Comment out some more free() calls, which need to be turned on per-subsystem to weed...
[Math-GSL.git] / pod / Randist.pod
blob74fab2d6d7d498b694c7dda52c3b010cf0a2c979
1 %perlcode %{
3 our @EXPORT_OK = qw/gsl_ran_bernoulli gsl_ran_bernoulli_pdf gsl_ran_beta 
4                     gsl_ran_beta_pdf gsl_ran_binomial gsl_ran_binomial_knuth 
5                     gsl_ran_binomial_tpe gsl_ran_binomial_pdf gsl_ran_exponential 
6                     gsl_ran_exponential_pdf gsl_ran_exppow gsl_ran_exppow_pdf 
7                     gsl_ran_cauchy gsl_ran_cauchy_pdf gsl_ran_chisq 
8                     gsl_ran_chisq_pdf gsl_ran_dirichlet gsl_ran_dirichlet_pdf 
9                     gsl_ran_dirichlet_lnpdf gsl_ran_erlang gsl_ran_erlang_pdf 
10                     gsl_ran_fdist gsl_ran_fdist_pdf gsl_ran_flat 
11                     gsl_ran_flat_pdf gsl_ran_gamma gsl_ran_gamma_int 
12                     gsl_ran_gamma_pdf gsl_ran_gamma_mt gsl_ran_gamma_knuth 
13                     gsl_ran_gaussian gsl_ran_gaussian_ratio_method gsl_ran_gaussian_ziggurat 
14                     gsl_ran_gaussian_pdf gsl_ran_ugaussian gsl_ran_ugaussian_ratio_method 
15                     gsl_ran_ugaussian_pdf gsl_ran_gaussian_tail gsl_ran_gaussian_tail_pdf 
16                     gsl_ran_ugaussian_tail gsl_ran_ugaussian_tail_pdf gsl_ran_bivariate_gaussian 
17                     gsl_ran_bivariate_gaussian_pdf gsl_ran_landau gsl_ran_landau_pdf 
18                     gsl_ran_geometric gsl_ran_geometric_pdf gsl_ran_hypergeometric 
19                     gsl_ran_hypergeometric_pdf gsl_ran_gumbel1 gsl_ran_gumbel1_pdf 
20                     gsl_ran_gumbel2 gsl_ran_gumbel2_pdf gsl_ran_logistic 
21                     gsl_ran_logistic_pdf gsl_ran_lognormal gsl_ran_lognormal_pdf 
22                     gsl_ran_logarithmic gsl_ran_logarithmic_pdf gsl_ran_multinomial 
23                     gsl_ran_multinomial_pdf gsl_ran_multinomial_lnpdf 
24                     gsl_ran_negative_binomial gsl_ran_negative_binomial_pdf gsl_ran_pascal 
25                     gsl_ran_pascal_pdf gsl_ran_pareto gsl_ran_pareto_pdf 
26                     gsl_ran_poisson gsl_ran_poisson_array 
27                     gsl_ran_poisson_pdf gsl_ran_rayleigh gsl_ran_rayleigh_pdf 
28                     gsl_ran_rayleigh_tail gsl_ran_rayleigh_tail_pdf gsl_ran_tdist 
29                     gsl_ran_tdist_pdf gsl_ran_laplace gsl_ran_laplace_pdf 
30                     gsl_ran_levy gsl_ran_levy_skew gsl_ran_weibull 
31                     gsl_ran_weibull_pdf gsl_ran_dir_2d gsl_ran_dir_2d_trig_method 
32                     gsl_ran_dir_3d gsl_ran_dir_nd gsl_ran_shuffle 
33                     gsl_ran_choose gsl_ran_sample 
34                     gsl_ran_discrete_t gsl_ran_discrete_free gsl_ran_discrete_preproc
35                     gsl_ran_discrete gsl_ran_discrete_pdf  
36                 /;
38 our %EXPORT_TAGS = (
39         all                 => [  @EXPORT_OK ],
40         logarithmic         => [ gsl_ran_logarithmic , gsl_ran_logarithmic_pdf ],
41         choose              => [ gsl_ran_choose ],
42         exponential         => [ gsl_ran_exponential , gsl_ran_exponential_pdf ],
43         gumbel1             => [ gsl_ran_gumbel1 , gsl_ran_gumbel1_pdf ],
44         exppow              => [ gsl_ran_exppow , gsl_ran_exppow_pdf ],
45         sample              => [ gsl_ran_sample ],
46         logistic            => [ gsl_ran_logistic , gsl_ran_logistic_pdf ],
47         gaussian            => [  
48                                  gsl_ran_gaussian , gsl_ran_gaussian_ratio_method , gsl_ran_gaussian_ziggurat,
49                                  gsl_ran_gaussian_pdf , gsl_ran_gaussian_tail , gsl_ran_gaussian_tail_pdf 
50                                ],
51         poisson             => [ gsl_ran_poisson , gsl_ran_poisson_array , gsl_ran_poisson_pdf ], 
52         binomial            => [ gsl_ran_binomial , gsl_ran_binomial_knuth , gsl_ran_binomial_tpe ,
53                                  gsl_ran_binomial_pdf ],
54         fdist               => [ gsl_ran_fdist , gsl_ran_fdist_pdf ],
55         chisq               => [ gsl_ran_chisq , gsl_ran_chisq_pdf ],
56         gamma               => [ gsl_ran_gamma , gsl_ran_gamma_int , gsl_ran_gamma_pdf , gsl_ran_gamma_mt , gsl_ran_gamma_knuth ],
57         hypergeometric      => [ gsl_ran_hypergeometric , gsl_ran_hypergeometric_pdf ],
58         dirichlet           => [ gsl_ran_dirichlet , gsl_ran_dirichlet_pdf , gsl_ran_dirichlet_lnpdf ],
59         negative            => [ gsl_ran_negative_binomial , gsl_ran_negative_binomial_pdf ], 
60         flat                => [ gsl_ran_flat , gsl_ran_flat_pdf ], 
61         geometric           => [ gsl_ran_geometric , gsl_ran_geometric_pdf ], 
62         discrete            => [ gsl_ran_discrete , gsl_ran_discrete_pdf], 
63         tdist               => [ gsl_ran_tdist , gsl_ran_tdist_pdf ], 
64         ugaussian           => [ gsl_ran_ugaussian , gsl_ran_ugaussian_ratio_method , gsl_ran_ugaussian_pdf ,
65                                  gsl_ran_ugaussian_tail , gsl_ran_ugaussian_tail_pdf ], 
66         rayleigh            => [ gsl_ran_rayleigh , gsl_ran_rayleigh_pdf , gsl_ran_rayleigh_tail ,
67                                  gsl_ran_rayleigh_tail_pdf ], 
68         dir                 => [ gsl_ran_dir_2d , gsl_ran_dir_2d_trig_method , gsl_ran_dir_3d , gsl_ran_dir_nd ], 
69         pascal              => [ gsl_ran_pascal , gsl_ran_pascal_pdf ], 
70         gumbel2             => [ gsl_ran_gumbel2 , gsl_ran_gumbel2_pdf ], 
71         shuffle             => [ gsl_ran_shuffle ], 
72         landau              => [ gsl_ran_landau , gsl_ran_landau_pdf ], 
73         bernoulli           => [ gsl_ran_bernoulli , gsl_ran_bernoulli_pdf ], 
74         weibull             => [ gsl_ran_weibull , gsl_ran_weibull_pdf ], 
75         multinomial         => [ gsl_ran_multinomial , gsl_ran_multinomial_pdf , gsl_ran_multinomial_lnpdf ], 
76         beta                => [ gsl_ran_beta , gsl_ran_beta_pdf ], 
77         lognormal           => [ gsl_ran_lognormal , gsl_ran_lognormal_pdf ], 
78         laplace             => [ gsl_ran_laplace , gsl_ran_laplace_pdf ], 
79         erlang              => [ gsl_ran_erlang , gsl_ran_erlang_pdf ], 
80         cauchy              => [ gsl_ran_cauchy , gsl_ran_cauchy_pdf ], 
81         levy                => [ gsl_ran_levy , gsl_ran_levy_skew ], 
82         bivariate           => [ gsl_ran_bivariate_gaussian , gsl_ran_bivariate_gaussian_pdf ], 
83         pareto              => [ gsl_ran_pareto , gsl_ran_pareto_pdf ]
86 __END__
88 =head1 NAME
90 Math::GSL::Randist - Probability Distributions
92 =head1 SYNOPSIS
94 use Math::GSL::Randist qw/:all/;
96 =head1 DESCRIPTION
98  Here is a list of all the functions included in this module :
100 =over
102 =item gsl_ran_bernoulli($r, $p) - This function returns either 0 or 1, the result of a Bernoulli trial with probability $p. The probability distribution for a Bernoulli trial is, p(0) = 1 - $p and  p(1) = $p. $r is a gsl_rng structure.
104 =item gsl_ran_bernoulli_pdf($k, $p) - This function computes the probability p($k) of obtaining $k from a Bernoulli distribution with probability parameter $p, using the formula given above.
106 =item gsl_ran_beta($r, $a, $b) - This function returns a random variate from the beta distribution. The distribution function is, p($x) dx = {Gamma($a+$b) \ Gamma($a) Gamma($b)} $x**{$a-1} (1-$x)**{$b-1} dx for 0 <= $x <= 1.$r is a gsl_rng structure.
108 =item gsl_ran_beta_pdf($x, $a, $b) - This function computes the probability density p($x) at $x for a beta distribution with parameters $a and $b, using the formula given above.
110 =item gsl_ran_binomial($k, $p, $n) - This function returns a random integer from the binomial distribution, the number of successes in n independent trials with probability $p. The probability distribution for binomial variates is p($k) = {$n! \ $k! ($n-$k)! } $p**$k (1-$p)^{$n-$k} for 0 <= $k <= $n. 
112 =item gsl_ran_binomial_knuth 
114 =item gsl_ran_binomial_tpe
116 =item gsl_ran_binomial_pdf($k, $p, $n) - This function computes the probability p($k) of obtaining $k from a binomial distribution with parameters $p and $n, using the formula given above.
118 =item gsl_ran_exponential($r, $mu) - This function returns a random variate from the exponential distribution with mean $mu. The distribution is, p($x) dx = {1 \ $mu} exp(-$x/$mu) dx for $x >= 0. $r is a gsl_rng structure. 
120 =item gsl_ran_exponential_pdf($x, $mu) - This function computes the probability density p($x) at $x for an exponential distribution with mean $mu, using the formula given above.
122 =item gsl_ran_exppow($r, $a, $b) - This function returns a random variate from the exponential power distribution with scale parameter $a and exponent $b. The distribution is, p(x) dx = {1 / 2 $a Gamma(1+1/$b)} exp(-|$x/$a|**$b) dx for $x >= 0. For $b = 1 this reduces to the Laplace distribution. For $b = 2 it has the same form as a gaussian distribution, but with $a = sqrt(2) sigma. $r is a gsl_rng structure.
124 =item gsl_ran_exppow_pdf($x, $a, $b) - This function computes the probability density p($x) at $x for an exponential power distribution with scale parameter $a and exponent $b, using the formula given above.  
126 =item gsl_ran_cauchy($r, $a) - This function returns a random variate from the Cauchy distribution with scale parameter $a. The probability distribution for Cauchy random variates is, p(x) dx = {1 / a pi (1 + (x/$a)**2) } dx for x in the range -infinity to +infinity. The Cauchy distribution is also known as the Lorentz distribution. $r is a gsl_rng structure.
128 =item gsl_ran_cauchy_pdf($x, $a) - This function computes the probability density p($x) at $x for a Cauchy distribution with scale parameter $a, using the formula given above.
130 =item gsl_ran_chisq($r, $nu) - This function returns a random variate from the chi-squared distribution with $nu degrees of freedom. The distribution function is, p(x) dx = {1 / 2 Gamma($nu/2) } (x/2)**{$nu/2 - 1} exp(-x/2) dx for $x >= 0. $r is a gsl_rng structure.  
132 =item gsl_ran_chisq_pdf($x, $nu) - This function computes the probability density p($x) at $x for a chi-squared distribution with $nu degrees of freedom, using the formula given above.
134 =item gsl_ran_dirichlet
136 =item gsl_ran_dirichlet_pdf 
138 =item gsl_ran_dirichlet_lnpdf
140 =item gsl_ran_erlang
142 =item gsl_ran_erlang_pdf 
144 =item gsl_ran_fdist($r, $nu1, $nu2) - This function returns a random variate from the F-distribution with degrees of freedom nu1 and nu2. The distribution function is, p(x) dx = { Gamma(($nu_1 + $nu_2)/2) / Gamma($nu_1/2) Gamma($nu_2/2) } $nu_1**{$nu_1/2} $nu_2**{$nu_2/2} x**{$nu_1/2 - 1} ($nu_2 + $nu_1 x)**{-$nu_1/2 -$nu_2/2} for $x >= 0. $r is a gsl_rng structure.
146 =item gsl_ran_fdist_pdf($x, $nu1, $nu2) - This function computes the probability density p(x) at x for an F-distribution with nu1 and nu2 degrees of freedom, using the formula given above.
148 =item gsl_ran_flat($r, $a, $b) - This function returns a random variate from the flat (uniform) distribution from a to b. The distribution is, p(x) dx = {1 / ($b-$a)} dx if $a <= x < $b and 0 otherwise. $r is a gsl_rng structure.
150 =item gsl_ran_flat_pdf($x, $a, $b) - This function computes the probability density p($x) at $x for a uniform distribution from $a to $b, using the formula given above.
152 =item gsl_ran_gamma($r, $a, $b) - This function returns a random variate from the flat (uniform) distribution from $a to $b. The distribution is, p(x) dx = {1 / ($b-$a)} dx if $a <= x < $b and 0 otherwise. $r is a gsl_rng structure.
154 =item gsl_ran_gamma_int 
156 =item gsl_ran_gamma_pdf($x, $a, $b) - This function computes the probability density p($x) at $x for a uniform distribution from $a to $b, using the formula given above. 
158 =item gsl_ran_gamma_mt
160 =item gsl_ran_gamma_knuth 
162 =item gsl_ran_gaussian($r, $sigma) - This function returns a Gaussian random variate, with mean zero and standard deviation $sigma. The probability distribution for Gaussian random variates is, p(x) dx = {1 / sqrt{2 pi $sigma**2}} exp(-x**2 / 2 $sigma**2) dx for x in the range -infinity to +infinity. $r is a gsl_rng structure.
164 =item gsl_ran_gaussian_ratio_method($r, $sigma) - This function computes a Gaussian random variate using the alternative Kinderman-Monahan-Leva ratio method.
166 =item gsl_ran_gaussian_ziggurat($r, $sigma) - This function computes a Gaussian random variate using the alternative Marsaglia-Tsang ziggurat ratio method. The Ziggurat algorithm is the fastest available algorithm in most cases. $r is a gsl_rng structure.
168 =item gsl_ran_gaussian_pdf($x, $sigma) - This function computes the probability density p($x) at $x for a Gaussian distribution with standard deviation sigma, using the formula given above.
170 =item gsl_ran_ugaussian($r) - This function computes results for the unit Gaussian distribution. It is equivalent to the gaussian functions above with a standard deviation of one, sigma = 1. $r is a gsl_rng structure.
172 =item gsl_ran_ugaussian_ratio_method($r) - This function computes results for the unit Gaussian distribution. It is equivalent to the gaussian functions above with a standard deviation of one, sigma = 1. $r is a gsl_rng structure.
174 =item gsl_ran_ugaussian_pdf($x) - This function computes results for the unit Gaussian distribution. It is equivalent to the gaussian functions above with a standard deviation of one, sigma = 1.
176 =item gsl_ran_gaussian_tail($r, $a, $sigma) - This function provides random variates from the upper tail of a Gaussian distribution with standard deviation sigma. The values returned are larger than the lower limit a, which must be positive. The probability distribution for Gaussian tail random variates is, p(x) dx = {1 / N($a; $sigma) sqrt{2 pi sigma**2}} exp(- x**2/(2 sigma**2)) dx for x > $a where N($a; $sigma) is the normalization constant, N($a; $sigma) = (1/2) erfc($a / sqrt(2 $sigma**2)). $r is a gsl_rng structure.
178 =item gsl_ran_gaussian_tail_pdf($x, $a, $gaussian) - This function computes the probability density p($x) at $x for a Gaussian tail distribution with standard deviation sigma and lower limit $a, using the formula given above. 
180 =item gsl_ran_ugaussian_tail($r, $a) - This functions compute results for the tail of a unit Gaussian distribution. It is equivalent to the functions above with a standard deviation of one, $sigma = 1. $r is a gsl_rng structure. 
182 =item gsl_ran_ugaussian_tail_pdf($x, $a) - This functions compute results for the tail of a unit Gaussian distribution. It is equivalent to the functions above with a standard deviation of one, $sigma = 1.  
184 =item gsl_ran_bivariate_gaussian($r, $sigma_x, $sigma_y, $rho) - This function generates a pair of correlated Gaussian variates, with mean zero, correlation coefficient rho and standard deviations $sigma_x and $sigma_y in the x and y directions. The first value returned is x and the second y. The probability distribution for bivariate Gaussian random variates is, p(x,y) dx dy = {1 / 2 pi $sigma_x $sigma_y sqrt{1-$rho**2}} exp (-(x**2/$sigma_x**2 + y**2/$sigma_y**2 - 2 $rho x y/($sigma_x $sigma_y))/2(1- $rho**2)) dx dy for x,y in the range -infinity to +infinity. The correlation coefficient $rho should lie between 1 and -1. $r is a gsl_rng structure.  
186 =item gsl_ran_bivariate_gaussian_pdf($x, $y, $sigma_x, $sigma_y, $rho) - This function computes the probability density p($x,$y) at ($x,$y) for a bivariate Gaussian distribution with standard deviations $sigma_x, $sigma_y and correlation coefficient $rho, using the formula given above.
188 =item gsl_ran_landau($r) - This function returns a random variate from the Landau distribution. The probability distribution for Landau random variates is defined analytically by the complex integral, p(x) = (1/(2 \pi i)) \int_{c-i\infty}^{c+i\infty} ds exp(s log(s) + x s) For numerical purposes it is more convenient to use the following equivalent form of the integral, p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t). $r is a gsl_rng structure.
190 =item gsl_ran_landau_pdf($x) - This function computes the probability density p($x) at $x for the Landau distribution using an approximation to the formula given above.  
192 =item gsl_ran_geometric($r, $p) - This function returns a random integer from the geometric distribution, the number of independent trials with probability $p until the first success. The probability distribution for geometric variates is, p(k) =  p (1-$p)^(k-1) for k >= 1. Note that the distribution begins with k=1 with this definition. There is another convention in which the exponent k-1 is replaced by k. $r is a gsl_rng structure. 
194 =item gsl_ran_geometric_pdf($k, $p) - This function computes the probability p($k) of obtaining $k from a geometric distribution with probability parameter p, using the formula given above.
196 =item gsl_ran_hypergeometric($r, $n1, $n2, $t) - This function returns a random integer from the hypergeometric distribution. The probability distribution for hypergeometric random variates is, p(k) =  C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t) where C(a,b) = a!/(b!(a-b)!) and t <= n_1 + n_2. The domain of k is max(0,t-n_2), ..., min(t,n_1). If a population contains n_1 elements of “type 1” and n_2 elements of “type 2” then the hypergeometric distribution gives the probability of obtaining k elements of “type 1” in t samples from the population without replacement. $r is a gsl_rng structure. 
198 =item gsl_ran_hypergeometric_pdf($k, $n1, $n2, $t) - This function computes the probability p(k) of obtaining k from a hypergeometric distribution with parameters $n1, $n2 $t, using the formula given above. 
200 =item gsl_ran_gumbel1($r, $a, $b) - This function returns a random variate from the Type-1 Gumbel distribution. The Type-1 Gumbel distribution function is, p(x) dx = a b \exp(-(b \exp(-ax) + ax)) dx for -\infty < x < \infty. $r is a gsl_rng structure.
202 =item gsl_ran_gumbel1_pdf($x, $a, $b) - This function computes the probability density p($x) at $x for a Type-1 Gumbel distribution with parameters $a and $b, using the formula given above. 
204 =item gsl_ran_gumbel2($r, $a, $b) - This function returns a random variate from the Type-2 Gumbel distribution. The Type-2 Gumbel distribution function is, p(x) dx = a b x^{-a-1} \exp(-b x^{-a}) dx for 0 < x < \infty. $r is a gsl_rng structure.
206 =item gsl_ran_gumbel2_pdf($x, $a, $b) - This function computes the probability density p($x) at $x for a Type-2 Gumbel distribution with parameters $a and $b, using the formula given above. 
208 =item gsl_ran_logistic($r, $a) - This function returns a random variate from the logistic distribution. The distribution function is, p(x) dx = { \exp(-x/a) \over a (1 + \exp(-x/a))^2 } dx for -\infty < x < +\infty. $r is a gsl_rng structure. 
210 =item gsl_ran_logistic_pdf($x, $a) - This function computes the probability density p($x) at $x for a logistic distribution with scale parameter $a, using the formula given above.
212 =item gsl_ran_lognormal($r, $zeta, $sigma) - This function returns a random variate from the lognormal distribution. The distribution function is, p(x) dx = {1 \over x \sqrt{2 \pi \sigma^2} } \exp(-(\ln(x) - \zeta)^2/2 \sigma^2) dx for x > 0. $r is a gsl_rng structure. 
214 =item gsl_ran_lognormal_pdf($x, $zeta, $sigma) - This function computes the probability density p($x) at $x for a lognormal distribution with parameters $zeta and $sigma, using the formula given above.
216 =item gsl_ran_logarithmic($r, $p) - This function returns a random integer from the logarithmic distribution. The probability distribution for logarithmic random variates is, p(k) = {-1 \over \log(1-p)} {(p^k \over k)} for k >= 1. $r is a gsl_rng structure.
218 =item gsl_ran_logarithmic_pdf($k, $p) - This function computes the probability p($k) of obtaining $k from a logarithmic distribution with probability parameter $p, using the formula given above. 
220 =item gsl_ran_multinomial 
222 =item gsl_ran_multinomial_pdf
224 =item gsl_ran_multinomial_lnpdf 
226 =item gsl_ran_negative_binomial($r, $p, $n) - This function returns a random integer from the negative binomial distribution, the number of failures occurring before n successes in independent trials with probability p of success. The probability distribution for negative binomial variates is, p(k) = {\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) } p^n (1-p)^k Note that n is not required to be an integer. 
228 =item gsl_ran_negative_binomial_pdf($k, $p, $n) - This function computes the probability p($k) of obtaining $k from a negative binomial distribution with parameters $p and $n, using the formula given above.
230 =item gsl_ran_pascal($r, $p, $n) - This function returns a random integer from the Pascal distribution. The Pascal distribution is simply a negative binomial distribution with an integer value of $n. p($k) = {($n + $k - 1)! \ $k! ($n - 1)! } $p**$n (1-$p)**$k for $k >= 0. $r is gsl_rng structure  
232 =item gsl_ran_pascal_pdf($k, $p, $n) - This function computes the probability p($k) of obtaining $k from a Pascal distribution with parameters $p and $n, using the formula given above.
234 =item gsl_ran_pareto($r, $a, $b) - This function returns a random variate from the Pareto distribution of order $a. The distribution function is p($x) dx = ($a/$b) / ($x/$b)^{$a+1} dx for $x >= $b. $r is a gsl_rng structure
236 =item gsl_ran_pareto_pdf($x, $a, $b) - This function computes the probability density p(x) at x for a Pareto distribution with exponent a and scale b, using the formula given above. 
238 =item gsl_ran_poisson($r, $mu) -This function returns a random integer from the Poisson distribution with mean $mu. $r is a gsl_rng structure. The probability distribution for Poisson variates is, p(k) = {$mu**$k \ $k!} exp(-$mu) for $k >= 0. $r is a gsl_rng structure
240 =item gsl_ran_poisson_array
242 =item gsl_ran_poisson_pdf($k, $mu) - This function computes the probability p($k) of obtaining $k from a Poisson distribution with mean $mu, using the formula given above.
244 =item gsl_ran_rayleigh($r, $sigma) - This function returns a random variate from the Rayleigh distribution with scale parameter sigma. The distribution is, p(x) dx = {x \over \sigma^2} \exp(- x^2/(2 \sigma^2)) dx for x > 0. $r is a gsl_rng structure
246 =item gsl_ran_rayleigh_pdf($x, $sigma) - This function computes the probability density p($x) at $x for a Rayleigh distribution with scale parameter sigma, using the formula given above.
248 =item gsl_ran_rayleigh_tail($r, $a, $sigma) - This function returns a random variate from the tail of the Rayleigh distribution with scale parameter $sigma and a lower limit of $a. The distribution is, p(x) dx = {x \over \sigma^2} \exp ((a^2 - x^2) /(2 \sigma^2)) dx for x > a. $r is a gsl_rng structure
250 =item gsl_ran_rayleigh_tail_pdf($x, $a, $sigma) - This function computes the probability density p($x) at $x for a Rayleigh tail distribution with scale parameter $sigma and lower limit $a, using the formula given above. 
252 =item gsl_ran_tdist($r, $nu) - This function returns a random variate from the t-distribution. The distribution function is, p(x) dx = {\Gamma((\nu + 1)/2) \over \sqrt{\pi \nu} \Gamma(\nu/2)} (1 + x^2/\nu)^{-(\nu + 1)/2} dx for -\infty < x < +\infty.  
254 =item gsl_ran_tdist_pdf($x, $nu) - This function computes the probability density p($x) at $x for a t-distribution with nu degrees of freedom, using the formula given above.
256 =item gsl_ran_laplace($r, $a) - This function returns a random variate from the Laplace distribution with width $a. The distribution is, p(x) dx = {1 \over 2 a}  \exp(-|x/a|) dx for -\infty < x < \infty. 
258 =item gsl_ran_laplace_pdf($x, $a) - This function computes the probability density p($x) at $x for a Laplace distribution with width $a, using the formula given above. 
260 =item gsl_ran_levy($r, $c, $alpha) - This function returns a random variate from the Levy symmetric stable distribution with scale $c and exponent $alpha. The symmetric stable probability distribution is defined by a fourier transform, p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha) There is no explicit solution for the form of p(x) and the library does not define a corresponding pdf function. For \alpha = 1 the distribution reduces to the Cauchy distribution. For \alpha = 2 it is a Gaussian distribution with \sigma = \sqrt{2} c. For \alpha < 1 the tails of the distribution become extremely wide. The algorithm only works for 0 < alpha <= 2. $r is a gsl_rng structure
262 =item gsl_ran_levy_skew($r, $c, $alpha, $beta) - This function returns a random variate from the Levy skew stable distribution with scale $c, exponent $alpha and skewness parameter $beta. The skewness parameter must lie in the range [-1,1]. The Levy skew stable probability distribution is defined by a fourier transform, p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha (1-i beta sign(t) tan(pi alpha/2))) When \alpha = 1 the term \tan(\pi \alpha/2) is replaced by -(2/\pi)\log|t|. There is no explicit solution for the form of p(x) and the library does not define a corresponding pdf function. For $alpha = 2 the distribution reduces to a Gaussian distribution with $sigma = sqrt(2) $c and the skewness parameter has no effect. For $alpha < 1 the tails of the distribution become extremely wide. The symmetric distribution corresponds to $beta = 0. The algorithm only works for 0 < $alpha <= 2. The Levy alpha-stable distributions have the property that if N alpha-stable variates are drawn from the distribution p(c, \alpha, \beta) then the sum Y = X_1 + X_2 + \dots + X_N will also be distributed as an alpha-stable variate, p(N^(1/\alpha) c, \alpha, \beta). $r is a gsl_rng structure
264 =item gsl_ran_weibull($r, $a, $b) - This function returns a random variate from the Weibull distribution. The distribution function is, p(x) dx = {b \over a^b} x^{b-1}  \exp(-(x/a)^b) dx for x >= 0. $r is a gsl_rng structure
266 =item gsl_ran_weibull_pdf($x, $a, $b) - This function computes the probability density p($x) at $x for a Weibull distribution with scale $a and exponent $b, using the formula given above.
268 =item gsl_ran_dir_2d($r) - This function returns two values. The first is $x and the second is $y of a random direction vector v = ($x,$y) in two dimensions. The vector is normalized such that |v|^2 = $x^2 + $y^2 = 1. $r is a gsl_rng structure
270 =item gsl_ran_dir_2d_trig_method($r)  - This function returns two values. The first is $x and the second is $y of a random direction vector v = ($x,$y) in two dimensions. The vector is normalized such that |v|^2 = $x^2 + $y^2 = 1. $r is a gsl_rng structure
272 =item gsl_ran_dir_3d($r) - This function returns three values. The first is $x, the second $y and the third $z of a random direction vector v = ($x,$y,$z) in three dimensions. The vector is normalized such that |v|^2 = x^2 + y^2 + z^2 = 1. The method employed is due to Robert E. Knop (CACM 13, 326 (1970)), and explained in Knuth, v2, 3rd ed, p136. It uses the surprising fact that the distribution projected along any axis is actually uniform (this is only true for 3 dimensions). 
274 =item gsl_ran_dir_nd
276 =item gsl_ran_shuffle 
278 =item gsl_ran_choose
280 =item gsl_ran_sample 
282 =item gsl_ran_discrete_preproc
284 =item gsl_ran_discrete($r, $g) - After gsl_ran_discrete_preproc has been called, you use this function to get the discrete random numbers. $r is a gsl_rng structure and $g is a gsl_ran_discrete structure
285 =item gsl_ran_discrete_pdf($k, $g) - Returns the probability P[$k] of observing the variable $k. Since P[$k] is not stored as part of the lookup table, it must be recomputed; this computation takes O(K), so if K is large and you care about the original array P[$k] used to create the lookup table, then you should just keep this original array P[$k] around. $r is a gsl_rng structure and $g is a gsl_ran_discrete structure
287 =item gsl_ran_discrete_free($g) - De-allocates the gsl_ran_discrete pointed to by g. 
289 =back 
291  You have to add the functions you want to use inside the qw /put_funtion_here /. 
292  You can also write use Math::GSL::Randist qw/:all/; to use all avaible functions of the module. 
293  Other tags are also avaible, here is a complete list of all tags for this module :
295 =over
297 =item logarithmic
299 =item choose
301 =item exponential
303 =item gumbel1
305 =item exppow
307 =item sample
309 =item logistic
311 =item gaussian
313 =item poisson
315 =item binomial
317 =item fdist
319 =item chisq
321 =item gamma
323 =item hypergeometric
325 =item dirichlet
327 =item negative
329 =item flat
331 =item geometric
333 =item discrete
335 =item tdist
337 =item ugaussian
339 =item rayleigh
341 =item dir
343 =item pascal
345 =item gumbel2
347 =item shuffle
349 =item landau
351 =item bernoulli
353 =item weibull
355 =item multinomial
357 =item beta
359 =item lognormal
361 =item laplace
363 =item erlang
365 =item cauchy
367 =item levy
369 =item bivariate
371 =item pareto
373 =back
375  For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
377 For more informations on the functions, we refer you to the GSL offcial documentation: 
378 L<http://www.gnu.org/software/gsl/manual/html_node/>
379  Tip : search on google: site:http://www.gnu.org/software/gsl/manual/html_node/ name_of_the_function_you_want
381  You might also want to write
382  use Math::GSL::RNG qw/:all/;
383  since a lot of the functions of Math::GSL::Randist take as argument a structure that is created by Math::GSL::RNG. 
384  Refer to Math::GSL::RNG documentation to see how to create such a structure.
386  Math::GSL::CDF also contains a structure named gsl_ran_discrete_t. An example is given in the EXAMPLES part on how to use the function related to this structure.
389 =head1 EXAMPLES
391     use Math::GSL::Randist qw/:all/; 
392     print gsl_ran_exponential_pdf(5,2) . "\n"; 
394     use Math::GSL::Randist qw/:all/;
395     $x= Math::GSL::gsl_ran_discrete_t::new;
398 =head1 AUTHORS
400 Jonathan Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
402 =head1 COPYRIGHT AND LICENSE
404 Copyright (C) 2008-2009 Jonathan Leto and Thierry Moisan
406 This program is free software; you can redistribute it and/or modify it
407 under the same terms as Perl itself.
409 =cut