RFC1950 RFC.net Page 1 of 12

Net wor k Wor ki ng G oup P. Deutsch
Request for Comments: 1950 Al addi n Enterprises
Cat egory: Infornmational J-L. Gailly
I nfo-ZI P
May 1996

ZL1 B Conpressed Data Format Specification version 3.3
Status of This Meno

This meno provides information for the Internet conmunity. This neno
does not specify an Internet standard of any kind. D stribution of
this meno is unlimted.

| ESG Not e:

The |1 ESG takes no position on the validity of any Intellectual
Property Rights statenents contained in this docunent.

Not i ces
Copyright (c) 1996 L. Peter Deutsch and Jean-Loup Gailly

Perm ssion is granted to copy and distribute this docunent for any
pur pose and wi thout charge, including translations into other

| anguages and incorporation into conpilations, provided that the
copyright notice and this notice are preserved, and that any
substantive changes or deletions fromthe original are clearly

mar ked.

A pointer to the latest version of this and rel ated docunentation in
HTML format can be found at the URL
<ftp://ftp.uu. net/graphics/png/ docunments/ zlib/zdoc-index. htm >,

Abstract

This specification defines a | ossl ess conpressed data format. The
data can be produced or consuned, even for an arbitrarily |ong
sequentially presented input data stream using only an a priori
bounded anount of internediate storage. The format presently uses

t he DEFLATE conpression nethod but can be easily extended to use

ot her conpression nethods. It can be inplenented readily in a manner
not covered by patents. This specification also defines the ADLER- 32
checksum (an extension and i nprovenent of the Fletcher checksum,
used for detection of data corruption, and provides an algorithmfor
computing it.

Deutsch & Gailly I nf or mat i onal [Page 1]

RFC1950 RFC.net Page 2 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

Tabl e of Contents

1. IntroducCti ON e 2
1. L. PUIPOSE . 2
1.2. Intended audi ENCE i e e 3
1. 3. SCOPE .o e 3
1.4, ConplianCe 3
1.5. Definitions of terns and conventions used 3
1.6. Changes fromprevious VErsionsSuiuiiiiuiuuniunnnnn 3

2. Detailed specification 3
2.1. Overall conventions 3
2.2, Data format 4
2.3, Conpliance 7

3. ReferenCes ... 7

A, SOUICE COUB ... i e e e e e e e 8

5. Security Considerati ONS 8

6. ACKNOW edgemBnt S 8

7. AUt hOrs’ AddreSSEeS ... i 8

8. Appendi x: Rationale 9

9. Appendi x: Sanple code 10

1. Introduction
1.1. Purpose

The purpose of this specification is to define a | ossless
conpressed data format that:

* |s independent of CPU type, operating system file system
and character set, and hence can be used for interchange;

* Can be produced or consuned, even for an arbitrarily | ong
sequentially presented input data stream using only an a
priori bounded anount of internediate storage, and hence can
be used in data conmunications or simlar structures such as
Unix filters;

* Can use a nunber of different conpression nethods;

* Can be inplenmented readily in a manner not covered by
patents, and hence can be practiced freely.

The data format defined by this specification does not attenpt to
al | ow random access to conpressed dat a.

Deutsch & Gailly I nf or mat i onal [Page 2]

RFC1950 RFC.net Page 3 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

1.2. Intended audi ence

This specification is intended for use by inplenentors of software
to conpress data into zlib format and/or deconpress data fromzlib
format.

The text of the specification assunes a basic background in
progranm ng at the level of bits and other primtive data
representations.

1.3. Scope

The specification specifies a conpressed data format that can be
used for in-nenory conpression of a sequence of arbitrary bytes.

1.4. Conpliance

Unl ess ot herw se indicated below, a conpliant deconpressor nust be
abl e to accept and deconpress any data set that conforns to al

the specifications presented here; a conpliant conpressor mnust
produce data sets that conformto all the specifications presented
her e.

1.5. Definitions of terns and conventions used
byte: 8 bits stored or transmtted as a unit (sane as an octet).
(For this specification, a byte is exactly 8 bits, even on
machi nes which store a character on a nunber of bits different
from8.) See below, for the nunbering of bits within a byte.

1. 6. Changes from previ ous versions
Version 3.1 was the first public release of this specification.
In version 3.2, sone term nol ogy was changed and the Adl er-32
sanpl e code was rewitten for clarity. |In version 3.3, the
support for a preset dictionary was introduced, and the
specification was converted to RFC style.

2. Detailed specification

2.1. Overall conventions

In the diagrans below, a box l|ike this:
+---+

| | <-- the vertical bars m ght be m ssing
+---+

Deutsch & Gailly I nf or mat i onal [Page 3]

RFC1950 RFC.net Page 4 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

represents one byte; a box like this:

represents a vari abl e nunber of bytes.

Bytes stored within a conputer do not have a "bit order", since
they are always treated as a unit. However, a byte considered as
an integer between 0 and 255 does have a nobst- and | east-
significant bit, and since we wite nunbers with the nost-
significant digit on the left, we also wite bytes with the nost-

significant bit on the left. In the diagrans bel ow, we nunber the
bits of a byte so that bit 0 is the least-significant bit, i.e.,
the bits are nunbered:

R +

| 76543210|

S N +

Wthin a conputer, a nunber may occupy nultiple bytes. Al

mul ti-byte nunbers in the format described here are stored with
the MOST-significant byte first (at the | ower nenory address).
For exanpl e, the decimal nunber 520 is stored as:

0 1
Fomme oo Fomme oo +
| 00000010| 00001000
. . +

+ less significant byte = 8
+ nore significant byte = 2 x 256

2.2. Data format
A zlib streamhas the foll ow ng structure:

0 1
fom et - +

| CVF| FLG (nmore-->)
Foe oo - -+

Deutsch & Gailly I nf or mat i onal [Page 4]

RFC1950 RFC.net Page 5 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

(if FLG FDICT set)

0 1 2 3
T SR

| DI CTI D | (rore-->)
S I g

[} e -TURPREPRED NP SR | Y
| ...conpressed data...| ADLER32 |
[gl —————r TR RIS RN SR Y

Any data which nay appear after ADLER32 are not part of the zlib
stream

CMF (Conpression Method and fl ags)
This byte is divided into a 4-bit conpression nmethod and a 4-
bit information field depending on the conpression nethod.

bits 0 to 3 CM Conpr essi on net hod
bits 4 to 7 CINFO Conpression info

CM (Conpr essi on net hod)
This identifies the conpression nethod used in the file. CM= 8
denotes the "defl ate" conpression nethod with a wi ndow size up
to 32K. This is the nethod used by gzip and PNG (see
references [1] and [2] in Chapter 3, below, for the reference
docunents). CM= 15 is reserved. It mght be used in a future
version of this specification to indicate the presence of an
extra field before the conpressed data.

Cl NFO (Conpr essi on info)
For CM =8, CINFOis the base-2 logarithmof the LZ77 w ndow
size, mnus eight (CINFO=7 indicates a 32K wi ndow si ze). Val ues
of CI NFO above 7 are not allowed in this version of the
specification. CINFOis not defined in this specification for
CM not equal to 8.

FLG (FLaGs)
This flag byte is divided as foll ows:

bits 0 to 4 FCHECK (check bits for CM and FLG
bit 5 FDICT (preset dictionary)
bits 6 to 7 FLEVEL (conpression |evel)

The FCHECK val ue nmust be such that CMF and FLG when vi ewed as

a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),
is amultiple of 31.

Deutsch & Gailly I nf or mat i onal [Page 5]

RFC1950 RFC.net Page 6 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

FDI CT (Preset dictionary)
If FDICT is set, a DICT dictionary identifier is present
i mredi ately after the FLG byte. The dictionary is a sequence of
bytes which are initially fed to the conpressor w thout
produci ng any conpressed output. DICT is the Adler-32 checksum
of this sequence of bytes (see the definition of ADLER32
bel ow). The deconpressor can use this identifier to determne
whi ch dictionary has been used by the conpressor.

FLEVEL (Conpression |evel)
These flags are avail able for use by specific conpression
nmet hods. The "deflate"” nmethod (CM = 8) sets these flags as
foll ows:

- conpressor used fastest al gorithm

- conpressor used fast algorithm

- conpressor used default algorithm

- conpressor used nmaxi mum conpressi on, slowest algorithm

WNEFO

The information in FLEVEL is not needed for deconpression; it
is there to indicate if reconpression m ght be worthwhile.

conpressed data
For conpression nmethod 8, the conpressed data is stored in the
defl ate conpressed data fornmat as described in the docunent
"DEFLATE Conpressed Data Format Specification” by L. Peter
Deutsch. (See reference [3] in Chapter 3, bel ow

O her conpressed data formats are not specified in this version
of the zlib specification.

ADLER32 (Adl er-32 checksum
This contains a checksum val ue of the unconpressed data
(excludi ng any dictionary data) conputed according to Adler-32
algorithm This algorithmis a 32-bit extension and inprovenent
of the Fletcher algorithm used in the ITUT X 224 / 1SO 8073
standard. See references [4] and [5] in Chapter 3, bel ow)

Adl er-32 is conposed of two suns accumnul ated per byte: sl is
the sumof all bytes, s2 is the sumof all sl1 values. Both sums
are done nodul o 65521. sl is initialized to 1, s2 to zero. The
Adl er-32 checksumis stored as s2*65536 + sl in nost-
significant-byte first (network) order.

Deutsch & Gailly I nf or mat i onal [Page 6]

RFC1950 RFC.net Page 7 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

2.3. Conpliance

A conpliant conpressor nust produce streans with correct CMF, FLG
and ADLER32, but need not support preset dictionaries. Wen the
zlib data format is used as part of another standard data format,
t he conpressor may use only preset dictionaries that are specified

by this other data format. |If this other format does not use the
preset dictionary feature, the conpressor nmust not set the FDICT
flag.

A conpliant deconpressor nust check CMF, FLG and ADLER32, and
provide an error indication if any of these have incorrect val ues.
A conpliant deconpressor nust give an error indication if CMis
not one of the values defined in this specification (only the
value 8 is permtted in this version), since another value could

i ndi cate the presence of new features that woul d cause subsequent
data to be interpreted incorrectly. A conpliant deconpressor nust
give an error indication if FDICT is set and DICTID is not the
identifier of a known preset dictionary. A deconpressor may
ignore FLEVEL and still be conpliant. Wen the zlib data format
is being used as a part of another standard format, a conpli ant
deconpressor nust support all the preset dictionaries specified by
the other format. When the other format does not use the preset
dictionary feature, a conpliant deconpressor nust reject any
streamin which the FDICT flag is set.

3. References

[1] Deutsch, L.P.,"&ZI P Conpressed Data Format Specification”,
avai lable in ftp://ftp.uu.net/pub/archiving/zip/doc/

[2] Thomas Boutell, "PNG (Portable Network G aphics) specification”
available in ftp://ftp.uu. net/graphics/png/ docunents/

[3] Deutsch, L.P.,"DEFLATE Conpressed Data Format Specification”
avai lable in ftp://ftp.uu.net/pub/archiving/zip/doc/

[4] Fletcher, J. G, "An Arithnmetic Checksum for Seri al
Transm ssions," | EEE Transacti ons on Conmmuni cati ons, Vol. COw 30,
No. 1, January 1982, pp. 247-252.

[5] ITUT Recomrendation X 224, Annex D, "Checksum Al gorithns,"

Novenber, 1993, pp. 144, 145. (Avail able from
gopher://info.itu.ch). ITUT X 244 is also the sane as | SO 8073.

Deutsch & Gailly I nf or mat i onal [Page 7]

RFC1950 RFC.net Page 8 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

4. Source code

Source code for a C |anguage inplenentation of a "zlib" conpliant
library is available at ftp://ftp.uu. net/pub/archiving/zip/zlib/.

5. Security Considerations

A decoder that fails to check the ADLER32 checksum val ue may be
subj ect to undetected data corruption.

6. Acknow edgenents

Trademarks cited in this docunment are the property of their
respective owners.

Jean-Loup Gailly and Mark Adl er designed the zlib format and wote

the related software described in this specification. denn

Rander s- Pehr son converted this docunent to RFC and HTM. format.
7. Authors’ Addresses

L. Peter Deutsch

Al addi n Enterprises

203 Santa Margarita Ave.

Menl o Park, CA 94025

Phone: (415) 322-0103 (AM only)

FAX: (415) 322-1734

EMai | : <ghost @l addi n. conp

Jean-Loup Gailly

EMai | : <gzi p@rep.ai.mt.edu>

Questions about the technical content of this specification can be
sent by emmil to

Jean-Loup Gailly <gzi p@rep.ai.mt.edu> and
Mar k Adl er <madl er @l umi . cal t ech. edu>

Editorial comments on this specification can be sent by email to

L. Peter Deutsch <ghost @l addi n. con» and
d enn Rander s- Pehrson <randeg@l umi . r pi . edu>

Deutsch & Gailly I nf or mat i onal [Page 8]

RFC1950 RFC.net Page 9 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

8. Appendi x: Rational e
8.1. Preset dictionaries

A preset dictionary is specially useful to conpress short i nput
sequences. The conpressor can take advantage of the dictionary
context to encode the input in a nore conpact manner. The
deconpressor can be initialized with the appropriate context by
virtually deconpressing a conpressed version of the dictionary
wi t hout produci ng any output. However for certain conpression
al gorithnms such as the deflate algorithmthis operation can be
achi eved without actually perform ng any deconpression.

The conpressor and the deconpressor nust use exactly the sane
dictionary. The dictionary may be fixed or nay be chosen anpbng a
certai n nunber of predefined dictionaries, according to the kind
of input data. The deconpressor can determ ne which dictionary has
been chosen by the conpressor by checking the dictionary
identifier. This docunent does not specify the contents of
predefined dictionaries, since the optinmal dictionaries are
application specific. Standard data formats using this feature of
the zlib specification nust precisely define the all owed

di ctionari es.

8.2. The Adler-32 algorithm

The Adler-32 algorithmis nmuch faster than the CRC32 al gorithm yet
still provides an extrenely |ow probability of undetected errors.

The nodul o on unsigned | ong accunul ators can be del ayed for 5552
bytes, so the nodul o operation tine is negligible. |If the bytes
are a, b, ¢, the second sumis 3a + 2b + ¢ + 3, and so is position
and order sensitive, unlike the first sum which is just a
checksum That 65521 is prinme is inportant to avoid a possible

| arge class of two-byte errors that | eave the check unchanged.
(The Fl etcher checksum uses 255, which is not prine and which al so
makes the Fl etcher check insensitive to single byte changes 0 <->
255.)

The sumsl is initialized to 1 instead of zero to nmake the | ength
of the sequence part of s2, so that the |l ength does not have to be
checked separately. (Any sequence of zeroes has a Fl etcher
checksum of zero.)

Deutsch & Gailly I nf or mat i onal [Page 9]

RFC1950 RFC.net

RFC 1950 ZLI B Conpressed Data Format Specification

9. Appendi x: Sanpl e code

Page 10 of 12

May 1996

The follow ng C code conputes the Adler-32 checksum of a data buffer
It is witten for clarity, not for speed. The sanple code is in the
ANSI C programm ng | anguage. Non C users may find it easier to read

with these hints:

& Bi twi se AND oper at or

>> Bitw se right shift operator. Wen applied to an
unsi gned quantity, as here, right shift inserts zero bit(s)
at the left.

<< Bitwise left shift operator. Left shift inserts zero
bit(s) at the right.

++ "n++" increnents the variable n.

% nodul o operator: a %b is the remai nder of a divided by b.

#defi ne BASE 65521 /* |argest prine smaller than 65536 */

/*

Update a running Adler-32 checksumwi th the bytes buf[O0..len-1]
and return the updated checksum The Adler-32 checksum shoul d be

initialized to 1.
Usage exanpl e:
unsi gned long adler = 1L

while (read_buffer(buffer, length) = EOF) {
adl er = update_adl er32(adl er, buffer, |ength);

if (adler !'= original _adler) error();

*/

unsi gned | ong updat e_adl er 32(unsi gned | ong adl er,
unsi gned char *buf, int |en)

{
unsigned long s1 = adler & Oxffff;
unsigned long s2 = (adler >> 16) & Oxffff;
int n;
for (n =0; n <len; n++) {
sl = (s1 + buf[n]) % BASE
s2 = (s2 + sl) % BASE
}
return (s2 << 16) + sl
}

/* Return the adler32 of the bytes buf[0..len-1] */

Deutsch & Gailly I nf or mat i onal

[Page 10]

RFC1950 RFC.net Page 11 of 12

RFC 1950 ZLI B Conpressed Data Format Specification May 1996

unsi gned | ong adl er32(unsi gned char *buf, int |en)

{
}

return update_adl er32(1L, buf, len);

Deutsch & Gailly I nf or mat i onal [Page 11]

RFC1950 RFC.net Page 12 of 12

