Always set *palign in classify_x86_64_arg
[tinycc.git] / x86_64-gen.c
blob2f4d8fe7f84983fed85e7017ab56bc92d670610f
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 8
29 /* a register can belong to several classes. The classes must be
30 sorted from more general to more precise (see gv2() code which does
31 assumptions on it). */
32 #define RC_INT 0x0001 /* generic integer register */
33 #define RC_FLOAT 0x0002 /* generic float register */
34 #define RC_RAX 0x0004
35 #define RC_RCX 0x0008
36 #define RC_RDX 0x0010
37 #define RC_ST0 0x0080 /* only for long double */
38 #define RC_R8 0x0100
39 #define RC_R9 0x0200
40 #define RC_R10 0x0400
41 #define RC_R11 0x0800
42 #define RC_XMM0 0x1000
43 #define RC_XMM1 0x2000
44 #define RC_XMM2 0x4000
45 #define RC_XMM3 0x8000
46 #define RC_XMM4 0x10000
47 #define RC_XMM5 0x20000
48 #define RC_XMM6 0x40000
49 #define RC_XMM7 0x80000
50 #define RC_IRET RC_RAX /* function return: integer register */
51 #define RC_LRET RC_RDX /* function return: second integer register */
52 #define RC_FRET RC_XMM0 /* function return: float register */
53 #define RC_QRET RC_XMM1 /* function return: second float register */
55 /* pretty names for the registers */
56 enum {
57 TREG_RAX = 0,
58 TREG_RCX = 1,
59 TREG_RDX = 2,
60 TREG_RSP = 4,
61 TREG_RSI = 6,
62 TREG_RDI = 7,
64 TREG_R8 = 8,
65 TREG_R9 = 9,
66 TREG_R10 = 10,
67 TREG_R11 = 11,
69 TREG_XMM0 = 16,
70 TREG_XMM1 = 17,
71 TREG_XMM2 = 18,
72 TREG_XMM3 = 19,
73 TREG_XMM4 = 20,
74 TREG_XMM5 = 21,
75 TREG_XMM6 = 22,
76 TREG_XMM7 = 23,
78 TREG_ST0 = 24,
80 TREG_MEM = 0x20,
83 #define REX_BASE(reg) (((reg) >> 3) & 1)
84 #define REG_VALUE(reg) ((reg) & 7)
86 /* return registers for function */
87 #define REG_IRET TREG_RAX /* single word int return register */
88 #define REG_LRET TREG_RDX /* second word return register (for long long) */
89 #define REG_FRET TREG_XMM0 /* float return register */
90 #define REG_QRET TREG_XMM1 /* second float return register */
92 /* defined if function parameters must be evaluated in reverse order */
93 #define INVERT_FUNC_PARAMS
95 /* pointer size, in bytes */
96 #define PTR_SIZE 8
98 /* long double size and alignment, in bytes */
99 #define LDOUBLE_SIZE 16
100 #define LDOUBLE_ALIGN 16
101 /* maximum alignment (for aligned attribute support) */
102 #define MAX_ALIGN 16
104 /******************************************************/
105 /* ELF defines */
107 #define EM_TCC_TARGET EM_X86_64
109 /* relocation type for 32 bit data relocation */
110 #define R_DATA_32 R_X86_64_32
111 #define R_DATA_PTR R_X86_64_64
112 #define R_JMP_SLOT R_X86_64_JUMP_SLOT
113 #define R_COPY R_X86_64_COPY
115 #define ELF_START_ADDR 0x08048000
116 #define ELF_PAGE_SIZE 0x1000
118 /******************************************************/
119 #else /* ! TARGET_DEFS_ONLY */
120 /******************************************************/
121 #include "tcc.h"
122 #include <assert.h>
124 ST_DATA const int reg_classes[NB_REGS] = {
125 /* eax */ RC_INT | RC_RAX,
126 /* ecx */ RC_INT | RC_RCX,
127 /* edx */ RC_INT | RC_RDX,
133 RC_R8,
134 RC_R9,
135 RC_R10,
136 RC_R11,
141 /* xmm0 */ RC_FLOAT | RC_XMM0,
142 /* xmm1 */ RC_FLOAT | RC_XMM1,
143 /* xmm2 */ RC_FLOAT | RC_XMM2,
144 /* xmm3 */ RC_FLOAT | RC_XMM3,
145 /* xmm4 */ RC_FLOAT | RC_XMM4,
146 /* xmm5 */ RC_FLOAT | RC_XMM5,
147 /* xmm6 an xmm7 are included so gv() can be used on them,
148 but they are not tagged with RC_FLOAT because they are
149 callee saved on Windows */
150 RC_XMM6,
151 RC_XMM7,
152 /* st0 */ RC_ST0
155 static unsigned long func_sub_sp_offset;
156 static int func_ret_sub;
158 /* XXX: make it faster ? */
159 void g(int c)
161 int ind1;
162 ind1 = ind + 1;
163 if (ind1 > cur_text_section->data_allocated)
164 section_realloc(cur_text_section, ind1);
165 cur_text_section->data[ind] = c;
166 ind = ind1;
169 void o(unsigned int c)
171 while (c) {
172 g(c);
173 c = c >> 8;
177 void gen_le16(int v)
179 g(v);
180 g(v >> 8);
183 void gen_le32(int c)
185 g(c);
186 g(c >> 8);
187 g(c >> 16);
188 g(c >> 24);
191 void gen_le64(int64_t c)
193 g(c);
194 g(c >> 8);
195 g(c >> 16);
196 g(c >> 24);
197 g(c >> 32);
198 g(c >> 40);
199 g(c >> 48);
200 g(c >> 56);
203 void orex(int ll, int r, int r2, int b)
205 if ((r & VT_VALMASK) >= VT_CONST)
206 r = 0;
207 if ((r2 & VT_VALMASK) >= VT_CONST)
208 r2 = 0;
209 if (ll || REX_BASE(r) || REX_BASE(r2))
210 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
211 o(b);
214 /* output a symbol and patch all calls to it */
215 void gsym_addr(int t, int a)
217 int n, *ptr;
218 while (t) {
219 ptr = (int *)(cur_text_section->data + t);
220 n = *ptr; /* next value */
221 *ptr = a - t - 4;
222 t = n;
226 void gsym(int t)
228 gsym_addr(t, ind);
231 /* psym is used to put an instruction with a data field which is a
232 reference to a symbol. It is in fact the same as oad ! */
233 #define psym oad
235 static int is64_type(int t)
237 return ((t & VT_BTYPE) == VT_PTR ||
238 (t & VT_BTYPE) == VT_FUNC ||
239 (t & VT_BTYPE) == VT_LLONG);
242 /* instruction + 4 bytes data. Return the address of the data */
243 ST_FUNC int oad(int c, int s)
245 int ind1;
247 o(c);
248 ind1 = ind + 4;
249 if (ind1 > cur_text_section->data_allocated)
250 section_realloc(cur_text_section, ind1);
251 *(int *)(cur_text_section->data + ind) = s;
252 s = ind;
253 ind = ind1;
254 return s;
257 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
259 if (r & VT_SYM)
260 greloc(cur_text_section, sym, ind, R_X86_64_32);
261 gen_le32(c);
264 /* output constant with relocation if 'r & VT_SYM' is true */
265 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
267 if (r & VT_SYM)
268 greloc(cur_text_section, sym, ind, R_X86_64_64);
269 gen_le64(c);
272 /* output constant with relocation if 'r & VT_SYM' is true */
273 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
275 if (r & VT_SYM)
276 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
277 gen_le32(c-4);
280 /* output got address with relocation */
281 static void gen_gotpcrel(int r, Sym *sym, int c)
283 #ifndef TCC_TARGET_PE
284 Section *sr;
285 ElfW(Rela) *rel;
286 greloc(cur_text_section, sym, ind, R_X86_64_GOTPCREL);
287 sr = cur_text_section->reloc;
288 rel = (ElfW(Rela) *)(sr->data + sr->data_offset - sizeof(ElfW(Rela)));
289 rel->r_addend = -4;
290 #else
291 printf("picpic: %s %x %x | %02x %02x %02x\n", get_tok_str(sym->v, NULL), c, r,
292 cur_text_section->data[ind-3],
293 cur_text_section->data[ind-2],
294 cur_text_section->data[ind-1]
296 greloc(cur_text_section, sym, ind, R_X86_64_PC32);
297 #endif
298 gen_le32(0);
299 if (c) {
300 /* we use add c, %xxx for displacement */
301 orex(1, r, 0, 0x81);
302 o(0xc0 + REG_VALUE(r));
303 gen_le32(c);
307 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
309 op_reg = REG_VALUE(op_reg) << 3;
310 if ((r & VT_VALMASK) == VT_CONST) {
311 /* constant memory reference */
312 o(0x05 | op_reg);
313 if (is_got) {
314 gen_gotpcrel(r, sym, c);
315 } else {
316 gen_addrpc32(r, sym, c);
318 } else if ((r & VT_VALMASK) == VT_LOCAL) {
319 /* currently, we use only ebp as base */
320 if (c == (char)c) {
321 /* short reference */
322 o(0x45 | op_reg);
323 g(c);
324 } else {
325 oad(0x85 | op_reg, c);
327 } else if ((r & VT_VALMASK) >= TREG_MEM) {
328 if (c) {
329 g(0x80 | op_reg | REG_VALUE(r));
330 gen_le32(c);
331 } else {
332 g(0x00 | op_reg | REG_VALUE(r));
334 } else {
335 g(0x00 | op_reg | REG_VALUE(r));
339 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
340 opcode bits */
341 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
343 gen_modrm_impl(op_reg, r, sym, c, 0);
346 /* generate a modrm reference. 'op_reg' contains the addtionnal 3
347 opcode bits */
348 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
350 int is_got;
351 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
352 orex(1, r, op_reg, opcode);
353 gen_modrm_impl(op_reg, r, sym, c, is_got);
357 /* load 'r' from value 'sv' */
358 void load(int r, SValue *sv)
360 int v, t, ft, fc, fr;
361 SValue v1;
363 #ifdef TCC_TARGET_PE
364 SValue v2;
365 sv = pe_getimport(sv, &v2);
366 #endif
368 fr = sv->r;
369 ft = sv->type.t;
370 fc = sv->c.ul;
372 #ifndef TCC_TARGET_PE
373 /* we use indirect access via got */
374 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
375 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
376 /* use the result register as a temporal register */
377 int tr = r | TREG_MEM;
378 if (is_float(ft)) {
379 /* we cannot use float registers as a temporal register */
380 tr = get_reg(RC_INT) | TREG_MEM;
382 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
384 /* load from the temporal register */
385 fr = tr | VT_LVAL;
387 #endif
389 v = fr & VT_VALMASK;
390 if (fr & VT_LVAL) {
391 int b, ll;
392 if (v == VT_LLOCAL) {
393 v1.type.t = VT_PTR;
394 v1.r = VT_LOCAL | VT_LVAL;
395 v1.c.ul = fc;
396 fr = r;
397 if (!(reg_classes[fr] & RC_INT))
398 fr = get_reg(RC_INT);
399 load(fr, &v1);
401 ll = 0;
402 if ((ft & VT_BTYPE) == VT_FLOAT) {
403 b = 0x6e0f66;
404 r = REG_VALUE(r); /* movd */
405 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
406 b = 0x7e0ff3; /* movq */
407 r = REG_VALUE(r);
408 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
409 b = 0xdb, r = 5; /* fldt */
410 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
411 b = 0xbe0f; /* movsbl */
412 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
413 b = 0xb60f; /* movzbl */
414 } else if ((ft & VT_TYPE) == VT_SHORT) {
415 b = 0xbf0f; /* movswl */
416 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
417 b = 0xb70f; /* movzwl */
418 } else {
419 assert(((ft & VT_BTYPE) == VT_INT) || ((ft & VT_BTYPE) == VT_LLONG)
420 || ((ft & VT_BTYPE) == VT_PTR) || ((ft & VT_BTYPE) == VT_ENUM)
421 || ((ft & VT_BTYPE) == VT_FUNC));
422 ll = is64_type(ft);
423 b = 0x8b;
425 if (ll) {
426 gen_modrm64(b, r, fr, sv->sym, fc);
427 } else {
428 orex(ll, fr, r, b);
429 gen_modrm(r, fr, sv->sym, fc);
431 } else {
432 if (v == VT_CONST) {
433 if (fr & VT_SYM) {
434 #ifdef TCC_TARGET_PE
435 orex(1,0,r,0x8d);
436 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
437 gen_addrpc32(fr, sv->sym, fc);
438 #else
439 if (sv->sym->type.t & VT_STATIC) {
440 orex(1,0,r,0x8d);
441 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
442 gen_addrpc32(fr, sv->sym, fc);
443 } else {
444 orex(1,0,r,0x8b);
445 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
446 gen_gotpcrel(r, sv->sym, fc);
448 #endif
449 } else if (is64_type(ft)) {
450 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
451 gen_le64(sv->c.ull);
452 } else {
453 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
454 gen_le32(fc);
456 } else if (v == VT_LOCAL) {
457 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
458 gen_modrm(r, VT_LOCAL, sv->sym, fc);
459 } else if (v == VT_CMP) {
460 orex(0,r,0,0);
461 if ((fc & ~0x100) != TOK_NE)
462 oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
463 else
464 oad(0xb8 + REG_VALUE(r), 1); /* mov $1, r */
465 if (fc & 0x100)
467 /* This was a float compare. If the parity bit is
468 set the result was unordered, meaning false for everything
469 except TOK_NE, and true for TOK_NE. */
470 fc &= ~0x100;
471 o(0x037a + (REX_BASE(r) << 8));
473 orex(0,r,0, 0x0f); /* setxx %br */
474 o(fc);
475 o(0xc0 + REG_VALUE(r));
476 } else if (v == VT_JMP || v == VT_JMPI) {
477 t = v & 1;
478 orex(0,r,0,0);
479 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
480 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
481 gsym(fc);
482 orex(0,r,0,0);
483 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
484 } else if (v != r) {
485 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
486 if (v == TREG_ST0) {
487 /* gen_cvt_ftof(VT_DOUBLE); */
488 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
489 /* movsd -0x10(%rsp),%xmmN */
490 o(0x100ff2);
491 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
492 o(0xf024);
493 } else {
494 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
495 if ((ft & VT_BTYPE) == VT_FLOAT) {
496 o(0x100ff3);
497 } else {
498 assert((ft & VT_BTYPE) == VT_DOUBLE);
499 o(0x100ff2);
501 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
503 } else if (r == TREG_ST0) {
504 assert((v >= TREG_XMM0) || (v <= TREG_XMM7));
505 /* gen_cvt_ftof(VT_LDOUBLE); */
506 /* movsd %xmmN,-0x10(%rsp) */
507 o(0x110ff2);
508 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
509 o(0xf024);
510 o(0xf02444dd); /* fldl -0x10(%rsp) */
511 } else {
512 orex(1,r,v, 0x89);
513 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
519 /* store register 'r' in lvalue 'v' */
520 void store(int r, SValue *v)
522 int fr, bt, ft, fc;
523 int op64 = 0;
524 /* store the REX prefix in this variable when PIC is enabled */
525 int pic = 0;
527 #ifdef TCC_TARGET_PE
528 SValue v2;
529 v = pe_getimport(v, &v2);
530 #endif
532 ft = v->type.t;
533 fc = v->c.ul;
534 fr = v->r & VT_VALMASK;
535 bt = ft & VT_BTYPE;
537 #ifndef TCC_TARGET_PE
538 /* we need to access the variable via got */
539 if (fr == VT_CONST && (v->r & VT_SYM)) {
540 /* mov xx(%rip), %r11 */
541 o(0x1d8b4c);
542 gen_gotpcrel(TREG_R11, v->sym, v->c.ul);
543 pic = is64_type(bt) ? 0x49 : 0x41;
545 #endif
547 /* XXX: incorrect if float reg to reg */
548 if (bt == VT_FLOAT) {
549 o(0x66);
550 o(pic);
551 o(0x7e0f); /* movd */
552 r = REG_VALUE(r);
553 } else if (bt == VT_DOUBLE) {
554 o(0x66);
555 o(pic);
556 o(0xd60f); /* movq */
557 r = REG_VALUE(r);
558 } else if (bt == VT_LDOUBLE) {
559 o(0xc0d9); /* fld %st(0) */
560 o(pic);
561 o(0xdb); /* fstpt */
562 r = 7;
563 } else {
564 if (bt == VT_SHORT)
565 o(0x66);
566 o(pic);
567 if (bt == VT_BYTE || bt == VT_BOOL)
568 orex(0, 0, r, 0x88);
569 else if (is64_type(bt))
570 op64 = 0x89;
571 else
572 orex(0, 0, r, 0x89);
574 if (pic) {
575 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
576 if (op64)
577 o(op64);
578 o(3 + (r << 3));
579 } else if (op64) {
580 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
581 gen_modrm64(op64, r, v->r, v->sym, fc);
582 } else if (fr != r) {
583 /* XXX: don't we really come here? */
584 abort();
585 o(0xc0 + fr + r * 8); /* mov r, fr */
587 } else {
588 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
589 gen_modrm(r, v->r, v->sym, fc);
590 } else if (fr != r) {
591 /* XXX: don't we really come here? */
592 abort();
593 o(0xc0 + fr + r * 8); /* mov r, fr */
598 /* 'is_jmp' is '1' if it is a jump */
599 static void gcall_or_jmp(int is_jmp)
601 int r;
602 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
603 /* constant case */
604 if (vtop->r & VT_SYM) {
605 /* relocation case */
606 greloc(cur_text_section, vtop->sym,
607 ind + 1, R_X86_64_PC32);
608 } else {
609 /* put an empty PC32 relocation */
610 put_elf_reloc(symtab_section, cur_text_section,
611 ind + 1, R_X86_64_PC32, 0);
613 oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
614 } else {
615 /* otherwise, indirect call */
616 r = TREG_R11;
617 load(r, vtop);
618 o(0x41); /* REX */
619 o(0xff); /* call/jmp *r */
620 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
624 #ifdef TCC_TARGET_PE
626 #define REGN 4
627 static const uint8_t arg_regs[REGN] = {
628 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
631 /* Prepare arguments in R10 and R11 rather than RCX and RDX
632 because gv() will not ever use these */
633 static int arg_prepare_reg(int idx) {
634 if (idx == 0 || idx == 1)
635 /* idx=0: r10, idx=1: r11 */
636 return idx + 10;
637 else
638 return arg_regs[idx];
641 static int func_scratch;
643 /* Generate function call. The function address is pushed first, then
644 all the parameters in call order. This functions pops all the
645 parameters and the function address. */
647 void gen_offs_sp(int b, int r, int d)
649 orex(1,0,r & 0x100 ? 0 : r, b);
650 if (d == (char)d) {
651 o(0x2444 | (REG_VALUE(r) << 3));
652 g(d);
653 } else {
654 o(0x2484 | (REG_VALUE(r) << 3));
655 gen_le32(d);
659 /* Return the number of registers needed to return the struct, or 0 if
660 returning via struct pointer. */
661 ST_FUNC int gfunc_sret(CType *vt, CType *ret, int *ret_align)
663 int size, align;
664 *ret_align = 1; // Never have to re-align return values for x86-64
665 size = type_size(vt, &align);
666 ret->ref = NULL;
667 if (size > 8) {
668 return 0;
669 } else if (size > 4) {
670 ret->t = VT_LLONG;
671 return 1;
672 } else if (size > 2) {
673 ret->t = VT_INT;
674 return 1;
675 } else if (size > 1) {
676 ret->t = VT_SHORT;
677 return 1;
678 } else {
679 ret->t = VT_BYTE;
680 return 1;
684 static int is_sse_float(int t) {
685 int bt;
686 bt = t & VT_BTYPE;
687 return bt == VT_DOUBLE || bt == VT_FLOAT;
690 int gfunc_arg_size(CType *type) {
691 int align;
692 if (type->t & (VT_ARRAY|VT_BITFIELD))
693 return 8;
694 return type_size(type, &align);
697 void gfunc_call(int nb_args)
699 int size, r, args_size, i, d, bt, struct_size;
700 int arg;
702 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
703 arg = nb_args;
705 /* for struct arguments, we need to call memcpy and the function
706 call breaks register passing arguments we are preparing.
707 So, we process arguments which will be passed by stack first. */
708 struct_size = args_size;
709 for(i = 0; i < nb_args; i++) {
710 SValue *sv;
712 --arg;
713 sv = &vtop[-i];
714 bt = (sv->type.t & VT_BTYPE);
715 size = gfunc_arg_size(&sv->type);
717 if (size <= 8)
718 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
720 if (bt == VT_STRUCT) {
721 /* align to stack align size */
722 size = (size + 15) & ~15;
723 /* generate structure store */
724 r = get_reg(RC_INT);
725 gen_offs_sp(0x8d, r, struct_size);
726 struct_size += size;
728 /* generate memcpy call */
729 vset(&sv->type, r | VT_LVAL, 0);
730 vpushv(sv);
731 vstore();
732 --vtop;
733 } else if (bt == VT_LDOUBLE) {
734 gv(RC_ST0);
735 gen_offs_sp(0xdb, 0x107, struct_size);
736 struct_size += 16;
740 if (func_scratch < struct_size)
741 func_scratch = struct_size;
743 arg = nb_args;
744 struct_size = args_size;
746 for(i = 0; i < nb_args; i++) {
747 --arg;
748 bt = (vtop->type.t & VT_BTYPE);
750 size = gfunc_arg_size(&vtop->type);
751 if (size > 8) {
752 /* align to stack align size */
753 size = (size + 15) & ~15;
754 if (arg >= REGN) {
755 d = get_reg(RC_INT);
756 gen_offs_sp(0x8d, d, struct_size);
757 gen_offs_sp(0x89, d, arg*8);
758 } else {
759 d = arg_prepare_reg(arg);
760 gen_offs_sp(0x8d, d, struct_size);
762 struct_size += size;
763 } else {
764 if (is_sse_float(vtop->type.t)) {
765 gv(RC_XMM0); /* only use one float register */
766 if (arg >= REGN) {
767 /* movq %xmm0, j*8(%rsp) */
768 gen_offs_sp(0xd60f66, 0x100, arg*8);
769 } else {
770 /* movaps %xmm0, %xmmN */
771 o(0x280f);
772 o(0xc0 + (arg << 3));
773 d = arg_prepare_reg(arg);
774 /* mov %xmm0, %rxx */
775 o(0x66);
776 orex(1,d,0, 0x7e0f);
777 o(0xc0 + REG_VALUE(d));
779 } else {
780 if (bt == VT_STRUCT) {
781 vtop->type.ref = NULL;
782 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
783 : size > 1 ? VT_SHORT : VT_BYTE;
786 r = gv(RC_INT);
787 if (arg >= REGN) {
788 gen_offs_sp(0x89, r, arg*8);
789 } else {
790 d = arg_prepare_reg(arg);
791 orex(1,d,r,0x89); /* mov */
792 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
796 vtop--;
798 save_regs(0);
800 /* Copy R10 and R11 into RCX and RDX, respectively */
801 if (nb_args > 0) {
802 o(0xd1894c); /* mov %r10, %rcx */
803 if (nb_args > 1) {
804 o(0xda894c); /* mov %r11, %rdx */
808 gcall_or_jmp(0);
809 vtop--;
813 #define FUNC_PROLOG_SIZE 11
815 /* generate function prolog of type 't' */
816 void gfunc_prolog(CType *func_type)
818 int addr, reg_param_index, bt, size;
819 Sym *sym;
820 CType *type;
822 func_ret_sub = 0;
823 func_scratch = 0;
824 loc = 0;
826 addr = PTR_SIZE * 2;
827 ind += FUNC_PROLOG_SIZE;
828 func_sub_sp_offset = ind;
829 reg_param_index = 0;
831 sym = func_type->ref;
833 /* if the function returns a structure, then add an
834 implicit pointer parameter */
835 func_vt = sym->type;
836 size = gfunc_arg_size(&func_vt);
837 if (size > 8) {
838 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
839 func_vc = addr;
840 reg_param_index++;
841 addr += 8;
844 /* define parameters */
845 while ((sym = sym->next) != NULL) {
846 type = &sym->type;
847 bt = type->t & VT_BTYPE;
848 size = gfunc_arg_size(type);
849 if (size > 8) {
850 if (reg_param_index < REGN) {
851 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
853 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL | VT_REF, addr);
854 } else {
855 if (reg_param_index < REGN) {
856 /* save arguments passed by register */
857 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
858 o(0xd60f66); /* movq */
859 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
860 } else {
861 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
864 sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
866 addr += 8;
867 reg_param_index++;
870 while (reg_param_index < REGN) {
871 if (func_type->ref->c == FUNC_ELLIPSIS) {
872 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
873 addr += 8;
875 reg_param_index++;
879 /* generate function epilog */
880 void gfunc_epilog(void)
882 int v, saved_ind;
884 o(0xc9); /* leave */
885 if (func_ret_sub == 0) {
886 o(0xc3); /* ret */
887 } else {
888 o(0xc2); /* ret n */
889 g(func_ret_sub);
890 g(func_ret_sub >> 8);
893 saved_ind = ind;
894 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
895 /* align local size to word & save local variables */
896 v = (func_scratch + -loc + 15) & -16;
898 if (v >= 4096) {
899 Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
900 oad(0xb8, v); /* mov stacksize, %eax */
901 oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
902 greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
903 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
904 } else {
905 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
906 o(0xec8148); /* sub rsp, stacksize */
907 gen_le32(v);
910 cur_text_section->data_offset = saved_ind;
911 pe_add_unwind_data(ind, saved_ind, v);
912 ind = cur_text_section->data_offset;
915 #else
917 static void gadd_sp(int val)
919 if (val == (char)val) {
920 o(0xc48348);
921 g(val);
922 } else {
923 oad(0xc48148, val); /* add $xxx, %rsp */
927 typedef enum X86_64_Mode {
928 x86_64_mode_none,
929 x86_64_mode_memory,
930 x86_64_mode_integer,
931 x86_64_mode_sse,
932 x86_64_mode_x87
933 } X86_64_Mode;
935 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b) {
936 if (a == b)
937 return a;
938 else if (a == x86_64_mode_none)
939 return b;
940 else if (b == x86_64_mode_none)
941 return a;
942 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
943 return x86_64_mode_memory;
944 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
945 return x86_64_mode_integer;
946 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
947 return x86_64_mode_memory;
948 else
949 return x86_64_mode_sse;
952 static X86_64_Mode classify_x86_64_inner(CType *ty) {
953 X86_64_Mode mode;
954 Sym *f;
956 switch (ty->t & VT_BTYPE) {
957 case VT_VOID: return x86_64_mode_none;
959 case VT_INT:
960 case VT_BYTE:
961 case VT_SHORT:
962 case VT_LLONG:
963 case VT_BOOL:
964 case VT_PTR:
965 case VT_FUNC:
966 case VT_ENUM: return x86_64_mode_integer;
968 case VT_FLOAT:
969 case VT_DOUBLE: return x86_64_mode_sse;
971 case VT_LDOUBLE: return x86_64_mode_x87;
973 case VT_STRUCT:
974 f = ty->ref;
976 // Detect union
977 if (f->next && (f->c == f->next->c))
978 return x86_64_mode_memory;
980 mode = x86_64_mode_none;
981 for (; f; f = f->next)
982 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
984 return mode;
987 assert(0);
990 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count) {
991 X86_64_Mode mode;
992 int size, align, ret_t = 0;
994 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
995 *psize = 8;
996 *palign = 8;
997 *reg_count = 1;
998 ret_t = ty->t;
999 mode = x86_64_mode_integer;
1000 } else {
1001 size = type_size(ty, &align);
1002 *psize = (size + 7) & ~7;
1003 *palign = (align + 7) & ~7;
1005 if (size > 16) {
1006 mode = x86_64_mode_memory;
1007 } else {
1008 mode = classify_x86_64_inner(ty);
1009 switch (mode) {
1010 case x86_64_mode_integer:
1011 if (size > 8) {
1012 *reg_count = 2;
1013 ret_t = VT_QLONG;
1014 } else {
1015 *reg_count = 1;
1016 ret_t = (size > 4) ? VT_LLONG : VT_INT;
1018 break;
1020 case x86_64_mode_x87:
1021 *reg_count = 1;
1022 ret_t = VT_LDOUBLE;
1023 break;
1025 case x86_64_mode_sse:
1026 if (size > 8) {
1027 *reg_count = 2;
1028 ret_t = VT_QFLOAT;
1029 } else {
1030 *reg_count = 1;
1031 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1033 break;
1034 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1039 if (ret) {
1040 ret->ref = NULL;
1041 ret->t = ret_t;
1044 return mode;
1047 ST_FUNC int classify_x86_64_va_arg(CType *ty) {
1048 /* This definition must be synced with stdarg.h */
1049 enum __va_arg_type {
1050 __va_gen_reg, __va_float_reg, __va_stack
1052 int size, align, reg_count;
1053 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1054 switch (mode) {
1055 default: return __va_stack;
1056 case x86_64_mode_integer: return __va_gen_reg;
1057 case x86_64_mode_sse: return __va_float_reg;
1061 /* Return the number of registers needed to return the struct, or 0 if
1062 returning via struct pointer. */
1063 int gfunc_sret(CType *vt, CType *ret, int *ret_align) {
1064 int size, align, reg_count;
1065 *ret_align = 1; // Never have to re-align return values for x86-64
1066 return (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) != x86_64_mode_memory);
1069 #define REGN 6
1070 static const uint8_t arg_regs[REGN] = {
1071 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1074 static int arg_prepare_reg(int idx) {
1075 if (idx == 2 || idx == 3)
1076 /* idx=2: r10, idx=3: r11 */
1077 return idx + 8;
1078 else
1079 return arg_regs[idx];
1082 /* Generate function call. The function address is pushed first, then
1083 all the parameters in call order. This functions pops all the
1084 parameters and the function address. */
1085 void gfunc_call(int nb_args)
1087 X86_64_Mode mode;
1088 CType type;
1089 int size, align, r, args_size, stack_adjust, run_start, run_end, i, reg_count;
1090 int nb_reg_args = 0;
1091 int nb_sse_args = 0;
1092 int sse_reg, gen_reg;
1094 /* calculate the number of integer/float register arguments */
1095 for(i = 0; i < nb_args; i++) {
1096 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1097 if (mode == x86_64_mode_sse)
1098 nb_sse_args += reg_count;
1099 else if (mode == x86_64_mode_integer)
1100 nb_reg_args += reg_count;
1103 /* arguments are collected in runs. Each run is a collection of 8-byte aligned arguments
1104 and ended by a 16-byte aligned argument. This is because, from the point of view of
1105 the callee, argument alignment is computed from the bottom up. */
1106 /* for struct arguments, we need to call memcpy and the function
1107 call breaks register passing arguments we are preparing.
1108 So, we process arguments which will be passed by stack first. */
1109 gen_reg = nb_reg_args;
1110 sse_reg = nb_sse_args;
1111 run_start = 0;
1112 args_size = 0;
1113 while (run_start != nb_args) {
1114 int run_gen_reg = gen_reg, run_sse_reg = sse_reg;
1116 run_end = nb_args;
1117 stack_adjust = 0;
1118 for(i = run_start; (i < nb_args) && (run_end == nb_args); i++) {
1119 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1120 switch (mode) {
1121 case x86_64_mode_memory:
1122 case x86_64_mode_x87:
1123 stack_arg:
1124 if (align == 16)
1125 run_end = i;
1126 else
1127 stack_adjust += size;
1128 break;
1130 case x86_64_mode_sse:
1131 sse_reg -= reg_count;
1132 if (sse_reg + reg_count > 8) goto stack_arg;
1133 break;
1135 case x86_64_mode_integer:
1136 gen_reg -= reg_count;
1137 if (gen_reg + reg_count > REGN) goto stack_arg;
1138 break;
1139 default: break; /* nothing to be done for x86_64_mode_none */
1143 gen_reg = run_gen_reg;
1144 sse_reg = run_sse_reg;
1146 /* adjust stack to align SSE boundary */
1147 if (stack_adjust &= 15) {
1148 /* fetch cpu flag before the following sub will change the value */
1149 if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
1150 gv(RC_INT);
1152 stack_adjust = 16 - stack_adjust;
1153 o(0x48);
1154 oad(0xec81, stack_adjust); /* sub $xxx, %rsp */
1155 args_size += stack_adjust;
1158 for(i = run_start; i < run_end;) {
1159 /* Swap argument to top, it will possibly be changed here,
1160 and might use more temps. At the end of the loop we keep
1161 in on the stack and swap it back to its original position
1162 if it is a register. */
1163 SValue tmp = vtop[0];
1164 vtop[0] = vtop[-i];
1165 vtop[-i] = tmp;
1167 mode = classify_x86_64_arg(&vtop->type, NULL, &size, &align, &reg_count);
1169 int arg_stored = 1;
1170 switch (vtop->type.t & VT_BTYPE) {
1171 case VT_STRUCT:
1172 if (mode == x86_64_mode_sse) {
1173 if (sse_reg > 8)
1174 sse_reg -= reg_count;
1175 else
1176 arg_stored = 0;
1177 } else if (mode == x86_64_mode_integer) {
1178 if (gen_reg > REGN)
1179 gen_reg -= reg_count;
1180 else
1181 arg_stored = 0;
1184 if (arg_stored) {
1185 /* allocate the necessary size on stack */
1186 o(0x48);
1187 oad(0xec81, size); /* sub $xxx, %rsp */
1188 /* generate structure store */
1189 r = get_reg(RC_INT);
1190 orex(1, r, 0, 0x89); /* mov %rsp, r */
1191 o(0xe0 + REG_VALUE(r));
1192 vset(&vtop->type, r | VT_LVAL, 0);
1193 vswap();
1194 vstore();
1195 args_size += size;
1197 break;
1199 case VT_LDOUBLE:
1200 assert(0);
1201 break;
1203 case VT_FLOAT:
1204 case VT_DOUBLE:
1205 assert(mode == x86_64_mode_sse);
1206 if (sse_reg > 8) {
1207 --sse_reg;
1208 r = gv(RC_FLOAT);
1209 o(0x50); /* push $rax */
1210 /* movq %xmmN, (%rsp) */
1211 o(0xd60f66);
1212 o(0x04 + REG_VALUE(r)*8);
1213 o(0x24);
1214 args_size += size;
1215 } else {
1216 arg_stored = 0;
1218 break;
1220 default:
1221 assert(mode == x86_64_mode_integer);
1222 /* simple type */
1223 /* XXX: implicit cast ? */
1224 if (gen_reg > REGN) {
1225 --gen_reg;
1226 r = gv(RC_INT);
1227 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1228 args_size += size;
1229 } else {
1230 arg_stored = 0;
1232 break;
1235 /* And swap the argument back to it's original position. */
1236 tmp = vtop[0];
1237 vtop[0] = vtop[-i];
1238 vtop[-i] = tmp;
1240 if (arg_stored) {
1241 vrotb(i+1);
1242 assert((vtop->type.t == tmp.type.t) && (vtop->r == tmp.r));
1243 vpop();
1244 --nb_args;
1245 --run_end;
1246 } else {
1247 ++i;
1251 /* handle 16 byte aligned arguments at end of run */
1252 run_start = i = run_end;
1253 while (i < nb_args) {
1254 /* Rotate argument to top since it will always be popped */
1255 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1256 if (align != 16)
1257 break;
1259 vrotb(i+1);
1261 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1262 gv(RC_ST0);
1263 oad(0xec8148, size); /* sub $xxx, %rsp */
1264 o(0x7cdb); /* fstpt 0(%rsp) */
1265 g(0x24);
1266 g(0x00);
1267 args_size += size;
1268 } else {
1269 assert(mode == x86_64_mode_memory);
1271 /* allocate the necessary size on stack */
1272 o(0x48);
1273 oad(0xec81, size); /* sub $xxx, %rsp */
1274 /* generate structure store */
1275 r = get_reg(RC_INT);
1276 orex(1, r, 0, 0x89); /* mov %rsp, r */
1277 o(0xe0 + REG_VALUE(r));
1278 vset(&vtop->type, r | VT_LVAL, 0);
1279 vswap();
1280 vstore();
1281 args_size += size;
1284 vpop();
1285 --nb_args;
1289 /* XXX This should be superfluous. */
1290 save_regs(0); /* save used temporary registers */
1292 /* then, we prepare register passing arguments.
1293 Note that we cannot set RDX and RCX in this loop because gv()
1294 may break these temporary registers. Let's use R10 and R11
1295 instead of them */
1296 assert(gen_reg <= REGN);
1297 assert(sse_reg <= 8);
1298 for(i = 0; i < nb_args; i++) {
1299 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1300 /* Alter stack entry type so that gv() knows how to treat it */
1301 vtop->type = type;
1302 if (mode == x86_64_mode_sse) {
1303 if (reg_count == 2) {
1304 sse_reg -= 2;
1305 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1306 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1307 /* movaps %xmm0, %xmmN */
1308 o(0x280f);
1309 o(0xc0 + (sse_reg << 3));
1310 /* movaps %xmm1, %xmmN */
1311 o(0x280f);
1312 o(0xc1 + ((sse_reg+1) << 3));
1314 } else {
1315 assert(reg_count == 1);
1316 --sse_reg;
1317 /* Load directly to register */
1318 gv(RC_XMM0 << sse_reg);
1320 } else if (mode == x86_64_mode_integer) {
1321 /* simple type */
1322 /* XXX: implicit cast ? */
1323 gen_reg -= reg_count;
1324 r = gv(RC_INT);
1325 int d = arg_prepare_reg(gen_reg);
1326 orex(1,d,r,0x89); /* mov */
1327 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1328 if (reg_count == 2) {
1329 d = arg_prepare_reg(gen_reg+1);
1330 orex(1,d,vtop->r2,0x89); /* mov */
1331 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1334 vtop--;
1336 assert(gen_reg == 0);
1337 assert(sse_reg == 0);
1339 /* We shouldn't have many operands on the stack anymore, but the
1340 call address itself is still there, and it might be in %eax
1341 (or edx/ecx) currently, which the below writes would clobber.
1342 So evict all remaining operands here. */
1343 save_regs(0);
1345 /* Copy R10 and R11 into RDX and RCX, respectively */
1346 if (nb_reg_args > 2) {
1347 o(0xd2894c); /* mov %r10, %rdx */
1348 if (nb_reg_args > 3) {
1349 o(0xd9894c); /* mov %r11, %rcx */
1353 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1354 gcall_or_jmp(0);
1355 if (args_size)
1356 gadd_sp(args_size);
1357 vtop--;
1361 #define FUNC_PROLOG_SIZE 11
1363 static void push_arg_reg(int i) {
1364 loc -= 8;
1365 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1368 /* generate function prolog of type 't' */
1369 void gfunc_prolog(CType *func_type)
1371 X86_64_Mode mode;
1372 int i, addr, align, size, reg_count;
1373 int param_addr = 0, reg_param_index, sse_param_index;
1374 Sym *sym;
1375 CType *type;
1377 sym = func_type->ref;
1378 addr = PTR_SIZE * 2;
1379 loc = 0;
1380 ind += FUNC_PROLOG_SIZE;
1381 func_sub_sp_offset = ind;
1382 func_ret_sub = 0;
1384 if (func_type->ref->c == FUNC_ELLIPSIS) {
1385 int seen_reg_num, seen_sse_num, seen_stack_size;
1386 seen_reg_num = seen_sse_num = 0;
1387 /* frame pointer and return address */
1388 seen_stack_size = PTR_SIZE * 2;
1389 /* count the number of seen parameters */
1390 sym = func_type->ref;
1391 while ((sym = sym->next) != NULL) {
1392 type = &sym->type;
1393 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1394 switch (mode) {
1395 default:
1396 stack_arg:
1397 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1398 break;
1400 case x86_64_mode_integer:
1401 if (seen_reg_num + reg_count <= 8) {
1402 seen_reg_num += reg_count;
1403 } else {
1404 seen_reg_num = 8;
1405 goto stack_arg;
1407 break;
1409 case x86_64_mode_sse:
1410 if (seen_sse_num + reg_count <= 8) {
1411 seen_sse_num += reg_count;
1412 } else {
1413 seen_sse_num = 8;
1414 goto stack_arg;
1416 break;
1420 loc -= 16;
1421 /* movl $0x????????, -0x10(%rbp) */
1422 o(0xf045c7);
1423 gen_le32(seen_reg_num * 8);
1424 /* movl $0x????????, -0xc(%rbp) */
1425 o(0xf445c7);
1426 gen_le32(seen_sse_num * 16 + 48);
1427 /* movl $0x????????, -0x8(%rbp) */
1428 o(0xf845c7);
1429 gen_le32(seen_stack_size);
1431 /* save all register passing arguments */
1432 for (i = 0; i < 8; i++) {
1433 loc -= 16;
1434 o(0xd60f66); /* movq */
1435 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1436 /* movq $0, loc+8(%rbp) */
1437 o(0x85c748);
1438 gen_le32(loc + 8);
1439 gen_le32(0);
1441 for (i = 0; i < REGN; i++) {
1442 push_arg_reg(REGN-1-i);
1446 sym = func_type->ref;
1447 reg_param_index = 0;
1448 sse_param_index = 0;
1450 /* if the function returns a structure, then add an
1451 implicit pointer parameter */
1452 func_vt = sym->type;
1453 mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1454 if (mode == x86_64_mode_memory) {
1455 push_arg_reg(reg_param_index);
1456 func_vc = loc;
1457 reg_param_index++;
1459 /* define parameters */
1460 while ((sym = sym->next) != NULL) {
1461 type = &sym->type;
1462 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1463 switch (mode) {
1464 case x86_64_mode_sse:
1465 if (sse_param_index + reg_count <= 8) {
1466 /* save arguments passed by register */
1467 loc -= reg_count * 8;
1468 param_addr = loc;
1469 for (i = 0; i < reg_count; ++i) {
1470 o(0xd60f66); /* movq */
1471 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1472 ++sse_param_index;
1474 } else {
1475 addr = (addr + align - 1) & -align;
1476 param_addr = addr;
1477 addr += size;
1478 sse_param_index += reg_count;
1480 break;
1482 case x86_64_mode_memory:
1483 case x86_64_mode_x87:
1484 addr = (addr + align - 1) & -align;
1485 param_addr = addr;
1486 addr += size;
1487 break;
1489 case x86_64_mode_integer: {
1490 if (reg_param_index + reg_count <= REGN) {
1491 /* save arguments passed by register */
1492 loc -= reg_count * 8;
1493 param_addr = loc;
1494 for (i = 0; i < reg_count; ++i) {
1495 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1496 ++reg_param_index;
1498 } else {
1499 addr = (addr + align - 1) & -align;
1500 param_addr = addr;
1501 addr += size;
1502 reg_param_index += reg_count;
1504 break;
1506 default: break; /* nothing to be done for x86_64_mode_none */
1508 sym_push(sym->v & ~SYM_FIELD, type,
1509 VT_LOCAL | VT_LVAL, param_addr);
1513 /* generate function epilog */
1514 void gfunc_epilog(void)
1516 int v, saved_ind;
1518 o(0xc9); /* leave */
1519 if (func_ret_sub == 0) {
1520 o(0xc3); /* ret */
1521 } else {
1522 o(0xc2); /* ret n */
1523 g(func_ret_sub);
1524 g(func_ret_sub >> 8);
1526 /* align local size to word & save local variables */
1527 v = (-loc + 15) & -16;
1528 saved_ind = ind;
1529 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1530 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1531 o(0xec8148); /* sub rsp, stacksize */
1532 gen_le32(v);
1533 ind = saved_ind;
1536 #endif /* not PE */
1538 /* generate a jump to a label */
1539 int gjmp(int t)
1541 return psym(0xe9, t);
1544 /* generate a jump to a fixed address */
1545 void gjmp_addr(int a)
1547 int r;
1548 r = a - ind - 2;
1549 if (r == (char)r) {
1550 g(0xeb);
1551 g(r);
1552 } else {
1553 oad(0xe9, a - ind - 5);
1557 /* generate a test. set 'inv' to invert test. Stack entry is popped */
1558 int gtst(int inv, int t)
1560 int v, *p;
1562 v = vtop->r & VT_VALMASK;
1563 if (v == VT_CMP) {
1564 /* fast case : can jump directly since flags are set */
1565 if (vtop->c.i & 0x100)
1567 /* This was a float compare. If the parity flag is set
1568 the result was unordered. For anything except != this
1569 means false and we don't jump (anding both conditions).
1570 For != this means true (oring both).
1571 Take care about inverting the test. We need to jump
1572 to our target if the result was unordered and test wasn't NE,
1573 otherwise if unordered we don't want to jump. */
1574 vtop->c.i &= ~0x100;
1575 if (!inv == (vtop->c.i != TOK_NE))
1576 o(0x067a); /* jp +6 */
1577 else
1579 g(0x0f);
1580 t = psym(0x8a, t); /* jp t */
1583 g(0x0f);
1584 t = psym((vtop->c.i - 16) ^ inv, t);
1585 } else if (v == VT_JMP || v == VT_JMPI) {
1586 /* && or || optimization */
1587 if ((v & 1) == inv) {
1588 /* insert vtop->c jump list in t */
1589 p = &vtop->c.i;
1590 while (*p != 0)
1591 p = (int *)(cur_text_section->data + *p);
1592 *p = t;
1593 t = vtop->c.i;
1594 } else {
1595 t = gjmp(t);
1596 gsym(vtop->c.i);
1598 } else {
1599 if (is_float(vtop->type.t) ||
1600 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
1601 vpushi(0);
1602 gen_op(TOK_NE);
1604 if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
1605 /* constant jmp optimization */
1606 if ((vtop->c.i != 0) != inv)
1607 t = gjmp(t);
1608 } else {
1609 v = gv(RC_INT);
1610 orex(0,v,v,0x85);
1611 o(0xc0 + REG_VALUE(v) * 9);
1612 g(0x0f);
1613 t = psym(0x85 ^ inv, t);
1616 vtop--;
1617 return t;
1620 /* generate an integer binary operation */
1621 void gen_opi(int op)
1623 int r, fr, opc, c;
1624 int ll, uu, cc;
1626 ll = is64_type(vtop[-1].type.t);
1627 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1628 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1630 switch(op) {
1631 case '+':
1632 case TOK_ADDC1: /* add with carry generation */
1633 opc = 0;
1634 gen_op8:
1635 if (cc && (!ll || (int)vtop->c.ll == vtop->c.ll)) {
1636 /* constant case */
1637 vswap();
1638 r = gv(RC_INT);
1639 vswap();
1640 c = vtop->c.i;
1641 if (c == (char)c) {
1642 /* XXX: generate inc and dec for smaller code ? */
1643 orex(ll, r, 0, 0x83);
1644 o(0xc0 | (opc << 3) | REG_VALUE(r));
1645 g(c);
1646 } else {
1647 orex(ll, r, 0, 0x81);
1648 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1650 } else {
1651 gv2(RC_INT, RC_INT);
1652 r = vtop[-1].r;
1653 fr = vtop[0].r;
1654 orex(ll, r, fr, (opc << 3) | 0x01);
1655 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1657 vtop--;
1658 if (op >= TOK_ULT && op <= TOK_GT) {
1659 vtop->r = VT_CMP;
1660 vtop->c.i = op;
1662 break;
1663 case '-':
1664 case TOK_SUBC1: /* sub with carry generation */
1665 opc = 5;
1666 goto gen_op8;
1667 case TOK_ADDC2: /* add with carry use */
1668 opc = 2;
1669 goto gen_op8;
1670 case TOK_SUBC2: /* sub with carry use */
1671 opc = 3;
1672 goto gen_op8;
1673 case '&':
1674 opc = 4;
1675 goto gen_op8;
1676 case '^':
1677 opc = 6;
1678 goto gen_op8;
1679 case '|':
1680 opc = 1;
1681 goto gen_op8;
1682 case '*':
1683 gv2(RC_INT, RC_INT);
1684 r = vtop[-1].r;
1685 fr = vtop[0].r;
1686 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1687 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1688 vtop--;
1689 break;
1690 case TOK_SHL:
1691 opc = 4;
1692 goto gen_shift;
1693 case TOK_SHR:
1694 opc = 5;
1695 goto gen_shift;
1696 case TOK_SAR:
1697 opc = 7;
1698 gen_shift:
1699 opc = 0xc0 | (opc << 3);
1700 if (cc) {
1701 /* constant case */
1702 vswap();
1703 r = gv(RC_INT);
1704 vswap();
1705 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1706 o(opc | REG_VALUE(r));
1707 g(vtop->c.i & (ll ? 63 : 31));
1708 } else {
1709 /* we generate the shift in ecx */
1710 gv2(RC_INT, RC_RCX);
1711 r = vtop[-1].r;
1712 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1713 o(opc | REG_VALUE(r));
1715 vtop--;
1716 break;
1717 case TOK_UDIV:
1718 case TOK_UMOD:
1719 uu = 1;
1720 goto divmod;
1721 case '/':
1722 case '%':
1723 case TOK_PDIV:
1724 uu = 0;
1725 divmod:
1726 /* first operand must be in eax */
1727 /* XXX: need better constraint for second operand */
1728 gv2(RC_RAX, RC_RCX);
1729 r = vtop[-1].r;
1730 fr = vtop[0].r;
1731 vtop--;
1732 save_reg(TREG_RDX);
1733 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1734 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1735 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1736 if (op == '%' || op == TOK_UMOD)
1737 r = TREG_RDX;
1738 else
1739 r = TREG_RAX;
1740 vtop->r = r;
1741 break;
1742 default:
1743 opc = 7;
1744 goto gen_op8;
1748 void gen_opl(int op)
1750 gen_opi(op);
1753 /* generate a floating point operation 'v = t1 op t2' instruction. The
1754 two operands are guaranted to have the same floating point type */
1755 /* XXX: need to use ST1 too */
1756 void gen_opf(int op)
1758 int a, ft, fc, swapped, r;
1759 int float_type =
1760 (vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1762 /* convert constants to memory references */
1763 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1764 vswap();
1765 gv(float_type);
1766 vswap();
1768 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1769 gv(float_type);
1771 /* must put at least one value in the floating point register */
1772 if ((vtop[-1].r & VT_LVAL) &&
1773 (vtop[0].r & VT_LVAL)) {
1774 vswap();
1775 gv(float_type);
1776 vswap();
1778 swapped = 0;
1779 /* swap the stack if needed so that t1 is the register and t2 is
1780 the memory reference */
1781 if (vtop[-1].r & VT_LVAL) {
1782 vswap();
1783 swapped = 1;
1785 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1786 if (op >= TOK_ULT && op <= TOK_GT) {
1787 /* load on stack second operand */
1788 load(TREG_ST0, vtop);
1789 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1790 if (op == TOK_GE || op == TOK_GT)
1791 swapped = !swapped;
1792 else if (op == TOK_EQ || op == TOK_NE)
1793 swapped = 0;
1794 if (swapped)
1795 o(0xc9d9); /* fxch %st(1) */
1796 o(0xe9da); /* fucompp */
1797 o(0xe0df); /* fnstsw %ax */
1798 if (op == TOK_EQ) {
1799 o(0x45e480); /* and $0x45, %ah */
1800 o(0x40fC80); /* cmp $0x40, %ah */
1801 } else if (op == TOK_NE) {
1802 o(0x45e480); /* and $0x45, %ah */
1803 o(0x40f480); /* xor $0x40, %ah */
1804 op = TOK_NE;
1805 } else if (op == TOK_GE || op == TOK_LE) {
1806 o(0x05c4f6); /* test $0x05, %ah */
1807 op = TOK_EQ;
1808 } else {
1809 o(0x45c4f6); /* test $0x45, %ah */
1810 op = TOK_EQ;
1812 vtop--;
1813 vtop->r = VT_CMP;
1814 vtop->c.i = op;
1815 } else {
1816 /* no memory reference possible for long double operations */
1817 load(TREG_ST0, vtop);
1818 swapped = !swapped;
1820 switch(op) {
1821 default:
1822 case '+':
1823 a = 0;
1824 break;
1825 case '-':
1826 a = 4;
1827 if (swapped)
1828 a++;
1829 break;
1830 case '*':
1831 a = 1;
1832 break;
1833 case '/':
1834 a = 6;
1835 if (swapped)
1836 a++;
1837 break;
1839 ft = vtop->type.t;
1840 fc = vtop->c.ul;
1841 o(0xde); /* fxxxp %st, %st(1) */
1842 o(0xc1 + (a << 3));
1843 vtop--;
1845 } else {
1846 if (op >= TOK_ULT && op <= TOK_GT) {
1847 /* if saved lvalue, then we must reload it */
1848 r = vtop->r;
1849 fc = vtop->c.ul;
1850 if ((r & VT_VALMASK) == VT_LLOCAL) {
1851 SValue v1;
1852 r = get_reg(RC_INT);
1853 v1.type.t = VT_PTR;
1854 v1.r = VT_LOCAL | VT_LVAL;
1855 v1.c.ul = fc;
1856 load(r, &v1);
1857 fc = 0;
1860 if (op == TOK_EQ || op == TOK_NE) {
1861 swapped = 0;
1862 } else {
1863 if (op == TOK_LE || op == TOK_LT)
1864 swapped = !swapped;
1865 if (op == TOK_LE || op == TOK_GE) {
1866 op = 0x93; /* setae */
1867 } else {
1868 op = 0x97; /* seta */
1872 if (swapped) {
1873 gv(RC_FLOAT);
1874 vswap();
1876 assert(!(vtop[-1].r & VT_LVAL));
1878 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
1879 o(0x66);
1880 o(0x2e0f); /* ucomisd */
1882 if (vtop->r & VT_LVAL) {
1883 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
1884 } else {
1885 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
1888 vtop--;
1889 vtop->r = VT_CMP;
1890 vtop->c.i = op | 0x100;
1891 } else {
1892 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
1893 switch(op) {
1894 default:
1895 case '+':
1896 a = 0;
1897 break;
1898 case '-':
1899 a = 4;
1900 break;
1901 case '*':
1902 a = 1;
1903 break;
1904 case '/':
1905 a = 6;
1906 break;
1908 ft = vtop->type.t;
1909 fc = vtop->c.ul;
1910 assert((ft & VT_BTYPE) != VT_LDOUBLE);
1912 r = vtop->r;
1913 /* if saved lvalue, then we must reload it */
1914 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
1915 SValue v1;
1916 r = get_reg(RC_INT);
1917 v1.type.t = VT_PTR;
1918 v1.r = VT_LOCAL | VT_LVAL;
1919 v1.c.ul = fc;
1920 load(r, &v1);
1921 fc = 0;
1924 assert(!(vtop[-1].r & VT_LVAL));
1925 if (swapped) {
1926 assert(vtop->r & VT_LVAL);
1927 gv(RC_FLOAT);
1928 vswap();
1931 if ((ft & VT_BTYPE) == VT_DOUBLE) {
1932 o(0xf2);
1933 } else {
1934 o(0xf3);
1936 o(0x0f);
1937 o(0x58 + a);
1939 if (vtop->r & VT_LVAL) {
1940 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
1941 } else {
1942 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
1945 vtop--;
1950 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
1951 and 'long long' cases. */
1952 void gen_cvt_itof(int t)
1954 if ((t & VT_BTYPE) == VT_LDOUBLE) {
1955 save_reg(TREG_ST0);
1956 gv(RC_INT);
1957 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
1958 /* signed long long to float/double/long double (unsigned case
1959 is handled generically) */
1960 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1961 o(0x242cdf); /* fildll (%rsp) */
1962 o(0x08c48348); /* add $8, %rsp */
1963 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
1964 (VT_INT | VT_UNSIGNED)) {
1965 /* unsigned int to float/double/long double */
1966 o(0x6a); /* push $0 */
1967 g(0x00);
1968 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1969 o(0x242cdf); /* fildll (%rsp) */
1970 o(0x10c48348); /* add $16, %rsp */
1971 } else {
1972 /* int to float/double/long double */
1973 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
1974 o(0x2404db); /* fildl (%rsp) */
1975 o(0x08c48348); /* add $8, %rsp */
1977 vtop->r = TREG_ST0;
1978 } else {
1979 int r = get_reg(RC_FLOAT);
1980 gv(RC_INT);
1981 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
1982 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
1983 (VT_INT | VT_UNSIGNED) ||
1984 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
1985 o(0x48); /* REX */
1987 o(0x2a0f);
1988 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
1989 vtop->r = r;
1993 /* convert from one floating point type to another */
1994 void gen_cvt_ftof(int t)
1996 int ft, bt, tbt;
1998 ft = vtop->type.t;
1999 bt = ft & VT_BTYPE;
2000 tbt = t & VT_BTYPE;
2002 if (bt == VT_FLOAT) {
2003 gv(RC_FLOAT);
2004 if (tbt == VT_DOUBLE) {
2005 o(0x140f); /* unpcklps */
2006 o(0xc0 + REG_VALUE(vtop->r)*9);
2007 o(0x5a0f); /* cvtps2pd */
2008 o(0xc0 + REG_VALUE(vtop->r)*9);
2009 } else if (tbt == VT_LDOUBLE) {
2010 save_reg(RC_ST0);
2011 /* movss %xmm0,-0x10(%rsp) */
2012 o(0x110ff3);
2013 o(0x44 + REG_VALUE(vtop->r)*8);
2014 o(0xf024);
2015 o(0xf02444d9); /* flds -0x10(%rsp) */
2016 vtop->r = TREG_ST0;
2018 } else if (bt == VT_DOUBLE) {
2019 gv(RC_FLOAT);
2020 if (tbt == VT_FLOAT) {
2021 o(0x140f66); /* unpcklpd */
2022 o(0xc0 + REG_VALUE(vtop->r)*9);
2023 o(0x5a0f66); /* cvtpd2ps */
2024 o(0xc0 + REG_VALUE(vtop->r)*9);
2025 } else if (tbt == VT_LDOUBLE) {
2026 save_reg(RC_ST0);
2027 /* movsd %xmm0,-0x10(%rsp) */
2028 o(0x110ff2);
2029 o(0x44 + REG_VALUE(vtop->r)*8);
2030 o(0xf024);
2031 o(0xf02444dd); /* fldl -0x10(%rsp) */
2032 vtop->r = TREG_ST0;
2034 } else {
2035 int r;
2036 gv(RC_ST0);
2037 r = get_reg(RC_FLOAT);
2038 if (tbt == VT_DOUBLE) {
2039 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2040 /* movsd -0x10(%rsp),%xmm0 */
2041 o(0x100ff2);
2042 o(0x44 + REG_VALUE(r)*8);
2043 o(0xf024);
2044 vtop->r = r;
2045 } else if (tbt == VT_FLOAT) {
2046 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2047 /* movss -0x10(%rsp),%xmm0 */
2048 o(0x100ff3);
2049 o(0x44 + REG_VALUE(r)*8);
2050 o(0xf024);
2051 vtop->r = r;
2056 /* convert fp to int 't' type */
2057 void gen_cvt_ftoi(int t)
2059 int ft, bt, size, r;
2060 ft = vtop->type.t;
2061 bt = ft & VT_BTYPE;
2062 if (bt == VT_LDOUBLE) {
2063 gen_cvt_ftof(VT_DOUBLE);
2064 bt = VT_DOUBLE;
2067 gv(RC_FLOAT);
2068 if (t != VT_INT)
2069 size = 8;
2070 else
2071 size = 4;
2073 r = get_reg(RC_INT);
2074 if (bt == VT_FLOAT) {
2075 o(0xf3);
2076 } else if (bt == VT_DOUBLE) {
2077 o(0xf2);
2078 } else {
2079 assert(0);
2081 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2082 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2083 vtop->r = r;
2086 /* computed goto support */
2087 void ggoto(void)
2089 gcall_or_jmp(1);
2090 vtop--;
2093 /* Save the stack pointer onto the stack and return the location of its address */
2094 ST_FUNC void gen_vla_sp_save(int addr) {
2095 /* mov %rsp,addr(%rbp)*/
2096 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2099 /* Restore the SP from a location on the stack */
2100 ST_FUNC void gen_vla_sp_restore(int addr) {
2101 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2104 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2105 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2106 #ifdef TCC_TARGET_PE
2107 /* alloca does more than just adjust %rsp on Windows */
2108 vpush_global_sym(&func_old_type, TOK_alloca);
2109 vswap(); /* Move alloca ref past allocation size */
2110 gfunc_call(1);
2111 vset(type, REG_IRET, 0);
2112 #else
2113 int r;
2114 r = gv(RC_INT); /* allocation size */
2115 /* sub r,%rsp */
2116 o(0x2b48);
2117 o(0xe0 | REG_VALUE(r));
2118 /* We align to 16 bytes rather than align */
2119 /* and ~15, %rsp */
2120 o(0xf0e48348);
2121 /* mov %rsp, r */
2122 o(0x8948);
2123 o(0xe0 | REG_VALUE(r));
2124 vpop();
2125 vset(type, r, 0);
2126 #endif
2130 /* end of x86-64 code generator */
2131 /*************************************************************/
2132 #endif /* ! TARGET_DEFS_ONLY */
2133 /******************************************************/