

B
background

process, U-27, U-84

backward

keyword entry, U-124

Backward differencing, P-39

barotropicCompressibilityModels

library, U-103

basicMultiComponentMixture model, U-103,
U-188

basicSolidThermo

library, U-104

basicThermophysicalModels

library, U-102

binary

keyword entry, U-116

BirdCarreau model, U-106

blended differencing, P-38

block

expansion ratio, U-145

block keyword, U-143

blocking

keyword entry, U-83

blockMesh

library, U-101

blockMesh solver, P-47

blockMesh utility, U-39, U-93, U-141

blockMesh executable

vertex numbering, U-145

blockMeshDict

dictionary, U-20, U-22, U-38, U-51, U-141,
U-150

blocks keyword, U-22, U-33, U-145

boundaries, U-135

boundary, U-135

boundary

dictionary, U-134, U-141

boundary keyword, U-146

boundary condition

alphaContactAngle, U-61

calculated, U-141

cyclic, U-140, U-147

directionMixed, U-141

empty, P-64, P-70, U-20, U-135, U-140

fixedGradient, U-141

fixedValue, U-141

fluxCorrectedVelocity, U-142

inlet, P-70

inletOutlet, U-142

mixed, U-141

movingWallVelocity, U-142

outlet, P-70

outletInlet, U-142

partialSlip, U-142

patch, U-139

pressureDirectedInletVelocity, U-142

pressureInletVelocity, U-142

pressureOutlet, P-64

pressureTransmissive, U-142

processor, U-140

setup, U-22

slip, U-142

supersonicFreeStream, U-142

surfaceNormalFixedValue, U-142

symmetryPlane, P-64, U-140

totalPressure, U-142

turbulentInlet, U-142

wall, U-42

wall, P-64, P-70, U-60, U-139

wallBuoyantPressure, U-142

wedge, U-135, U-140, U-149

zeroGradient, U-141

boundary conditions, P-43

Dirichlet, P-43

inlet, P-44

Neumann, P-43

no-slip impermeable wall, P-44

outlet, P-44

physical, P-44

symmetry plane, P-44

boundaryField keyword, U-23, U-112

boundaryFoam solver, U-88

bounded

keyword entry, U-122, U-123

boxToCell keyword, U-62

boxTurb utility, U-93

breaking of a dam, U-58

bubbleFoam solver, U-89

buoyantBaffleSimpleFoam solver, U-91

buoyantBoussinesqPimpleFoam solver, U-91

buoyantBoussinesqSimpleFoam solver, U-91

buoyantPimpleFoam solver, U-91

buoyantSimpleFoam solver, U-91

buoyantSimpleRadiationFoam solver, U-91

button

Apply, U-170, U-174

Auto Accept, U-174

Choose Preset, U-172

Delete, U-170

Edit Color Map, U-172

Open∇FOAM-2.0.0

Index U-197

Enable Line Series, U-37
Orientation Axes, U-27, U-174
Refresh Times, U-27
Rescale to Data Range, U-27
Reset, U-170
Set Ambient Color, U-173
Update GUI, U-171
Use Parallel Projection, U-27
Use parallel projection, U-173

C
C++ syntax

/*...*/, U-81
//, U-81
include, U-74, U-81

cacheAgglomeration keyword, U-128
calculated

boundary condition, U-141
cAlpha keyword, U-65
cases, U-107
castellatedMesh keyword, U-151
castellatedMeshControls

dictionary, U-153–U-155
castellatedMeshControls keyword, U-151
cavitatingFoam solver, U-89
cavity flow, U-19
CEI ARCH

environment variable, U-179
CEI HOME

environment variable, U-179
cell

expansion ratio, U-145
cell class, P-31
cell

keyword entry, U-181
cellLimited

keyword entry, U-122
cellPoint

keyword entry, U-181
cellPointFace

keyword entry, U-181
cells

dictionary, U-141
central differencing, P-38
cfdTools tools, U-100
cfx4ToFoam utility, U-93, U-159
changeDictionary utility, U-93
channelFoam solver, U-88
Charts window panel, U-174
checkMesh utility, U-94, U-161
chemFoam solver, U-90

chemistryModel

library, U-104

chemistryModel model, U-104

chemistrySolver model, U-104

chemkinToFoam utility, U-99

Choose Preset button, U-172

chtMultiRegionFoam solver, U-91

Chung

library, U-103

class

cell, P-31

dimensionSet, P-26, P-32, P-33

face, P-31

finiteVolumeCalculus, P-36

finiteVolumeMethod, P-36

fvMesh, P-31

fvSchemes, P-38

fvc, P-36

fvm, P-36

pointField, P-31

polyBoundaryMesh, P-31

polyMesh, P-31, U-131, U-133

polyPatchList, P-31

polyPatch, P-31

scalarField, P-29

scalar, P-24

slice, P-31

symmTensorField, P-29

symmTensorThirdField, P-29

tensorField, P-29

tensorThirdField, P-29

tensor, P-24

vectorField, P-29

vector, P-24, U-111

word, P-26, P-31

class keyword, U-109

clockTime

keyword entry, U-116

cloud keyword, U-182

cmptAv

tensor member function, P-25

Co utility, U-96

coalChemistryFoam solver, U-91

coalCombustion

library, U-101

cofactors

tensor member function, P-25

coldEngineFoam solver, U-90

collapseEdges utility, U-95

Color By menu, U-173

Open∇FOAM-2.0.0

U-198 Index

Color Legend window, U-29

Color Legend window panel, U-172

Color Scale window panel, U-172

Colors window panel, U-174

combinePatchFaces utility, U-95

comments, U-81

commsType keyword, U-83

compressed

keyword entry, U-116

compressibleInterFoam solver, U-90

compressibleLESModels

library, U-106

compressibleRASModels

library, U-105

constant directory, U-107, U-187

constLaminarFlameSpeed model, U-103

constTransport model, U-103, U-188

containers tools, U-100

continuum

mechanics, P-15

control

of time, U-115

controlDict

dictionary, P-66, U-24, U-33, U-44, U-53,
U-64, U-107, U-166

controlDict file, P-50

convection, see divergence, P-38

convergence, U-41

conversion

library, U-101

convertToMeters keyword, U-143, U-144

coordinate

system, P-15

coordinate system, U-20

corrected

keyword entry, U-122, U-123

Courant number, P-42, U-24

Cp keyword, U-189

cpuTime

keyword entry, U-116

Crank Nicholson

temporal discretisation, P-43

CrankNicholson

keyword entry, U-124

createBaffles utility, U-94

createPatch utility, U-94

createTurbulenceFields utility, U-97

cross product, see tensor, vector cross product

CrossPowerLaw

keyword entry, U-62

CrossPowerLaw model, U-106
cubeRootVolDelta model, U-105
cubicCorrected

keyword entry, U-124
cubicCorrection

keyword entry, U-121
curl, P-37
curl

fvc member function, P-37
Current Time Controls menu, U-27, U-171
curve keyword, U-182
Cv keyword, U-189
cyclic

boundary condition, U-140, U-147
cyclic

keyword entry, U-140
cylinder

flow around a, P-45

D
d2dt2

fvc member function, P-37
fvm member function, P-37

dam
breaking of a, U-58

datToFoam utility, U-93
db tools, U-100
ddt

fvc member function, P-37
fvm member function, P-37

DeardorffDiffStress model, U-105, U-106
debug keyword, U-151
decomposePar utility, U-84, U-85, U-99
decomposeParDict

dictionary, U-84
decomposition

of field, U-84
of mesh, U-84

decompositionMethods
library, U-101

decompression of a tank, P-62
defaultFieldValues keyword, U-62
deformedGeom utility, U-94
Delete button, U-170
delta keyword, U-86, U-192
deltaT keyword, U-116
dependencies, U-74
dependency lists, U-74
det

tensor member function, P-25
determinant, see tensor, determinant

Open∇FOAM-2.0.0

Index U-199

dev

tensor member function, P-25

diag

tensor member function, P-25

diagonal

keyword entry, U-126, U-127

DIC

keyword entry, U-127

DICGaussSeidel

keyword entry, U-127

dictionary

LESProperties, U-192

PISO, U-25

blockMeshDict, U-20, U-22, U-38, U-51,
U-141, U-150

boundary, U-134, U-141

castellatedMeshControls, U-153–U-155

cells, U-141

controlDict, P-66, U-24, U-33, U-44, U-53,
U-64, U-107, U-166

decomposeParDict, U-84

faces, U-133, U-141

fvSchemes, U-64, U-65, U-107, U-118

fvSolution, U-107, U-125

mechanicalProperties, U-53

neighbour, U-134

owner, U-133

points, U-133, U-141

thermalProperties, U-53

thermophysicalProperties, U-187

transportProperties, U-23, U-40, U-44

turbulenceProperties, U-43, U-63, U-191

dieselEngineFoam solver, U-91

dieselFoam solver, U-91

dieselMixture model, U-103, U-188

dieselSpray

library, U-101

differencing

Backward, P-39

blended, P-38

central, P-38

Euler implicit, P-39

Gamma, P-38

MINMOD, P-38

SUPERBEE, P-38

upwind, P-38

van Leer, P-38

DILU

keyword entry, U-127

dimension

checking in OpenFOAM, P-26, U-111

dimensional units, U-111

dimensioned<Type> template class, P-26

dimensionedTypes tools, U-100

dimensions keyword, U-23, U-112

dimensionSet class, P-26, P-32, P-33

dimensionSet tools, U-100

directionMixed

boundary condition, U-141

directory

0.000000e+00, U-108

0, U-108

Make, U-75

constant, U-107, U-187

fluentInterface, U-176

polyMesh, U-107, U-133

processorN , U-85

run, U-107

system, P-50, U-107

tutorials, P-45, U-19

discretisation

equation, P-33

Display window panel, U-26, U-27, U-170, U-171

distance

keyword entry, U-155, U-182

distributed model, U-102

distributed keyword, U-86, U-87

distributionModels

library, U-101

div

fvc member function, P-37

fvm member function, P-37

divergence, P-37, P-39

divSchemes keyword, U-118

dnsFoam solver, U-90

doLayers keyword, U-151

double inner product, see tensor,double inner
product

dsmc

library, U-101

dsmcFieldsCalc utility, U-97

dsmcFoam solver, U-92

dsmcInitialise utility, U-93

dx

keyword entry, U-181

dynamicFvMesh

library, U-101

dynamicMesh

library, U-101

dynLagrangian model, U-105

Open∇FOAM-2.0.0

U-200 Index

dynMixedSmagorinsky model, U-105
dynOneEqEddy model, U-105, U-106
dynSmagorinsky model, U-105

E
eConstThermo model, U-103, U-187
edgeGrading keyword, U-145
edgeMesh

library, U-101
edges keyword, U-143
Edit menu, U-173, U-174
Edit Color Map button, U-172
egrMixture model, U-103, U-188
electrostaticFoam solver, U-92
empty

boundary condition, P-64, P-70, U-20,
U-135, U-140

empty

keyword entry, U-140
Enable Line Series button, U-37
endTime keyword, U-24, U-115, U-116
engine

library, U-101
engineCompRatio utility, U-97
engineFoam solver, U-91
engineSwirl utility, U-93
ensight74FoamExec utility, U-179
ENSIGHT7 INPUT

environment variable, U-179
ENSIGHT7 READER

environment variable, U-179
ensightFoamReader utility, U-95
enstrophy utility, U-96
environment variable

CEI ARCH, U-179
CEI HOME, U-179
ENSIGHT7 INPUT, U-179
ENSIGHT7 READER, U-179
FOAM RUN, U-107
WM ARCH OPTION, U-78
WM ARCH, U-78
WM COMPILER BIN, U-78
WM COMPILER DIR, U-78
WM COMPILER LIB, U-78
WM COMPILER, U-78
WM COMPILE OPTION, U-78
WM DIR, U-78
WM MPLIB, U-78
WM OPTIONS, U-78
WM PRECISION OPTION, U-78
WM PROJECT DIR, U-78

WM PROJECT INST DIR, U-78
WM PROJECT USER DIR, U-78
WM PROJECT VERSION, U-78
WM PROJECT, U-78
wmake, U-78

ePsiThermo model, U-102, U-188
equilibriumCO utility, U-99
equilibriumFlameT utility, U-99
errorReduction keyword, U-159
Euler

keyword entry, U-124
Euler implicit

differencing, P-39
temporal discretisation, P-42

examples
decompression of a tank, P-62
flow around a cylinder, P-45
flow over backward step, P-53
Hartmann problem, P-68
supersonic flow over forward step, P-59

execFlowFunctionObjects utility, U-97
expandDictionary utility, U-99
expansionRatio keyword, U-158
explicit

temporal discretisation, P-42
extrude2DMesh utility, U-93
extrudeMesh utility, U-93
extrudeToRegionMesh utility, U-93

F
face class, P-31
face keyword, U-182
faceAgglomerate utility, U-93
faceAreaPair

keyword entry, U-127
faceLimited

keyword entry, U-122
faces

dictionary, U-133, U-141
FDIC

keyword entry, U-127
featureAngle keyword, U-158
features keyword, U-153
field

U, U-25
p, U-25
decomposition, U-84

FieldField<Type> template class, P-32
fieldFunctionObjects

library, U-101
fields, P-29

Open∇FOAM-2.0.0

Index U-201

mapping, U-166

fields tools, U-100

fields keyword, U-181

Field<Type> template class, P-29

fieldValues keyword, U-62

fieldview9Reader utility, U-95

file

Make/files, U-77

controlDict, P-50

files, U-75

g, U-63

options, U-75

snappyHexMeshDict, U-151

transportProperties, U-62

file format, U-108

fileFormats

library, U-102

fileModificationChecking keyword, U-83

fileModificationSkew keyword, U-83

files file, U-75

filteredLinear2

keyword entry, U-121

finalLayerRatio keyword, U-158

financialFoam solver, U-92

finite volume

discretisation, P-27

mesh, P-31

finiteVolume

library, U-100

finiteVolume tools, U-100

finiteVolumeCalculus class, P-36

finiteVolumeMethod class, P-36

fireFoam solver, U-91

firstTime keyword, U-115

fixed

keyword entry, U-116

fixedGradient

boundary condition, U-141

fixedValue

boundary condition, U-141

flattenMesh utility, U-94

floatTransfer keyword, U-83

flow

free surface, U-58

laminar, U-19

steady, turbulent, P-53

supersonic, P-59

turbulent, U-19

flow around a cylinder, P-45

flow over backward step, P-53

flowType utility, U-96

fluent3DMeshToFoam utility, U-93

fluentInterface directory, U-176

fluentMeshToFoam utility, U-93, U-159

fluxCorrectedVelocity

boundary condition, U-142

fluxRequired keyword, U-118

OpenFOAM

cases, U-107

FOAM RUN

environment variable, U-107

foamCalc utility, U-34, U-97

foamCalcFunctions

library, U-101

foamCorrectVrt script/alias, U-164

foamDataToFluent utility, U-96, U-176

foamDebugSwitches utility, U-99

FoamFile keyword, U-109

foamFile

keyword entry, U-181

foamFormatConvert utility, U-99

foamInfoExec utility, U-99

foamJob script/alias, U-184

foamListTimes utility, U-97

foamLog script/alias, U-184

foamMeshToFluent utility, U-94, U-176

foamToEnsight utility, U-96

foamToEnsightParts utility, U-96

foamToFieldview9 utility, U-96

foamToGMV utility, U-96

foamToStarMesh utility, U-94

foamToSurface utility, U-94

foamToTecplot360 utility, U-96

foamToVTK utility, U-96

foamUpgradeCyclics utility, U-93

foamUpgradeFvSolution utility, U-93

forces

library, U-101

foreground

process, U-27

format keyword, U-109

fourth

keyword entry, U-122, U-123

functions keyword, U-117

fvc class, P-36

fvc member function

curl, P-37

d2dt2, P-37

ddt, P-37

div, P-37

Open∇FOAM-2.0.0

U-202 Index

gGrad, P-37
grad, P-37
laplacian, P-37
lsGrad, P-37
snGrad, P-37
snGradCorrection, P-37
sqrGradGrad, P-37

fvDOM
library, U-103

fvm class, P-36
fvm member function

d2dt2, P-37
ddt, P-37
div, P-37
laplacian, P-37
Su, P-37
SuSp, P-37

fvMatrices tools, U-100
fvMatrix template class, P-36
fvMesh class, P-31
fvMesh tools, U-100
fvMotionSolvers

library, U-101
fvSchemes

dictionary, U-64, U-65, U-107, U-118
fvSchemes class, P-38
fvSchemes

menu entry, U-54
fvSolution

dictionary, U-107, U-125

G
g file, U-63
gambitToFoam utility, U-94, U-159
GAMG

keyword entry, U-55, U-126, U-127
Gamma

keyword entry, U-121
Gamma differencing, P-38
Gauss

keyword entry, U-122
Gauss’s theorem, P-36
GaussSeidel

keyword entry, U-127
General window panel, U-173, U-174
general

keyword entry, U-116
genericFvPatchField

library, U-102
geometric-algebraic multi-grid, U-127
GeometricBoundaryField template class, P-32

geometricField<Type> template class, P-32

geometry keyword, U-151

gGrad

fvc member function, P-37

global tools, U-100

gmshToFoam utility, U-94

gnuplot

keyword entry, U-117, U-181

grad

fvc member function, P-37

(Grad Grad) squared, P-37

gradient, P-37, P-40

Gauss scheme, P-40

Gauss’s theorem, U-54

least square fit, U-54

least squares method, P-40, U-54

surface normal, P-40

gradSchemes keyword, U-118

graph tools, U-100

graphFormat keyword, U-117

GuldersEGRLaminarFlameSpeed model, U-103

GuldersLaminarFlameSpeed model, U-103

H
hConstThermo model, U-103, U-187

Help menu, U-173

HerschelBulkley model, U-106

Hf keyword, U-189

hhuMixtureThermo model, U-102, U-189

hierarchical

keyword entry, U-85, U-86

highCpCoeffs keyword, U-190

homogenousDynSmagorinsky model, U-105

homogeneousMixture model, U-103, U-188

hPolynomialThermo model, U-103, U-187

hPsiMixtureThermo model, U-102, U-188

hPsiThermo model, U-102, U-188

hRhoMixtureThermo model, U-102, U-189

hRhoThermo model, U-102, U-188

hsPsiMixtureThermo model, U-102, U-188

hsPsiThermo model, U-102, U-188

hsRhoMixtureThermo model, U-102, U-189

I
I

tensor member function, P-25

icoFoam solver, U-19, U-23, U-24, U-27, U-88

icoPolynomial model, U-103, U-187

icoUncoupledKinematicParcelDyMFoam solver,
U-91

icoUncoupledKinematicParcelFoam solver, U-91

Open∇FOAM-2.0.0

Index U-203

ideasToFoam utility, U-159
ideasUnvToFoam utility, U-94
identities, see tensor, identities
identity, see tensor, identity
incompressibleLESModels

library, U-105
incompressibleRASModels

library, U-104
incompressibleTransportModels

library, P-54, U-106
incompressibleTurbulenceModels

library, P-54
index

notation, P-16, P-17
Information window panel, U-170
inhomogeneousMixture model, U-103, U-188
inlet

boundary condition, P-70
inletOutlet

boundary condition, U-142
inner product, see tensor, inner product
inotify

keyword entry, U-83
inotifyMaster

keyword entry, U-83
inside

keyword entry, U-155
insideCells utility, U-94
interDyMFoam solver, U-90
interfaceProperties

library, U-106
interfaceProperties model, U-106
interFoam solver, U-90
interMixingFoam solver, U-90
internalField keyword, U-23, U-112
interPhaseChangeFoam solver, U-90
interpolation tools, U-100
interpolationScheme keyword, U-181
interpolations tools, U-100
interpolationSchemes keyword, U-118
inv

tensor member function, P-25
iterations

maximum, U-126

J
janafThermo model, U-103, U-188
jobControl

library, U-101
jplot

keyword entry, U-117, U-181

K
kEpsilon model, U-104, U-105

keyword

As, U-190

Cp, U-189

Cv, U-189

FoamFile, U-109

Hf, U-189

LESModel, U-192

Pr, U-190

RASModel, U-192

Tcommon, U-190

Thigh, U-190

Tlow, U-190

Ts, U-190

addLayersControls, U-151

adjustTimeStep, U-63

agglomerator, U-127

arc, U-143

blocks, U-22, U-33, U-145

block, U-143

boundaryField, U-23, U-112

boundary, U-146

boxToCell, U-62

cAlpha, U-65

cacheAgglomeration, U-128

castellatedMeshControls, U-151

castellatedMesh, U-151

class, U-109

cloud, U-182

commsType, U-83

convertToMeters, U-143, U-144

curve, U-182

debug, U-151

defaultFieldValues, U-62

deltaT, U-116

delta, U-86, U-192

dimensions, U-23, U-112

distributed, U-86, U-87

divSchemes, U-118

doLayers, U-151

edgeGrading, U-145

edges, U-143

endTime, U-24, U-115, U-116

errorReduction, U-159

expansionRatio, U-158

face, U-182

featureAngle, U-158

features, U-153

fieldValues, U-62

Open∇FOAM-2.0.0

U-204 Index

fields, U-181

fileModificationChecking, U-83

fileModificationSkew, U-83

finalLayerRatio, U-158

firstTime, U-115

floatTransfer, U-83

fluxRequired, U-118

format, U-109

functions, U-117

geometry, U-151

gradSchemes, U-118

graphFormat, U-117

highCpCoeffs, U-190

internalField, U-23, U-112

interpolationSchemes, U-118

interpolationScheme, U-181

laplacianSchemes, U-118

latestTime, U-40

layers, U-158

leastSquares, U-54

levels, U-155

libs, U-82, U-117

locationInMesh, U-153, U-155

location, U-109

lowCpCoeffs, U-190

manualCoeffs, U-86

maxAlphaCo, U-63

maxBoundarySkewness, U-159

maxConcave, U-159

maxCo, U-63

maxDeltaT, U-63

maxFaceThicknessRatio, U-158

maxGlobalCells, U-153

maxInternalSkewness, U-159

maxIter, U-126

maxLocalCells, U-153

maxNonOrtho, U-159

maxThicknessToMedialRatio, U-158

mergeLevels, U-128

mergePatchPairs, U-143

mergeTolerance, U-151

meshQualityControls, U-151

method, U-86

midPointAndFace, U-182

midPoint, U-182

minArea, U-159

minDeterminant, U-159

minFaceWeight, U-159

minFlatness, U-159

minMedianAxisAngle, U-158

minRefinementCells, U-153

minThickness, U-158

minTriangleTwist, U-159

minTwist, U-159

minVolRatio, U-159

minVol, U-159

mode, U-155

molWeight, U-189

mu, U-190

nAlphaSubCycles, U-65

nBufferCellsNoExtrude, U-158

nCellsBetweenLevels, U-153

nFaces, U-134

nFinestSweeps, U-128

nGrow, U-158

nLayerIter, U-158

nMoles, U-189

nPostSweeps, U-128

nPreSweeps, U-128

nRelaxIter, U-156, U-158

nRelaxedIter, U-158

nSmoothNormals, U-158

nSmoothPatch, U-156

nSmoothScale, U-159

nSmoothSurfaceNormals, U-158

nSmoothThickness, U-158

nSolveIter, U-156

neighbourPatch, U-147

numberOfSubdomains, U-86

n, U-86

object, U-109

order, U-86

pRefCell, U-25, U-130

pRefValue, U-25, U-130

p rhgRefCell, U-130

p rhgRefValue, U-130

patchMap, U-166

patches, U-143

preconditioner, U-126, U-127

pressure, U-53

printCeoffs, U-192

printCoeffs, U-43

processorWeights, U-85

processorWeights, U-86

purgeWrite, U-116

refGradient, U-141

refinementRegions, U-153, U-155

refinementSurfaces, U-153, U-154

refinementRegions, U-155

regions, U-62

Open∇FOAM-2.0.0

Index U-205

relTol, U-55, U-126

relativeSizes, U-158

relaxed, U-159

resolveFeatureAngle, U-153, U-154

roots, U-86, U-87

runTimeModifiable, U-117

scotchCoeffs, U-86

setFormat, U-181

sets, U-181

simpleGrading, U-145

simulationType, U-43, U-63, U-191

smoother, U-128

snGradSchemes, U-118

snapControls, U-151

snap, U-151

solvers, U-125

solver, U-55, U-125

specie, U-189

spline, U-143

startFace, U-134

startFrom, U-24, U-115

startTime, U-24, U-115

stopAt, U-115

strategy, U-85, U-86

surfaceFormat, U-181

surfaces, U-181

thermoType, U-187

thermodynamics, U-189

timeFormat, U-116

timePrecision, U-117

timeScheme, U-118

tolerance, U-55, U-126, U-156

topoSetSource, U-62

traction, U-53

transport, U-189

turbulence, U-192

type, U-135, U-138

uniform, U-182

valueFraction, U-141

value, U-23, U-141

version, U-109

vertices, U-22, U-143, U-144

writeCompression, U-116

writeControl, U-24, U-64, U-116

writeFormat, U-57, U-116

writeInterval, U-24, U-34, U-116

writePrecision, U-116

<LESModel>Coeffs, U-192

<RASModel>Coeffs, U-192

<delta>Coeffs, U-192

keyword entry

CrankNicholson, U-124

CrossPowerLaw, U-62

DICGaussSeidel, U-127

DIC, U-127

DILU, U-127

Euler, U-124

FDIC, U-127

GAMG, U-55, U-126, U-127

Gamma, U-121

GaussSeidel, U-127

Gauss, U-122

LESModel, U-43, U-191

MGridGen, U-127

MUSCL, U-121

Newtonian, U-62

PBiCG, U-126

PCG, U-126

QUICK, U-124

RASModel, U-43, U-191

SFCD, U-121, U-124

UMIST, U-119

adjustableRunTime, U-64, U-116

arc, U-144

ascii, U-116

backward, U-124

binary, U-116

blocking, U-83

bounded, U-122, U-123

cellLimited, U-122

cellPointFace, U-181

cellPoint, U-181

cell, U-181

clockTime, U-116

compressed, U-116

corrected, U-122, U-123

cpuTime, U-116

cubicCorrected, U-124

cubicCorrection, U-121

cyclic, U-140

diagonal, U-126, U-127

distance, U-155, U-182

dx, U-181

empty, U-140

faceAreaPair, U-127

faceLimited, U-122

filteredLinear2, U-121

fixed, U-116

foamFile, U-181

fourth, U-122, U-123

Open∇FOAM-2.0.0

U-206 Index

general, U-116

gnuplot, U-117, U-181

hierarchical, U-85, U-86

inotifyMaster, U-83

inotify, U-83

inside, U-155

jplot, U-117, U-181

laminar, U-43, U-191

latestTime, U-115

leastSquares, U-122

limitedCubic, U-121

limitedLinear, U-121

limited, U-122, U-123

linearUpwind, U-121, U-124

linear, U-121, U-124

line, U-144

localEuler, U-124

manual, U-85, U-86

metis, U-86

midPoint, U-121

nextWrite, U-116

noWriteNow, U-116

nonBlocking, U-83

none, U-119, U-127

null, U-181

outside, U-155

patch, U-140, U-182

polyLine, U-144

polySpline, U-144

processor, U-140

raw, U-117, U-181

runTime, U-34, U-116

scheduled, U-83

scientific, U-116

scotch, U-85, U-86

simpleSpline, U-144

simple, U-85, U-86

skewLinear, U-121, U-124

smoothSolver, U-126

startTime, U-24, U-115

steadyState, U-124

stl, U-181

symmetryPlane, U-140

timeStampMaster, U-83

timeStamp, U-83

timeStep, U-24, U-34, U-116

uncompressed, U-116

uncorrected, U-122, U-123

upwind, U-121, U-124

vanLeer, U-121

vtk, U-181
wall, U-140
wedge, U-140
writeControl, U-116
writeNow, U-115
xmgr, U-117, U-181
xyz, U-182
x, U-182
y, U-182
z, U-182

kivaToFoam utility, U-94
kOmega model, U-104
kOmegaSST model, U-104, U-105
kOmegaSSTSAS model, U-105
Kronecker delta, P-21

L
lagrangian

library, U-101
lagrangianIntermediate

library, U-101
Lambda2 utility, U-96
LamBremhorstKE model, U-104
laminar model, U-104, U-105
laminar

keyword entry, U-43, U-191
laminarFlameSpeedModels

library, U-103
laplaceFilter model, U-105
Laplacian, P-38
laplacian, P-37
laplacian

fvc member function, P-37
fvm member function, P-37

laplacianFoam solver, U-88
laplacianSchemes keyword, U-118
latestTime

keyword entry, U-115
latestTime keyword, U-40
LaunderGibsonRSTM model, U-104, U-105
LaunderSharmaKE model, U-104, U-105
layers keyword, U-158
leastSquares

keyword entry, U-122
leastSquares keyword, U-54
LESdeltas

library, U-105
LESfilters

library, U-105
LESModel

keyword entry, U-43, U-191

Open∇FOAM-2.0.0

Index U-207

LESModel keyword, U-192

LESProperties

dictionary, U-192

levels keyword, U-155

libraries, U-71

library

Chung, U-103

LESdeltas, U-105

LESfilters, U-105

MGridGenGAMGAgglomeration, U-102

ODE, U-101

OSspecific, U-102

OpenFOAM, U-100

P1, U-103

PV3FoamReader, U-169

PVFoamReader, U-169

SLGThermo, U-104

Wallis, U-103

autoMesh, U-101

barotropicCompressibilityModels, U-103

basicSolidThermo, U-104

basicThermophysicalModels, U-102

blockMesh, U-101

chemistryModel, U-104

coalCombustion, U-101

compressibleLESModels, U-106

compressibleRASModels, U-105

conversion, U-101

decompositionMethods, U-101

dieselSpray, U-101

distributionModels, U-101

dsmc, U-101

dynamicFvMesh, U-101

dynamicMesh, U-101

edgeMesh, U-101

engine, U-101

fieldFunctionObjects, U-101

fileFormats, U-102

finiteVolume, U-100

foamCalcFunctions, U-101

forces, U-101

fvDOM, U-103

fvMotionSolvers, U-101

genericFvPatchField, U-102

incompressibleLESModels, U-105

incompressibleRASModels, U-104

incompressibleTransportModels, P-54, U-106

incompressibleTurbulenceModels, P-54

interfaceProperties, U-106

jobControl, U-101

lagrangianIntermediate, U-101

lagrangian, U-101

laminarFlameSpeedModels, U-103

linear, U-103

liquidMixtureProperties, U-104

liquidProperties, U-104

meshTools, U-101

molecularMeasurements, U-101

molecule, U-101

pairPatchAgglomeration, U-102

postCalc, U-101

potential, U-101

primitive, P-23

radiationModels, U-103

randomProcesses, U-102

reactionThermophysicalModels, U-102

sampling, U-101

solidMixtureProperties, U-104

solidParticle, U-101

solidProperties, U-104

solid, U-104

specie, U-103

surfMesh, U-101

surfaceFilmModels, U-106

systemCall, U-101

thermalPorousZone, U-104

thermophysicalFunctions, U-104

thermophysical, U-187

topoChangerFvMesh, U-101

triSurface, U-101

twoPhaseInterfaceProperties, U-106

utilityFunctionObjects, U-101

viewFactor, U-103

vtkFoam, U-169

vtkPV3Foam, U-169

libs keyword, U-82, U-117

lid-driven cavity flow, U-19

LienCubicKE model, U-104

LienCubicKELowRe model, U-104

LienLeschzinerLowRe model, U-104

Lights window panel, U-174

limited

keyword entry, U-122, U-123

limitedCubic

keyword entry, U-121

limitedLinear

keyword entry, U-121

line

keyword entry, U-144

Line Style menu, U-37

Open∇FOAM-2.0.0

U-208 Index

linear
library, U-103

linear

keyword entry, U-121, U-124
linearUpwind

keyword entry, U-121, U-124
liquid

electrically-conducting, P-68
liquidMixtureProperties

library, U-104
liquidProperties

library, U-104
lists, P-29
List<Type> template class, P-29
localEuler

keyword entry, U-124
location keyword, U-109
locationInMesh keyword, U-153, U-155
locDynOneEqEddy model, U-105
lowCpCoeffs keyword, U-190
lowReOneEqEddy model, U-106
LRDDiffStress model, U-105
LRR model, U-104, U-105
lsGrad

fvc member function, P-37
LTSInterFoam solver, U-90
LTSReactingParcelFoam solver, U-91

M
Mach utility, U-96
mag

tensor member function, P-25
magneticFoam solver, U-92
magnetohydrodynamics, P-68
magSqr

tensor member function, P-25
Make directory, U-75
make script/alias, U-73
Make/files file, U-77
manual

keyword entry, U-85, U-86
manualCoeffs keyword, U-86
mapFields utility, U-33, U-40, U-44, U-57, U-93,

U-166
mapping

fields, U-166
Marker Style menu, U-37
matrices tools, U-100
max

tensor member function, P-25
maxAlphaCo keyword, U-63

maxBoundarySkewness keyword, U-159

maxCo keyword, U-63

maxConcave keyword, U-159

maxDeltaT keyword, U-63

maxDeltaxyz model, U-105

maxFaceThicknessRatio keyword, U-158

maxGlobalCells keyword, U-153

maximum iterations, U-126

maxInternalSkewness keyword, U-159

maxIter keyword, U-126

maxLocalCells keyword, U-153

maxNonOrtho keyword, U-159

maxThicknessToMedialRatio keyword, U-158

mdEquilibrationFoam solver, U-92

mdFoam solver, U-92

mdInitialise utility, U-93

mechanicalProperties

dictionary, U-53

memory tools, U-100

menu

Color By, U-173

Current Time Controls, U-27, U-171

Edit, U-173, U-174

Help, U-173

Line Style, U-37

Marker Style, U-37

VCR Controls, U-27, U-171

View, U-173

menu entry

Plot Over Line, U-36

Save Animation, U-175

Save Screenshot, U-175

Settings, U-174

Show Color Legend, U-29

Solid Color, U-173

Toolbars, U-173

View Settings..., U-26

View Settings, U-27, U-173

Wireframe, U-173

fvSchemes, U-54

mergeLevels keyword, U-128

mergeMeshes utility, U-94

mergeOrSplitBaffles utility, U-94

mergePatchPairs keyword, U-143

mergeTolerance keyword, U-151

mesh

1-dimensional, U-135

1D, U-135

2-dimensional, U-135

2D, U-135

Open∇FOAM-2.0.0

Index U-209

axi-symmetric, U-135

basic, P-31

block structured, U-141

decomposition, U-84

description, U-131

finite volume, P-31

generation, U-141, U-150

grading, U-141, U-145

grading, example of, P-53

non-orthogonal, P-45

refinement, P-62

resolution, U-31

specification, U-131

split-hex, U-150

Stereolithography (STL), U-150

surface, U-150

validity constraints, U-131

Mesh Parts window panel, U-26

meshes tools, U-100

meshQualityControls keyword, U-151

meshTools

library, U-101

message passing interface

openMPI, U-85

method keyword, U-86

metis

keyword entry, U-86

MGridGenGAMGAgglomeration

library, U-102

MGridGen

keyword entry, U-127

mhdFoam solver, P-70, U-92

midPoint

keyword entry, U-121

midPoint keyword, U-182

midPointAndFace keyword, U-182

min

tensor member function, P-25

minArea keyword, U-159

minDeterminant keyword, U-159

minFaceWeight keyword, U-159

minFlatness keyword, U-159

minMedianAxisAngle keyword, U-158

MINMOD differencing, P-38

minRefinementCells keyword, U-153

minThickness keyword, U-158

minTriangleTwist keyword, U-159

minTwist keyword, U-159

minVol keyword, U-159

minVolRatio keyword, U-159

mirrorMesh utility, U-94

mixed

boundary condition, U-141

mixedSmagorinsky model, U-105

mixtureAdiabaticFlameT utility, U-99

mode keyword, U-155

model

APIfunctions, U-104

BirdCarreau, U-106

CrossPowerLaw, U-106

DeardorffDiffStress, U-105, U-106

GuldersEGRLaminarFlameSpeed, U-103

GuldersLaminarFlameSpeed, U-103

HerschelBulkley, U-106

LRDDiffStress, U-105

LRR, U-104, U-105

LamBremhorstKE, U-104

LaunderGibsonRSTM, U-104, U-105

LaunderSharmaKE, U-104, U-105

LienCubicKELowRe, U-104

LienCubicKE, U-104

LienLeschzinerLowRe, U-104

NSRDSfunctions, U-104

Newtonian, U-106

NonlinearKEShih, U-104

PrandtlDelta, U-105

RNGkEpsilon, U-104, U-105

Smagorinsky2, U-105

Smagorinsky, U-105, U-106

SpalartAllmarasDDES, U-105

SpalartAllmarasIDDES, U-105

SpalartAllmaras, U-105, U-106

anisotropicFilter, U-105

basicMultiComponentMixture, U-103, U-188

chemistryModel, U-104

chemistrySolver, U-104

constLaminarFlameSpeed, U-103

constTransport, U-103, U-188

cubeRootVolDelta, U-105

dieselMixture, U-103, U-188

distributed, U-102

dynLagrangian, U-105

dynMixedSmagorinsky, U-105

dynOneEqEddy, U-105, U-106

dynSmagorinsky, U-105

eConstThermo, U-103, U-187

ePsiThermo, U-102, U-188

egrMixture, U-103, U-188

hConstThermo, U-103, U-187

hPolynomialThermo, U-103, U-187

Open∇FOAM-2.0.0

U-210 Index

hPsiMixtureThermo, U-102, U-188

hPsiThermo, U-102, U-188

hRhoMixtureThermo, U-102, U-189

hRhoThermo, U-102, U-188

hhuMixtureThermo, U-102, U-189

homogenousDynSmagorinsky, U-105

homogeneousMixture, U-103, U-188

hsPsiMixtureThermo, U-102, U-188

hsPsiThermo, U-102, U-188

hsRhoMixtureThermo, U-102, U-189

icoPolynomial, U-103, U-187

inhomogeneousMixture, U-103, U-188

interfaceProperties, U-106

janafThermo, U-103, U-188

kEpsilon, U-104, U-105

kOmegaSSTSAS, U-105

kOmegaSST, U-104, U-105

kOmega, U-104

laminar, U-104, U-105

laplaceFilter, U-105

locDynOneEqEddy, U-105

lowReOneEqEddy, U-106

maxDeltaxyz, U-105

mixedSmagorinsky, U-105

multiComponentMixture, U-103, U-188

oneEqEddy, U-105, U-106

perfectGas, U-103, U-187

polynomialTransport, U-104, U-188

powerLaw, U-106

ptsotchDecomp, U-102

pureMixture, U-102, U-188

qZeta, U-104

reactingMixture, U-103, U-188

realizableKE, U-104, U-105

reconstruct, U-102

scaleSimilarity, U-105

scotchDecomp, U-102

simpleFilter, U-105

smoothDelta, U-105

specieThermo, U-103, U-188

spectEddyVisc, U-105

sutherlandTransport, U-104, U-188

veryInhomogeneousMixture, U-103, U-188

modifyMesh utility, U-95

molecularMeasurements

library, U-101

molecule

library, U-101

molWeight keyword, U-189

moveDynamicMesh utility, U-94

moveEngineMesh utility, U-94
moveMesh utility, U-94
movingWallVelocity

boundary condition, U-142
MPI

openMPI, U-85
MRFInterFoam solver, U-90
MRFMultiphaseInterFoam solver, U-90
MRFSimpleFoam solver, U-88
mshToFoam utility, U-94
mu keyword, U-190
multiComponentMixture model, U-103, U-188
multigrid

geometric-algebraic, U-127
multiphaseInterFoam solver, U-90
MUSCL

keyword entry, U-121

N
n keyword, U-86
nabla

operator, P-27
nAlphaSubCycles keyword, U-65
nBufferCellsNoExtrude keyword, U-158
nCellsBetweenLevels keyword, U-153
neighbour

dictionary, U-134
neighbourPatch keyword, U-147
netgenNeutralToFoam utility, U-94
Newtonian

keyword entry, U-62
Newtonian model, U-106
nextWrite

keyword entry, U-116
nFaces keyword, U-134
nFinestSweeps keyword, U-128
nGrow keyword, U-158
nLayerIter keyword, U-158
nMoles keyword, U-189
non-orthogonal mesh, P-45
nonBlocking

keyword entry, U-83
none

keyword entry, U-119, U-127
NonlinearKEShih model, U-104
nonNewtonianIcoFoam solver, U-88
noWriteNow

keyword entry, U-116
nPostSweeps keyword, U-128
nPreSweeps keyword, U-128
nRelaxedIter keyword, U-158

Open∇FOAM-2.0.0

Index U-211

nRelaxIter keyword, U-156, U-158

nSmoothNormals keyword, U-158

nSmoothPatch keyword, U-156

nSmoothScale keyword, U-159

nSmoothSurfaceNormals keyword, U-158

nSmoothThickness keyword, U-158

nSolveIter keyword, U-156

NSRDSfunctions model, U-104

null

keyword entry, U-181

numberOfSubdomains keyword, U-86

O
object keyword, U-109

objToVTK utility, U-94

ODE

library, U-101

oneEqEddy model, U-105, U-106

Opacity text box, U-173

OpenFOAM

applications, U-71

file format, U-108

libraries, U-71

OpenFOAM

library, U-100

OpenFOAM file syntax

//, U-108

openMPI

message passing interface, U-85

MPI, U-85

operator

scalar, P-28

vector, P-27

Options window, U-174

options file, U-75

order keyword, U-86

Orientation Axes button, U-27, U-174

OSspecific

library, U-102

outer product, see tensor, outer product

outlet

boundary condition, P-70

outletInlet

boundary condition, U-142

outside

keyword entry, U-155

owner

dictionary, U-133

P
p field, U-25

P1

library, U-103

p rhgRefCell keyword, U-130

p rhgRefValue keyword, U-130

pairPatchAgglomeration

library, U-102

paraFoam, U-25, U-169

parallel

running, U-84

partialSlip

boundary condition, U-142

particleTracks utility, U-97

patch

boundary condition, U-139

patch

keyword entry, U-140, U-182

patchAverage utility, U-97

patches keyword, U-143

patchIntegrate utility, U-97

patchMap keyword, U-166

patchSummary utility, U-99

PBiCG

keyword entry, U-126

PCG

keyword entry, U-126

pdfPlot utility, U-97

PDRFoam solver, U-91

PDRMesh utility, U-95

Pe utility, U-96

perfectGas model, U-103, U-187

permutation symbol, P-20

pimpleDyMFoam solver, U-88

pimpleFoam solver, U-88

Pipeline Browser window, U-26, U-170

PISO

dictionary, U-25

pisoFoam solver, U-19, U-89

Plot Over Line

menu entry, U-36

plot3dToFoam utility, U-94

pointField class, P-31

pointField<Type> template class, P-33

points

dictionary, U-133, U-141

polyBoundaryMesh class, P-31

polyDualMesh utility, U-94

polyLine

keyword entry, U-144

polyMesh directory, U-107, U-133

polyMesh class, P-31, U-131, U-133

Open∇FOAM-2.0.0

U-212 Index

polynomialTransport model, U-104, U-188

polyPatch class, P-31

polyPatchList class, P-31

polySpline

keyword entry, U-144

porousExplicitSourceReactingParcelFoam solver,
U-91

porousInterFoam solver, U-90

porousSimpleFoam solver, U-89

post-processing, U-169

post-processing

paraFoam, U-169

postCalc

library, U-101

postChannel utility, U-97

potential

library, U-101

potentialFoam solver, P-46, U-88

pow

tensor member function, P-25

powerLaw model, U-106

pPrime2 utility, U-96

Pr keyword, U-190

PrandtlDelta model, U-105

preconditioner keyword, U-126, U-127

pRefCell keyword, U-25, U-130

pRefValue keyword, U-25, U-130

pressure keyword, U-53

pressure waves

in liquids, P-63

pressureDirectedInletVelocity

boundary condition, U-142

pressureInletVelocity

boundary condition, U-142

pressureOutlet

boundary condition, P-64

pressureTransmissive

boundary condition, U-142

primitive

library, P-23

primitives tools, U-100

printCeoffs keyword, U-192

printCoeffs keyword, U-43

processorWeights keyword, U-85

probeLocations utility, U-97

process

background, U-27, U-84

foreground, U-27

processor

boundary condition, U-140

processor

keyword entry, U-140

processorN directory, U-85

processorWeights keyword, U-86

Properties window panel, U-27, U-170, U-171

ptot utility, U-97

ptsotchDecomp model, U-102

pureMixture model, U-102, U-188

purgeWrite keyword, U-116

PV3FoamReader

library, U-169

PVFoamReader

library, U-169

Q
Q utility, U-96

QUICK

keyword entry, U-124

qZeta model, U-104

R
R utility, U-97

radiationModels

library, U-103

randomProcesses

library, U-102

RASModel

keyword entry, U-43, U-191

RASModel keyword, U-192

raw

keyword entry, U-117, U-181

reactingFoam solver, U-91

reactingMixture model, U-103, U-188

reactingParcelFilmFoam solver, U-92

reactingParcelFoam solver, U-92

reactionThermophysicalModels

library, U-102

realizableKE model, U-104, U-105

reconstruct model, U-102

reconstructPar utility, U-87, U-99

reconstructParMesh utility, U-99

redistributeMeshPar utility, U-99

refGradient keyword, U-141

refineHexMesh utility, U-95

refinementRegions keyword, U-155

refinementLevel utility, U-95

refinementRegions keyword, U-153, U-155

refinementSurfaces keyword, U-153, U-154

refineMesh utility, U-95

refineWallLayer utility, U-95

Refresh Times button, U-27

Open∇FOAM-2.0.0

Index U-213

regions keyword, U-62
relative tolerance, U-126
relativeSizes keyword, U-158
relaxed keyword, U-159
relTol keyword, U-55, U-126
removeFaces utility, U-95
Render View window, U-174
Render View window panel, U-174
renumberMesh utility, U-95
Rescale to Data Range button, U-27
Reset button, U-170
resolveFeatureAngle keyword, U-153, U-154
restart, U-40
Reynolds number, U-19, U-23
rhoPorousMRFLTSPimpleFoam solver, U-89
rhoPorousMRFPimpleFoam solver, U-89
rhoPorousMRFSimpleFoam solver, U-89
rhoCentralDyMFoam solver, U-89
rhoCentralFoam solver, U-89
rhoPimpleFoam solver, U-89
rhoReactingFoam solver, U-91
rhoSimpleFoam solver, U-89
rhoSimplecFoam solver, U-89
rmdepall script/alias, U-79
RNGkEpsilon model, U-104, U-105
roots keyword, U-86, U-87
rotateMesh utility, U-95
run

parallel, U-84
run directory, U-107
runTime

keyword entry, U-34, U-116
runTimeModifiable keyword, U-117

S
sammToFoam utility, U-94
sample utility, U-97, U-180
sampling

library, U-101
Save Animation

menu entry, U-175
Save Screenshot

menu entry, U-175
scalar, P-16

operator, P-28
scalar class, P-24
scalarField class, P-29
scalarTransportFoam solver, U-88
scale

tensor member function, P-25
scalePoints utility, U-163

scaleSimilarity model, U-105

scheduled

keyword entry, U-83

scientific

keyword entry, U-116

scotch

keyword entry, U-85, U-86

scotchCoeffs keyword, U-86

scotchDecomp model, U-102

script/alias

foamCorrectVrt, U-164

foamJob, U-184

foamLog, U-184

make, U-73

rmdepall, U-79

wclean, U-78

wmake, U-73

second time derivative, P-37

Seed window, U-175

selectCells utility, U-95

Set Ambient Color button, U-173

setFields utility, U-61, U-62, U-93

setFormat keyword, U-181

sets keyword, U-181

setSet utility, U-95

setsToZones utility, U-95

Settings

menu entry, U-174

settlingFoam solver, U-90

SFCD

keyword entry, U-121, U-124

shallowWaterFoam solver, U-89

shape, U-145

Show Color Legend

menu entry, U-29

SI units, U-112

simple

keyword entry, U-85, U-86

simpleFilter model, U-105

simpleFoam solver, P-54, U-89

simpleGrading keyword, U-145

simpleSpline

keyword entry, U-144

simulationType keyword, U-43, U-63, U-191

singleCellMesh utility, U-95

skew

tensor member function, P-25

skewLinear

keyword entry, U-121, U-124

SLGThermo

Open∇FOAM-2.0.0

U-214 Index

library, U-104

slice class, P-31

slip

boundary condition, U-142

Smagorinsky model, U-105, U-106

Smagorinsky2 model, U-105

smapToFoam utility, U-96

smoothDelta model, U-105

smoother keyword, U-128

smoothSolver

keyword entry, U-126

snap keyword, U-151

snapControls keyword, U-151

snappyHexMesh utility

background mesh, U-152

cell removal, U-154

cell splitting, U-153

mesh layers, U-156

meshing process, U-151

snapping to surfaces, U-156

snappyHexMesh utility, U-93, U-150

snappyHexMeshDict file, U-151

snGrad

fvc member function, P-37

snGradCorrection

fvc member function, P-37

snGradSchemes keyword, U-118

solid

library, U-104

Solid Color

menu entry, U-173

solidDisplacementFoam solver, U-92

solidDisplacementFoam solver, U-53

solidEquilibriumDisplacementFoam solver, U-92

solidMixtureProperties

library, U-104

solidParticle

library, U-101

solidProperties

library, U-104

solver

LTSInterFoam, U-90

LTSReactingParcelFoam, U-91

MRFInterFoam, U-90

MRFMultiphaseInterFoam, U-90

MRFSimpleFoam, U-88

PDRFoam, U-91

SRFSimpleFoam, U-89

XiFoam, U-91

adjointShapeOptimizationFoam, U-88

blockMesh, P-47

boundaryFoam, U-88

bubbleFoam, U-89

buoyantBaffleSimpleFoam, U-91

buoyantBoussinesqPimpleFoam, U-91

buoyantBoussinesqSimpleFoam, U-91

buoyantPimpleFoam, U-91

buoyantSimpleFoam, U-91

buoyantSimpleRadiationFoam, U-91

cavitatingFoam, U-89

channelFoam, U-88

chemFoam, U-90

chtMultiRegionFoam, U-91

coalChemistryFoam, U-91

coldEngineFoam, U-90

compressibleInterFoam, U-90

dieselEngineFoam, U-91

dieselFoam, U-91

dnsFoam, U-90

dsmcFoam, U-92

electrostaticFoam, U-92

engineFoam, U-91

financialFoam, U-92

fireFoam, U-91

icoFoam, U-19, U-23, U-24, U-27, U-88

icoUncoupledKinematicParcelDyMFoam,
U-91

icoUncoupledKinematicParcelFoam, U-91

interDyMFoam, U-90

interFoam, U-90

interMixingFoam, U-90

interPhaseChangeFoam, U-90

laplacianFoam, U-88

magneticFoam, U-92

mdEquilibrationFoam, U-92

mdFoam, U-92

mhdFoam, P-70, U-92

multiphaseInterFoam, U-90

nonNewtonianIcoFoam, U-88

pimpleDyMFoam, U-88

pimpleFoam, U-88

pisoFoam, U-19, U-89

porousExplicitSourceReactingParcelFoam,
U-91

porousInterFoam, U-90

porousSimpleFoam, U-89

potentialFoam, P-46, U-88

reactingFoam, U-91

reactingParcelFilmFoam, U-92

reactingParcelFoam, U-92

Open∇FOAM-2.0.0

Index U-215

rhoCentralDyMFoam, U-89

rhoCentralFoam, U-89

rhoPimpleFoam, U-89

rhoReactingFoam, U-91

rhoSimpleFoam, U-89

rhoSimplecFoam, U-89

rhoPorousMRFLTSPimpleFoam, U-89

rhoPorousMRFPimpleFoam, U-89

rhoPorousMRFSimpleFoam, U-89

scalarTransportFoam, U-88

settlingFoam, U-90

shallowWaterFoam, U-89

simpleFoam, P-54, U-89

solidDisplacementFoam, U-92

solidDisplacementFoam, U-53

solidEquilibriumDisplacementFoam, U-92

sonicDyMFoam, U-89

sonicFoam, P-60, U-89

sonicLiquidFoam, P-64, U-89

twoLiquidMixingFoam, U-90

twoPhaseEulerFoam, U-90

uncoupledKinematicParcelFoam, U-92

windSimpleFoam, U-89

solver keyword, U-55, U-125

solver relative tolerance, U-126

solver tolerance, U-126

solvers keyword, U-125

sonicDyMFoam solver, U-89

sonicFoam solver, P-60, U-89

sonicLiquidFoam solver, P-64, U-89

source, P-37

SpalartAllmaras model, U-105, U-106

SpalartAllmarasDDES model, U-105

SpalartAllmarasIDDES model, U-105

specie

library, U-103

specie keyword, U-189

specieThermo model, U-103, U-188

spectEddyVisc model, U-105

spline keyword, U-143

splitCells utility, U-95

splitMesh utility, U-95

splitMeshRegions utility, U-95

sqr

tensor member function, P-25

sqrGradGrad

fvc member function, P-37

SRFSimpleFoam solver, U-89

star3ToFoam utility, U-94

star4ToFoam utility, U-94

startFace keyword, U-134

startFrom keyword, U-24, U-115

starToFoam utility, U-159

startTime

keyword entry, U-24, U-115

startTime keyword, U-24, U-115

steady flow

turbulent, P-53

steadyParticleTracks utility, U-97

steadyState

keyword entry, U-124

Stereolithography (STL), U-150

stitchMesh utility, U-95

stl

keyword entry, U-181

stopAt keyword, U-115

strategy keyword, U-85, U-86

streamFunction utility, U-96

stress analysis of plate with hole, U-48

stressComponents utility, U-96

Style window panel, U-26, U-173

Su

fvm member function, P-37

subsetMesh utility, U-95

summation convention, P-17

SUPERBEE differencing, P-38

supersonic flow, P-59

supersonic flow over forward step, P-59

supersonicFreeStream

boundary condition, U-142

surface mesh, U-150

surfaceAdd utility, U-98

surfaceAutoPatch utility, U-98

surfaceCheck utility, U-98

surfaceClean utility, U-98

surfaceCoarsen utility, U-98

surfaceConvert utility, U-98

surfaceFeatureConvert utility, U-98

surfaceFeatureExtract utility, U-98, U-154

surfaceField<Type> template class, P-33

surfaceFilmModels

library, U-106

surfaceFind utility, U-98

surfaceFormat keyword, U-181

surfaceInertia utility, U-98

surfaceMesh tools, U-100

surfaceMeshConvert utility, U-98

surfaceMeshConvertTesting utility, U-98

surfaceMeshExport utility, U-98

surfaceMeshImport utility, U-98

Open∇FOAM-2.0.0

U-216 Index

surfaceMeshInfo utility, U-98
surfaceMeshTriangulate utility, U-98
surfaceNormalFixedValue

boundary condition, U-142
surfaceOrient utility, U-98
surfacePointMerge utility, U-98
surfaceRedistributePar utility, U-98
surfaceRefineRedGreen utility, U-98
surfaces keyword, U-181
surfaceSmooth utility, U-98
surfaceSplitByPatch utility, U-98
surfaceSplitNonManifolds utility, U-99
surfaceSubset utility, U-99
surfaceToPatch utility, U-99
surfaceTransformPoints utility, U-99
surfMesh

library, U-101
SuSp

fvm member function, P-37
sutherlandTransport model, U-104, U-188
symm

tensor member function, P-25
symmetryPlane

boundary condition, P-64, U-140
symmetryPlane

keyword entry, U-140
symmTensorField class, P-29
symmTensorThirdField class, P-29
system directory, P-50, U-107
systemCall

library, U-101

T
T()

tensor member function, P-25
Tcommon keyword, U-190
template class

GeometricBoundaryField, P-32
fvMatrix, P-36
dimensioned<Type>, P-26
FieldField<Type>, P-32
Field<Type>, P-29
geometricField<Type>, P-32
List<Type>, P-29
pointField<Type>, P-33
surfaceField<Type>, P-33
volField<Type>, P-33

temporal discretisation, P-42
Crank Nicholson, P-43
Euler implicit, P-42
explicit, P-42

in OpenFOAM, P-43

tensor, P-15

addition, P-18

algebraic operations, P-18

algebraic operations in OpenFOAM, P-24

antisymmetric, see tensor, skew

calculus, P-27

classes in OpenFOAM, P-23

cofactors, P-22

component average, P-20

component maximum, P-20

component minimum, P-20

determinant, P-22

deviatoric, P-22

diagonal, P-22

dimension, P-16

double inner product, P-19

geometric transformation, P-21

Hodge dual, P-23

hydrostatic, P-22

identities, P-21

identity, P-21

inner product, P-18

inverse, P-23

magnitude, P-20

magnitude squared, P-20

mathematics, P-15

notation, P-17

nth power, P-20

outer product, P-19

rank, P-16

rank 3, P-17

scalar division, P-18

scalar multiplication, P-18

scale function, P-20

second rank, P-16

skew, P-22

square of, P-20

subtraction, P-18

symmetric, P-22

symmetric rank 2, P-16

symmetric rank 3, P-17

trace, P-22

transformation, P-21

transpose, P-16, P-22

triple inner product, P-19

vector cross product, P-20

tensor class, P-24

tensor member function

*, P-25

Open∇FOAM-2.0.0

Index U-217

+, P-25

-, P-25

/, P-25

&, P-25

&&, P-25

^, P-25

cmptAv, P-25

cofactors, P-25

det, P-25

dev, P-25

diag, P-25

I, P-25

inv, P-25

mag, P-25

magSqr, P-25

max, P-25

min, P-25

pow, P-25

scale, P-25

skew, P-25

sqr, P-25

symm, P-25

T(), P-25

tr, P-25

transform, P-25

tensorField class, P-29

tensorThirdField class, P-29

tetgenToFoam utility, U-94

text box

Opacity, U-173

thermalPorousZone

library, U-104

thermalProperties

dictionary, U-53

thermodynamics keyword, U-189

thermophysical

library, U-187

thermophysicalFunctions

library, U-104

thermophysicalProperties

dictionary, U-187

thermoType keyword, U-187

Thigh keyword, U-190

time

control, U-115

time derivative, P-37

first, P-39

second, P-37, P-39

time step, U-24

timeFormat keyword, U-116

timePrecision keyword, U-117

timeScheme keyword, U-118

timeStamp

keyword entry, U-83

timeStampMaster

keyword entry, U-83

timeStep

keyword entry, U-24, U-34, U-116

Tlow keyword, U-190

tolerance

solver, U-126

solver relative, U-126

tolerance keyword, U-55, U-126, U-156

Toolbars

menu entry, U-173

tools

algorithms, U-100

cfdTools, U-100

containers, U-100

db, U-100

dimensionSet, U-100

dimensionedTypes, U-100

fields, U-100

finiteVolume, U-100

fvMatrices, U-100

fvMesh, U-100

global, U-100

graph, U-100

interpolations, U-100

interpolation, U-100

matrices, U-100

memory, U-100

meshes, U-100

primitives, U-100

surfaceMesh, U-100

volMesh, U-100

topoChangerFvMesh

library, U-101

topoSet utility, U-95

topoSetSource keyword, U-62

totalPressure

boundary condition, U-142

tr

tensor member function, P-25

trace, see tensor, trace

traction keyword, U-53

transform

tensor member function, P-25

transformPoints utility, U-95

transport keyword, U-189

Open∇FOAM-2.0.0

U-218 Index

transportProperties
dictionary, U-23, U-40, U-44

transportProperties file, U-62
triple inner product, P-19
triSurface

library, U-101
Ts keyword, U-190
turbulence

dissipation, U-42
kinetic energy, U-42
length scale, U-43

turbulence keyword, U-192
turbulence model

RAS, U-42
turbulenceProperties

dictionary, U-43, U-63, U-191
turbulent flow

steady, P-53
turbulentInlet

boundary condition, U-142
tutorials

breaking of a dam, U-58
lid-driven cavity flow, U-19
stress analysis of plate with hole, U-48

tutorials directory, P-45, U-19
twoLiquidMixingFoam solver, U-90
twoPhaseEulerFoam solver, U-90
twoPhaseInterfaceProperties

library, U-106
type keyword, U-135, U-138

U
U field, U-25
Ucomponents utility, P-71
UMIST

keyword entry, U-119
uncompressed

keyword entry, U-116
uncorrected

keyword entry, U-122, U-123
uncoupledKinematicParcelFoam solver, U-92
uniform keyword, U-182
units

base, U-112
of measurement, P-26, U-111
S.I. base, P-26
SI, U-112
Système International, U-112
United States Customary System, U-112
USCS, U-112

Update GUI button, U-171

uprime utility, U-96

upwind

keyword entry, U-121, U-124

upwind differencing, P-38, U-64

USCS units, U-112

Use Parallel Projection button, U-27

Use parallel projection button, U-173

utility

Co, U-96

Lambda2, U-96

Mach, U-96

PDRMesh, U-95

Pe, U-96

Q, U-96

R, U-97

Ucomponents, P-71

adiabaticFlameT, U-99

ansysToFoam, U-93

applyBoundaryLayer, U-93

applyWallFunctionBoundaryConditions, U-93

attachMesh, U-94

autoPatch, U-94

autoRefineMesh, U-95

blockMesh, U-39, U-93, U-141

boxTurb, U-93

cfx4ToFoam, U-93, U-159

changeDictionary, U-93

checkMesh, U-94, U-161

chemkinToFoam, U-99

collapseEdges, U-95

combinePatchFaces, U-95

createBaffles, U-94

createPatch, U-94

createTurbulenceFields, U-97

datToFoam, U-93

decomposePar, U-84, U-85, U-99

deformedGeom, U-94

dsmcFieldsCalc, U-97

dsmcInitialise, U-93

engineCompRatio, U-97

engineSwirl, U-93

ensight74FoamExec, U-179

ensightFoamReader, U-95

enstrophy, U-96

equilibriumCO, U-99

equilibriumFlameT, U-99

execFlowFunctionObjects, U-97

expandDictionary, U-99

extrude2DMesh, U-93

extrudeMesh, U-93

Open∇FOAM-2.0.0

Index U-219

extrudeToRegionMesh, U-93

faceAgglomerate, U-93

fieldview9Reader, U-95

flattenMesh, U-94

flowType, U-96

fluent3DMeshToFoam, U-93

fluentMeshToFoam, U-93, U-159

foamCalc, U-34, U-97

foamDataToFluent, U-96, U-176

foamDebugSwitches, U-99

foamFormatConvert, U-99

foamInfoExec, U-99

foamListTimes, U-97

foamMeshToFluent, U-94, U-176

foamToEnsightParts, U-96

foamToEnsight, U-96

foamToFieldview9, U-96

foamToGMV, U-96

foamToStarMesh, U-94

foamToSurface, U-94

foamToTecplot360, U-96

foamToVTK, U-96

foamUpgradeCyclics, U-93

foamUpgradeFvSolution, U-93

gambitToFoam, U-94, U-159

gmshToFoam, U-94

ideasToFoam, U-159

ideasUnvToFoam, U-94

insideCells, U-94

kivaToFoam, U-94

mapFields, U-33, U-40, U-44, U-57, U-93,
U-166

mdInitialise, U-93

mergeMeshes, U-94

mergeOrSplitBaffles, U-94

mirrorMesh, U-94

mixtureAdiabaticFlameT, U-99

modifyMesh, U-95

moveDynamicMesh, U-94

moveEngineMesh, U-94

moveMesh, U-94

mshToFoam, U-94

netgenNeutralToFoam, U-94

objToVTK, U-94

pPrime2, U-96

particleTracks, U-97

patchAverage, U-97

patchIntegrate, U-97

patchSummary, U-99

pdfPlot, U-97

plot3dToFoam, U-94

polyDualMesh, U-94

postChannel, U-97

probeLocations, U-97

ptot, U-97

reconstructParMesh, U-99

reconstructPar, U-87, U-99

redistributeMeshPar, U-99

refineHexMesh, U-95

refineMesh, U-95

refineWallLayer, U-95

refinementLevel, U-95

removeFaces, U-95

renumberMesh, U-95

rotateMesh, U-95

sammToFoam, U-94

sample, U-97, U-180

scalePoints, U-163

selectCells, U-95

setFields, U-61, U-62, U-93

setSet, U-95

setsToZones, U-95

singleCellMesh, U-95

smapToFoam, U-96

snappyHexMesh, U-93, U-150

splitCells, U-95

splitMeshRegions, U-95

splitMesh, U-95

star3ToFoam, U-94

star4ToFoam, U-94

starToFoam, U-159

steadyParticleTracks, U-97

stitchMesh, U-95

streamFunction, U-96

stressComponents, U-96

subsetMesh, U-95

surfaceAdd, U-98

surfaceAutoPatch, U-98

surfaceCheck, U-98

surfaceClean, U-98

surfaceCoarsen, U-98

surfaceConvert, U-98

surfaceFeatureConvert, U-98

surfaceFeatureExtract, U-98, U-154

surfaceFind, U-98

surfaceInertia, U-98

surfaceMeshConvertTesting, U-98

surfaceMeshConvert, U-98

surfaceMeshExport, U-98

surfaceMeshImport, U-98

Open∇FOAM-2.0.0

U-220 Index

surfaceMeshInfo, U-98
surfaceMeshTriangulate, U-98
surfaceOrient, U-98
surfacePointMerge, U-98
surfaceRedistributePar, U-98
surfaceRefineRedGreen, U-98
surfaceSmooth, U-98
surfaceSplitByPatch, U-98
surfaceSplitNonManifolds, U-99
surfaceSubset, U-99
surfaceToPatch, U-99
surfaceTransformPoints, U-99
tetgenToFoam, U-94
topoSet, U-95
transformPoints, U-95
uprime, U-96
viewFactorGen, U-93
vorticity, U-96
wallFunctionTable, U-93
wallGradU, U-96
wallHeatFlux, U-96
wallShearStress, U-96
wdot, U-97
writeCellCentres, U-97
writeMeshObj, U-94
yPlusLES, U-97
yPlusRAS, U-97
zipUpMesh, U-95

utilityFunctionObjects
library, U-101

V
value keyword, U-23, U-141
valueFraction keyword, U-141
van Leer differencing, P-38
vanLeer

keyword entry, U-121
VCR Controls menu, U-27, U-171
vector, P-16

operator, P-27
unit, P-20

vector class, P-24, U-111
vector product, see tensor, vector cross product
vectorField class, P-29
version keyword, U-109
vertices keyword, U-22, U-143, U-144
veryInhomogeneousMixture model, U-103, U-188
View menu, U-173
View Settings

menu entry, U-27, U-173
View Settings (Render View) window, U-173

View Settings...

menu entry, U-26
viewFactor

library, U-103
viewFactorGen utility, U-93
viscosity

kinematic, U-23, U-44
volField<Type> template class, P-33
volMesh tools, U-100
vorticity utility, U-96
vtk

keyword entry, U-181
vtkFoam

library, U-169
vtkPV3Foam

library, U-169

W
wall

boundary condition, P-64, P-70, U-60, U-139
wall

keyword entry, U-140
wallBuoyantPressure

boundary condition, U-142
wallFunctionTable utility, U-93
wallGradU utility, U-96
wallHeatFlux utility, U-96
Wallis

library, U-103
wallShearStress utility, U-96
wclean script/alias, U-78
wdot utility, U-97
wedge

boundary condition, U-135, U-140, U-149
wedge

keyword entry, U-140
window

Color Legend, U-29
Options, U-174
Pipeline Browser, U-26, U-170
Render View, U-174
Seed, U-175
View Settings (Render View), U-173

window panel
Animations, U-174
Annotation, U-27, U-174
Charts, U-174
Color Legend, U-172
Color Scale, U-172
Colors, U-174
Display, U-26, U-27, U-170, U-171

Open∇FOAM-2.0.0

Index U-221

General, U-173, U-174
Information, U-170
Lights, U-174
Mesh Parts, U-26
Properties, U-27, U-170, U-171
Render View, U-174
Style, U-26, U-173

windSimpleFoam solver, U-89
Wireframe

menu entry, U-173
WM ARCH

environment variable, U-78
WM ARCH OPTION

environment variable, U-78
WM COMPILE OPTION

environment variable, U-78
WM COMPILER

environment variable, U-78
WM COMPILER BIN

environment variable, U-78
WM COMPILER DIR

environment variable, U-78
WM COMPILER LIB

environment variable, U-78
WM DIR

environment variable, U-78
WM MPLIB

environment variable, U-78
WM OPTIONS

environment variable, U-78
WM PRECISION OPTION

environment variable, U-78
WM PROJECT

environment variable, U-78
WM PROJECT DIR

environment variable, U-78
WM PROJECT INST DIR

environment variable, U-78
WM PROJECT USER DIR

environment variable, U-78
WM PROJECT VERSION

environment variable, U-78
wmake

platforms, U-75
wmake script/alias, U-73
word class, P-26, P-31
writeCellCentres utility, U-97
writeCompression keyword, U-116
writeControl

keyword entry, U-116
writeControl keyword, U-24, U-64, U-116
writeFormat keyword, U-57, U-116
writeInterval keyword, U-24, U-34, U-116
writeMeshObj utility, U-94
writeNow

keyword entry, U-115
writePrecision keyword, U-116

X
x

keyword entry, U-182
XiFoam solver, U-91
xmgr

keyword entry, U-117, U-181
xyz

keyword entry, U-182

Y
y

keyword entry, U-182
yPlusLES utility, U-97
yPlusRAS utility, U-97

Z
z

keyword entry, U-182
zeroGradient

boundary condition, U-141
zipUpMesh utility, U-95

Open∇FOAM-2.0.0

	Copyright Notice
	GNU Free Documentation Licence
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE

	Trademarks
	Contents
	1 Introduction
	2 Tutorials
	2.1 Lid-driven cavity flow
	2.1.1 Pre-processing
	2.1.1.1 Mesh generation
	2.1.1.2 Boundary and initial conditions
	2.1.1.3 Physical properties
	2.1.1.4 Control
	2.1.1.5 Discretisation and linear-solver settings

	2.1.2 Viewing the mesh
	2.1.3 Running an application
	2.1.4 Post-processing
	2.1.4.1 Isosurface and contour plots
	2.1.4.2 Vector plots
	2.1.4.3 Streamline plots

	2.1.5 Increasing the mesh resolution
	2.1.5.1 Creating a new case using an existing case
	2.1.5.2 Creating the finer mesh
	2.1.5.3 Mapping the coarse mesh results onto the fine mesh
	2.1.5.4 Control adjustments
	2.1.5.5 Running the code as a background process
	2.1.5.6 Vector plot with the refined mesh
	2.1.5.7 Plotting graphs

	2.1.6 Introducing mesh grading
	2.1.6.1 Creating the graded mesh
	2.1.6.2 Changing time and time step
	2.1.6.3 Mapping fields

	2.1.7 Increasing the Reynolds number
	2.1.7.1 Pre-processing
	2.1.7.2 Running the code

	2.1.8 High Reynolds number flow
	2.1.8.1 Pre-processing
	2.1.8.2 Running the code

	2.1.9 Changing the case geometry
	2.1.10 Post-processing the modified geometry

	2.2 Stress analysis of a plate with a hole
	2.2.1 Mesh generation
	2.2.1.1 Boundary and initial conditions
	2.2.1.2 Mechanical properties
	2.2.1.3 Thermal properties
	2.2.1.4 Control
	2.2.1.5 Discretisation schemes and linear-solver control

	2.2.2 Running the code
	2.2.3 Post-processing
	2.2.4 Exercises
	2.2.4.1 Increasing mesh resolution
	2.2.4.2 Introducing mesh grading
	2.2.4.3 Changing the plate size

	2.3 Breaking of a dam
	2.3.1 Mesh generation
	2.3.2 Boundary conditions
	2.3.3 Setting initial field
	2.3.4 Fluid properties
	2.3.5 Turbulence modelling
	2.3.6 Time step control
	2.3.7 Discretisation schemes
	2.3.8 Linear-solver control
	2.3.9 Running the code
	2.3.10 Post-processing
	2.3.11 Running in parallel
	2.3.12 Post-processing a case run in parallel

	3 Applications and libraries
	3.1 The programming language of OpenFOAM
	3.1.1 Language in general
	3.1.2 Object-orientation and C++
	3.1.3 Equation representation
	3.1.4 Solver codes

	3.2 Compiling applications and libraries
	3.2.1 Header .H files
	3.2.2 Compiling with wmake
	3.2.2.1 Including headers
	3.2.2.2 Linking to libraries
	3.2.2.3 Source files to be compiled
	3.2.2.4 Running wmake
	3.2.2.5 wmake environment variables

	3.2.3 Removing dependency lists: wclean and rmdepall
	3.2.4 Compilation example: the pisoFoam application
	3.2.5 Debug messaging and optimisation switches
	3.2.6 Linking new user-defined libraries to existing applications

	3.3 Running applications
	3.4 Running applications in parallel
	3.4.1 Decomposition of mesh and initial field data
	3.4.2 Running a decomposed case
	3.4.3 Distributing data across several disks
	3.4.4 Post-processing parallel processed cases
	3.4.4.1 Reconstructing mesh and data
	3.4.4.2 Post-processing decomposed cases

	3.5 Standard solvers
	3.6 Standard utilities
	3.7 Standard libraries

	4 OpenFOAM cases
	4.1 File structure of OpenFOAM cases
	4.2 Basic input/output file format
	4.2.1 General syntax rules
	4.2.2 Dictionaries
	4.2.3 The data file header
	4.2.4 Lists
	4.2.5 Scalars, vectors and tensors
	4.2.6 Dimensional units
	4.2.7 Dimensioned types
	4.2.8 Fields
	4.2.9 Directives and macro substitutions
	4.2.10 The #include and #inputMode directives
	4.2.11 The #codeStream directive

	4.3 Time and data input/output control
	4.4 Numerical schemes
	4.4.1 Interpolation schemes
	4.4.1.1 Schemes for strictly bounded scalar fields
	4.4.1.2 Schemes for vector fields

	4.4.2 Surface normal gradient schemes
	4.4.3 Gradient schemes
	4.4.4 Laplacian schemes
	4.4.5 Divergence schemes
	4.4.6 Time schemes
	4.4.7 Flux calculation

	4.5 Solution and algorithm control
	4.5.1 Linear solver control
	4.5.1.1 Solution tolerances
	4.5.1.2 Preconditioned conjugate gradient solvers
	4.5.1.3 Smooth solvers
	4.5.1.4 Geometric-algebraic multi-grid solvers

	4.5.2 Solution under-relaxation
	4.5.3 PISO and SIMPLE algorithms
	4.5.3.1 Pressure referencing

	4.5.4 Other parameters

	5 Mesh generation and conversion
	5.1 Mesh description
	5.1.1 Mesh specification and validity constraints
	5.1.1.1 Points
	5.1.1.2 Faces
	5.1.1.3 Cells
	5.1.1.4 Boundary

	5.1.2 The polyMesh description
	5.1.3 The cellShape tools
	5.1.4 1- and 2-dimensional and axi-symmetric problems

	5.2 Boundaries
	5.2.1 Specification of patch types in OpenFOAM
	5.2.2 Base types
	5.2.3 Primitive types
	5.2.4 Derived types

	5.3 Mesh generation with the blockMesh utility
	5.3.1 Writing a blockMeshDict file
	5.3.1.1 The vertices
	5.3.1.2 The edges
	5.3.1.3 The blocks
	5.3.1.4 The boundary

	5.3.2 Multiple blocks
	5.3.3 Creating blocks with fewer than 8 vertices
	5.3.4 Running blockMesh

	5.4 Mesh generation with the snappyHexMesh utility
	5.4.1 The mesh generation process of snappyHexMesh
	5.4.2 Creating the background hex mesh
	5.4.3 Cell splitting at feature edges and surfaces
	5.4.4 Cell removal
	5.4.5 Cell splitting in specified regions
	5.4.6 Snapping to surfaces
	5.4.7 Mesh layers
	5.4.8 Mesh quality controls

	5.5 Mesh conversion
	5.5.1 fluentMeshToFoam
	5.5.2 starToFoam
	5.5.2.1 General advice on conversion
	5.5.2.2 Eliminating extraneous data
	5.5.2.3 Removing default boundary conditions
	5.5.2.4 Renumbering the model
	5.5.2.5 Writing out the mesh data
	5.5.2.6 Problems with the .vrt file
	5.5.2.7 Converting the mesh to OpenFOAM format

	5.5.3 gambitToFoam
	5.5.4 ideasToFoam
	5.5.5 cfx4ToFoam

	5.6 Mapping fields between different geometries
	5.6.1 Mapping consistent fields
	5.6.2 Mapping inconsistent fields
	5.6.3 Mapping parallel cases

	6 Post-processing
	6.1 paraFoam
	6.1.1 Overview of paraFoam
	6.1.2 The Properties panel
	6.1.3 The Display panel
	6.1.4 The button toolbars
	6.1.5 Manipulating the view
	6.1.5.1 View settings
	6.1.5.2 General settings

	6.1.6 Contour plots
	6.1.6.1 Introducing a cutting plane

	6.1.7 Vector plots
	6.1.7.1 Plotting at cell centres

	6.1.8 Streamlines
	6.1.9 Image output
	6.1.10 Animation output

	6.2 Post-processing with Fluent
	6.3 Post-processing with Fieldview
	6.4 Post-processing with EnSight
	6.4.1 Converting data to EnSight format
	6.4.2 The ensight74FoamExec reader module
	6.4.2.1 Configuration of EnSight for the reader module
	6.4.2.2 Using the reader module

	6.5 Sampling data
	6.6 Monitoring and managing jobs
	6.6.1 The foamJob script for running jobs
	6.6.2 The foamLog script for monitoring jobs

	7 Models and physical properties
	7.1 Thermophysical models
	7.1.1 Thermophysical property data

	7.2 Turbulence models
	7.2.1 Model coefficients
	7.2.2 Wall functions

	Index

