Bugfix: 32-bit vs 64-bit bug in x86_64-gen.c:gcall_or_jmp
[tinycc.git] / x86_64-gen.c
blobdc7eecad9c0512b7e8d5be40f85f72f9e6f074fe
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 8
29 /* a register can belong to several classes. The classes must be
30 sorted from more general to more precise (see gv2() code which does
31 assumptions on it). */
32 #define RC_INT 0x0001 /* generic integer register */
33 #define RC_FLOAT 0x0002 /* generic float register */
34 #define RC_RAX 0x0004
35 #define RC_RCX 0x0008
36 #define RC_RDX 0x0010
37 #define RC_ST0 0x0080 /* only for long double */
38 #define RC_R8 0x0100
39 #define RC_R9 0x0200
40 #define RC_R10 0x0400
41 #define RC_R11 0x0800
42 #define RC_XMM0 0x1000
43 #define RC_XMM1 0x2000
44 #define RC_XMM2 0x4000
45 #define RC_XMM3 0x8000
46 #define RC_XMM4 0x10000
47 #define RC_XMM5 0x20000
48 #define RC_XMM6 0x40000
49 #define RC_XMM7 0x80000
50 #define RC_IRET RC_RAX /* function return: integer register */
51 #define RC_LRET RC_RDX /* function return: second integer register */
52 #define RC_FRET RC_XMM0 /* function return: float register */
53 #define RC_QRET RC_XMM1 /* function return: second float register */
55 /* pretty names for the registers */
56 enum {
57 TREG_RAX = 0,
58 TREG_RCX = 1,
59 TREG_RDX = 2,
60 TREG_RSP = 4,
61 TREG_RSI = 6,
62 TREG_RDI = 7,
64 TREG_R8 = 8,
65 TREG_R9 = 9,
66 TREG_R10 = 10,
67 TREG_R11 = 11,
69 TREG_XMM0 = 16,
70 TREG_XMM1 = 17,
71 TREG_XMM2 = 18,
72 TREG_XMM3 = 19,
73 TREG_XMM4 = 20,
74 TREG_XMM5 = 21,
75 TREG_XMM6 = 22,
76 TREG_XMM7 = 23,
78 TREG_ST0 = 24,
80 TREG_MEM = 0x20,
83 #define REX_BASE(reg) (((reg) >> 3) & 1)
84 #define REG_VALUE(reg) ((reg) & 7)
86 /* return registers for function */
87 #define REG_IRET TREG_RAX /* single word int return register */
88 #define REG_LRET TREG_RDX /* second word return register (for long long) */
89 #define REG_FRET TREG_XMM0 /* float return register */
90 #define REG_QRET TREG_XMM1 /* second float return register */
92 /* defined if function parameters must be evaluated in reverse order */
93 #define INVERT_FUNC_PARAMS
95 /* pointer size, in bytes */
96 #define PTR_SIZE 8
98 /* long double size and alignment, in bytes */
99 #define LDOUBLE_SIZE 16
100 #define LDOUBLE_ALIGN 16
101 /* maximum alignment (for aligned attribute support) */
102 #define MAX_ALIGN 16
104 /******************************************************/
105 /* ELF defines */
107 #define EM_TCC_TARGET EM_X86_64
109 /* relocation type for 32 bit data relocation */
110 #define R_DATA_32 R_X86_64_32
111 #define R_DATA_PTR R_X86_64_64
112 #define R_JMP_SLOT R_X86_64_JUMP_SLOT
113 #define R_COPY R_X86_64_COPY
115 #define ELF_START_ADDR 0x400000
116 #define ELF_PAGE_SIZE 0x200000
118 /******************************************************/
119 #else /* ! TARGET_DEFS_ONLY */
120 /******************************************************/
121 #include "tcc.h"
122 #include <assert.h>
124 ST_DATA const int reg_classes[NB_REGS] = {
125 /* eax */ RC_INT | RC_RAX,
126 /* ecx */ RC_INT | RC_RCX,
127 /* edx */ RC_INT | RC_RDX,
133 RC_R8,
134 RC_R9,
135 RC_R10,
136 RC_R11,
141 /* xmm0 */ RC_FLOAT | RC_XMM0,
142 /* xmm1 */ RC_FLOAT | RC_XMM1,
143 /* xmm2 */ RC_FLOAT | RC_XMM2,
144 /* xmm3 */ RC_FLOAT | RC_XMM3,
145 /* xmm4 */ RC_FLOAT | RC_XMM4,
146 /* xmm5 */ RC_FLOAT | RC_XMM5,
147 /* xmm6 an xmm7 are included so gv() can be used on them,
148 but they are not tagged with RC_FLOAT because they are
149 callee saved on Windows */
150 RC_XMM6,
151 RC_XMM7,
152 /* st0 */ RC_ST0
155 static unsigned long func_sub_sp_offset;
156 static int func_ret_sub;
158 /* XXX: make it faster ? */
159 void g(int c)
161 int ind1;
162 ind1 = ind + 1;
163 if (ind1 > cur_text_section->data_allocated)
164 section_realloc(cur_text_section, ind1);
165 cur_text_section->data[ind] = c;
166 ind = ind1;
169 void o(unsigned int c)
171 while (c) {
172 g(c);
173 c = c >> 8;
177 void gen_le16(int v)
179 g(v);
180 g(v >> 8);
183 void gen_le32(int c)
185 g(c);
186 g(c >> 8);
187 g(c >> 16);
188 g(c >> 24);
191 void gen_le64(int64_t c)
193 g(c);
194 g(c >> 8);
195 g(c >> 16);
196 g(c >> 24);
197 g(c >> 32);
198 g(c >> 40);
199 g(c >> 48);
200 g(c >> 56);
203 void orex(int ll, int r, int r2, int b)
205 if ((r & VT_VALMASK) >= VT_CONST)
206 r = 0;
207 if ((r2 & VT_VALMASK) >= VT_CONST)
208 r2 = 0;
209 if (ll || REX_BASE(r) || REX_BASE(r2))
210 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
211 o(b);
214 /* output a symbol and patch all calls to it */
215 void gsym_addr(int t, int a)
217 int n, *ptr;
218 while (t) {
219 ptr = (int *)(cur_text_section->data + t);
220 n = *ptr; /* next value */
221 *ptr = a - t - 4;
222 t = n;
226 void gsym(int t)
228 gsym_addr(t, ind);
231 /* psym is used to put an instruction with a data field which is a
232 reference to a symbol. It is in fact the same as oad ! */
233 #define psym oad
235 static int is64_type(int t)
237 return ((t & VT_BTYPE) == VT_PTR ||
238 (t & VT_BTYPE) == VT_FUNC ||
239 (t & VT_BTYPE) == VT_LLONG);
242 /* instruction + 4 bytes data. Return the address of the data */
243 ST_FUNC int oad(int c, int s)
245 int ind1;
247 o(c);
248 ind1 = ind + 4;
249 if (ind1 > cur_text_section->data_allocated)
250 section_realloc(cur_text_section, ind1);
251 *(int *)(cur_text_section->data + ind) = s;
252 s = ind;
253 ind = ind1;
254 return s;
257 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
259 if (r & VT_SYM)
260 greloc(cur_text_section, sym, ind, R_X86_64_32);
261 gen_le32(c);
264 /* output constant with relocation if 'r & VT_SYM' is true */
265 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
267 if (r & VT_SYM)
268 greloc(cur_text_section, sym, ind, R_X86_64_64);
269 gen_le64(c);
272 /* output constant with relocation if 'r & VT_SYM' is true */
273 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
275 if (r & VT_SYM)
276 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
277 gen_le32(c-4);
280 /* output got address with relocation */
281 static void gen_gotpcrel(int r, Sym *sym, int c)
283 #ifndef TCC_TARGET_PE
284 Section *sr;
285 ElfW(Rela) *rel;
286 greloc(cur_text_section, sym, ind, R_X86_64_GOTPCREL);
287 sr = cur_text_section->reloc;
288 rel = (ElfW(Rela) *)(sr->data + sr->data_offset - sizeof(ElfW(Rela)));
289 rel->r_addend = -4;
290 #else
291 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
292 get_tok_str(sym->v, NULL), c, r,
293 cur_text_section->data[ind-3],
294 cur_text_section->data[ind-2],
295 cur_text_section->data[ind-1]
297 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
298 #endif
299 gen_le32(0);
300 if (c) {
301 /* we use add c, %xxx for displacement */
302 orex(1, r, 0, 0x81);
303 o(0xc0 + REG_VALUE(r));
304 gen_le32(c);
308 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
310 op_reg = REG_VALUE(op_reg) << 3;
311 if ((r & VT_VALMASK) == VT_CONST) {
312 /* constant memory reference */
313 o(0x05 | op_reg);
314 if (is_got) {
315 gen_gotpcrel(r, sym, c);
316 } else {
317 gen_addrpc32(r, sym, c);
319 } else if ((r & VT_VALMASK) == VT_LOCAL) {
320 /* currently, we use only ebp as base */
321 if (c == (char)c) {
322 /* short reference */
323 o(0x45 | op_reg);
324 g(c);
325 } else {
326 oad(0x85 | op_reg, c);
328 } else if ((r & VT_VALMASK) >= TREG_MEM) {
329 if (c) {
330 g(0x80 | op_reg | REG_VALUE(r));
331 gen_le32(c);
332 } else {
333 g(0x00 | op_reg | REG_VALUE(r));
335 } else {
336 g(0x00 | op_reg | REG_VALUE(r));
340 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
341 opcode bits */
342 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
344 gen_modrm_impl(op_reg, r, sym, c, 0);
347 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
348 opcode bits */
349 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
351 int is_got;
352 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
353 orex(1, r, op_reg, opcode);
354 gen_modrm_impl(op_reg, r, sym, c, is_got);
358 /* load 'r' from value 'sv' */
359 void load(int r, SValue *sv)
361 int v, t, ft, fc, fr;
362 SValue v1;
364 #ifdef TCC_TARGET_PE
365 SValue v2;
366 sv = pe_getimport(sv, &v2);
367 #endif
369 fr = sv->r;
370 ft = sv->type.t & ~VT_DEFSIGN;
371 fc = sv->c.ul;
373 #ifndef TCC_TARGET_PE
374 /* we use indirect access via got */
375 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
376 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
377 /* use the result register as a temporal register */
378 int tr = r | TREG_MEM;
379 if (is_float(ft)) {
380 /* we cannot use float registers as a temporal register */
381 tr = get_reg(RC_INT) | TREG_MEM;
383 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
385 /* load from the temporal register */
386 fr = tr | VT_LVAL;
388 #endif
390 v = fr & VT_VALMASK;
391 if (fr & VT_LVAL) {
392 int b, ll;
393 if (v == VT_LLOCAL) {
394 v1.type.t = VT_PTR;
395 v1.r = VT_LOCAL | VT_LVAL;
396 v1.c.ul = fc;
397 fr = r;
398 if (!(reg_classes[fr] & RC_INT))
399 fr = get_reg(RC_INT);
400 load(fr, &v1);
402 ll = 0;
403 if ((ft & VT_BTYPE) == VT_FLOAT) {
404 b = 0x6e0f66;
405 r = REG_VALUE(r); /* movd */
406 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
407 b = 0x7e0ff3; /* movq */
408 r = REG_VALUE(r);
409 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
410 b = 0xdb, r = 5; /* fldt */
411 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
412 b = 0xbe0f; /* movsbl */
413 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
414 b = 0xb60f; /* movzbl */
415 } else if ((ft & VT_TYPE) == VT_SHORT) {
416 b = 0xbf0f; /* movswl */
417 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
418 b = 0xb70f; /* movzwl */
419 } else {
420 assert(((ft & VT_BTYPE) == VT_INT) || ((ft & VT_BTYPE) == VT_LLONG)
421 || ((ft & VT_BTYPE) == VT_PTR) || ((ft & VT_BTYPE) == VT_ENUM)
422 || ((ft & VT_BTYPE) == VT_FUNC));
423 ll = is64_type(ft);
424 b = 0x8b;
426 if (ll) {
427 gen_modrm64(b, r, fr, sv->sym, fc);
428 } else {
429 orex(ll, fr, r, b);
430 gen_modrm(r, fr, sv->sym, fc);
432 } else {
433 if (v == VT_CONST) {
434 if (fr & VT_SYM) {
435 #ifdef TCC_TARGET_PE
436 orex(1,0,r,0x8d);
437 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
438 gen_addrpc32(fr, sv->sym, fc);
439 #else
440 if (sv->sym->type.t & VT_STATIC) {
441 orex(1,0,r,0x8d);
442 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
443 gen_addrpc32(fr, sv->sym, fc);
444 } else {
445 orex(1,0,r,0x8b);
446 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
447 gen_gotpcrel(r, sv->sym, fc);
449 #endif
450 } else if (is64_type(ft)) {
451 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
452 gen_le64(sv->c.ull);
453 } else {
454 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
455 gen_le32(fc);
457 } else if (v == VT_LOCAL) {
458 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
459 gen_modrm(r, VT_LOCAL, sv->sym, fc);
460 } else if (v == VT_CMP) {
461 orex(0,r,0,0);
462 if ((fc & ~0x100) != TOK_NE)
463 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
464 else
465 oad(0xb8 + REG_VALUE(r), 1); /* mov $1, r */
466 if (fc & 0x100)
468 /* This was a float compare. If the parity bit is
469 set the result was unordered, meaning false for everything
470 except TOK_NE, and true for TOK_NE. */
471 fc &= ~0x100;
472 o(0x037a + (REX_BASE(r) << 8));
474 orex(0,r,0, 0x0f); /* setxx %br */
475 o(fc);
476 o(0xc0 + REG_VALUE(r));
477 } else if (v == VT_JMP || v == VT_JMPI) {
478 t = v & 1;
479 orex(0,r,0,0);
480 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
481 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
482 gsym(fc);
483 orex(0,r,0,0);
484 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
485 } else if (v != r) {
486 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
487 if (v == TREG_ST0) {
488 /* gen_cvt_ftof(VT_DOUBLE); */
489 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
490 /* movsd -0x10(%rsp),%xmmN */
491 o(0x100ff2);
492 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
493 o(0xf024);
494 } else {
495 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
496 if ((ft & VT_BTYPE) == VT_FLOAT) {
497 o(0x100ff3);
498 } else {
499 assert((ft & VT_BTYPE) == VT_DOUBLE);
500 o(0x100ff2);
502 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
504 } else if (r == TREG_ST0) {
505 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
506 /* gen_cvt_ftof(VT_LDOUBLE); */
507 /* movsd %xmmN,-0x10(%rsp) */
508 o(0x110ff2);
509 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
510 o(0xf024);
511 o(0xf02444dd); /* fldl -0x10(%rsp) */
512 } else {
513 orex(1,r,v, 0x89);
514 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
520 /* store register 'r' in lvalue 'v' */
521 void store(int r, SValue *v)
523 int fr, bt, ft, fc;
524 int op64 = 0;
525 /* store the REX prefix in this variable when PIC is enabled */
526 int pic = 0;
528 #ifdef TCC_TARGET_PE
529 SValue v2;
530 v = pe_getimport(v, &v2);
531 #endif
533 ft = v->type.t;
534 fc = v->c.ul;
535 fr = v->r & VT_VALMASK;
536 bt = ft & VT_BTYPE;
538 #ifndef TCC_TARGET_PE
539 /* we need to access the variable via got */
540 if (fr == VT_CONST && (v->r & VT_SYM)) {
541 /* mov xx(%rip), %r11 */
542 o(0x1d8b4c);
543 gen_gotpcrel(TREG_R11, v->sym, v->c.ul);
544 pic = is64_type(bt) ? 0x49 : 0x41;
546 #endif
548 /* XXX: incorrect if float reg to reg */
549 if (bt == VT_FLOAT) {
550 o(0x66);
551 o(pic);
552 o(0x7e0f); /* movd */
553 r = REG_VALUE(r);
554 } else if (bt == VT_DOUBLE) {
555 o(0x66);
556 o(pic);
557 o(0xd60f); /* movq */
558 r = REG_VALUE(r);
559 } else if (bt == VT_LDOUBLE) {
560 o(0xc0d9); /* fld %st(0) */
561 o(pic);
562 o(0xdb); /* fstpt */
563 r = 7;
564 } else {
565 if (bt == VT_SHORT)
566 o(0x66);
567 o(pic);
568 if (bt == VT_BYTE || bt == VT_BOOL)
569 orex(0, 0, r, 0x88);
570 else if (is64_type(bt))
571 op64 = 0x89;
572 else
573 orex(0, 0, r, 0x89);
575 if (pic) {
576 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
577 if (op64)
578 o(op64);
579 o(3 + (r << 3));
580 } else if (op64) {
581 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
582 gen_modrm64(op64, r, v->r, v->sym, fc);
583 } else if (fr != r) {
584 /* XXX: don't we really come here? */
585 abort();
586 o(0xc0 + fr + r * 8); /* mov r, fr */
588 } else {
589 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
590 gen_modrm(r, v->r, v->sym, fc);
591 } else if (fr != r) {
592 /* XXX: don't we really come here? */
593 abort();
594 o(0xc0 + fr + r * 8); /* mov r, fr */
599 /* 'is_jmp' is '1' if it is a jump */
600 static void gcall_or_jmp(int is_jmp)
602 int r;
603 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
604 ((vtop->r & VT_SYM) || (vtop->c.ll-4) == (int)(vtop->c.ll-4))) {
605 /* constant case */
606 if (vtop->r & VT_SYM) {
607 /* relocation case */
608 #ifdef TCC_TARGET_PE
609 greloc(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32);
610 #else
611 greloc(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32);
612 #endif
613 } else {
614 /* put an empty PC32 relocation */
615 put_elf_reloc(symtab_section, cur_text_section,
616 ind + 1, R_X86_64_PC32, 0);
618 oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
619 } else {
620 /* otherwise, indirect call */
621 r = TREG_R11;
622 load(r, vtop);
623 o(0x41); /* REX */
624 o(0xff); /* call/jmp *r */
625 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
629 #if defined(CONFIG_TCC_BCHECK)
630 #ifndef TCC_TARGET_PE
631 static addr_t func_bound_offset;
632 static unsigned long func_bound_ind;
633 #endif
635 static void gen_static_call(int v)
637 Sym *sym = external_global_sym(v, &func_old_type, 0);
638 oad(0xe8, -4);
639 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
642 /* generate a bounded pointer addition */
643 ST_FUNC void gen_bounded_ptr_add(void)
645 /* save all temporary registers */
646 save_regs(0);
648 /* prepare fast x86_64 function call */
649 gv(RC_RAX);
650 o(0xc68948); // mov %rax,%rsi ## second arg in %rsi, this must be size
651 vtop--;
653 gv(RC_RAX);
654 o(0xc78948); // mov %rax,%rdi ## first arg in %rdi, this must be ptr
655 vtop--;
657 /* do a fast function call */
658 gen_static_call(TOK___bound_ptr_add);
660 /* returned pointer is in rax */
661 vtop++;
662 vtop->r = TREG_RAX | VT_BOUNDED;
665 /* relocation offset of the bounding function call point */
666 vtop->c.ull = (cur_text_section->reloc->data_offset - sizeof(ElfW(Rela)));
669 /* patch pointer addition in vtop so that pointer dereferencing is
670 also tested */
671 ST_FUNC void gen_bounded_ptr_deref(void)
673 addr_t func;
674 int size, align;
675 ElfW(Rela) *rel;
676 Sym *sym;
678 size = 0;
679 /* XXX: put that code in generic part of tcc */
680 if (!is_float(vtop->type.t)) {
681 if (vtop->r & VT_LVAL_BYTE)
682 size = 1;
683 else if (vtop->r & VT_LVAL_SHORT)
684 size = 2;
686 if (!size)
687 size = type_size(&vtop->type, &align);
688 switch(size) {
689 case 1: func = TOK___bound_ptr_indir1; break;
690 case 2: func = TOK___bound_ptr_indir2; break;
691 case 4: func = TOK___bound_ptr_indir4; break;
692 case 8: func = TOK___bound_ptr_indir8; break;
693 case 12: func = TOK___bound_ptr_indir12; break;
694 case 16: func = TOK___bound_ptr_indir16; break;
695 default:
696 tcc_error("unhandled size when dereferencing bounded pointer");
697 func = 0;
698 break;
701 sym = external_global_sym(func, &func_old_type, 0);
702 if (!sym->c)
703 put_extern_sym(sym, NULL, 0, 0);
705 /* patch relocation */
706 /* XXX: find a better solution ? */
708 rel = (ElfW(Rela) *)(cur_text_section->reloc->data + vtop->c.ull);
709 rel->r_info = ELF64_R_INFO(sym->c, ELF64_R_TYPE(rel->r_info));
711 #endif
713 #ifdef TCC_TARGET_PE
715 #define REGN 4
716 static const uint8_t arg_regs[REGN] = {
717 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
720 /* Prepare arguments in R10 and R11 rather than RCX and RDX
721 because gv() will not ever use these */
722 static int arg_prepare_reg(int idx) {
723 if (idx == 0 || idx == 1)
724 /* idx=0: r10, idx=1: r11 */
725 return idx + 10;
726 else
727 return arg_regs[idx];
730 static int func_scratch;
732 /* Generate function call. The function address is pushed first, then
733 all the parameters in call order. This functions pops all the
734 parameters and the function address. */
736 void gen_offs_sp(int b, int r, int d)
738 orex(1,0,r & 0x100 ? 0 : r, b);
739 if (d == (char)d) {
740 o(0x2444 | (REG_VALUE(r) << 3));
741 g(d);
742 } else {
743 o(0x2484 | (REG_VALUE(r) << 3));
744 gen_le32(d);
748 /* Return the number of registers needed to return the struct, or 0 if
749 returning via struct pointer. */
750 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
752 int size, align;
753 *regsize = 8;
754 *ret_align = 1; // Never have to re-align return values for x86-64
755 size = type_size(vt, &align);
756 ret->ref = NULL;
757 if (size > 8) {
758 return 0;
759 } else if (size > 4) {
760 ret->t = VT_LLONG;
761 return 1;
762 } else if (size > 2) {
763 ret->t = VT_INT;
764 return 1;
765 } else if (size > 1) {
766 ret->t = VT_SHORT;
767 return 1;
768 } else {
769 ret->t = VT_BYTE;
770 return 1;
774 static int is_sse_float(int t) {
775 int bt;
776 bt = t & VT_BTYPE;
777 return bt == VT_DOUBLE || bt == VT_FLOAT;
780 int gfunc_arg_size(CType *type) {
781 int align;
782 if (type->t & (VT_ARRAY|VT_BITFIELD))
783 return 8;
784 return type_size(type, &align);
787 void gfunc_call(int nb_args)
789 int size, r, args_size, i, d, bt, struct_size;
790 int arg;
792 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
793 arg = nb_args;
795 /* for struct arguments, we need to call memcpy and the function
796 call breaks register passing arguments we are preparing.
797 So, we process arguments which will be passed by stack first. */
798 struct_size = args_size;
799 for(i = 0; i < nb_args; i++) {
800 SValue *sv;
802 --arg;
803 sv = &vtop[-i];
804 bt = (sv->type.t & VT_BTYPE);
805 size = gfunc_arg_size(&sv->type);
807 if (size <= 8)
808 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
810 if (bt == VT_STRUCT) {
811 /* align to stack align size */
812 size = (size + 15) & ~15;
813 /* generate structure store */
814 r = get_reg(RC_INT);
815 gen_offs_sp(0x8d, r, struct_size);
816 struct_size += size;
818 /* generate memcpy call */
819 vset(&sv->type, r | VT_LVAL, 0);
820 vpushv(sv);
821 vstore();
822 --vtop;
823 } else if (bt == VT_LDOUBLE) {
824 gv(RC_ST0);
825 gen_offs_sp(0xdb, 0x107, struct_size);
826 struct_size += 16;
830 if (func_scratch < struct_size)
831 func_scratch = struct_size;
833 arg = nb_args;
834 struct_size = args_size;
836 for(i = 0; i < nb_args; i++) {
837 --arg;
838 bt = (vtop->type.t & VT_BTYPE);
840 size = gfunc_arg_size(&vtop->type);
841 if (size > 8) {
842 /* align to stack align size */
843 size = (size + 15) & ~15;
844 if (arg >= REGN) {
845 d = get_reg(RC_INT);
846 gen_offs_sp(0x8d, d, struct_size);
847 gen_offs_sp(0x89, d, arg*8);
848 } else {
849 d = arg_prepare_reg(arg);
850 gen_offs_sp(0x8d, d, struct_size);
852 struct_size += size;
853 } else {
854 if (is_sse_float(vtop->type.t)) {
855 gv(RC_XMM0); /* only use one float register */
856 if (arg >= REGN) {
857 /* movq %xmm0, j*8(%rsp) */
858 gen_offs_sp(0xd60f66, 0x100, arg*8);
859 } else {
860 /* movaps %xmm0, %xmmN */
861 o(0x280f);
862 o(0xc0 + (arg << 3));
863 d = arg_prepare_reg(arg);
864 /* mov %xmm0, %rxx */
865 o(0x66);
866 orex(1,d,0, 0x7e0f);
867 o(0xc0 + REG_VALUE(d));
869 } else {
870 if (bt == VT_STRUCT) {
871 vtop->type.ref = NULL;
872 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
873 : size > 1 ? VT_SHORT : VT_BYTE;
876 r = gv(RC_INT);
877 if (arg >= REGN) {
878 gen_offs_sp(0x89, r, arg*8);
879 } else {
880 d = arg_prepare_reg(arg);
881 orex(1,d,r,0x89); /* mov */
882 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
886 vtop--;
888 save_regs(0);
890 /* Copy R10 and R11 into RCX and RDX, respectively */
891 if (nb_args > 0) {
892 o(0xd1894c); /* mov %r10, %rcx */
893 if (nb_args > 1) {
894 o(0xda894c); /* mov %r11, %rdx */
898 gcall_or_jmp(0);
899 vtop--;
903 #define FUNC_PROLOG_SIZE 11
905 /* generate function prolog of type 't' */
906 void gfunc_prolog(CType *func_type)
908 int addr, reg_param_index, bt, size;
909 Sym *sym;
910 CType *type;
912 func_ret_sub = 0;
913 func_scratch = 0;
914 loc = 0;
916 addr = PTR_SIZE * 2;
917 ind += FUNC_PROLOG_SIZE;
918 func_sub_sp_offset = ind;
919 reg_param_index = 0;
921 sym = func_type->ref;
923 /* if the function returns a structure, then add an
924 implicit pointer parameter */
925 func_vt = sym->type;
926 func_var = (sym->c == FUNC_ELLIPSIS);
927 size = gfunc_arg_size(&func_vt);
928 if (size > 8) {
929 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
930 func_vc = addr;
931 reg_param_index++;
932 addr += 8;
935 /* define parameters */
936 while ((sym = sym->next) != NULL) {
937 type = &sym->type;
938 bt = type->t & VT_BTYPE;
939 size = gfunc_arg_size(type);
940 if (size > 8) {
941 if (reg_param_index < REGN) {
942 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
944 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL | VT_REF, addr);
945 } else {
946 if (reg_param_index < REGN) {
947 /* save arguments passed by register */
948 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
949 o(0xd60f66); /* movq */
950 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
951 } else {
952 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
955 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
957 addr += 8;
958 reg_param_index++;
961 while (reg_param_index < REGN) {
962 if (func_type->ref->c == FUNC_ELLIPSIS) {
963 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
964 addr += 8;
966 reg_param_index++;
970 /* generate function epilog */
971 void gfunc_epilog(void)
973 int v, saved_ind;
975 o(0xc9); /* leave */
976 if (func_ret_sub == 0) {
977 o(0xc3); /* ret */
978 } else {
979 o(0xc2); /* ret n */
980 g(func_ret_sub);
981 g(func_ret_sub >> 8);
984 saved_ind = ind;
985 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
986 /* align local size to word & save local variables */
987 v = (func_scratch + -loc + 15) & -16;
989 if (v >= 4096) {
990 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
991 oad(0xb8, v); /* mov stacksize, %eax */
992 oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
993 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
994 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
995 } else {
996 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
997 o(0xec8148); /* sub rsp, stacksize */
998 gen_le32(v);
1001 cur_text_section->data_offset = saved_ind;
1002 pe_add_unwind_data(ind, saved_ind, v);
1003 ind = cur_text_section->data_offset;
1006 #else
1008 static void gadd_sp(int val)
1010 if (val == (char)val) {
1011 o(0xc48348);
1012 g(val);
1013 } else {
1014 oad(0xc48148, val); /* add $xxx, %rsp */
1018 typedef enum X86_64_Mode {
1019 x86_64_mode_none,
1020 x86_64_mode_memory,
1021 x86_64_mode_integer,
1022 x86_64_mode_sse,
1023 x86_64_mode_x87
1024 } X86_64_Mode;
1026 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
1028 if (a == b)
1029 return a;
1030 else if (a == x86_64_mode_none)
1031 return b;
1032 else if (b == x86_64_mode_none)
1033 return a;
1034 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
1035 return x86_64_mode_memory;
1036 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
1037 return x86_64_mode_integer;
1038 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
1039 return x86_64_mode_memory;
1040 else
1041 return x86_64_mode_sse;
1044 static X86_64_Mode classify_x86_64_inner(CType *ty)
1046 X86_64_Mode mode;
1047 Sym *f;
1049 switch (ty->t & VT_BTYPE) {
1050 case VT_VOID: return x86_64_mode_none;
1052 case VT_INT:
1053 case VT_BYTE:
1054 case VT_SHORT:
1055 case VT_LLONG:
1056 case VT_BOOL:
1057 case VT_PTR:
1058 case VT_FUNC:
1059 case VT_ENUM: return x86_64_mode_integer;
1061 case VT_FLOAT:
1062 case VT_DOUBLE: return x86_64_mode_sse;
1064 case VT_LDOUBLE: return x86_64_mode_x87;
1066 case VT_STRUCT:
1067 f = ty->ref;
1069 // Detect union
1070 if (f->next && (f->c == f->next->c))
1071 return x86_64_mode_memory;
1073 mode = x86_64_mode_none;
1074 for (; f; f = f->next)
1075 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
1077 return mode;
1080 assert(0);
1083 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
1085 X86_64_Mode mode;
1086 int size, align, ret_t = 0;
1088 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
1089 *psize = 8;
1090 *palign = 8;
1091 *reg_count = 1;
1092 ret_t = ty->t;
1093 mode = x86_64_mode_integer;
1094 } else {
1095 size = type_size(ty, &align);
1096 *psize = (size + 7) & ~7;
1097 *palign = (align + 7) & ~7;
1099 if (size > 16) {
1100 mode = x86_64_mode_memory;
1101 } else {
1102 mode = classify_x86_64_inner(ty);
1103 switch (mode) {
1104 case x86_64_mode_integer:
1105 if (size > 8) {
1106 *reg_count = 2;
1107 ret_t = VT_QLONG;
1108 } else {
1109 *reg_count = 1;
1110 ret_t = (size > 4) ? VT_LLONG : VT_INT;
1112 break;
1114 case x86_64_mode_x87:
1115 *reg_count = 1;
1116 ret_t = VT_LDOUBLE;
1117 break;
1119 case x86_64_mode_sse:
1120 if (size > 8) {
1121 *reg_count = 2;
1122 ret_t = VT_QFLOAT;
1123 } else {
1124 *reg_count = 1;
1125 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1127 break;
1128 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1133 if (ret) {
1134 ret->ref = NULL;
1135 ret->t = ret_t;
1138 return mode;
1141 ST_FUNC int classify_x86_64_va_arg(CType *ty)
1143 /* This definition must be synced with stdarg.h */
1144 enum __va_arg_type {
1145 __va_gen_reg, __va_float_reg, __va_stack
1147 int size, align, reg_count;
1148 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1149 switch (mode) {
1150 default: return __va_stack;
1151 case x86_64_mode_integer: return __va_gen_reg;
1152 case x86_64_mode_sse: return __va_float_reg;
1156 /* Return the number of registers needed to return the struct, or 0 if
1157 returning via struct pointer. */
1158 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
1160 int size, align, reg_count;
1161 *ret_align = 1; // Never have to re-align return values for x86-64
1162 *regsize = 8;
1163 return (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) != x86_64_mode_memory);
1166 #define REGN 6
1167 static const uint8_t arg_regs[REGN] = {
1168 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1171 static int arg_prepare_reg(int idx) {
1172 if (idx == 2 || idx == 3)
1173 /* idx=2: r10, idx=3: r11 */
1174 return idx + 8;
1175 else
1176 return arg_regs[idx];
1179 /* Generate function call. The function address is pushed first, then
1180 all the parameters in call order. This functions pops all the
1181 parameters and the function address. */
1182 void gfunc_call(int nb_args)
1184 X86_64_Mode mode;
1185 CType type;
1186 int size, align, r, args_size, stack_adjust, run_start, run_end, i, reg_count;
1187 int nb_reg_args = 0;
1188 int nb_sse_args = 0;
1189 int sse_reg, gen_reg;
1191 /* calculate the number of integer/float register arguments */
1192 for(i = 0; i < nb_args; i++) {
1193 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1194 if (mode == x86_64_mode_sse)
1195 nb_sse_args += reg_count;
1196 else if (mode == x86_64_mode_integer)
1197 nb_reg_args += reg_count;
1200 /* arguments are collected in runs. Each run is a collection of 8-byte aligned arguments
1201 and ended by a 16-byte aligned argument. This is because, from the point of view of
1202 the callee, argument alignment is computed from the bottom up. */
1203 /* for struct arguments, we need to call memcpy and the function
1204 call breaks register passing arguments we are preparing.
1205 So, we process arguments which will be passed by stack first. */
1206 gen_reg = nb_reg_args;
1207 sse_reg = nb_sse_args;
1208 run_start = 0;
1209 args_size = 0;
1210 while (run_start != nb_args) {
1211 int run_gen_reg = gen_reg, run_sse_reg = sse_reg;
1213 run_end = nb_args;
1214 stack_adjust = 0;
1215 for(i = run_start; (i < nb_args) && (run_end == nb_args); i++) {
1216 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1217 switch (mode) {
1218 case x86_64_mode_memory:
1219 case x86_64_mode_x87:
1220 stack_arg:
1221 if (align == 16)
1222 run_end = i;
1223 else
1224 stack_adjust += size;
1225 break;
1227 case x86_64_mode_sse:
1228 sse_reg -= reg_count;
1229 if (sse_reg + reg_count > 8) goto stack_arg;
1230 break;
1232 case x86_64_mode_integer:
1233 gen_reg -= reg_count;
1234 if (gen_reg + reg_count > REGN) goto stack_arg;
1235 break;
1236 default: break; /* nothing to be done for x86_64_mode_none */
1240 gen_reg = run_gen_reg;
1241 sse_reg = run_sse_reg;
1243 /* adjust stack to align SSE boundary */
1244 if (stack_adjust &= 15) {
1245 /* fetch cpu flag before the following sub will change the value */
1246 if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
1247 gv(RC_INT);
1249 stack_adjust = 16 - stack_adjust;
1250 o(0x48);
1251 oad(0xec81, stack_adjust); /* sub $xxx, %rsp */
1252 args_size += stack_adjust;
1255 for(i = run_start; i < run_end;) {
1256 /* Swap argument to top, it will possibly be changed here,
1257 and might use more temps. At the end of the loop we keep
1258 in on the stack and swap it back to its original position
1259 if it is a register. */
1260 SValue tmp = vtop[0];
1261 vtop[0] = vtop[-i];
1262 vtop[-i] = tmp;
1264 mode = classify_x86_64_arg(&vtop->type, NULL, &size, &align, &reg_count);
1266 int arg_stored = 1;
1267 switch (vtop->type.t & VT_BTYPE) {
1268 case VT_STRUCT:
1269 if (mode == x86_64_mode_sse) {
1270 if (sse_reg > 8)
1271 sse_reg -= reg_count;
1272 else
1273 arg_stored = 0;
1274 } else if (mode == x86_64_mode_integer) {
1275 if (gen_reg > REGN)
1276 gen_reg -= reg_count;
1277 else
1278 arg_stored = 0;
1281 if (arg_stored) {
1282 /* allocate the necessary size on stack */
1283 o(0x48);
1284 oad(0xec81, size); /* sub $xxx, %rsp */
1285 /* generate structure store */
1286 r = get_reg(RC_INT);
1287 orex(1, r, 0, 0x89); /* mov %rsp, r */
1288 o(0xe0 + REG_VALUE(r));
1289 vset(&vtop->type, r | VT_LVAL, 0);
1290 vswap();
1291 vstore();
1292 args_size += size;
1294 break;
1296 case VT_LDOUBLE:
1297 assert(0);
1298 break;
1300 case VT_FLOAT:
1301 case VT_DOUBLE:
1302 assert(mode == x86_64_mode_sse);
1303 if (sse_reg > 8) {
1304 --sse_reg;
1305 r = gv(RC_FLOAT);
1306 o(0x50); /* push $rax */
1307 /* movq %xmmN, (%rsp) */
1308 o(0xd60f66);
1309 o(0x04 + REG_VALUE(r)*8);
1310 o(0x24);
1311 args_size += size;
1312 } else {
1313 arg_stored = 0;
1315 break;
1317 default:
1318 assert(mode == x86_64_mode_integer);
1319 /* simple type */
1320 /* XXX: implicit cast ? */
1321 if (gen_reg > REGN) {
1322 --gen_reg;
1323 r = gv(RC_INT);
1324 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1325 args_size += size;
1326 } else {
1327 arg_stored = 0;
1329 break;
1332 /* And swap the argument back to it's original position. */
1333 tmp = vtop[0];
1334 vtop[0] = vtop[-i];
1335 vtop[-i] = tmp;
1337 if (arg_stored) {
1338 vrotb(i+1);
1339 assert((vtop->type.t == tmp.type.t) && (vtop->r == tmp.r));
1340 vpop();
1341 --nb_args;
1342 --run_end;
1343 } else {
1344 ++i;
1348 /* handle 16 byte aligned arguments at end of run */
1349 run_start = i = run_end;
1350 while (i < nb_args) {
1351 /* Rotate argument to top since it will always be popped */
1352 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1353 if (align != 16)
1354 break;
1356 vrotb(i+1);
1358 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1359 gv(RC_ST0);
1360 oad(0xec8148, size); /* sub $xxx, %rsp */
1361 o(0x7cdb); /* fstpt 0(%rsp) */
1362 g(0x24);
1363 g(0x00);
1364 args_size += size;
1365 } else {
1366 assert(mode == x86_64_mode_memory);
1368 /* allocate the necessary size on stack */
1369 o(0x48);
1370 oad(0xec81, size); /* sub $xxx, %rsp */
1371 /* generate structure store */
1372 r = get_reg(RC_INT);
1373 orex(1, r, 0, 0x89); /* mov %rsp, r */
1374 o(0xe0 + REG_VALUE(r));
1375 vset(&vtop->type, r | VT_LVAL, 0);
1376 vswap();
1377 vstore();
1378 args_size += size;
1381 vpop();
1382 --nb_args;
1386 /* XXX This should be superfluous. */
1387 save_regs(0); /* save used temporary registers */
1389 /* then, we prepare register passing arguments.
1390 Note that we cannot set RDX and RCX in this loop because gv()
1391 may break these temporary registers. Let's use R10 and R11
1392 instead of them */
1393 assert(gen_reg <= REGN);
1394 assert(sse_reg <= 8);
1395 for(i = 0; i < nb_args; i++) {
1396 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1397 /* Alter stack entry type so that gv() knows how to treat it */
1398 vtop->type = type;
1399 if (mode == x86_64_mode_sse) {
1400 if (reg_count == 2) {
1401 sse_reg -= 2;
1402 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1403 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1404 /* movaps %xmm0, %xmmN */
1405 o(0x280f);
1406 o(0xc0 + (sse_reg << 3));
1407 /* movaps %xmm1, %xmmN */
1408 o(0x280f);
1409 o(0xc1 + ((sse_reg+1) << 3));
1411 } else {
1412 assert(reg_count == 1);
1413 --sse_reg;
1414 /* Load directly to register */
1415 gv(RC_XMM0 << sse_reg);
1417 } else if (mode == x86_64_mode_integer) {
1418 /* simple type */
1419 /* XXX: implicit cast ? */
1420 gen_reg -= reg_count;
1421 r = gv(RC_INT);
1422 int d = arg_prepare_reg(gen_reg);
1423 orex(1,d,r,0x89); /* mov */
1424 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1425 if (reg_count == 2) {
1426 d = arg_prepare_reg(gen_reg+1);
1427 orex(1,d,vtop->r2,0x89); /* mov */
1428 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1431 vtop--;
1433 assert(gen_reg == 0);
1434 assert(sse_reg == 0);
1436 /* We shouldn't have many operands on the stack anymore, but the
1437 call address itself is still there, and it might be in %eax
1438 (or edx/ecx) currently, which the below writes would clobber.
1439 So evict all remaining operands here. */
1440 save_regs(0);
1442 /* Copy R10 and R11 into RDX and RCX, respectively */
1443 if (nb_reg_args > 2) {
1444 o(0xd2894c); /* mov %r10, %rdx */
1445 if (nb_reg_args > 3) {
1446 o(0xd9894c); /* mov %r11, %rcx */
1450 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1451 gcall_or_jmp(0);
1452 if (args_size)
1453 gadd_sp(args_size);
1454 vtop--;
1458 #define FUNC_PROLOG_SIZE 11
1460 static void push_arg_reg(int i) {
1461 loc -= 8;
1462 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1465 /* generate function prolog of type 't' */
1466 void gfunc_prolog(CType *func_type)
1468 X86_64_Mode mode;
1469 int i, addr, align, size, reg_count;
1470 int param_addr = 0, reg_param_index, sse_param_index;
1471 Sym *sym;
1472 CType *type;
1474 sym = func_type->ref;
1475 addr = PTR_SIZE * 2;
1476 loc = 0;
1477 ind += FUNC_PROLOG_SIZE;
1478 func_sub_sp_offset = ind;
1479 func_ret_sub = 0;
1481 if (func_type->ref->c == FUNC_ELLIPSIS) {
1482 int seen_reg_num, seen_sse_num, seen_stack_size;
1483 seen_reg_num = seen_sse_num = 0;
1484 /* frame pointer and return address */
1485 seen_stack_size = PTR_SIZE * 2;
1486 /* count the number of seen parameters */
1487 sym = func_type->ref;
1488 while ((sym = sym->next) != NULL) {
1489 type = &sym->type;
1490 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1491 switch (mode) {
1492 default:
1493 stack_arg:
1494 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1495 break;
1497 case x86_64_mode_integer:
1498 if (seen_reg_num + reg_count <= 8) {
1499 seen_reg_num += reg_count;
1500 } else {
1501 seen_reg_num = 8;
1502 goto stack_arg;
1504 break;
1506 case x86_64_mode_sse:
1507 if (seen_sse_num + reg_count <= 8) {
1508 seen_sse_num += reg_count;
1509 } else {
1510 seen_sse_num = 8;
1511 goto stack_arg;
1513 break;
1517 loc -= 16;
1518 /* movl $0x????????, -0x10(%rbp) */
1519 o(0xf045c7);
1520 gen_le32(seen_reg_num * 8);
1521 /* movl $0x????????, -0xc(%rbp) */
1522 o(0xf445c7);
1523 gen_le32(seen_sse_num * 16 + 48);
1524 /* movl $0x????????, -0x8(%rbp) */
1525 o(0xf845c7);
1526 gen_le32(seen_stack_size);
1528 /* save all register passing arguments */
1529 for (i = 0; i < 8; i++) {
1530 loc -= 16;
1531 o(0xd60f66); /* movq */
1532 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1533 /* movq $0, loc+8(%rbp) */
1534 o(0x85c748);
1535 gen_le32(loc + 8);
1536 gen_le32(0);
1538 for (i = 0; i < REGN; i++) {
1539 push_arg_reg(REGN-1-i);
1543 sym = func_type->ref;
1544 reg_param_index = 0;
1545 sse_param_index = 0;
1547 /* if the function returns a structure, then add an
1548 implicit pointer parameter */
1549 func_vt = sym->type;
1550 mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1551 if (mode == x86_64_mode_memory) {
1552 push_arg_reg(reg_param_index);
1553 func_vc = loc;
1554 reg_param_index++;
1556 /* define parameters */
1557 while ((sym = sym->next) != NULL) {
1558 type = &sym->type;
1559 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1560 switch (mode) {
1561 case x86_64_mode_sse:
1562 if (sse_param_index + reg_count <= 8) {
1563 /* save arguments passed by register */
1564 loc -= reg_count * 8;
1565 param_addr = loc;
1566 for (i = 0; i < reg_count; ++i) {
1567 o(0xd60f66); /* movq */
1568 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1569 ++sse_param_index;
1571 } else {
1572 addr = (addr + align - 1) & -align;
1573 param_addr = addr;
1574 addr += size;
1575 sse_param_index += reg_count;
1577 break;
1579 case x86_64_mode_memory:
1580 case x86_64_mode_x87:
1581 addr = (addr + align - 1) & -align;
1582 param_addr = addr;
1583 addr += size;
1584 break;
1586 case x86_64_mode_integer: {
1587 if (reg_param_index + reg_count <= REGN) {
1588 /* save arguments passed by register */
1589 loc -= reg_count * 8;
1590 param_addr = loc;
1591 for (i = 0; i < reg_count; ++i) {
1592 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1593 ++reg_param_index;
1595 } else {
1596 addr = (addr + align - 1) & -align;
1597 param_addr = addr;
1598 addr += size;
1599 reg_param_index += reg_count;
1601 break;
1603 default: break; /* nothing to be done for x86_64_mode_none */
1605 sym_push(sym->v & ~SYM_FIELD, type,
1606 VT_LOCAL | VT_LVAL, param_addr);
1609 #ifdef CONFIG_TCC_BCHECK
1610 /* leave some room for bound checking code */
1611 if (tcc_state->do_bounds_check) {
1612 func_bound_offset = lbounds_section->data_offset;
1613 func_bound_ind = ind;
1614 oad(0xb8, 0); /* lbound section pointer */
1615 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1616 oad(0xb8, 0); /* call to function */
1618 #endif
1621 /* generate function epilog */
1622 void gfunc_epilog(void)
1624 int v, saved_ind;
1626 #ifdef CONFIG_TCC_BCHECK
1627 if (tcc_state->do_bounds_check
1628 && func_bound_offset != lbounds_section->data_offset)
1630 addr_t saved_ind;
1631 addr_t *bounds_ptr;
1632 Sym *sym_data;
1634 /* add end of table info */
1635 bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
1636 *bounds_ptr = 0;
1638 /* generate bound local allocation */
1639 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
1640 func_bound_offset, lbounds_section->data_offset);
1641 saved_ind = ind;
1642 ind = func_bound_ind;
1643 greloc(cur_text_section, sym_data, ind + 1, R_386_32);
1644 ind = ind + 5 + 3;
1645 gen_static_call(TOK___bound_local_new);
1646 ind = saved_ind;
1648 /* generate bound check local freeing */
1649 o(0x5250); /* save returned value, if any */
1650 greloc(cur_text_section, sym_data, ind + 1, R_386_32);
1651 oad(0xb8, 0); /* mov xxx, %rax */
1652 o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
1653 gen_static_call(TOK___bound_local_delete);
1654 o(0x585a); /* restore returned value, if any */
1656 #endif
1657 o(0xc9); /* leave */
1658 if (func_ret_sub == 0) {
1659 o(0xc3); /* ret */
1660 } else {
1661 o(0xc2); /* ret n */
1662 g(func_ret_sub);
1663 g(func_ret_sub >> 8);
1665 /* align local size to word & save local variables */
1666 v = (-loc + 15) & -16;
1667 saved_ind = ind;
1668 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1669 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1670 o(0xec8148); /* sub rsp, stacksize */
1671 gen_le32(v);
1672 ind = saved_ind;
1675 #endif /* not PE */
1677 /* generate a jump to a label */
1678 int gjmp(int t)
1680 return psym(0xe9, t);
1683 /* generate a jump to a fixed address */
1684 void gjmp_addr(int a)
1686 int r;
1687 r = a - ind - 2;
1688 if (r == (char)r) {
1689 g(0xeb);
1690 g(r);
1691 } else {
1692 oad(0xe9, a - ind - 5);
1696 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1697 int gtst(int inv, int t)
1699 int v, *p;
1701 v = vtop->r & VT_VALMASK;
1702 if (v == VT_CMP) {
1703 /* fast case : can jump directly since flags are set */
1704 if (vtop->c.i & 0x100)
1706 /* This was a float compare. If the parity flag is set
1707 the result was unordered. For anything except != this
1708 means false and we don't jump (anding both conditions).
1709 For != this means true (oring both).
1710 Take care about inverting the test. We need to jump
1711 to our target if the result was unordered and test wasn't NE,
1712 otherwise if unordered we don't want to jump. */
1713 vtop->c.i &= ~0x100;
1714 if (!inv == (vtop->c.i != TOK_NE))
1715 o(0x067a); /* jp +6 */
1716 else
1718 g(0x0f);
1719 t = psym(0x8a, t); /* jp t */
1722 g(0x0f);
1723 t = psym((vtop->c.i - 16) ^ inv, t);
1724 } else if (v == VT_JMP || v == VT_JMPI) {
1725 /* && or || optimization */
1726 if ((v & 1) == inv) {
1727 /* insert vtop->c jump list in t */
1728 p = &vtop->c.i;
1729 while (*p != 0)
1730 p = (int *)(cur_text_section->data + *p);
1731 *p = t;
1732 t = vtop->c.i;
1733 } else {
1734 t = gjmp(t);
1735 gsym(vtop->c.i);
1738 vtop--;
1739 return t;
1742 /* generate an integer binary operation */
1743 void gen_opi(int op)
1745 int r, fr, opc, c;
1746 int ll, uu, cc;
1748 ll = is64_type(vtop[-1].type.t);
1749 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1750 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1752 switch(op) {
1753 case '+':
1754 case TOK_ADDC1: /* add with carry generation */
1755 opc = 0;
1756 gen_op8:
1757 if (cc && (!ll || (int)vtop->c.ll == vtop->c.ll)) {
1758 /* constant case */
1759 vswap();
1760 r = gv(RC_INT);
1761 vswap();
1762 c = vtop->c.i;
1763 if (c == (char)c) {
1764 /* XXX: generate inc and dec for smaller code ? */
1765 orex(ll, r, 0, 0x83);
1766 o(0xc0 | (opc << 3) | REG_VALUE(r));
1767 g(c);
1768 } else {
1769 orex(ll, r, 0, 0x81);
1770 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1772 } else {
1773 gv2(RC_INT, RC_INT);
1774 r = vtop[-1].r;
1775 fr = vtop[0].r;
1776 orex(ll, r, fr, (opc << 3) | 0x01);
1777 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1779 vtop--;
1780 if (op >= TOK_ULT && op <= TOK_GT) {
1781 vtop->r = VT_CMP;
1782 vtop->c.i = op;
1784 break;
1785 case '-':
1786 case TOK_SUBC1: /* sub with carry generation */
1787 opc = 5;
1788 goto gen_op8;
1789 case TOK_ADDC2: /* add with carry use */
1790 opc = 2;
1791 goto gen_op8;
1792 case TOK_SUBC2: /* sub with carry use */
1793 opc = 3;
1794 goto gen_op8;
1795 case '&':
1796 opc = 4;
1797 goto gen_op8;
1798 case '^':
1799 opc = 6;
1800 goto gen_op8;
1801 case '|':
1802 opc = 1;
1803 goto gen_op8;
1804 case '*':
1805 gv2(RC_INT, RC_INT);
1806 r = vtop[-1].r;
1807 fr = vtop[0].r;
1808 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1809 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1810 vtop--;
1811 break;
1812 case TOK_SHL:
1813 opc = 4;
1814 goto gen_shift;
1815 case TOK_SHR:
1816 opc = 5;
1817 goto gen_shift;
1818 case TOK_SAR:
1819 opc = 7;
1820 gen_shift:
1821 opc = 0xc0 | (opc << 3);
1822 if (cc) {
1823 /* constant case */
1824 vswap();
1825 r = gv(RC_INT);
1826 vswap();
1827 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1828 o(opc | REG_VALUE(r));
1829 g(vtop->c.i & (ll ? 63 : 31));
1830 } else {
1831 /* we generate the shift in ecx */
1832 gv2(RC_INT, RC_RCX);
1833 r = vtop[-1].r;
1834 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1835 o(opc | REG_VALUE(r));
1837 vtop--;
1838 break;
1839 case TOK_UDIV:
1840 case TOK_UMOD:
1841 uu = 1;
1842 goto divmod;
1843 case '/':
1844 case '%':
1845 case TOK_PDIV:
1846 uu = 0;
1847 divmod:
1848 /* first operand must be in eax */
1849 /* XXX: need better constraint for second operand */
1850 gv2(RC_RAX, RC_RCX);
1851 r = vtop[-1].r;
1852 fr = vtop[0].r;
1853 vtop--;
1854 save_reg(TREG_RDX);
1855 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1856 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1857 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1858 if (op == '%' || op == TOK_UMOD)
1859 r = TREG_RDX;
1860 else
1861 r = TREG_RAX;
1862 vtop->r = r;
1863 break;
1864 default:
1865 opc = 7;
1866 goto gen_op8;
1870 void gen_opl(int op)
1872 gen_opi(op);
1875 /* generate a floating point operation 'v = t1 op t2' instruction. The
1876 two operands are guaranted to have the same floating point type */
1877 /* XXX: need to use ST1 too */
1878 void gen_opf(int op)
1880 int a, ft, fc, swapped, r;
1881 int float_type =
1882 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1884 /* convert constants to memory references */
1885 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1886 vswap();
1887 gv(float_type);
1888 vswap();
1890 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1891 gv(float_type);
1893 /* must put at least one value in the floating point register */
1894 if ((vtop[-1].r & VT_LVAL) &&
1895 (vtop[0].r & VT_LVAL)) {
1896 vswap();
1897 gv(float_type);
1898 vswap();
1900 swapped = 0;
1901 /* swap the stack if needed so that t1 is the register and t2 is
1902 the memory reference */
1903 if (vtop[-1].r & VT_LVAL) {
1904 vswap();
1905 swapped = 1;
1907 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1908 if (op >= TOK_ULT && op <= TOK_GT) {
1909 /* load on stack second operand */
1910 load(TREG_ST0, vtop);
1911 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1912 if (op == TOK_GE || op == TOK_GT)
1913 swapped = !swapped;
1914 else if (op == TOK_EQ || op == TOK_NE)
1915 swapped = 0;
1916 if (swapped)
1917 o(0xc9d9); /* fxch %st(1) */
1918 if (op == TOK_EQ || op == TOK_NE)
1919 o(0xe9da); /* fucompp */
1920 else
1921 o(0xd9de); /* fcompp */
1922 o(0xe0df); /* fnstsw %ax */
1923 if (op == TOK_EQ) {
1924 o(0x45e480); /* and $0x45, %ah */
1925 o(0x40fC80); /* cmp $0x40, %ah */
1926 } else if (op == TOK_NE) {
1927 o(0x45e480); /* and $0x45, %ah */
1928 o(0x40f480); /* xor $0x40, %ah */
1929 op = TOK_NE;
1930 } else if (op == TOK_GE || op == TOK_LE) {
1931 o(0x05c4f6); /* test $0x05, %ah */
1932 op = TOK_EQ;
1933 } else {
1934 o(0x45c4f6); /* test $0x45, %ah */
1935 op = TOK_EQ;
1937 vtop--;
1938 vtop->r = VT_CMP;
1939 vtop->c.i = op;
1940 } else {
1941 /* no memory reference possible for long double operations */
1942 load(TREG_ST0, vtop);
1943 swapped = !swapped;
1945 switch(op) {
1946 default:
1947 case '+':
1948 a = 0;
1949 break;
1950 case '-':
1951 a = 4;
1952 if (swapped)
1953 a++;
1954 break;
1955 case '*':
1956 a = 1;
1957 break;
1958 case '/':
1959 a = 6;
1960 if (swapped)
1961 a++;
1962 break;
1964 ft = vtop->type.t;
1965 fc = vtop->c.ul;
1966 o(0xde); /* fxxxp %st, %st(1) */
1967 o(0xc1 + (a << 3));
1968 vtop--;
1970 } else {
1971 if (op >= TOK_ULT && op <= TOK_GT) {
1972 /* if saved lvalue, then we must reload it */
1973 r = vtop->r;
1974 fc = vtop->c.ul;
1975 if ((r & VT_VALMASK) == VT_LLOCAL) {
1976 SValue v1;
1977 r = get_reg(RC_INT);
1978 v1.type.t = VT_PTR;
1979 v1.r = VT_LOCAL | VT_LVAL;
1980 v1.c.ul = fc;
1981 load(r, &v1);
1982 fc = 0;
1985 if (op == TOK_EQ || op == TOK_NE) {
1986 swapped = 0;
1987 } else {
1988 if (op == TOK_LE || op == TOK_LT)
1989 swapped = !swapped;
1990 if (op == TOK_LE || op == TOK_GE) {
1991 op = 0x93; /* setae */
1992 } else {
1993 op = 0x97; /* seta */
1997 if (swapped) {
1998 gv(RC_FLOAT);
1999 vswap();
2001 assert(!(vtop[-1].r & VT_LVAL));
2003 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
2004 o(0x66);
2005 if (op == TOK_EQ || op == TOK_NE)
2006 o(0x2e0f); /* ucomisd */
2007 else
2008 o(0x2f0f); /* comisd */
2010 if (vtop->r & VT_LVAL) {
2011 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2012 } else {
2013 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2016 vtop--;
2017 vtop->r = VT_CMP;
2018 vtop->c.i = op | 0x100;
2019 } else {
2020 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
2021 switch(op) {
2022 default:
2023 case '+':
2024 a = 0;
2025 break;
2026 case '-':
2027 a = 4;
2028 break;
2029 case '*':
2030 a = 1;
2031 break;
2032 case '/':
2033 a = 6;
2034 break;
2036 ft = vtop->type.t;
2037 fc = vtop->c.ul;
2038 assert((ft & VT_BTYPE) != VT_LDOUBLE);
2040 r = vtop->r;
2041 /* if saved lvalue, then we must reload it */
2042 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
2043 SValue v1;
2044 r = get_reg(RC_INT);
2045 v1.type.t = VT_PTR;
2046 v1.r = VT_LOCAL | VT_LVAL;
2047 v1.c.ul = fc;
2048 load(r, &v1);
2049 fc = 0;
2052 assert(!(vtop[-1].r & VT_LVAL));
2053 if (swapped) {
2054 assert(vtop->r & VT_LVAL);
2055 gv(RC_FLOAT);
2056 vswap();
2059 if ((ft & VT_BTYPE) == VT_DOUBLE) {
2060 o(0xf2);
2061 } else {
2062 o(0xf3);
2064 o(0x0f);
2065 o(0x58 + a);
2067 if (vtop->r & VT_LVAL) {
2068 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2069 } else {
2070 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2073 vtop--;
2078 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2079 and 'long long' cases. */
2080 void gen_cvt_itof(int t)
2082 if ((t & VT_BTYPE) == VT_LDOUBLE) {
2083 save_reg(TREG_ST0);
2084 gv(RC_INT);
2085 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
2086 /* signed long long to float/double/long double (unsigned case
2087 is handled generically) */
2088 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2089 o(0x242cdf); /* fildll (%rsp) */
2090 o(0x08c48348); /* add $8, %rsp */
2091 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2092 (VT_INT | VT_UNSIGNED)) {
2093 /* unsigned int to float/double/long double */
2094 o(0x6a); /* push $0 */
2095 g(0x00);
2096 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2097 o(0x242cdf); /* fildll (%rsp) */
2098 o(0x10c48348); /* add $16, %rsp */
2099 } else {
2100 /* int to float/double/long double */
2101 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2102 o(0x2404db); /* fildl (%rsp) */
2103 o(0x08c48348); /* add $8, %rsp */
2105 vtop->r = TREG_ST0;
2106 } else {
2107 int r = get_reg(RC_FLOAT);
2108 gv(RC_INT);
2109 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
2110 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2111 (VT_INT | VT_UNSIGNED) ||
2112 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
2113 o(0x48); /* REX */
2115 o(0x2a0f);
2116 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
2117 vtop->r = r;
2121 /* convert from one floating point type to another */
2122 void gen_cvt_ftof(int t)
2124 int ft, bt, tbt;
2126 ft = vtop->type.t;
2127 bt = ft & VT_BTYPE;
2128 tbt = t & VT_BTYPE;
2130 if (bt == VT_FLOAT) {
2131 gv(RC_FLOAT);
2132 if (tbt == VT_DOUBLE) {
2133 o(0x140f); /* unpcklps */
2134 o(0xc0 + REG_VALUE(vtop->r)*9);
2135 o(0x5a0f); /* cvtps2pd */
2136 o(0xc0 + REG_VALUE(vtop->r)*9);
2137 } else if (tbt == VT_LDOUBLE) {
2138 save_reg(RC_ST0);
2139 /* movss %xmm0,-0x10(%rsp) */
2140 o(0x110ff3);
2141 o(0x44 + REG_VALUE(vtop->r)*8);
2142 o(0xf024);
2143 o(0xf02444d9); /* flds -0x10(%rsp) */
2144 vtop->r = TREG_ST0;
2146 } else if (bt == VT_DOUBLE) {
2147 gv(RC_FLOAT);
2148 if (tbt == VT_FLOAT) {
2149 o(0x140f66); /* unpcklpd */
2150 o(0xc0 + REG_VALUE(vtop->r)*9);
2151 o(0x5a0f66); /* cvtpd2ps */
2152 o(0xc0 + REG_VALUE(vtop->r)*9);
2153 } else if (tbt == VT_LDOUBLE) {
2154 save_reg(RC_ST0);
2155 /* movsd %xmm0,-0x10(%rsp) */
2156 o(0x110ff2);
2157 o(0x44 + REG_VALUE(vtop->r)*8);
2158 o(0xf024);
2159 o(0xf02444dd); /* fldl -0x10(%rsp) */
2160 vtop->r = TREG_ST0;
2162 } else {
2163 int r;
2164 gv(RC_ST0);
2165 r = get_reg(RC_FLOAT);
2166 if (tbt == VT_DOUBLE) {
2167 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2168 /* movsd -0x10(%rsp),%xmm0 */
2169 o(0x100ff2);
2170 o(0x44 + REG_VALUE(r)*8);
2171 o(0xf024);
2172 vtop->r = r;
2173 } else if (tbt == VT_FLOAT) {
2174 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2175 /* movss -0x10(%rsp),%xmm0 */
2176 o(0x100ff3);
2177 o(0x44 + REG_VALUE(r)*8);
2178 o(0xf024);
2179 vtop->r = r;
2184 /* convert fp to int 't' type */
2185 void gen_cvt_ftoi(int t)
2187 int ft, bt, size, r;
2188 ft = vtop->type.t;
2189 bt = ft & VT_BTYPE;
2190 if (bt == VT_LDOUBLE) {
2191 gen_cvt_ftof(VT_DOUBLE);
2192 bt = VT_DOUBLE;
2195 gv(RC_FLOAT);
2196 if (t != VT_INT)
2197 size = 8;
2198 else
2199 size = 4;
2201 r = get_reg(RC_INT);
2202 if (bt == VT_FLOAT) {
2203 o(0xf3);
2204 } else if (bt == VT_DOUBLE) {
2205 o(0xf2);
2206 } else {
2207 assert(0);
2209 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2210 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2211 vtop->r = r;
2214 /* computed goto support */
2215 void ggoto(void)
2217 gcall_or_jmp(1);
2218 vtop--;
2221 /* Save the stack pointer onto the stack and return the location of its address */
2222 ST_FUNC void gen_vla_sp_save(int addr) {
2223 /* mov %rsp,addr(%rbp)*/
2224 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2227 /* Restore the SP from a location on the stack */
2228 ST_FUNC void gen_vla_sp_restore(int addr) {
2229 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2232 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2233 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2234 #ifdef TCC_TARGET_PE
2235 /* alloca does more than just adjust %rsp on Windows */
2236 vpush_global_sym(&func_old_type, TOK_alloca);
2237 vswap(); /* Move alloca ref past allocation size */
2238 gfunc_call(1);
2239 vset(type, REG_IRET, 0);
2240 #else
2241 int r;
2242 r = gv(RC_INT); /* allocation size */
2243 /* sub r,%rsp */
2244 o(0x2b48);
2245 o(0xe0 | REG_VALUE(r));
2246 /* We align to 16 bytes rather than align */
2247 /* and ~15, %rsp */
2248 o(0xf0e48348);
2249 /* mov %rsp, r */
2250 o(0x8948);
2251 o(0xe0 | REG_VALUE(r));
2252 vpop();
2253 vset(type, r, 0);
2254 #endif
2258 /* end of x86-64 code generator */
2259 /*************************************************************/
2260 #endif /* ! TARGET_DEFS_ONLY */
2261 /******************************************************/